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Abstract
The asymptotic properties of the least squares estimator of the cusp in some nonlinear

nonregular regression models is investigated via the study of the weak convergence of the least
squares process generalizing earlier results in Prakasa Rao ( Statist. Prob. Lett. 3 (1985),
15-18).
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1 Introduction

Consider the nonlinear regression model

Yi = S(xi, θ) + εi, i ≥ 1(1. 1)

We now discuss the problem of estimation of the parameter θ by the least squares approach
when the parameter θ is a cusp for the function S(x, θ) = s(x−θ). This problem is not amenable
to standard methods using the Taylor’s expansion as the function S(x, θ) is not differentiable
at θ. We study the asymptotic properties of the least squares estimator via the least squares
process developed earlier in Prakasa Rao (1986) (cf. Prakasa Rao ( 1987)). A special case of
the problem is studied in Prakasa Rao (1985).

2 Main Result

Consider the nonlinear regression model

Yi = S(xi, θ) + εi, i ≥ 1(2. 1)

where

S(x, θ) = a|x− θ|λ + h(x− θ), x ≤ θ(2. 2)

S(x, θ) = b|x− θ|λ + h(x− θ), x ≥ θ

where a 6= 0, b 6= 0, 0 < λ < 1
2 and h(.) satisfies the Holder condition of order β > λ+ 1

2 . Further
more {εi, i ≥ 1} are independent and identically distributed random variables with mean zero
and known finite positive variance σ2 (say). Without loss of generality, we assume that σ2 = 1.
Further suppose that θ ∈ Θ compact contained in R.

Let θ0 denote the true parameter. Suppose {xi, i ≥ 1} is a real sequence with the property
that

n∑
i=1

{S(xi, θ)− S(xi, θ0)}2 = 2nC(λ)|θ − θ0|2λ+1(1 + o(1))(2. 3)

as n→∞ where C(λ) 6= 0 and further suppose that there exists 0 < k1 < k2 <∞ such that

nk1|θ1 − θ2|2λ+1 ≤
n∑
i=1

{S(xi, θ1)− S(xi, θ2)}2 ≤ nk2|θ1 − θ2|2λ+1(2. 4)

for all θ1 and θ2 in Θ.
Let θ̂n be a least squares estimator (LSE) of θ obtained by minimizing

Qn(θ) =
n∑
i=1

(Yi − S(xi, θ))2.(2. 5)
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It is obvious that θ̂n minimizes

Qn(θ)−Qn(θ0) =
n∑
i=1

(Yi − S(xi, θ))2 −
n∑
i=1

(Yi − S(xi, θ0))2(2. 6)

= 2
n∑
i=1

εi(S(xi, θ)− S(xi, θ0)) +
n∑
i=1

(S(xi, θ)− S(xi, θ0))2.

Observe that

Eθ0 [Qn(θ)−Qn(θ0)] =
n∑
i=1

(S(xi, θ)− S(xi, θ0))2(2. 7)

= 2nC(λ)|θ − θ0|2λ+1(1 + o(1))

and

V arθ0 [Qn(θ)−Qn(θ0)] = 4
n∑
i=1

(S(xi, θ)− S(xi, θ0))2(2. 8)

= 8nC(λ)|θ − θ0|2λ+1(1 + o(1)).

In general there exists k2 > 0 independent of n, θ and θ0 ∈ Θ such that

Eθ0 [Qn(θ)−Qn(θ0)] ≤ nk2|θ − θ0|2λ+1(2. 9)

and

V arθ0 [Qn(θ)−Qn(θ0)] ≤ 4nk2|θ − θ0|2λ+1.(2. 10)

Further more

Covθ0 [Qn(θ1)−Qn(θ0), Qn(θ2)−Qn(θ0)](2. 11)

= 4
n∑
i=1

(S(xi, θ1)− S(xi, θ0))(S(xi, θ2)− S(xi, θ0)) =

= 4nC(λ)[|θ1 − θ0|2λ+1 + |θ2 − θ0|2λ+1 − |θ1 − θ2|2λ+1](1 + o(1))

from the relation

||f ||2 + ||g||2 − ||f − g||2 = 2 < f, g >

for any two vectors f and g in Rn. Let

Jn(θ) = Qn(θ)−Qn(θ0).

In view of the above relations , it follows by arguments similar to those given in the Theorem
3.6 of Prakasa Rao (1968a) that there exists η > 0 such that
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lim
τ→∞

lim sup
n→∞

Pθ0 [ inf
|θ−θ0|>τn−ρ

Jn(θ)
n|θ − θ0|2λ+1

≤ η] = 0(2. 12)

where ρ = (2λ+ 1)−1. In fact the same proof shows that , for any τ > 0,

Pθ0 [nρ|θ̂n − θ0| > τ ] ≤ Cτ−(2λ+1)(2. 13)

where the constant C is independent of n and τ. In view of the above observation , the process
{Jn(θ), θ ∈ Θ} has a minimum in the interval [θ0−τn−ρ, θ0+τn−ρ] with probability approaching
one for large τ. For any such τ > 0, let

Rn(φ) = Jn(θ0 + φn−ρ), φ ∈ [−τ, τ ](2. 14)

and let R(φ) be a gaussian process on [−τ, τ ] with

E[R(φ)] = 2C(λ)|φ|2λ+1(2. 15)

and

Cov[R(φ1), R(φ2)] = 4C(λ)[|φ1|2λ+1 + |φ2|2λ+1 − |φ1 − φ2|2λ+1].(2. 16)

Observe that the process {R̃(φ),−∞ < φ <∞} where

R̃(φ) =
R(φ)− E[R(φ)]√

8C(λ)
(2. 17)

is a gaussian random process with mean zero and the covariance function

Cov(R̃(φ1), R̃(φ2)) =
1
2

[|φ1|2λ+1 + |φ2|2λ+1 − |φ1 − φ2|2λ+1](2. 18)

which is the fractional Brownian motion with the Hurst parameter H = λ+ 1
2 .

Let

Zn(φ) =
n∑
i=1

εi(S(xi, θ0 + φn−ρ)− S(xi, θ0))(2. 19)

=
n∑
i=1

aniεi

and

Tn(φ) =
n∑
i=1

(S(xi, θ0 + φn−ρ)− S(xi, θ0))2.(2. 20)

Observe that Tn(φ) is continuous in φ for any fixed n ≥ 1 and

Tn(φ)→ 2C(λ)|φ|2λ+1 as n→∞.(2. 21)

In addition
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Zn(φ) L→ N(0, 2C(λ)|φ|2λ+1) as n→∞(2. 22)

since {εi, i ≥ 1} are independent and identically distributed random variables with mean zero
and finite positive variance and {ank, 1 ≤ k ≤ n} satisfy the condition

max
1≤k≤n

a2
nk∑n

i=1 a
2
ni

→ 0 as n→∞.(2. 23)

This follows from a central limit theorem due to Eicker (1963). The above relation can be
proved by the following arguments. Note that

n∑
i=1

a2
ni =

n∑
i=1

(S(xi, θ0 + φn−ρ)− S(xi, θ0))2(2. 24)

= Tn(φ)

which tends to 2C(λ)|φ|2λ+1 as n→∞ by the relation (2.21) and the latter in turn implies
that

max
1≤i≤n

(S(xi, θ0 + φn−ρ)− S(xi, θ0))2 → 0.

This follows from the observation that if
∑

1≤k≤n a
2
nk → c > 0 and max1≤k≤N a

2
nk → 0

for every fixed N ≥ 1, then max1≤k≤n a
2
nk → 0 as n → ∞. The above discussion proves

(2.22). Similarly it can be shown that all the finite dimensional distributions of the process
{Zn(φ),−τ ≤ φ ≤ τ} converge to the corresponding finite dimensional distributions of the
gaussian process {Z(φ),−τ ≤ φ ≤ τ}with mean zero and

Cov[Z(φ1), Z(φ2)] = C(λ)[|φ1|2λ+1 + |φ2|2λ+1 − |φ1 − φ2|2λ+1].(2. 25)

In addition, observe that

E|Zn(φ1)− Zn(φ2)|2 =
n∑
i=1

(S(xi, θ0 + φ1n
−ρ)− S(xi, θ0 + φ2n

−ρ))2(2. 26)

≤ k2|φ1 − φ2|2λ+1.

where k2 is independent of n, φ1 and φ2. Hence the family of measures {µn} generated by
the stochastic processes {Zn(φ),−τ ≤ φ ≤ τ} on the space C[−τ, τ ] of continuous functions
on the interval [τ, τ ] with supremum norm topology forms a tight family. This observation
together with the fact that the finite dimensional distributions of the process {Zn(φ),−τ ≤
φ ≤ τ} converge weakly to the corresponding finite dimensional distributions of the process
{Z(φ),−τ ≤ φ ≤ τ} prove that the sequence of processes {Zn(φ),−τ ≤ φ ≤ τ} converge weakly
to the gaussian process {Z(φ),−τ ≤ φ ≤ τ}. Hence the sequence of processes {Rn(φ),−τ ≤
φ ≤ τ} converge weakly to the gaussian process {R(φ),−τ ≤ φ ≤ τ} with mean function and
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covariance function given by (2.15) and (2.16) respectively. It now follows by arguments similar
to those given in Prakasa Rao (1968a) that

n
1

2λ+1 (θ̂n − θ0) L→ φ̂ as n→∞(2. 27)

where φ̂ has the distribution of the location of the minimum of the gaussian process
{R(φ),−∞ < φ <∞} with

E[R(φ)] = 2C(λ)|φ|2λ+1(2. 28)

and

Cov[R(φ1), R(φ2)] = 4C(λ)[|φ1|2λ+1 + |φ2|2λ+1 − |φ1 − φ2|2λ+1].(2. 29)

We now have the following main result.
Theorem 2.1: Consider the nonlinear regression model

Yi = S(xi, θ) + εi, i ≥ 1(2. 30)

where

S(x, θ) = a|x− θ|λ + h(x− θ), x ≤ θ(2. 31)

S(x, θ) = b|x− θ|λ + h(x− θ), x ≥ θ

where a 6= 0, b 6= 0, 0 < λ < 1
2 , θ ∈ Θ and h(.) satisfies the Holder condition of order β > λ+ 1

2 .

Suppose Θ is compact. Let θ0 be the true parameter. Further more suppose that {εi, i ≥ 1}
are independent and identically distributed random variables with mean zero and variance one.
Let {xi} be a real sequence satisfying

n∑
i=1

{S(xi, θ)− S(xi, θ0)}2 = 2nC(λ)|θ − θ0|2λ+1(1 + o(1))(2. 32)

as n→∞ where C(λ) 6= 0 and further suppose that there exists 0 < k1 < k2 <∞ such that

nk1|θ1 − θ2|2λ+1 ≤
n∑
i=1

{S(xi, θ1)− S(xi − θ2)}2 ≤ nk2|θ1 − θ2|2λ+1(2. 33)

for all θ1 and θ2 in Θ. Let θ̂n be a least squares estimator (LSE) of θ based on the observations
{Yi, 1 ≤ i ≤ n}. Then there exists a constant C > 0 such that for any τ > 0 and for any n ≥ 1,

Pθ0 [nρ|θ̂n − θ0| > τ ] ≤ Cτ−(2λ+1)(2. 34)

and
nρ(θ̂n − θ0) L→ φ̂ as n→∞(2. 35)
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where φ̂ is the location of the minimum of the process {R(φ),−∞ < φ <∞} with

E[R(φ)] = 2C(λ)|φ|2λ+1(2. 36)

and

Cov[R(φ1), R(φ2)] = 4C(λ)[|φ1|2λ+1 + |φ2|2λ+1 − |φ1 − φ2|2λ+1].(2. 37)

Here ρ = 1
2λ+1 . The process {R(φ),−∞ < φ <∞} can be represented in the form

R(φ) =
√

8C(λ)WH(φ) + 2C(λ)|φ|2λ+1

where WH is the fractional Brownian motion with mean zero and the covariance function

Cov(WH(φ1),WH(φ2)) =
1
2

[|φ1|2λ+1 + |φ2|2λ+1 − |φ1 − φ2|2λ+1].

Here H = 2λ+ 1 is the Hurst parameter.

3 Remarks:

(i) Observe that ρ > 1
2 if 0 < λ < 1

2 and the asymptotic variance is of the order O(n−2ρ)
which is small compared to the case when the regression function S(x, θ) is smooth and the
asymptotic variance is of the order O(n−1) (cf. Prakasa Rao (1984)). Let

d(x) = a if x < 0

= b if x > 0.

The condition (2.3) on the sequence {xi}is a plausible condition that can be assumed. This
can be justified by the following arguments.

Suppose the sequence {xi, i ≥ 1} is the realization of a sequence of independent identically
distributed random variables {Xi, i ≥ 1} with probability density function

f(x, θ) = h(x− θ) exp{a(x− θ)|x− θ|λ} if x ≤ θ

= h(x− θ) exp{b(x− θ)|x− θ|λ} if x ≥ θ.

The the Strong law of large numbers implies that

n−1
n∑
i=1

{S(Xi, θ1)− S(Xi, θ0)}{S(Xi, θ2)− S(Xi, θ0)}

converges almost surely to

E[{S(X1, θ1)− S(X1, θ0)}{S(X1, θ2)− S(Xi, θ0)}]
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which is equal to
C(λ)[|θ1|2λ+1 + |θ2|2λ+1 − |θ1 − θ2|2λ+1].

This can be seen from the Lemma 4 in Dachian and Kutoyants (2002). Infact

(3. 1)∫ ∞
−∞

[d(x− θ1)|x− θ1|p − d(x− θ)|x− θ|λ][d(x− θ2)|x− θ2|p − d(x− θ)|x− θ|λ]dx =

= C(λ)[|θ1|2λ+1 + |θ2|2λ+1 − |θ1 − θ2|2λ+1]

where

C(λ) =
Γ(2λ+ 1)Γ(1

2 − λ)
22λ+1

√
π(2λ+ 1)

[a2 + b2 − 2ab cos(πλ)].

A special case of this result, when a = b , can be seen in Prakasa Rao (1968b). For the
general case, see Ibragimov and Khasminskii (1981).

(ii) If λ = 1
2 in the model (2.1), and the conditions stated in (2.3) and (2.4) hold, then it

can be checked by similar arguments as before that there exists a constant C > 0 such that

Pθ0(n1/2|θ̂n − θ0| > τ) ≤ Cτ−2(3. 2)

and
n1/2(θ̂n − θ0) L→ φ̂ as n→∞(3. 3)

where φ̂ is the location of the minimum of the gaussian process {R(φ),−∞ < φ < ∞} with
mean function E(R(φ)) = 2C∗φ2 and Cov(R(φ1), R(φ2)) = 8C∗φ1φ2 for some constant C∗ > 0.
It is easy to see that the process R(φ) can be represented in the form

R(φ) = 2C∗φ2 + Lφψ(3. 4)

where L =
√

8C∗ and ψ is a standard normal random variable. Hence

φ̂ = − L

4C∗
ψ.(3. 5)

Combining the above remarks, we obtain that

(i)θ̂n
p→ θ0 as n→∞,(3. 6)

there exists a constant C > 0 independent of n and τ such that

(ii)Pθ0(n1/2|θ̂n − θ0| > τ) ≤ Cτ−2(3. 7)

and

(iii)n1/2(θ̂n − θ0) L→ N(0, (2C∗)−1) as n→∞.(3. 8)
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Note that the limiting distribution of the least squares estimator is normal if λ = 1
2 in the

model . This case illustrates the situation when the standard regularity conditions do not hold
and yet the estimator is strongly consistent and asymptotically normal.
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