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Abstract

We consider a linear filtering model (with feedback) when the observation noise is an Ornstein-

Ulhenbeck process with parameter β. The coefficients appearing in the model are all assumed to be

bounded. In addition, the coefficients appearing in the observation equation are also assumed to be

differentiable. We consider the genral case when the OU noise is also correlated with the signal. Under

these conditions we derive the filtering equations for the optimal filter.
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1 Introduction

The theory of filtering can be explained as follows. The process of interest X, called the
Signal, is not directly observable. However, it is assumed that at time t a (known) function of
{X(s) : s ≤ t} is observable in the presence of an additive noise.

The question of interest is to estimate the signal X(t) given the observations {Y (s) :
0 ≤ s ≤ t}. This is known as filtering the noise (to recover the signal). The best estimate,
called the optimal filter is the conditional distribution of X(t) given the observation σ-field
FYt = σ{Y (s) : 0 ≤ s ≤ t}. We will denote this conditional distribution by π(t).

In the classical theory of filtering, the observation noise is modelled to be a Brownian
motion. Then, under fairly general conditions on the signal and on the observation function,
the filter π solves an infinite dimensional stochastic differential equation called the Fujisaki-
Kallianpur-Kunita (FKK) equation (Fujisaki et. al. (1972)). Uniqueness of solution to the
FKK equation is also known (under some integrability conditions) when the signal-observation
pair (X,Y ) is uniquely determined either via a martingale problem (Bhatt et.al. (1995)) or as a
solution of a (non-anticipative) stochastic differential equation (Bhatt and Karandikar (1999)).

The assumption of the observation noise being a Brownian motion is in some sense a
natural one to make. (see e.g. the Introduction in Bhatt and Karandikar (2002)). At the same
time it has given rise to a very rich theory as mentioned in the previous paragraph. (See also
Elliott (1982) and Kallianpur (1980)).

However this model has been objected to by engineers from a practical point of view. The
actual observed paths of the accumalative observation process Y are smooth. But the classical
model gives zero probability to all such smooth paths. (See Kallianpur and Karandikar (1988)
for a detailed discussion on this.)

Recently, several authors have considered the filtering model when the observation noise
is a process other than a Brownian motion. In Kunita (1993), the author initiated the study of
filtering theory with general Gaussian noise processes. This was also followed up in Gawarecki
and Mandrekar (2000) and Mandrekar and Mandal (2000).

A special case of the above is when the noise is an Ornstein-Ulhenbeck process (OUP)
with parameter β > 0. Such a filtering model answers the criticism by engineers of the classical
model. Morevoer, when β is large, the OUP approximates Brownian motion. Thus a filtering
model with OUP noise approximates the classical model.

The optimal filter πβ for the model with OUP noise has been studied. This is done
by looking at the Bayes’ formula for the filter in Mandrekar and Mandal (2000) and Bhatt
and Karandikar (2002) . The filtering equation has been studied in Gawarecki and Mandrekar
(2000), Bhatt et.al. (2002) and Kouritzin and Xiong (2002). However each of these articles
use different assumptions on the model, in particular, on the function h. e.g. in Gawarecki
and Mandrekar (2000) and Mandrekar and Mandal (2000) the authors require that h(X(t))
is almost surely differentiable in t, (a very stringent condition). A perturbed model (with a
small time-lag in recording the observations) is used in Bhatt and Karandikar (2002) . Bhatt
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et.al. (2002) and Kouritzin and Xiong (2002) require the observation function h to be bounded
and smooth. Also, a point to note is that all the above mentioned articles assume that the
observation noise and the signal are independent.

In this article we will consider a very important special case - linear filtering. In the
classical set-up this was first considered by Kalman and Bucy (Kalman (1960), Kalman and
Bucy (1961)). The Kalman-Bucy filter is also the most widely used filter because of its sim-
plicity. In this case the optimal filter is finite dimensional in the sense that π is characterized
as the unique solution of a system of two SDE’s (as opposed to infinitely many in the general
non-linear filtering problem).

We will consider the linear filtering model with OUP as noise. The model (given by
(3.7)–(3.8)) is very general in the sense that it allows feedback (from the observations into
the signal). Also we consider the case when the observation noise is correlated with the noise
driving the signal. We however assume that the (non-random) coefficients that appear in the
model are all bounded and the ones appearing in (3.8) are also differentiable. Under these
conditions the optimal filter continues to be finite dimensional and we derive the corresponding
filtering equations.

The paper is organised as follows. In the next section we consider the corresponding
classical linear filtering model and write down the filtering equations (Theorem 2.1). Also,
for later use, we note down a result on FKK equations from the general theory of nonlinear
filtering theory (Theorem 2.2).

In Section 3, we introduce the linear filtering model for the signal-observation process
with OUP as the observation noise. We derive the equations of filtering for the optimal filter
(Theorem 3.2). This is done by effecting a series of transformations on the model to recast
it as a classical model of filtering (i.e. one where the observation noise is a certain Brownian
motion). However, in doing so, the terms appearing in the SDE for the transformed signal-
observation pair process depend on the entire past of the process. This necessicates the use of
results from general non-linear filtering theory. We also show that the filtering equations admit
a unique solution.

For notational simplicity, we will consider the one dimensional case.

2 The Classical Model

We start with a general linear filtering model (allowing feedback) in the classical set-up. The
signal process X and the observation process Y are given by the system of stochastic differential
equations

dX(t) = [a0(t) + a1(t)X(t) + a2(t)Y (t)] dt+ b(t)dWS(t) (2.1)

dY (t) = [h0(t) + h1(t)X(t) + h2(t)Y (t)] dt+ dWN (t) (2.2)

for 0 ≤ t ≤ T where X(0) is a Gaussian random variable independent of (WS ,WN ) and
Y (0) = 0. The coefficients a0, a1, a2, h1, h2, h3 and b are all assumed to be non-random, bounded
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and measurable. The observation noise WN and the noise WS driving the SDE for the signal
X are assumed to be standard Brownian motions with

〈WS ,WN 〉t =
∫ t

0
ρ(u)du.

The following facts are well-known. Such a system of SDE’s admits a unique solution (X,Y ).
By virtue of the linear nature of the coefficients, it follows that the pair (X,Y ) is jointly
Gaussian. Then the optimal filter π, which is the conditional distribution of the signal given
the observations, is defined by∫

f dπ(t) = E
[
f(X(t))|FYt

]
for all bounded, continuous functions f. (2.3)

Further, π(t) is also a Gaussian measure (see e.g. Elliott (1982), Kallianpur (1980)). Hence
π(t) is completely determined by its first two moments X̂(t) and P (t) which are defined by

X̂(t) = E
[
X(t)|FYt

]
. (2.4)

P (t) = E
[
(X(t)− X̂(t))2|FYt

]
. (2.5)

Moreover, the conditional variance P (t) is non-random. (See e.g. page 522 of Rao (1985).
The additional information got by observing Y at the instant t is given by the innovations

process I(t), which is defined by

I(t) = Y (t)−
∫ t

0

[
h0(u) + h1(u)X̂(u) + h2(u)Y (u)

]
du.

It is well-known that I is a standard Brownian motion with respect to the observation σ-field
FYt .

We have the following theorem (see Theorem 10.5.1. of Kallianpur (1980)) regarding the
optimal filter.

Theorem 2.1. The Kalman filter (X̂, P ) for the signal-observation model (2.1)–(2.2) is the
unique solution of the following system of equations.

X̂(t) = E[X0] +
∫ t

0

[
a0(u) + a1(u)X̂(u) + a2(u)Y (u)

]
du

+
∫ t

0
[b(u)ρ(u) + P (u)h1(u)] dI(u)

(2.6)

and

P (t) = V [X0] +
∫ t

0

[
2a1(u)P (u) + (b(u))2 − (b(u)ρ(u) + h1(u)P (u))2

]
du (2.7)

Remark 2.1. The above result is also true for unbounded coefficients under some appropriate
integrability conditions, see Theorem 10.5.1. of Kallianpur (1980).
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To end this section we give the general FKK equation (Theorem 8.4.4 from Kallianpur
(1980), also Theorem 18.11 from Elliott (1982)) which will be used in the next section. Suppose
that the observation model is given by

Z(t) =
∫ t

0
H(u,X,Z)du+

∫ t

0
α(u)dW (u)

where W is a standard Brownian motion, the observation function H is a non-anticipating
functional of (X,Z) and α is a deterministic function bounded away from zero. We assume the
energy condition ∫ T

0
|H(u,X,Z)|2du <∞ a.s. (2.8)

Suppose that the signal process X is such that

Mf (t) = f(X(t))−
∫ t

0
Ãf(u)du

is a martingale with

〈Mf ,W 〉(t) =
∫ t

0
D̃f(u)du.

where Ãf and D̃f are some (non-anticipative) functionals of X and Z. Let π(t, f) denote the
conditional distribution of f(X(t)) given the observation σ-field FZt = σ{Z(u) : 0 ≤ u ≤ t}.
Let

I(t) =
∫ t

0
(α(u))−1 dY (u)−

∫ t

0
(α(u))−1 π(u,H)du

be the innovations process. Then we have the following theorem.

Theorem 2.2. Under the above setup, π(t, f) satisfies

π(t, f) = π(0, f) +
∫ t

0
π(u, Ãf)du

+
∫ t

0

[
π(u, D̃f) + (α(u))−1 (π(u,Hf)− π(u,H)π(u, f))

]
dI(u). (2.9)

3 Linear Signal-Observation Model with OUP noise

Let WN and WS be standard Brownian motions with

〈WS ,WN 〉(t) =
∫ t

0
ρ(u)du. (3.1)

We will assume that ρ is a bounded measurable function on [0, T ] with

ρ(u) > −1, 0 ≤ u ≤ T. (3.2)

Fix a β > 0. Consider the Ornstein-Ulhenbeck velocity process

dV β(t) = −βV β(t)dt+ dWN (t), 0 ≤ t ≤ T,

V β(0) = 0.
(3.3)
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Then V β is given by

V β(t) = β

∫ t

0
e−β(t−u)dWN (u), 0 ≤ t ≤ T. (3.4)

Let Oβ denote the Ornstein-Ulhenbeck displacement process defined by

Oβ(t) =
∫ t

0
V β(u)du, 0 ≤ t ≤ T. (3.5)

Then Oβ has the form

Oβ(t) =
∫ t

0

(
1− e−β(t−u)

)
dWN (u), 0 ≤ t ≤ T. (3.6)

It is well-known that Oβ converges to WN in L2 as β →∞. (See Nelson (1967)).
We will consider the following linear signal-observation model. Let X0 be a Gaus-

sian random variable independent of (WS ,WN ). Throughout the article, the coefficients
a0, a1, a2, h0, h1, h2 and b will be assumed to be non-random, bounded and measurable functions
on [0, T ]. Further the coefficients h0, h1, h2 will be assumed to be continuously differentiable on
[0, T ]. Let C < ∞ denote a common bound for all the coefficients and their derivatives. The
model is then given by

dXβ(t) =
[
a0(t) + a1(t)Xβ(t) + a2(t)Y β(t)

]
dt+ b(t)dWS(t) (3.7)

dY β(t) =
[
h0(t) + h1(t)Xβ(t) + h2(t)Y β(t)

]
dt+ dOβ(t) (3.8)

for 0 ≤ t ≤ T with Xβ(0) = X0 and Y β(0) = 0. This is a SDE with linear coefficients driven
by the Gaussian semi-martingale (WS , Oβ). Existence and uniqueness of solution to such an
equation is quite well-known, (see e.g. Karandikar (1989), Métivier (1982)). We also have the
following observation which is crucially used in the rest of the article.

Theorem 3.1. Let the processes WS ,WN , Oβ, the random variable X0 and the coefficients
a0, a1, a2, h0, h1, h2 and b be as above. Then the solution of the SDE (3.7)–(3.8) is a Gaussian
process.

Proof. We note that (WS , Oβ, X0) is jointly Gaussian. We will now construct a Gaussian
solution for (3.7)–(3.8). Let

Xβ,0(t) = X0, Y β,0(t) = 0 0 ≤ t ≤ T,

and define successively for m ≥ 1,

Xβ,m(t) =

t∫
0

[
a0(u) + a1(u)Xβ,m−1(u) + a2(u)Y β,m−1(u)

]
du+

t∫
0

b(u)dWS(u)

Y β,m(t) =

t∫
0

[
h0(u) + h1(u)Xβ,m−1(u) + h2(u)Y β,m−1(u)

]
du+Oβ(t).

5



Note that (Xβ,m, Y β,m) is a Gaussian process for every m ≥ 1. Also

|(Xβ,m −Xβ,m−1)(t)|2

=
∣∣∣∣∫ t

0

[
a1(u)(Xβ,m−1 −Xβ,m−2)(u) + a2(u)(Y β,m−1 − Y β,m−2)(u)

]
du

∣∣∣∣2
≤ 2C2T

∫ t

0

[
|(Xβ,m−1 −Xβ,m−2)(u)|2 + |(Y β,m−1 − Y β,m−2)(u)|2

]
du.

Similarly, we get

|(Y β,m − Y β,m−1)(t)|2

≤ 2C2T

∫ t

0

[
|(Xβ,m−1 −Xβ,m−2)(u)|2 + |(Y β,m−1 − Y β,m−2)(u)|2

]
du.

Define ηm(t) = sup0≤u≤t
{
E
[
|(Xβ,m − Xβ,m−1)(t)|2 + |(Y β,m − Y β,m−1)(t)|2

] }
. Then us-

ing Fubini’s theorem it follows that

ηm(t) ≤ 4C2T

∫ t

0
ηm−1(u)du ≤ · · · ≤ (4C2T )m−1

(m− 1)!
η1(t), (3.9)

where

η1(t) ≤ sup
0≤u≤t

{
E
[
|Xβ,1(u)−X0|2 + |Y β,1(u)|2

]}
≤ 2 sup

0≤u≤t

{
E

∣∣∣∣∫ t

0
(a0(u) + a1(u)X0 −X0) du

∣∣∣∣2 + E

∣∣∣∣∫ t

0
b(u)dWS(u)

∣∣∣∣2
+ E

∣∣∣∣∫ t

0
(h0(u) + h1(u)X0) du

∣∣∣∣2 + E(Oβ(t))2

}
<∞. (3.10)

It now follows from (3.9) and (3.10) that (Xβ,m, Y β,m) converge to a process (Xβ, Y β), which
is necessarily Gaussian. It is also clear from the construction that the limiting process is a
solution of (3.7)–(3.8). This completes the proof.

The optimal filter πβ(t) for the model (3.7)–(3.8) is the conditional distribution of Xβ(t)
given the observation σ-field FY βt := σ{Y β(s); 0 ≤ s ≤ t}. Theorem 3.1 implies that πβ(t)
is Gaussian and hence, as in the classical case, it is completely determined by the first two
conditional moments X̂β(t) and P β(t) where

X̂β(t) = E
[
Xβ(t)|FY βt

]
(3.11)

and
P β(t) = E

[
(Xβ(t)− X̂β(t))2|FY βt

]
= E

[
(Xβ(t))2|FY βt

]
− (X̂β(t))2. (3.12)

Further it is well-known that the condidtional variance P β(t) is in fact deterministic and is
equal to E

[
(Xβ(t)− X̂β(t))2

]
. (See e.g. page 522 of Rao (1985)).
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Remark 3.1. In Bhatt and Karandikar (2002) the Ornstein-Ulhenbeck noise V β was assumed
to be stationary which implies that V β(0) ∼ N(0, β/2). However this is not a necessary
assumption and the analysis there will work for a general V β(0). In this article, as seen
from the above comments, we are going to use the Gaussian nature of the process (Xβ, Y β).
To ensure this we would need V β(0) to be normally distributed. Thus the assumption that
V β(0) = 0 is only for convenience and is not a restriction.

Our aim now is to characterize (X̂β(t), P β(t)) via filtering equations. Towards this end
we proceed by making some transformations of the model (3.7)–(3.8). First let us define

yβ(t) =
d

dt
Y β(t); ξβ(t) = h0(t) + h1(t)Xβ(t) + h2(t)Y β(t). (3.13)

Then in view of (3.5) the observation model (3.8) can be rewritten in an equivalent form as

yβ(t) = ξβ(t) + V β(t), 0 ≤ t ≤ T. (3.14)

Remark 3.2. Model (3.14) can be thought of as the instantaneous observation model as
opposed to (3.8) which is an accumulative observation model.

Now let
y̆β(t) = eβtyβ(t); ξ̆β(t) = eβtξβ(t); V̆ β(t) = eβtV β(t) (3.15)

Then it follows that
y̆β(t) = ξ̆β(t) + V̆ β(t), 0 ≤ t ≤ T. (3.16)

Using (3.4) we have

V̆ β(t) = β

∫ t

0
eβudWN (u).

Thus we get that V̆ β is a semimartingale and∫ t

0

e−βu

β
dV̆ β(u) = WN (t). (3.17)

The relation (3.16) implies that y̆β(t) is also a semimartingale. Now define

Ỹ β(t) =
∫ t

0

e−βu

β
dy̆β(u); ξ̃β(t) =

∫ t

0

e−βu

β
dξ̆β(u). (3.18)

It follows from (3.16)-(3.18) that

Ỹ β(t) = ξ̃β(t) +WN (t), 0 ≤ t ≤ T. (3.19)
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Now, using (3.7), (3.8), (3.13), (3.15), (3.18) and applying integration by parts, we get

ξ̃β(t) =
∫ t

0

e−βu

β
dξ̆β(u)

=
∫ t

0

e−βu

β
d
[
eβuξβ(u)

]
=
∫ t

0
ξβ(u)du+

∫ t

0

1
β
dξβ(u)

=
∫ t

0
ξβ(u)du+

1
β

∫ t

0

[
h′0(u) + h′1(u)Xβ(u) + h′2(u)Y β(u)

]
du

+
1
β

∫ t

0
h1(u)dXβ(u) +

1
β

∫ t

0
h2(u)dY β(u)

=
∫ t

0

[
Hβ

0 (u) +Hβ
1 (u)Xβ(u) +Hβ

2 (u)Y β(u)
]
du

+
∫ t

0
Bβ

1 (u)dWS(u) +
∫ t

0
Bβ

2 (u)dWN (u) (3.20)

where

Hβ
0 (u) = h0(u) +

1
β

[
h′0(u) + a0(u)h1(u) + h0(u)h2(u)

]
, (3.21a)

Hβ
1 (u) = h1(u) +

1
β

[
h′1(u) + a1(u)h1(u) + h1(u)h2(u)

]
, (3.21b)

Hβ
2 (u) = h2(u) +

1
β

[
h′2(u) + a2(u)h1(u) + (h2(u))2

]
, (3.21c)

Bβ
1 (u) =

1
β
h1(u)b(u) (3.21d)

and

Bβ
2 (u) =

1
β
h2(u). (3.21e)

Let a deterministic function αβ be defined by

(αβ(t))2 = (Bβ
1 (t))2 + (Bβ

2 (t) + 1)2 + 2ρ(t)Bβ
1 (t)(Bβ

2 (t) + 1), 0 ≤ t ≤ T (3.22)

where ρ is as in (3.1). It follows from (3.2) that (αβ(t))2 > 0 for all t. Let

W (t) =
∫ t

0

Bβ
1 (u)

αβ(u)
dWS(u) +

∫ t

0

Bβ
2 (u) + 1
αβ(u)

dWN (u) (3.23)

Then W is a Standard Brownian motion. Moreover, using (3.20)–(3.23) we can now write the
observation model (3.19) as

Ỹ β(t) =
∫ t

0

[
Hβ

0 (u) +Hβ
1 (u)Xβ(u) +Hβ

2 (u)Y β(u)
]
du+

∫ t

0
αβ(u)dW (u),

0 ≤ t ≤ T.
(3.24)
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Also, it follows from (3.13), (3.15), and (3.18) that

σ
(
Y β(u) : u ≤ t

)
= σ

(
yβ(u) : u ≤ t

)
= σ

(
y̆β(u) : u ≤ t

)
= σ

(
Ỹ β(u) : u ≤ t

)
. (3.25)

Let us denote the σ-field in (3.25) by Fβt . Thus the optimal filter (X̂β(t), P β(t)) is the condi-
tional mean and variance of Xβ(t) given Fβt .

Remark 3.3. The new signal-observation model is now given by (3.7) and (3.24). The advan-
tage in making the transformations is that both these equations are now driven by (correlated)
Brownian motions WS and W . We also note here, using (3.1) and (3.23), that

〈WS ,W 〉(t) =
∫ t

0

[
(αβ(u))−1Bβ

1 (u) + (αβ(u))−1ρ(u)(Bβ
2 (u) + 1)

]
du

:=
∫ t

0
λβ(u)du. (3.26)

Remark 3.4. It follows from (3.24) that the transformed observation process Ỹ β is still a
Gaussian process. However the SDE’s (3.7) and (3.24) are no longer linear in (Xβ, Ỹ β). In
fact, it is easy to see that

Y β(t) =
∫ t

0
e−βu

(∫ u

0
βeβrdỸ β(r)

)
du.

Thus the coefficients in (3.7) and (3.24) depend on the entire past of Ỹ β (in a non-anticipative
way). Note that the dependence on Xβ is still Markovian and linear.

Let us denote the non-anticipative functional by Hβ. i.e.

Hβ(t,Xβ(t), Ỹ β) = Hβ
0 (t) +Hβ

1 (t)Xβ(t) +Hβ
2 (t)Y β(t) 0 ≤ t ≤ T. (3.27)

Let Ĥβ(t) denote its conditional expectation E[Hβ(t,Xβ(t), Ỹ β)|Fβt ]. Define the innovations
process Iβ as follows.

Iβ(t) =
∫ t

0

(
αβ(u)

)−1
dỸ β(u)−

∫ t

0

(
αβ(u)

)−1
Ĥβ(u)du 0 ≤ t ≤ T. (3.28)

Then it is well-known (and also easy to see) that Iβ is a standard Brownian motion adapted
to the filtration Fβt . Now we are ready to prove the main theorem of this section.

Theorem 3.2. Let the processes WS ,WN , Oβ, the random variable X0 and the coefficeints
a0, a1, a2, h0, h1, h2 and b be as above. Let the signal-observation model be given by (3.7)-(3.8).
Let Hβ

1 be defined by (3.21b). Then the optimal filter (X̂β , P β) (given by (3.11), (3.12)) is the
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unique solution of the equations

X̂β(t) = E[X0] +
∫ t

0

(
a0(s) + a1(s)X̂β(s) + a2(s)Y β(s)

)
ds

+
∫ t

0

(
b(s)λβ(s) +

(
αβ(s)

)−1
Hβ

1 (s)P β(s)
)
dIβ(s) (3.29)

P β(t) = V [X0] +
∫ t

0

{
2a1(s)P β(s) + (b(s))2

−
(
b(s)λβ(s) +

(
αβ(s)

)−1
Hβ

1 (s)P β(s)
)2 }

ds. (3.30)

Proof. We have already noted that the observation model (3.24) is equivalent to the original
model (3.8). Also, as remarked after equation (3.25), to find the optimal filter for the original
model it suffices to work only with the observation model (3.24). However, Remark 3.4 tells
us that we cannot directly apply the classical Kalman-Bucy filter formula. Instead, we will use
Theorem 2.2, which is a more general result from non-linear filtering theory.

Our assumption of boundedness of all the coefficients, together with the fact that (Xβ, Y β)
is Gaussian, implies that the observation function Hβ (as in (3.27)) satisfies the energy con-
dition (2.8). Thus Theorem 2.2 is applicable. In fact, we need to apply the Theorem for only
two functions, viz., f1(x) = x and f2(x) = x2. This is easily done by identifying the various
components appearing in (2.9).

It is immidiate from (3.7) and (3.26) that

M1(t) = Xβ(t)−
∫ t

0

[
a0(s) + a1(s)Xβ(s) + a2(s)Y β(s)

]
ds

is a martingale with 〈M1,W 〉(t) =
∫ t

0 b(s)λ
β(s)ds. Also, recalling (3.12) and using the fact that

Y β is (Fβt ) adapted, the term π(u,Hf1)− π(u,H)π(u, f1) appearing in the stochastic integral
in (2.9) reduces to Hβ

1 (u)P β(u). Thus we get that X̂β(t) satisfies (3.29).
Similarly, to evaluate πβ(t, f2), we apply Ito’s formula to (3.7) and use (3.26) to get that

M2(t) = (Xβ(t))2 −
∫ t

0

[
2a0(s)Xβ(s) + 2a1(s)(Xβ(s))2

+ 2a2(s)Xβ(s)Y β(s) + (b(s))2
]
ds

is a martingale with 〈M2,W 〉(t) =
∫ t

0 2b(s)λβ(s)Xβ(s)ds. The cross quadratic variation gives
the first term (πβ(·, D̃f2)) in the integrand of the stochastic integral in (2.9). Let f3(x) = x3.
Then the second term can be easily seen to equal

Hβ
1 (u)πβ(u, f3)−Hβ

1 (u)X̂β(u)πβ(u, f2).
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Hence we get that πβ(t, f2) satisfies the SDE

πβ(t, f2) = E[X2
0 ]+

t∫
0

[
2a0(s)X̂β(s) + 2a1(s)πβ(s, f2)

+ 2a2(s)X̂β(s)Y β(s) + (b(s))2
]
ds

+

t∫
0

[
2b(s)λβ(s)X̂β(s) +

(
αβ(s)

)−1
Hβ

1 (s)
(
πβ(s, f3)− X̂β(s)πβ(s, f2)

)]
dIβ(s). (3.31)

Now, another application of Ito’s formula to equation (3.29) gives(
X̂β(t)

)2
= [E(X0)]2 +

∫ t

0

[
2a0(s)X̂β(s) + 2a1(s)

(
X̂β(s)

)2
+ 2a2(s)X̂β(s)Y β(s)

+
(
b(s)λβ(s) +

(
αβ(s)

)−1
Hβ

1 (s)P β(s)
)2 ]

ds

+
∫ t

0

(
2b(s)λβ(s)X̂β(s) + 2

(
αβ(s)

)−1
Hβ

1 (s)P β(s)X̂β(s)
)
dIβ(s). (3.32)

Finally subtracting (3.32) from (3.31) we get

P β(t) = πβ(t, f2)−
(
X̂β(t)

)2

= V (X0) +
∫ t

0

[
2a1(s)P β(s) + (b(s))2

−
(
b(s)λβ(s) +

(
αβ(s)

)−1
Hβ

1 (s)P β(s)
)2 ]

ds

+
∫ t

0

(
αβ(s)

)−1
Hβ

1 (s)
(
πβ(s, f3)− πβ(s, f2)X̂β(s)− 2P β(s)X̂β(s)

)
dIβ(s). (3.33)

The integrand in the stochastic integral above is zero as expected, since

πβ(s, f3)− πβ(s, f2)X̂β(s)− 2P β(s)X̂β(s)

= πβ(s, f3) + 2
(
X̂β(s)

)3
− 3X̂β(s)πβ(s, f2)

= E

[(
Xβ(s)− X̂β(s)

)3 ∣∣Fβs ] = 0.

Thus (3.33) is same as (3.30).
Equations (3.29) and (3.30) have the same form as the filtering equations in the classical

linear filtering case. (i.e. (2.6) and (2.7)). Uniqueness of solution is also similarly proved. (See
Proof of Theorem 10.5.1 in Kallianpur (1980)).
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