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Abstract
We investigate the asymptotic properties of the sequential maximum likelihhod estimator of

the drift parameter for fractional Ornstein-Uhlenbeck type process satisfying a linear stochastic
differential equation driven by fractional Brownian motion.
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1 Introduction

Statistical inference for diffusion type processes satisfying stochastic differential equations
driven by Wiener processes have been studied earlier and a comprehensive survey of vari-
ous methods is given in Prakasa Rao (1999a). There has been a recent interest to study similar
problems for stochastic processes driven by a fractional Brownian motion. Le Breton (1998)
studied parameter estimation and filtering in a simple linear model driven by a fractional
Brownian motion. In a recent paper, Kleptsyna and Le Breton (2002) studied parameter es-
timation problems for fractional Ornstein-Uhlenbeck process. This is a fractional analogue of
the Ornstein-Uhlenbeck process, that is, a continuous time first order autoregressive process
X = {Xt, t ≥ 0} which is the solution of a one-dimensional homogeneous linear stochastic
differential equation driven by a fractional Brownian motion (fBm) WH = {WH

t , t ≥ 0} with
Hurst parameter H ∈ (1/2, 1). Such a process is the unique Gaussian process satisfying the
linear integral equation

Xt = θ

∫ t

0
Xsds+ σWH

t , t ≥ 0.(1. 1)

They investigate the problem of estimation of the parameters θ and σ2 based on the obsrevation
{Xs, 0 ≤ s ≤ T} and prove that the maximum likelihood estimator θ̂T is strongly consistent as
T →∞.

Parametric estimation for more general classes of stochastic processes satsfying linear
stochastic differential equations driven fractional Brownian motion is studied in Prakasa Rao
(2003a,b). Novikov (1972) investigated asymptotic properties of a sequential maximum like-
lihood estimator for the drift parameter in the Ornstein-Uhlenbeck process. We now discuss
analogous results for fractional Ornstein-Uhlenbeck process.
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2 Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions and the processes dis-
cussed in the following are (Ft)-adapted. Further the natural fitration of a process is understood
as the P -completion of the filtration generated by this process.

Let WH = {WH
t , t ≥ 0} be a normalized fractional Brownian motion with Hurst parameter

H ∈ (1/2, 1), that is, a Gaussian process with continuous sample paths such that WH
0 =

0, E(WH
t ) = 0 and

E(WH
s W

H
t ) =

1
2

[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.(2. 1)

Let us consider a stochastic process {Xt, t ≥ 0} defined by the stochastic integral equation

Xt = θ

∫ t

0
X(s)ds+ σWH

t , t ≥ 0(2. 2)

where θ and σ2 are unknown constant drift and diffusion parameters respectively. For conve-
nience we write the above integral equation in the form of a stochastic differential equation

dXt == θX(t)dt+ σdWH
t , t ≥ 0(2. 3)

driven by the fractional Brownian motion WH . Even though the process X is not a semi-
martingale, one can associate a semimartingale Z = {Zt, t ≥ 0} which is called a fundamental
semimartingale such that the natural filtration (Zt) of the process Z coincides with the natural
filtration (Xt) of the process X (Kleptsyna et al. (2000)). Define, for 0 < s < t,

kH = 2HΓ (
3
2
−H)Γ(H +

1
2

),(2. 4)

kH(t, s) = k−1
H s

1
2
−H(t− s)

1
2
−H ,(2. 5)

λH =
2H Γ(3− 2H)Γ(H + 1

2)
Γ(3

2 −H)
,(2. 6)

wHt = λ−1
H t2−2H ,(2. 7)

and
MH
t =

∫ t

0
kH(t, s)dWH

s , t ≥ 0.(2. 8)

The process MH is a Gaussian martingale, called the fundamental martingale (cf. Norros et
al. (1999)) and its quadratic variance < MH

t >= wHt . Further more the natural filtration of
the martingale MH coincides with the natural fitration of the fBM WH . Let

KH(t, s) = H(2H − 1)
d

ds

∫ t

s
rH−

1
2 (r − s)H−

3
2dr, 0 ≤ s ≤ t.(2. 9)

The sample paths of the process {Xt, t ≥ 0} are smooth enough so that the process Q defined
by

Q(t) =
d

dwHt

∫ t

0
kH(t, s)Xsds, t ∈ [0, T ](2. 10)
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is welldefined where wH and kH are as defined in (2.7) and (2.5) respectively and the derivative
is understood in the sense of absolute continuity with respect to the measure generated by wH .
More over the sample paths of the process Q belong to L2([0, T ], dwH) a.s. [P]. The following
theorem due to Kleptsyna et al. (2000) associates a fundamental semimartingale Z associated
with the process X such that the natural filtration (Zt) coincides with the natural filtration
(Xt) of X.

Theorem 2.1: Let the process Z = (Zt, t ∈ [0, T ]) be defined by

Zt =
∫ t

0
kH(t, s)dXs(2. 11)

where the function kH(t, s) is as defined in (2.5). Then the following results hold:
(i) The process Z is an (Ft) -semimartingale with the decomposition

Zt = θ

∫ t

0
Q(s)dwHs + σMH

t(2. 12)

where MH is the gaussian martingale defined by (2.8),
(ii) the process X admits the representation

Xt =
∫ t

0
KH(t, s)dZs(2. 13)

where the function KH is as defined in (2.9), and
(iii) the natural fitrations of (Zt) and (Xt) coincide.

Kleptsyna et al. (2000) derived a Girsanov type formula for fractional Brownian motions.
As an application , it follows that the Radon-Nikodym Derivative of the measure P Tθ , generated
by the stochastic process X when θ is the true parameter, with respect to the measure generated
by the process X when θ = 0, is given by

dP Tθ
dP T0

= exp[−θ
∫ T

0
Q(s)dZs +

1
2
θ2
∫ T

0
Q2(s)dwHs ].(2. 14)

From the representation (2.12), it follows that the quadratic variation < Z >T of the process
Z on [0, T ] is equal to σ2wHT a.s. and hence the parameter σ2 can be estimated by the relation

lim
n

Σ[Z
t
(n)
i+1

− Z
t
(n)
i

]2 = σ2wHT a.s.(2. 15)

where (t(n)
i ) is an appropriate partition of [0, T ] such that

sup
i
|t(n)
i+1 − t

(n)
i | → 0

as n→∞. Hence we can estimate σ2 almost surely from any small interval as long as we have
a continuous observation of the process. For further discussion, we assume that σ2 = 1.
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3 Maximum likelihood estimation

We consider the problem of estimation of the parameter θ based on the observation of the
process X = {Xt, 0 ≤ t ≤ T} for a fixed time T and study its asymptotic properties as T →∞.
These results are due to Kleptsyna and Le Breton (2002) and Prakasa Rao (2003a,b).

Theorem 3.1: The maximum likelihood estimator θ from the observationX = {Xt, 0 ≤ t ≤ T}
is given by

θ̂T = {
∫ T

0
Q2(s)dwHs }−1

∫ T

0
Q(s)dZs(3. 1)

where the processes Q and Z are as defined by (2.10) and (2.11) respectively. Further more
the estimator θ̂T is strongly consistent as T →∞, that is,

lim
T→∞

θ̂T = θ a.s. [Pθ](3. 2)

for every θ ∈ R.

We now discuss the limiting distribution of the MLE θ̂T as T →∞.

Theorem 3.2: Let
RT =

∫ T

0
Q(s)dZs.(3. 3)

Assume that there exists a norming function It, t ≥ 0 such that

I2
T

∫ T

0
Q(t)2dwHt → η2 in probability as T →∞(3. 4)

where IT → 0 as T →∞ and η is a random variable such that P (η > 0) = 1. Then

(ITRT , I2
T < RT >)→ (ηZ, η2) in law as T →∞(3. 5)

where the random variable Z has the standard normal distribution and the random variables
Z and η are independent.

Proof: This theorem follows as a consequence of the central limit theorem for martingales (cf.
Theorem 1.49 ; Remark 1.47 , Prakasa Rao(1999b), p. 65).

Observe that
I−1
T (θ̂T − θ0) =

ITRT
I2
T < RT >

(3. 6)

Applying the Theorem 3.2, we obtain the following result.

Theorem 3.3: Suppose the conditions stated in the Theorem 3.2 hold. Then

I−1
T (θ̂T − θ0)→ Z

η
in law as t→∞(3. 7)

where the random variable Z has the standard normal distribution and the random variables
Z and η are independent.
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Remarks: If the random variable η is a constant with probability one, then the limiting distri-
bution of the maximum likelihood estimator is normal with mean 0 and variance η−2. Otherwise
it is a mixture of the normal distributions with mean zero and variance η−2 with the mixing
distribution as that of η.

4 Sequential maximum likelihood estimation

We now consider the problem of sequential maximum likelihood estimation of the parameter
θ. Let h be a nonnegative number. Define the stopping rule τ(h) by the rule

τ(h) = inf{t :
∫ t

0
Q2(s)dwHs ≥ h}.(4. 1)

Kletptsyna and Le Breton (2002) have shown that

lim
t→∞

∫ t

0
Q2(s)dwHs = +∞ a.s. [Pθ](4. 2)

for every θ ∈ R. Then it can be shown that Pθ(τ(h) <∞) = 1. If the process is observed up to
a previuosly determined time T , we have observed that the maximum likelihood estimator is
given by

θ̂T = {
∫ T

0
Q2(s)dwHs }−1

∫ T

0
Q(s)dZs.(4. 3)

The estimator

θ̂(h) ≡ θ̂τ(h)(4. 4)

= {
∫ τ(h)

0
Q2(s)dwHs }−1

∫ τ(h)

0
Q(s)dZs

= h−1
∫ τ(h)

0
Q(s)dZs

is called the sequential maximum likelihood estimator of θ. We now study the asymptotic prop-
erties of the estimator θ̂(h).

We shall first prove a lemma which is an analogue of the Cramer-Rao inequality for sequen-
tial plans (τ(X), θ̂τ (X)) for estimating the parameter θ satisfying the property

Eθ{θ̂τ (X)} = θ(4. 5)

for all θ.

Lemma 4.1: Suppose that differentiation under the integral sign with respect to θ on the left
side of the equation (4.5) is permissible. Further suppose that

Eθ{
∫ τ(X)

0
Q2(s)dwHs } <∞(4. 6)
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for all θ. Then

V arθ{θ̂τ (X)} ≥ {Eθ[
∫ τ(X)

0
Q2(s)dwHs ]}−1(4. 7)

for all θ.

Proof: Let Pθ be the measure generated by the process X(t), t ≤ τ(X) for given θ. It follows
from the results discussed above that

dPθ
dPθ0

= exp{(θ − θ0)
∫ τ(X)

0
Q(s)dZs −

1
2

(θ2 − θ2
0)
∫ τ(X)

0
Q2(s)dwHs } a.s [Pθ0 ].(4. 8)

Differentiating (4.5) with respect to θ under the integral sign, we get that

Eθ[θ̂τ (X){
∫ τ(X)

0
Q(s)dZs − θ

∫ τ(X)

0
Q2(s)dwHs }] = 1.(4. 9)

Theorem 2.1 implies that
dZs = θQsdw

H
s + dMH

s(4. 10)

and hence ∫ T

0
Q(s)dZs = θ

∫ T

0
Q2(s)dwHs +

∫ T

0
Q(s)dMH

s .(4. 11)

The above relation in turn implies that

Eθ{
∫ τ(X)

0
Q(s)dZs − θ

∫ τ(X)

0
Q2(s)dwHs } = 0(4. 12)

and

Eθ{
∫ τ(X)

0
Q(s)dZs − θ

∫ τ(X)

0
Q2(s)dwHs }2 = Eθ{

∫ τ(X)

0
Q2(s)dwHs }(4. 13)

from the properties of the fundamental martingale MH and the fact that the quadratic variation
< MH >t of the process MH

t is wHt . Applying the Cauchy-Schwartz inequality to the left side
of the equation (4.9), we obtain that

V arθ{θ̂τ (X)} ≥ {Eθ[
∫ τ(X)

0
Q2(s)dwHs ]}−1(4. 14)

for all θ.

A sequential plan (τ(X), θ̂τ (X)) is said to be efficient if there is equality in (4.7) for all θ.

We now prove the main result.

Theorem 4.2: Consider the fractional Ornstein-Uhlenbeck process governed by the stochastic
differential equation (2.3) with σ = 1 driven by the fractional Brownian motion WH with
H ∈ (1

2 , 1). Then the sequential plan (τ(h), θ̂(h)) defined by the equations (4.1) and (4.4) has
the following properties for all θ.

(i) θ̂(h) ≡ θ̂τ(h) is normally distributed with Eθ(θ̂(h)) = θ and V arθ(θ̂(h)) = h−1;
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(ii) the plan is efficient; and

(iii) the plan is closed, that is, Pθ(τ(h) <∞) = 1.

Proof: Let
JT =

∫ T

0
Q(s)dMH

s(4. 15)

From the results in Kartazas and Shreve (1988), Revuz and Yor (1991) and Ikeda and Watanabe
( 1981), it follows that there exists a standard Wiener process W such that

JT = W (< J >T ) a.s(4. 16)

with respect to the filtration {Fτt , t ≥ 0} under P where τt = inf{s :< J >s> t}. Hence the
process ∫ τ(h)

0
Q(s)dMH

s(4. 17)

is a standard Wiener process. Observe that

θ̂(h) = h−1
∫ τ(h)

0
Q(s)dZs(4. 18)

= h−1{θ
∫ τ(h)

0
Q2(s)dwHs +

∫ τ(h)

0
Q(s)dMH

s }

= θ + h−1
∫ τ(h)

0
Q(s)dMH

s

= θ + h−1Jτ(h)

= θ + h−1W (< J >τ(h))

which proves that the estimator θ̂(h) is normally distributed with mean θ and variance h−1.

Since

Eθ{
∫ τ(h)

0
Q2(s)dwHs } = h,(4. 19)

it follows that the plan is efficient by the Lemma 4.1. Since

Pθ(τ(h) ≥ T ) = Pθ{
∫ T

0
Q2(s)dwHs < h}(4. 20)

for every T ≥ 0, it follows that Pθ(τ(h) <∞) = 1 from the observation

Pθ(
∫ ∞

0
Q2(s)dwHs =∞) = 1.(4. 21)

We now discuss some results on the probability distribution of the observation time τ(h)
and the mean observation time Eθ{τ(h)}.
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It follows from the definition of the stopping time τ(h) that

Pθ(τ(h) ≥ T ) = Pθ(
∫ T

0
Q2(s)dwHs < h)(4. 22)

= Pθ(exp(−
∫ T

0
Q2(s)dwHs ) > e−h)

≤ ehEθ[exp(−
∫ T

0
Q2(s)dwHs )]

= ψHT (θ, 1)(say).

Kleptsyna and Le Breton (2002) have proved that

ψHT (θ, 1) =

[
4(sinπH)

√
θ2 + 2e−θT

πTDH
T (θ,

√
θ2 + 2)

]1/2

(4. 23)

where

DH
T (θ, α) = [α cosh(

α

2
T )− θ sinh(

α

2
T )]2I−H(

α

2
T )IH−1(

α

2
T )−(4. 24)

−[α sinh(
α

2
T )− θ cosh(

α

2
T )]2I1−H(

α

2
T )IH(

α

2
T )

where Iν is the modified Bessel function of the first kind and order ν (cf. Watson (1995)).
Kleptsyna and Le Breton (2002) have also proved that

ψHT (θ, 1) '
[

4(sinπH)(θ2 + 2)
2 + (sinπH)(

√
θ2 + 2− θ)2

]1/2

exp{−((θ +
√
θ2 + 2)/2)T}(4. 25)

as T →∞. In particular it follows that for every θ,

Pθ(τ(h) ≥ T ) = O(ehγ1(θ) exp{−γ2(θ)T})(4. 26)

as T →∞ where γi(θ) > 0, i = 1, 2. Further more

Eθ(τ(h)) =
∫ ∞

0
Pθ(τ(h) ≥ u) du(4. 27)

=
∫ ∞

0
Pθ(

∫ u

0
Q2(s)dwHs < h) du

=
∫ ∞

0
Pθ(exp(−

∫ u

0
Q2(s)dwHs ) > e−h) du

≤
∫ ∞

0
ehEθ[exp(−

∫ u

0
Q2(s)dwHs )] du

= eh
∫ ∞

0
ψHu (θ, 1) du
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