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Abstract
Let {Xn,−∞ < n < ∞} be a stationary φ-mixing process with the one-dimensional

marginal distribution function F and the density function f. Let Fn(x) be the empirical distri-
bution function based on the observations {Xi, 1 ≤ i ≤ n} and W ∗n = sup−∞<x<∞

√
n|Fn(x)−

F (x)|. We obtain upper bounds for E(W ∗n). We give an application to get bounds on the
expectation of the supremum of the deviation of a kernel density estimator f̂n(x) from true
density function f(x) . Similar results were obtained for a kernel type estimator F̂n(x) for the
true distribution function F (x).
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1 Introduction

Moment inequalities for the supremum of empirical processes with applications to kernel type
estimation of a density function and a distribution function for identically distributed observa-
tions were investigated in Ahmad (2002). We obtain similar results for mixing procesess.

2 Preliminaries

Let {Xn,−∞ < n < ∞} be a stationary φ-mixing sequence defined on a probability space
(Ω,F , P ) with each Xi having a continuous distribution function F (x) and density function
f(x). Let Yi = F (Xi),−∞ < i <∞. Define G(t) = P (Yi ≤ t). Let Fn(x) denote the empirical
distribution function based on the observations {Xi, 1 ≤ i ≤ n} and Gn(t) denote the empirical
distribution function based on the observations {Yi, 1 ≤ i ≤ n}. It is easy to see that

sup
−∞<x<∞

|Fn(x)− F (x)| ≤ D̃n = sup
0≤t≤1

|Gn(t)− t|. (2. 1)

The following result is due to Kim (1999).
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Theorem 2.1: Let {Xn, n ≥ 1} be a stationary and φ-mixing sequence of random variables
such that ∞∑

i=1

φi <∞. (2. 2)

Then, for every positive integer k ≥ 1, there corresponds a constant Ck > 0 such that for any
λ ≥ 1,

sup
n
P (
√
nD̃n ≥ λ) ≤ Ckλ−2k. (2. 3)

Let
Dn =

√
nD̃n. (2. 4)

Note that for any positive integer k ≥ 1,

E(Dn) =
∫ ∞

0
P (Dn > x)dx (2. 5)

≤ 1 +
∫ ∞

1
P (Dn > x)dx

≤ 1 +
∫ ∞

1
Ckx

−2kdx

= 1 + Ck(
1

2k − 1
)

and, in general, it is easy to see that for r ≥ 1 and positive integer k ≥ r
2 ,

E(Dn) ≤ {1 + Ck(
r

2k − r
)}1/r. (2. 6)

3 Application to Density Estimation

Suppose a stationary φ-mixing process {Xi, i ≥ 1} is observed up to time n with the φ-
mixing sequence satisfying the condition (2.2) and with the one-dimensional probability density
function f. The problem is to estimate the density fuction f based on the observations {Xi, 1 ≤
i ≤ n}.

Let J(.) be a bounded symmetric probability density function with mean zero and finite
variance σ2

J . Further suppose that it is of bounded variation with total variation VJ . Let hn be
a sequence of positive numbers such that

hn → 0 and nhn →∞ as n→∞. (3. 1)

Define, for any x,

f̂n(x) =
1
nhn

n∑
i=1

J(
x−Xi

hn
). (3. 2)

The estimator f̂n(x) is a kernel type estimator of the probability density function f(x). Prop-
erties of such estimators are discussed in Prakasa Rao (1983).
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Suppose that the probability density function f has continuous and bounded second deriva-
tive with supx |f ′′| = Cf <∞. Let

Wn = sup
−∞<x<∞

|f̂n(x)− f(x)|. (3. 3)

Observe that

|f̂n(x)− f(x)| ≤ | 1
hn

∫ ∞
−∞

J(
x− y
hn

)dFn(y)− 1
hn

∫ ∞
−∞

J(
x− y
hn

)dF (y)| (3. 4)

+| 1
hn

∫ ∞
−∞

J(
x− y
hn

)dF (y)− f(x)|

≤ 1
hn

sup
−∞<y<∞

|Fn(y)− F (y)|
∫ ∞
−∞

dJ(
x− y
hn

)|+ h2
n

2
σ2
JCf

=
1
hn

sup
−∞<y<∞

|Fn(y)− F (y)|VJ +
h2
n

2
σ2
JCf

≤ 1
hn
√
n
DnVJ +

h2
n

2
σ2
JCf .

Hence

E(Wn) ≤ 1
hn
√
n
E(Dn)VJ +

h2
n

2
σ2
JCf . (3. 5)

Applying the bound on E(Dn) derived in the equation (2.5), we have

E(Wn) ≤ 1
hn
√
n

(1 + Ck(
1

2k − 1
))VJ +

h2
n

2
σ2
JCf (3. 6)

for any positive integer k ≥ 1. Choosing hn such that 1
hn
√
n

= h2
n, that is, hn = n−1/6, one can

get an optimum bound on E(Wn) as far as the rate of convergence is concerned and

E(Wn) ≤ n−1/3[(1 + Ck(
1

2k − 1
))VJ +

1
2
σ2
JCf ]. (3. 7)

Let us now consider the problem of estimation of

I(f) =
∫ ∞
−∞

f2(x)dx. (3. 8)

An estimator of I(f) is I(f̂n). Note that

|I(f̂n)− I(f)| = |
∫ ∞
−∞

(f̂n(x)− f(x))(f̂n(x) + f(x))dx|

≤
∫ ∞
−∞
|(f̂n(x)− f(x))||(f̂n(x) + f(x))|dx

≤ 2 sup
−∞<x<∞

|f̂n(x)− f(x)|

= 2Wn.
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Hence

E|I(f̂n)− I(f)| ≤ 2[
1

hn
√
n

(1 + Ck(
1

2k − 1
))VJ +

h2
n

2
σ2
JCf ]. (3. 9)

If hn = n−1/6, then the above bound reduces to

E|I(f̂n)− I(f)| ≤ 2n−1/3[(1 + Ck(
1

2k − 1
))VJ +

1
2
σ2
JCf ]. (3. 10)

4 Application to Estimation of Distribution Function

Suppose a stationary φ-mixing process {Xi, i ≥ 1} is observed up to time n with the φ-mixing
sequence satisfying the condition (2.2) and with the one-dimensional probability distribution
function F. The problem is to estimate the distribution function F based on the observations
{Xi, 1 ≤ i ≤ n}.

Let Rn(x) be a sequence of distribution functions converging weakly to the distribution
function R(x) degenerate at zero such that

sup
−∞<x<∞

|Rn(x)−R(x)| = o(δn) (4. 1)

where δn → 0 as n→∞. Define

F̂n(x) =
1
n

n∑
i=1

Rn(x−Xi). (4. 2)

Let

Zn = sup
−∞<x<∞

|F̂n(x)− F (x)| (4. 3)

≤ sup
−∞<x<∞

|F̂n(x)− EF̂n(x)|+ sup
−∞<x<∞

|EF̂n(x)− F (x)|.

But

(4. 4)

sup
−∞<x<∞

|F̂n(x)− EF̂n(x)| = sup
−∞<x<∞

|
∫ ∞
−∞

Rn(x− y)dFn(y)

−
∫ ∞
−∞

Rn(x− y)dF (y)|

= sup
−∞<x<∞

|
∫ ∞
−∞

(Fn(y)− F (y))dRn(x− y)|

≤ Dn√
n
.

Therefore
Zn ≤

Dn√
n

+ sup
−∞<x<∞

|EF̂n(x)− F (x)|. (4. 5)
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It can be checked that

sup
−∞<x<∞

|EF̂n(x)− F (x)| ≤ sup
−∞<x<∞

|
∫ ∞
−∞
|Rn(x− y)−R(x− y)|f(y)dy (4. 6)

≤ sup
−∞<x<∞

|Rn(x)−R(x)|
∫ ∞
−∞

f(y)dy

≤ δn.

Hence
E(Zn) ≤ E(Dn)√

n
+ δn. (4. 7)

Applying the inequality (2.5), we get that

E(Zn) ≤
1 + Ck( 1

2k−1)
√
n

+ δn. (4. 8)
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