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1 Introduction

In this paper we introduce a notion of a minimal directed spanning tree. To illustrate this
consider the following model of transmission of radio waves by transmitters, receivers and
amplifiers. Suppose a source transmitter located at the origin transmits messages which can
be received only by receivers placed in the positive quadrant. These receivers in turn amplify
the message and transmit it to the receivers lying in the positive quadrant with respect to
these amplifiers. In this way each receiver lying in the positive quadrant with respect to the
transmitter receives the message. The graph which represents this model of transmission may
be viewed as a directed spanning tree. For transmission of radio waves in this model, the
required strength of the source transmitter is clearly related to the number of receivers which
receive the message directly from the transmitter at the origin, as well as the sum of the
distances of these receivers from the origin and the distance of the receiver farthest away from
the origin which receives the message directly from the origin. In this paper we investigate
these three factors when the receivers are located at random in the unit square (say) and we
study the asymptotics as the number of transmitters go to infinity.

This model of transmission of radio waves is in contrast to that introduced by Gilbert [1961]
where the radio waves can travel in any direction from the point of their origin. However they
may be received only by receivers located within a certain fixed distance from the source of
transmission.

In the context of transmission of information through wireless networks, there has been
quite a lot of work done in recent years, see e.g., Gupta and Kumar [1998]. The object of
interest in these studies is the throughput , which is the rate of transmission of information.
This throughput is related to the strength of the transmitter and its subsequent reception by
the receivers. It is in this perspective that the questions we discuss in this paper are important.
In particular, the total length of the transmitting network could determine the throughput.

The model we propose could also be viewed as the catchment area of a river. In particular,
various mountain gorges drain into a river. The amount of water collected in the river depends
on the lengths of the gorges. This should be viewed in relation to the lattice model of such a
catchment area. (See e.g. Rodriguez-Iturbe and Rinaldo [1997].)

Before we define the random graphs which is the subject of this paper, we need to introduce
some notation. Given two points (a1, b1) and (a2, b2) in IR2, we write (a1, b1) � (a2, b2) if a1 ≤ a2

and b1 ≤ b2.
Given a vertex set A of k + 1 vertices (a0, b0), (a1, b1), . . . , (ak, bk) in [0, 1] × [0, 1] satis-

fying (a0, b0) � (ai, bi) for every 1 ≤ i ≤ k, let E be the set of all directed edges eij :=<
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(ai, bi), (aj , bj) > between vertices (ai, bi) and (aj , bj) satisfying (ai, bi) � (aj , bj) for all 0 ≤ i 6=
j ≤ k. Let G be the collection of all possible graphs G with vertex set GV = A and edge set
GE a subset of E, such that given any vertex (aj , bj), there exist vertices (ail , bil), 0 ≤ l ≤ m

for some m ≥ 1, such that

1. (ai0 , bi0) = (a0, b0), (aim , bim) = (aj , bj),

2. < (ail , bil), (ail+1
, bil+1

) >∈ GE for all 0 ≤ l ≤ m− 1.

Let T denote a graph in G such that
∑

e∈TE |e| = minG∈G
∑

e∈GE |e|, where |e| denotes the
Euclidean length of the edge e. Clearly T need not be unique and T must necessarily be a tree.
This is the directed minimal spanning tree we consider in this article.

To construct such a random tree, let ξ1, ξ2, . . . and ζ1, ζ2, . . . be i.i.d. random variables,
each being uniformly distributed on the interval [0, 1]. Let Vn = {(ξ1, ζ1), . . . , (ξn, ζn)} be the
vertex set of n points on the unit square [0, 1]× [0, 1]. Let Tn be the minimal directed spanning
tree obtained with vertex set Vn ∪ (0, 0). Clearly, Tn is almost surely unique, in the sense that
the set of all realisations under each of which there are two or more distinct minimal directed
spanning trees has probability 0.

In contrast to the Euclidean minimal spanning tree T ′n on Vn ∪ (0, 0) the minimal directed
spanning tree that we consider has quite a few distinctive properties. In particular for the
Euclidean minimal spanning tree T ′n there is a vast literature describing its properties, results
on the total length of the tree, degree of a fixed vertex etc. (see e.g. Beardwood, Halton and
Hammersley [1959], Steele [1988], Aldous and Steele [1992], Ketsen and Lee [1996]). A property
of the Euclidean minimal spanning tree which is quite central to its study (in the case when
the weight function is monotone) is that the degree of any vertex is bounded by a constant
which depends only on the dimension of the underlying space.

In the minimal directed spanning tree we do not have the above property. Let Ln denote
the subgraph of Tn with vertex set {(0, 0)} ∪ {(ai, bi) : 〈(0, 0), (ai, bi)〉 ∈ Tn for 1 ≤ i ≤ n} and
edge set {〈(0, 0), (ai, bi)〉 : 〈(0, 0), (ai, bi)〉 ∈ Tn for 1 ≤ i ≤ n}. The degree δ(n) of the vertex
(0, 0) is then equal to the number of edges of Ln and we have

Theorem 1.1 As n→∞, we have
(i) δ(n)

logn converges almost surely to 1,
(ii) (log n)−1/2(δ(n)− log n) converges in distribution to a standard normal random variable,

(iii) lim sup
n→∞

δ(n)− log n√
(2 logn)(log log log n)

= 1 almost surely, and

(iv) lim inf
n→∞

δ(n)− log n√
(2 logn)(log log log n)

= −1 almost surely.

As in the study of random minimal spanning trees, it would be interesting to obtain asymp-
totic behaviour of the total length and other properties of Tn. In this paper, we do not have
such an ambitious goal, rather, we study Ln, the subgraph of Tn which consists of the edges
adjacent to the root.
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Figure 1: A minimal directed spanning tree. The subgraph formed by the bold edges is Ln.

In the next section we will exhibit the connection between our model of the minimal directed
spanning tree and the theory of record values in extreme value statistics. Theorem 1.1 will then
be shown to be a restatement of a theorem of Rényi [1976].

Finally we study the sum l(n) of the lengths of the edges and the length h(n) of the longest
edge of the subgraph Ln. We will show that

Theorem 1.2 As n → ∞, l(n) converges weakly to a random variable whose mean and vari-
ance are 2 and 1 respectively.

Theorem 1.3 As n→∞, h(n) converges weakly to max{U1, U2}, where U1 and U2 are i.i.d.
uniform random variables on [0, 1].

The proofs of the above theorems crucially depend on a ‘reflection principle’ which we
discuss in Section 3. This is the observation that the distribution of the vertices in the subgraph
Ln is probabilistically invariant under reflection along the line x = y. The proofs are given in
Section 4. In the last section, Section 5, we identify the moments of the random variable which
is the limit of l(n).

Finally all our results above remain true if the minimal directed spanning tree Tn was
constructed from a vertex set V ′n consisting of points of a Poisson point process of intensity n
in the unit square [0, 1]× [0, 1], instead of the vertex set Vn.
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2 Records

Consider the vertex set Vn described earlier and assume that
(i) no points of the vertex set Vn lie on the boundary of [0, 1]× [0, 1],
(ii) ξi 6= ξj for all 1 ≤ i 6= j ≤ n,
(iii) ζi 6= ζj for all 1 ≤ i 6= j ≤ n;
– an event which occurs with probability 1.

Let (X1, Y1), . . . , (Xn, Yn) be a permutation of (ξ1, ζ1), . . . , (ξn, ζn), the vertices of Vn such
that 0 < X1 < X2 < · · · < Xn < 1. Thus (X1, . . . , Xn) is the order statistic obtained from
(ξ1, . . . ξn). Hence

(
(X1, Y1), . . . , (Xn, Yn)

)
has the same distribution as

(
(O1, U1), . . . , (On, Un)

)
,

where O1 < O2 < · · · < On is the order statistic generated from a sample of n i.i.d. uniform
random variables on [0, 1] and U1, . . . , Un are i.i.d. random variables each being uniformly
distributed on [0, 1] and independent of all random variables considered so far.

Let Ri denote the i th lower record time of Y1, . . . , Yn. In other words, Ri’s are random
variables defined as follows:

R1 = 1,

and, for i > 1,

Ri =


∞ if Yj > YRi−1 for all j > Ri−1

or if Ri−1 ≥ n

min{j > Ri−1 : Yj < YRi−1} otherwise.

Let k = k(n) (random) be such that Rk+1 =∞ and 1 = R1 < R2 < · · · < Rk ≤ n.

Lemma 2.1 {(0, 0)} ∪ {(XR1 , YR1), . . . , (XRk , YRk)} is the vertex set of the subgraph Ln.

Proof : For j < Ri we have Yj > YRi , while for j > Ri we have Xj > XRi ; thus there does not
exist any (Xj , Yj), j 6= Ri, with (Xj , Yj) � (XRi , YRi). Hence (XRi , YRi) belongs to the vertex
set of Ln.

Moreover, for Ri < j < Ri+1, we have Xj > XRi and Yj > YRi ; thus (XRi , YRi) � (Xj , Yj).
Hence (Xj , Yj) does not belong to the vertex set of Ln. 2

From Lemma 2.1, we see that the degree of (0, 0) in Ln is exactly k(n). Theorem 1.1 follows
immediately from the following theorem by Rényi [1976].

Theorem 2.1 For an i.i.d. sequence W1,W2, . . . of random variables uniformly distributed on
[0, 1], the number of records k(n) in W1, . . . ,Wn satisfies

(i) P
(

lim
n→∞

k(n)
log n

= 1
)

= 1,

(ii) limn→∞ P
(
(log n)−1/2(k(n) − log n) ≤ x

)
= Φ(x), where Φ is the standard normal distri-

bution function,

(iii) P
(
lim sup
n→∞

k(n)− log n√
(2 logn)(log log log n)

= 1
)

= 1, and

(iv) P
(
lim inf
n→∞

k(n)− log n√
(2 logn)(log log log n)

= −1
)

= 1.
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Let η1, . . . , ηn be defined as

ηj =

1 if Ri = j for some 1 ≤ i ≤ k(n)

0 otherwise.

Clearly,
η1 + · · ·+ ηn = k(n). (2.1)

Lemma 2.2 η1, . . . , ηn are independent random variables with P (ηj = 1) = 1 − P (ηj = 0) =
j−1 for 1 ≤ j ≤ n.

Proof : Note that for 1 ≤ j ≤ n,

P (ηj = 1) = P (Yj < min{Y1, Y2, . . . , Yj−1} < 1, 0 < Yj < 1)

=

1∫
0

(j−1∏
i=1

1∫
yj

dyi

)
dyj

=

1∫
0

(1− yj)j−1dyj = 1/j.

Since ηi’s are Bernoulli random variables, to check independence it suffices to show that for
1 ≤ i1 < i2 < . . . < ip ≤ n, 2 ≤ p ≤ n,

P (ηi1 = ηi2 = . . . = ηip = 1) =
p∏
j=1

P (ηij = 1).

This equality is easily checked by noting that{
ηi1 = ηi2 = . . . = ηip = 1

}
={

Yi1 < min{Y1, Y2, . . . , Yi1−1} < 1;Yi2 < min{Yi1 , Yi1+1, . . . Yi2−1} < 1;

. . . ;Yip < min{Yip−1 , Yip−1+1, . . . , Yip−1} < 1
}
.

2

Lemma 2.3 limn→∞
1√
n
E[k(n)]l = 0 for all l ≥ 1.
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Proof : Using (2.1) and Lemma 2.2 we get, for any real number t

E[etk(n)] = Eet(η1+···+ηn)

=
n∏
i=1

Eetηi

=
n∏
i=1

(
et

i
+
i− 1
i

)

=
1
2
et(1 + et)

n∏
i=3

1
i
((i− 1) + et)

=
1
n
et(1 + et)

n−1∏
i=2

(1 +
et

i
).

Now E[k(n)]l is the coefficient of tl/l! in the power series expansion of E[etk(n)]. Moreover

0 ≤ E[k(n)]ltl

l!
≤ E[etk(n)] ∀t ≥ 0.

Thus to prove the lemma it suffices to show that

1√
n

( 1
n

n−1∏
i=2

(1 +
et

i
)
)
→ 0 for some t as n→∞. (2.2)

Fix 0 < t < log(3/2). Note that

log
1

n
√
n

n−1∏
i=2

(
1 +

et

i

)
=

n−1∑
i=2

log
(

1 +
et

i

)
− 3

2
log n

≤
n−1∑
i=2

et

i
− 3

2
log n

→ −∞ as n→∞.

This proves (2.2) and hence completes the proof of the lemma. 2

A question which does not arise naturally in the study of record values and as such has not
been considered in its study is the computation of the moments of

∑k(n)
i=1 Ri, the sum of record

times. Since we need it in our study we present the following proposition.

Proposition 2.1 For every l ≥ 1, we have

E

k(n)∑
i=1

Ri

l

≤ nlll.

Proof : First observe that
∑k(n)

i=1 Ri =
∑n

i=1 iηi. Thus, using the notation
∑

α to denote the
sum over α1, . . . , αj such that 1 ≤ α1, . . . , αj ≤ l and α1 + · · ·+αj = l, we get from Lemma 2.2

E

k(n)∑
i=1

Ri

l

= E

(
n∑
i=1

iηi

)l
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=
l∑

j=1

∑
1≤i1<···<ij≤n

∑
α

l!
α1! . . . αj !

iα1
1 . . . i

αj
j

1
i1 . . . ij

≤
l∑

j=1

∑
α

l!
α1! . . . αj !

n∑
i1=1

. . .

n∑
ij=1

iα1−1
1 . . . i

αj−1
j

≤
l∑

j=1

∑
α

l!
α1! . . . αj !

nα1+···+αj

= nl
l∑

j=1

∑
α

l!
α1! · · ·αj !

= nlll.

2

In particular we have,

E

k(n)∑
i=1

Ri

 =
n∑
j=1

E(jηj) = n, (2.3)

and

E

k(n)∑
i=1

Ri

2

=
n∑
i=1

i+
∑

1≤i1<i2≤n

∑
1≤α1,α2≤2

α1+α2=2

2!
α1!α2!

iα1−1
1 iα2−1

2

=
n∑
i=1

i+
n−1∑
i1=1

n∑
i2=i1+1

2

=
n(3n− 1)

2
. (2.4)

3 A Reflection Principle

We now revisit the vertex set Vn = {(ξ1, ζ1), . . . , (ξn, ζn)} introduced in Section 1. In par-
ticular (ξ1, ξ2, . . . ξn) and (ζ1, ζ2, . . . ζn) are two independent sets of i.i.d. random variables,
each being uniformly distributed on the interval [0, 1]. Earlier we considered a permutation
{(X1, Y1), . . . , (Xn, Yn)} of the set Vn which together with the lower record times {Ri : 1 ≤
i ≤ n} of the random variables Y1, . . . , Yn provided a representation of the subgraph Ln (see
Lemma 2.1).

Alternately, we may consider the order statistic of ζ1, ζ2, . . . , ζn and then look at the record
values in the other co-ordinates. Let Y ′1 , . . . , Y

′
n, with Y ′1 < · · · < Y ′n, be the order statistic of

ζ1, . . . , ζn and let X ′1, . . . , X
′
n be the corresponding values of ξ’s. i.e. {(X ′1, Y ′1), . . . , (X ′n, Y

′
n)}

is a permutation of Vn. Let R′1, . . . , R
′
m(n) be the lower record times of X ′1, . . . , X

′
n. Ar-

guing exactly as in Lemma 2.1 we get that the vertex set of the subgraph Ln is {(0, 0)} ∪
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{(X ′R′1 , Y
′
R′1

), . . . , (X ′R′
m(n)

, Y ′R′
m(n)

)}. We note here that

Y ′R′1
< · · · < Y ′R′

m(n)
and X ′R′1

> · · · > X ′R′
m(n)

a.s. (3.1)

Since either of the two constructions lead to the same set, viz., the vertex set of Ln, we
have

{(XR1 , YR1), . . . , (XRk(n)
, YRk(n)

)} = {(X ′R′1 , Y
′
R′1

), . . . , (X ′R′
m(n)

, Y ′R′
m(n)

)}, (3.2)

and so k(n) = m(n). However, contrary to (3.1) we have

XR1 < · · · < XRk(n)
and YR1 > · · · > YRk(n)

a.s. (3.3)

Thus we have

XRl = X ′R′
k(n)+1−l

and YRl = Y ′R′
k(n)+1−l

for every l = 1, . . . , k(n). (3.4)

Now note that the random vectors (Y1, . . . , Yn) and (X ′1, . . . , X
′
n) are identically distributed,

each being a vector of n i.i.d. uniform [0, 1] random variables. Hence the record times
(R1, . . . , Rk(n)) and (R′1, . . . , R

′
k(n)) are also identically distributed. Also the random vectors

(X1, . . . , Xn) and (Y ′1 , . . . , Y
′
n) are identically distributed, each being the order statistic ob-

tained from a sample of n i.i.d. uniform [0, 1] random variables. Further (X1, . . . , Xn) and
(R1, . . . , Rk(n)) are independent since (R1, . . . , Rk(n)) is obtained from (Y1, . . . , Yn) which is in-
dependent of (X1, . . . , Xn). Similarly (Y ′n, . . . , Y

′
1) and (R′k(n), . . . , R

′
1) are independent. Thus

the random vectors (XR1 , . . . , XRk(n)
) and (Y ′R′

k(n)
, . . . , Y ′R′1

) are identically distributed.

In combination with our observation (3.4) we have

(XR1 , . . . , XRk(n)
) and (YRk(n)

, . . . , YR1) are identically distributed. (3.5)

4 Asymptotic length of Ln

First we state a result which we will be using quite often in this section.

Theorem 4.1 Let Z1, Z2, . . . be random variables on a probability space such that E|Zrn| <∞
for every n ≥ 1 and every r ≥ 1. Let mr(n) = EZrn and suppose that limn→∞mr(n) = mr for

every r ≥ 1. If {mr, r ≥ 1} is such that mr is finite for every r ≥ 1 and
∑∞

r=1m
− 1

2r
2r = ∞,

then there exists a random variable Z such that Zn converges weakly to Z as n → ∞ and
E(Zr) = mr for every r ≥ 1.

The proof of this theorem follows from combining Theorem 4.5.5 of Chung (1974) and Theorem
1.10 of Shohat and Tamarkin (1960).

To show the weak convergence of the sum
∑k(n)

i=1

√
X2
Ri

+ Y 2
Ri

of the lengths of the edges of

Ln as n→∞, we first show the weak convergence of the sum
∑k(n)

i=1 XRi as n→∞. Towards
this end we will show

E

k(n)∑
i=1

XRi

l

→ µl (say) for every l as n→∞, (4.1)
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and
∞∑
l=1

µ
−1/2l
2l =∞, (4.2)

which, from Theorem 4.1 guarantees the weak convergence of
∑k(n)

i=1 XRi as n→∞.
The product moments of the order statistics 0 ≤ O1 ≤ O2 ≤ · · · ≤ On ≤ 1 obtained from a

sample of i.i.d. uniform random variables are as follows:
Let 1 ≤ i1 < i2 < . . . < im ≤ n, and let α1, α2, . . . , αm be non-negative integers with

∑m
i=1 αi =

α. Then (see David [1970], page 28)

E
[
Oα1
i1
Oα2
i2
. . . Oαmim

]
=

n!(
n+

∑m
j=1 αj

)
!

m∏
j=1

(
ij − 1 +

∑j
k=1 αk

)
!(

ij − 1 +
∑j−1

k=1 αk
)
!

=

∏m
p=1

∏αp−1
q=0

(
ip + α1 + · · ·+ αp−1 + q

)∏α
j=1(n+ j)

, (4.3)

where in the last term we have used the convention that

αp−1∏
q=0

(
ip + α1 + · · ·+ αp−1 + q

)
= 1, whenever αp = 0. (4.4)

Proposition 4.1 For every l ≥ 1, as n→∞,

E
(k(n)∑
i=1

XRi

)l
=
E
(∑k(n)

i=1 Ri

)l
∏l
j=1(n+ j)

+ o(1). (4.5)

Proof : Fix l ≥ 1. Note that

(k(n)∑
i=1

XRi

)l
=
∑
α

l!
α1! . . . αk(n)!

Xα1
R1
· · ·Xαk(n)

Rk(n)
(4.6)

where
∑

α stands for the summation over all non-negative integers
α1, . . . , αk(n) such that

∑k(n)
p=1 αp = l.

We also note that the number of records k(n) and the record times R1, . . . , Rk(n) depend
only on the random variables Y1, . . . , Yn and thus, as noted in Section 2, are independent of
the random variables X1, . . . , Xn. Using this fact, (4.3) and a conditioning argument, we get

E
(k(n)∑
i=1

XRi

)l
= E

(∑
α

l!
α1! . . . αk(n)!

E
(
Xα1
R1
· · ·Xαk(n)

Rk(n)

∣∣Y1, . . . , Yn

))

= E

∑
α

l!
α1! . . . αk(n)!

[∏k(n)
p=1

∏αp−1
q=0

(
Rp + α1 + . . .+ αp−1 + q

)]
∏l
j=1(n+ j)

 , (4.7)

where
∑

α is as defined in (4.6). Following the convention (4.4) we use the notation
∏
P below

to mean product over all p = 1, 2, . . . , k(n) for which αp > 0. Now using the fact that Rp ≤ n
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we observe that
k(n)∏
p=1

αp−1∏
q=0

(
Rp + α1 + . . .+ αp−1 + q

)
=
∏
P

αp−1∏
q=0

(
Rp + α1 + . . .+ αp−1 + q

)
≤
∏
P

αp−1∏
q=0

(
Rp + l

)
=
∏
P

(
Rp + l

)αp
=
∏
P

αp∑
j=0

(
αp
j

)
ljR

αp−j
p

=
∏
P

[
R
αp
p +

αp∑
j=1

(
αp
j

)
ljR

αp−j
p

]

≤
∏
P

[
R
αp
p + nαp−1

αp∑
j=1

(
αp
j

)
lj
]

≤
∏
P

[
R
αp
p + nαp−1(l + 1)αp

]

=
[∏
P

R
αp
p

]
+
[ k(n)∑

p=1
α(p)≥1

(l + 1)αp nαp−1

k(n)∏
j=1
j 6=p

βj

]

where for each j, βj is either Rαjj or (l + 1)αjnαj−1. Since Rj ≤ n for every j and
∑k(n)

j=1
j 6=p

αj =

l − αp, we have
k(n)∑
p=1

α(p)≥1

(l + 1)αpnαp−1

k(n)∏
j=1
j 6=p

βj ≤
k(n)∑
p=1

(l + 1)lnl−1.

Thus we get

k(n)∏
p=1

αp−1∏
q=0

(
Rp + α1 + . . .+ αp−1 + q

)
≤ Rα1

1 . . . R
αk(n)

k(n) + k(n)(l + 1)lnl−1. (4.8)

It follows from (4.7) and (4.8) that

E
(k(n)∑
i=1

XRi

)l
≤

l∏
j=1

(n+ j)−1E
(∑

α

l!
α1! . . . αk(n)!

Rα1
1 . . . R

αk(n)

k(n)

)

+
l∏

j=1

(n+ j)−1E
(∑

α

l!
α1! . . . αk(n)!

k(n)(l + 1)lnl−1
)
. (4.9)

Clearly, ∑
α

l!
α1! . . . αk(n)!

Rα1
1 . . . R

αk(n)

k(n) =
(k(n)∑
i=1

Ri

)l
. (4.10)

Moreover, ∑
α

l!
α1! . . . αk(n)!

k(n)(l + 1)lnl−1 = k(n)(l + 1)lnl−1
∑
α

l!
α1! . . . αk(n)!
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= k(n)(l + 1)lnl−1k(n)l.

= (l + 1)lnl−1k(n)l+1. (4.11)

Thus the second term in (4.9) becomes

l∏
j=1

(n+ j)−1E
(∑

α

l!
α1! . . . αk(n)!

k(n)(l + 1)lnl−1
)

=
l∏

j=1

(n+ j)−1(l + 1)lnl−1E
(
k(n)l+1

)
≤

(l + 1)lE
(
k(n)l+1

)
n

→ 0 as n→∞, (4.12)

where the last implication follows from Lemma 2.3. The proposition now follows from (4.9),
(4.10) and (4.12). 2

We now proceed to prove (4.1). Let {(X ′1, Y ′1), . . . , (X ′n+1, Y
′
n+1)} be the random vectors

used in the construction of the graph Tn+1. Here we assume that X ′1 < X ′2 < · · · < X ′n+1

is a permutation of n + 1 i.i.d. uniform random variables on [0, 1] and Y ′1 , Y
′

2 , . . . , Y
′
n+1 is an

independent sequence of n + 1 i.i.d. uniform random variables on [0, 1]. Let U and V be two
independent uniform random variables on [0, 1]. Consider the random variables

Ỹi =

{
Yi if i ≤ n
V if i = n+ 1.

(4.13)

Let M be the random variable defined by

{M(ω) = m} = {Xm(ω) < U(ω) < Xm+1(ω)}, m = 0, 1, 2, . . . , n

where X0 = 0 and Xn+1 = 1. Let

X̃i =


Xi if i ≤M
U if i = M + 1
Xi−1 if i ≥M + 2

(4.14)

Note that {(X ′1, Y ′1), . . . , (X ′n+1, Y
′
n+1)} and {(X̃1, Ỹ1), . . . , (X̃n+1, Ỹn+1)} are identically dis-

tributed. Thus if σ1, σ2, . . . , σk′(n+1) are the lower record times obtained from Y ′1 , Y
′

2 , . . . , Y
′
n+1,

then k′(n+1)∑
i=1

X ′σi ,

k′(n+1)∑
i=1

Y ′σi

 d=

k̃(n+1)∑
i=1

X̃Si ,

k̃′(n+1)∑
i=1

ỸSi

 (4.15)

where {S1, . . . , Sk̃(n+1)} are the record times obtained from Ỹ1, . . . , Ỹn+1 and where d= means
same in distribution.

Define a random variable t(U) as follows. Let t(U) = 0 if M = 0 and for M > 0 let t(U)
be such that XRt(U)

≤ XM and XRt(U)+1
> XM . In the following we use the usual convention

11



that
∑0

1 = 0. From (4.13) and (4.14) we have

k̃(n+1)∑
i=1

X̃Si =
t(U)∑
i=1

XRi + U1{Rt(U)+1=M+1} +XRt(U)+1−11{Rt(U)+1 6=M+1}

+
k(n)∑

i=t(U)+2

XRi−1 +Xn1{V <min{Y1,...,Yn}} (4.16)

and
k̃(n+1)∑
i=1

ỸSi =
k(n)∑
i=1

YRi + V 1{V <min{Y1,...,Yn}}. (4.17)

Theorem 4.2
∑k(n)

i=1 XRi converges weakly as n→∞.

Proof : From Propositions 2.1 and 4.1, it follows that for all n large enough and for every
integer l ≥ 1

E[
k(n)∑
i=1

XRi ]
l ≤ ll. (4.18)

Also, the reflection principle (3.5), (4.15) along with (4.17) yields

E[
k(n)∑
i=1

XRi ]
l = E[

k(n)∑
i=1

YRi ]
l ≤ E[

k′(n+1)∑
i=1

Y ′σi ]
l = E[

k′(n+1)∑
i=1

X ′σi ]
l

for every l ≥ 1. (4.18) now implies that for every l ≥ 1

µl := lim
n→∞

E[
k(n)∑
i=1

XRi ]
l exists and µl ≤ ll. (4.19)

Furthermore
∞∑
l=1

1
(µ2l)1/2l

≥
∞∑
l=1

1
2l

=∞. (4.20)

Theorem 4.1 now completes the proof of the theorem. 2

Now for every fixed n, consider

d(n) =
k(n)∑
i=1

(XRi + YRi), (4.21)

which is the sum of the Manhattan distance (L1 distance) of the vertices of Ln from the origin.
First we have

E[(
k(n+1)∑
i=1

X̃Si +
k(n+1)∑
i=1

ỸSi)
l]
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=
l∑

j=0

(
l

j

)
E


k(n+1)∑

i=1

X̃Si

jk(n+1)∑
i=1

ỸSi

l−j
 . (4.22)

From (4.16) and (4.17) we get

( k(n+1)∑
i=1

X̃Si

)j( k(n+1)∑
i=1

ỸSi
)l−j

=
( t(U)∑
i=1

XRi +
k(n)∑

i=t(U)+2

XRi−1 + U1{Rt(U)+1=M+1} +XRt(U)+1−11{Rt(U)+1 6=M+1}

+Xn1{V <min{Y1,...,Yn}}
)j( k(n)∑

i=1

YRi + V 1{V <min{Y1,...,Yn}}
)l−j

≥
( k(n)∑
i=1

XRi −
k(n)∑

i=t(U)+2

(XRi −XRi−1)− (XRt(U)+1
− U)1{Rt(U)+1=M+1}

− (XRt(U)+1
−XRt(U)+1−1)1{Rt(U)+1 6=M+1}

)j( k(n)∑
i=1

YRi
)l−j

≥
( k(n)∑
i=1

XRi − (k(n) + 1)(max{Xj+1 −Xj : j = 0, . . . , n})
)j( k(n)∑

i=1

YRi
)l−j

.

(4.23)

Let ∆n(X) = max{Xj+1 −Xj : j = 0, . . . , n}. Then we have

( k(n)∑
i=1

XRi − (k(n) + 1)(∆n(X))
)j( k(n)∑

i=1

YRi
)l−j − ( k(n)∑

i=1

XRi

)j( k(n)∑
i=1

YRi
)l−j)

=
j∑

k=1

(
j

k

)
(−1)k

( k(n)∑
i=1

XRi

)j−k((k(n) + 1)(∆n(X))
)k( k(n)∑

i=1

YRi
)l−j

≥ −
j∑

k odd, k=1

(
j

k

)( k(n)∑
i=1

XRi

)j−k((k(n) + 1)(∆n(X))
)k(k(n)∑

i=1

YRi)
l−j

≥ −
j∑

k odd, k=1

(
j

k

)
(k(n) + 1)l(∆n(X))

(4.24)

where the last inequality holds because XRi ≤ 1 and YRi ≤ 1 for every i and 0 ≤ Xj+1−Xj ≤ 1
for every j.
Moreover,

E(
k(n)∑
i=1

XRi)
j−m ((k(n) + 1)(∆n(X)))m (

k(n)∑
i=1

YRi)
l−j

≤ E(k(n))j−m ((k(n) + 1)(∆n(X)))m (k(n))l−j

≤ E(k(n) + 1)lE(∆n(X)),

(4.25)
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where the last equality follows from the independence of k(n) and the sequence {X1, . . . , Xn}
and the fact that (∆n(X))m ≤ ∆n(X). We are now ready to prove the following theorem.

Theorem 4.3 d(n) converges weakly as n→∞.

Proof : From (4.22)–(4.25) we get

E(d(n+ 1))l ≥
l∑

j=0

(
l

j

)[
E[
( k(n)∑
i=1

XRi

)j( k(n)∑
i=1

YRi
)l−j)]

−
j∑

k odd, k=1

(
j

k

)
E(k(n) + 1)lE(∆n(X))

]
≥ E(d(n))l − 22lE(k(n) + 1)lE(∆n(X)). (4.26)

To bound E(∆n(X)), observe that for maxj=0,...,n{Xj+1 − Xj} ≥ 4/
√
n to occur at least

one of the intervals {(j/
√
n, (j + 1)/

√
n] : j = 0, . . . , b

√
nc} must not contain any point from

{X1, . . . , Xn} – an event which occurs with probability at most (
√
n+ 1)

(
1− 1√

n

)n. Thus

E(∆n(X)) = E( max
j=0,...,n

{Xj+1 −Xj})

≤ 4√
n
P{ max

j=0,...,n
{Xj+1 −Xj} ≤ 4/

√
n}+ (

√
n+ 1)

(
1− 1√

n

)n
≤ 5√

n
for large n.

(4.27)

Combining (4.26), (4.27) and Lemma 2.3 we have, for every l ≥ 1

E(d(n+ 1))l ≥ E(d(n))l − c(n, l)

where c(n, l)→ 0 as n→∞. Also, from (4.18) and the reflection principle (3.5) we have for n
large enough,

‖d(n)‖l := [E(d(n))l]1/l ≤ ‖
k(n)∑
i=1

XRi‖l + ‖
k(n)∑
i=1

YRi‖l ≤ 2l, l ≥ 1.

Thus for every l ≥ 1, as n → ∞, E(d(n))l converges to µ̂l (say) with µ̂l ≤ 2lµl ≤ (2l)l. Now∑∞
l=1

1
(µ̂2l)1/2l ≥

∑∞
l=1

1
4l =∞ and Theorem 4.1 yields the desired weak convergence. 2

We now show that the Manhattan distance d(n) is a good approximation of the Euclidean
distance l(n). Let (Xc, Yc) (= (Xc(n), Yc(n))) be the vertex of Ln closest to the origin with
respect to the Euclidean distance, i.e.,

lc =
√
X2
c + Y 2

c = min
1≤i≤k(n)

√
X2
Ri

+ Y 2
Ri
. (4.28)

We first get a bound on the expected value of lc.
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Lemma 4.1 E[lc] ≤ Constant√
n

+ 1
n+1 .

Proof : Note that {lc > a} is the event that none of the n independent uniformly distributed
points lie in the ball with radius a and with the origin at (0, 0) (intersected with [0, 1]2). Thus

P (lc > a) =


(

1− πa2

4

)n
for 0 ≤ a ≤ 1[

1−
(√

a2 − 1 + a2

2 (π2 − 2 cos−1( 1
a))
)]n

for 1 ≤ a ≤
√

2

0 otherwise.

Also note that π
2 − 2 cos−1( 1

a) ≥ 0 for 1 ≤ a ≤
√

2. Thus

P (lc > a) ≤
[
1−

√
a2 − 1

]n
for 1 ≤ a ≤

√
2.

This implies that

E[lc] =

∞∫
0

P (lc > a)da

≤
1∫

0

(
1− πa2

4

)n
da+

√
2∫

1

[
1−

√
a2 − 1

]n
da

= I1 + I2 (respectively, say). (4.29)

Substituting a2 − 1 = u2 in I2 we get

I2 =

1∫
0

(1− u)n
u√

u2 + 1
du ≤

1∫
0

(1− u)ndu =
1

n+ 1
.

Similarly, in I1 substituting a = 2 cos θ/
√
π we get,

I1 =
2√
π

π/2∫
cos−1(

√
π/4)

(sin θ)2n+1dθ

≤ 2√
π

π/2∫
0

(sin θ)2n+1dθ

=
2√
π

22n(n!)2

(2n+ 1)!
.

For the last equality above see e.g. Gradshteyn and Ryzhik (1980), page 369. Using Stirling’s
approximation (see Feller [1978] pg. 52) we get, for every n ≥ 1,

22n+1(n!)2

√
π(2n+ 1)!

≤ (2π)22n+1n2n+1e−2n exp(1/(6n))
π
√

2(2n+ 1)2n+(3/2)e−2n−1 exp(1/(24n+ 13))

≤ en2n+1 exp(1/6)
(n+ 1/2)2n+(3/2)
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≤ Constant/
√
n.

The lemma now follows. 2

Theorem 4.4 |l(n)− d(n)| converges to zero in probability as n→∞.

Proof : Note that if (Xr, Yr) is a vertex of Ln, other than the origin, then Xr ≤ Xc if and only
if Yr ≥ Yc. The sets A := {(Xr, Yr) ∈ Ln\{0, 0} : Xr ≤ Xc} and B := {(Xr, Yr) ∈ Ln\{0, 0} :
Yr < Yc}, are disjoint and the vertex set of Ln may be written as A ∪ B ∪ {(0, 0)}. Also, for
(Xr, Yr) ∈ A,

Yr ≤
√
X2
r + Y 2

r ≤ Xr + Yr ≤ Xc + Yr.

Summing all records in A, we get∑
(Xr,Yr)∈A

Yr ≤ lA(n) ≤ dA(n) ≤ kA(n)Xc +
∑

(Xr,Yr)∈A

Yr (4.30)

where lA(n) and dA(n) are the respective Euclidean and Manhattan distances when the graph
is restricted to the set A and kA(n) = max{r : (Xr, Yr) ∈ Ln\{0, 0} : Xr ≤ Xc}. For the set
B, we may define lB(n), dB(n) similarly and kB(n) = k(n)− kA(n). We obtain∑

(Xr,Yr)∈B

Xr ≤ lB(n) ≤ dB(n) ≤
∑

(Xr,Yr)∈B

Xr + kB(n)Yc. (4.31)

Adding (4.30) and (4.31) we get∑
(Xr,Yr)∈A

Yr +
∑

(Xr,Yr)∈B

Xr ≤ l(n) ≤ d(n) ≤
∑

(Xr,Yr)∈A

Yr +
∑

(Xr,Yr)∈B

Xr + k(n)(Xc + Yc).

This implies
0 ≤ d(n)− l(n) ≤ k(n)(Xc + Yc).

Thus, for ε > 0,

P{d(n)− l(n) > ε} ≤ P{k(n)(Xc + Yc) > ε}

≤ 1
ε
E[k(n)(Xc + Yc)]

≤ 1
ε

√
E[k(n)2]E[(Xc + Yc)2]

≤ 2
ε

√
E[k(n)2]E[lc], (4.32)

where the last inequality follows because E(Xc+Yc)2 ≤ 2E(X2
c +Y 2

c ) ≤ 2E(Xc+Yc) ≤ 4E(lc).
Now using Lemma 2.3 and Lemma 4.1 we get,

P{d(n)− l(n) > ε} → 0 as n→∞.

2
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Proof of Theorem 1.2 : From Theorems 4.3 and 4.4 it follows that, as n→∞, l(n) converges
weakly and E(l(n)j)−E(d(n)j)→ 0 for every j ≥ 1. Thus we need to evaluate limn→∞E(d(n))
and limn→∞Var(d(n)) to complete the proof of the theorem. Now, from the reflection principle
(3.5), (2.3), Proposition 4.1 and (4.19) we have

E(d(n)) = E[(
k(n)∑
i=1

(XRi + YRi)]

= 2E(
k(n)∑
i=1

XRi)

→ 2µ1 = 2 as n→∞.

Similarly

E(d(n)2) = E[(
k(n)∑
i=1

(XRi + YRi))
2]

= E[(
k(n)∑
i=1

XRi)
2] + E[(

k(n)∑
i=1

YRi)
2] + 2E[(

k(n)∑
i=1

XRi)(
k(n)∑
i=1

YRi)].

It follows from the reflection principle (3.5), (2.4) and (4.19) that, as n→∞, E[(
∑k(n)

i=1 XRi)
2]+

E[(
∑k(n)

i=1 YRi)
2]→ 2µ2 = 3. Also observe that

E[(
k(n)∑
i=1

XRi)(
k(n)∑
i=1

YRi)] = E[(
n∑
i=1

Xiηi)(
n∑
j=1

Yjηj)]

=
n∑
i=1

n∑
j=1

E(XiηiYjηj)

=
n∑
i=1

n∑
j=1

E(Xi)E(ηiYjηj),

where the last equality follows from the independence properties discussed in Section 2.
Next, for 0 < y < 1

P (Yiηi > y) = P (min{Y1, . . . Yi−1} > Yi > y)

=
∫ 1

y
(
∫ 1

yi

dv)i−1dyi

=
∫ 1

y
(1− yi)i−1dyi,

so,

E(Yiηi) =
∫ 1

0
y(1− y)i−1dy

=
1
i
− 1
i+ 1

.
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Also, for i < j, since ηi and ηj are independent (see Lemma 2.2) and ηi, being dependent only
on Y1, . . . , Yi, is independent of Yj , we have

E(ηiYjηj) = E(ηi)E(Yjηj)

=
1
i
(
1
j
− 1
j + 1

).

While, for j < i, we see that, for 0 < y < 1,

P (ηiYjηj ≥ y) = P (min{Y1, . . . , Yj−1} > Yj > y and min{Yj , . . . , Yi−1} > Yi)

=
∫ 1

y
(
∫ yj

0
(
∫ 1

yj

dv)j−1(
∫ 1

yi

dv)i−1−jdyi)dyj

=
∫ 1

y
(i− j)−1[(1− yj)j−1 − (1− yj)i−1]dyj ,

so,

E(ηiYjηj) =
∫ 1

0
y(i− j)−1[(1− y)j−1 − (1− y)i−1]dy

=
1

i− j
(
1
i
− 1
j
− 1
i+ 1

+
1

j + 1
)

=
i+ j + 1

ij(i+ 1)(j + 1)
.

Combining the above we have

n∑
i=1

n∑
j=1

E(Xi)E(ηiYjηj) =
n∑
i=1

i−1∑
j=1

E(Xi)E(ηiYjηj) +
n∑
i=1

E(Xi)E(Yiηi)

+
n∑
i=1

n∑
j=i+1

E(Xi)E(ηiYjηj)

=
n∑
i=1

E(Xi)
i−1∑
j=1

i+ j + 1
ij(i+ 1)(j + 1)

+
n∑
i=1

E(Xi)(
1
i
− 1
i+ 1

)

+
n∑
i=1

E(Xi)
n∑

j=i+1

1
i
(
1
j
− 1
j + 1

).

Since E(Xi) = i
n+1 , we have

n∑
i=1

E(Xi)
i−1∑
j=1

i+ j + 1
ij(i+ 1)(j + 1)

=
n∑
i=1

1
n+ 1

i−1∑
j=1

(
1

j(j + 1)
+

1
(i+ 1)(j + 1)

)

=
1

n+ 1
[
n∑
i=1

(1− 1
i
) +

n∑
i=1

1
i+ 1

i−1∑
j=1

1
j + 1

]
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→ 1 as n→∞,

where we have used the fact that

0 ≤ 1
n+ 1

n∑
i=1

1
i+ 1

i−1∑
j=1

1
j + 1

≤ 1
n+ 1

n∑
i=1

1
i+ 1

n∑
j=1

1
j + 1

≤ (1 + log n)2

n+ 1
.

Also,

n∑
i=1

E(Xi)E(Yiηi) =
n∑
i=1

i

n+ 1
(
1
i
− 1
i+ 1

)

=
1

n+ 1

n∑
i=1

1
i+ 1

→ 0 as n→∞,

and,

n∑
i=1

E(Xi)
n∑

j=i+1

1
i
(
1
j
− 1
j + 1

) =
n∑
i=1

i

n+ 1

n∑
j=i+1

1
i
(
1
j
− 1
j + 1

)

=
1

n+ 1

n∑
i=1

n∑
j=i+1

(
1
j
− 1
j + 1

)

=
1

n+ 1

n∑
i=1

(
1

i+ 1
− 1
n+ 1

)

→ 0 as n→∞.

Thus we have

E[(
k(n)∑
i=1

XRi)(
k(n)∑
i=1

YRi)]→ 1 as n→∞.

This now yields Var(l(n))→ 1 and completes the proof of the theorem. 2

Proof of Theorem 1.3 : To prove Theorem 1.3 let (X ′f , Y
′
f ) and (Xf , Yf ) be the a.s. unique

points (not necessarily distinct) in Ln which are farthest from the origin in terms of Euclidean
distance and Manhattan distance respectively, i.e.,√

(X ′f )2 + (Y ′f )2 = max
{√

X2
Ri

+ Y 2
Ri

}
and Xf + Yf = max{XRi + YRi}.

Let
h(n) =

√
(X ′f )2 + (Y ′f )2.

It follows from Theorem 4.4 that, for ε > 0,

P (|h(n)− (Xf + Yf )| > ε) ≤ P (|d(n)− l(n)| > ε)

→ 0 as n→∞. (4.33)

19



Now note that, for ε > 0,

P
(
(Xf + Yf )−max{X1 + Y1, Xk(n) + Yk(n)} > ε

)
= P

(
(Xf + Yf )− (Xk(n) + Yk(n)) > ε,X1 + Y1 < Xk(n) + Yk(n)

)
+P

(
(Xf + Yf )− (X1 + Y1) > ε,X1 + Y1 > Xk(n) + Yk(n)

)
= E1 + E2 (say),

and

E1 = P
(
(Xf + Yf )− (Xk(n) + Yk(n)) > ε,X1 + Y1 < Xk(n) + Yk(n),

Xf ≤ Xc

)
+ P

(
(Xf + Yf )− (Xk(n) + Yk(n)) > ε,X1 + Y1 < Xk(n) + Yk(n),

Xf > Xc

)
= E11 + E12 (say),

where (Xc, Yc) is as defined in (4.28).
To evaluate E11, note that if (Xf + Yf )− (Xk(n) + Yk(n)) > ε then either Yf −Xk(n) > ε/2

or Xf − Yk(n) > ε/2. Along with the observation that Yf ≤ Y1 and Yk(n) ≤ Yc we get

E11 ≤ P
(
Yf −Xk(n) >

ε

2
, X1 + Y1 < Xk(n) + Yk(n), Xf ≤ Xc

)
+P

(
Xf − Yk(n) >

ε

2
, X1 + Y1 < Xk(n) + Yk(n), Xf ≤ Xc

)
≤ P

(
Y1 −Xk(n) >

ε

2
, X1 + Y1 < Xk(n) + Yk(n), Xf ≤ Xc

)
+P

(
Xc + Yc >

ε

2

)
≤ P

(
Yk(n) −X1 >

ε

2

)
+ P

(
Xc + Yc >

ε

2

)
≤ 2P

(
Xc + Yc >

ε

2

)
→ 0 as n→∞.

For E12 observe that Xf > Xc if and only if Yf < Yc and using calculations similar to that
above we have E12 and hence E1 tend to zero as n→∞.

Also, similar arguments show that E2 tends to zero as n→∞, which implies that

P
(
(Xf + Yf )−max{X1 + Y1, Xk(n) + Yk(n)} > ε

)
→ 0 (4.34)

as n→∞.
Now observe that, for any ε > 0,

P
(
max{X1 + Y1, Xk(n) + Yk(n)} −max{Y1, Xk(n)} > ε

)
→ 0 (4.35)

as n → ∞. Indeed this follows from the observation that X1 ≤ Xc and Yk(n) ≤ Yc and that
Lemma 4.1 implies that both Xc and Yc converge in probability to 0 as n→∞.

20



Recall that the sequences (X1, Y1), . . . , (Xn, Yn) arose as a permutation of the vectors
(ξ1, ζ1), . . . , (ξn, ζn) such that X1 = ξl where ξl = min{ξ1, . . . , ξn} and Yk(n) = ζm where
ζm = min{ζ1, . . . , ζn}. Thus (4.33), (4.34) and (4.35) along with the following lemma com-
pletes the proof of Theorem 1.3.

Lemma 4.2 For two independent sequences ξ1, ξ2, . . . and ζ1, ζ2, . . . of i.i.d. random variables,
each random variable being uniformly distributed on [0, 1], define µ(n) and ν(n) by

ξµ(n) = min{ξ1, . . . , ξn} and ζν(n) = min{ζ1, . . . , ζn}.

Then max{ξν(n), ζµ(n)} converges in distribution to max{U1, U2}, where U1 and U2 are i.i.d.
random variables, each distributed uniformly on [0, 1].

Proof : For α ∈ IR,

P
{

max{ξν(n), ζµ(n)} < α
}

=
n∑
l=1

n∑
m=1

P{ξm < α, ζl < α, µ(n) = l, ν(n) = m}

=
n∑
l=1

n∑
m=1

P{ξm < α, µ(n) = l}P{ζl < α, ν(n) = m}, (4.36)

by the independence of the two sequences of random variables.
Now, for 0 < α < 1 and l 6= m,

P{ξm < α, µ(n) = l}

= P{µ(n) = l} − P{ξm > α, ξl < ξj for all j = 1, . . . , l − 1, l + 1, . . . , n}

=
1
n
−
∫ 1

0
dyl

∫ 1

max{α,yl}
dym

∏
j 6=l,m

(∫ 1

yl

dyj

)

=
1
n
−
(

1− α
n− 1

− (1− α)n

n(n− 1)

)
.

Similarly, for 0 < α < 1

P{ζm < α, ν(n) = l} =
1
n
−
(

1− α
n− 1

− (1− α)n

n(n− 1)

)
for l 6= m.

For l = m and 0 < α < 1, similar calculations as above yield

P{ξl < α, µ(n) = l} =
1
n
− (1− α)n

n
.

Thus, for 0 < α < 1, from (4.36), we have

P
{

max{ξν(n), ζµ(n)} < α
}

=
n∑
l=1

n∑
l 6=m=1

1
n2

(
1− (

n(1− α)
n− 1

− (1− α)n

n− 1
)
)2

+
n∑
l=1

1
n2

(1− (1− α)n)2

→ α2 as n→∞.

This proves the lemma. 2
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5 Moments

We now present a calculation to obtain limn→∞E[
∑k(n)

i=1 XRi ]
l. Note that this limit may be

used instead of Propositions 2.1 and 4.1 to obtain Theorem 1.2.
Let a(n, l) := E[

∑k(n)
i=1 XRi ]

l. In the sequel we use the notation∑
lp=q

:=
∑

l1+···+lp=q

and
∑

1≤ip≤q
:=

∑
1≤i1<···<ip≤q

.

By (4.3) we have

a(n+ 1, l) =
n+1∑
k=1

∑
lk=l

∑
1≤ik≤n+1

l!
l1! · · · lk!

1
i1 . . . ik

(n+ 1)!
(n+ 1 + l)!

×
k∏
j=1

(ij − 1 +
∑j

s=1 ls)!

(ij − 1 +
∑j−1

s=1 ls)!

=
n+1∑
k=1

l∑
t=1

∑
lk−1=l−t

∑
1≤ik−1≤n

l!
l1! · · · lk−1!t!

1
i1 . . . ik−1(n+ 1)

× (n+ 1)!
(n+ 1 + l)!

k−1∏
j=1

(ij − 1 +
∑j

s=1 ls)!

(ij − 1 +
∑j−1

s=1 ls)!

(n+ l)!
(n+ l − t)!

+
n∑
k=1

∑
lk=l

∑
1≤ik≤n

l!
l1! · · · lk!

1
i1 . . . ik

(n+ 1)!
(n+ 1 + l)!

×
k∏
j=1

(ij − 1 +
∑j

s=1 ls)!

(ij − 1 +
∑j−1

s=1 ls)!

= T1 + T2 (say).

From (4.3) we see that

T2 =
n+ 1

n+ 1 + l
a(n, l).

We write the term T1 as

T1 =
l−1∑
t=1

l!
t!

1
n+ 1

(n+ 1)!
(n+ 1 + l)!

(n+ l)!
(n+ l − t)!

n∑
k=1

∑
lk=l−t

∑
1≤ik≤n

1
l1! · · · lk!

1
i1 . . . ik

×
k∏
j=1

(ij − 1 +
∑j

s=1 ls)!

(ij − 1 +
∑j−1

s=1 ls)!

+
1

n+ 1
(n+ 1)!

(n+ 1 + l)!
(n+ l)!
n!

= T11 +
1

n+ 1 + l
(say).

The term T11 may now be simplified as

T11 =
l−1∑
t=1

(
l

t

)
1

n+ 1 + l

n∑
k=1

∑
lk=l−t

∑
1≤ik≤n

(l − t)!
l1! · · · lk!

1
i1 . . . ik

n!
(n+ l − t)!

22



×
k∏
j=1

(ij − 1 +
∑j

s=1 ls)!

(ij − 1 +
∑j−1

s=1 ls)!

=
l−1∑
t=1

(
l

t

)
1

n+ 1 + l
a(n, l − t).

Combining the above and noting that a(n, 0) = 1 for all n, we have that

a(n+ 1, l) =
1

n+ 1 + l

[
(n+ 1)a(n, l) +

l∑
t=1

(
l

t

)
a(n, l − t)

]
,

from which, by a change of variables, we have

(n+ 1 + l)a(n+ 1, l) = (n+ 1)a(n, l) +
l−1∑
t=0

(
l

t

)
a(n, l − t). (5.1)

For l ≥ 0, define a sequence γl by

γ0 = 1, γ1 = 1 and, for l ≥ 2, γl =
1
l

l−1∑
t=0

γt

(
l

t

)
. (5.2)

Then a(n, l) = γl for all n, is a solution of equation (5.1) with a(n, 0) = 1.
Now let b(n, l) be a general solution of (5.1). Then we claim b(n, l) − γl tends to zero as

n→∞. If b(n, l) is a solution of (5.1), then d(n, l) = b(n, l)−γl is also a solution of (5.1), with
d(n, 0) = 0. We show, by induction, that d(n, l) tends to zero as n→∞.

Indeed, for l = 1,

(n+ 2)d(n+ 1, 1) = (n+ 1)d(n, 1) +
l−1∑
t=0

(
l

t

)
d(n, 0)

= (n+ 1)d(n, 1).

Hence (n + 1)d(n, 1) is a constant function and hence d(n, 1) tends to 0 as n → ∞. In
fact, d(n, 1) = O(n−1) as n → ∞. More generally assume d(n, r) = O(n−1) as n → ∞, for
r = 0, 1, 2, . . . , l − 1.

From (5.1),

(n+ l + 1)d(n+ 1, l)− (n+ 1)d(n, l) =
l−1∑
t=0

(
l

t

)
d(n, l − t)

= O(n−1) as n→∞.

Now the left side above is not telescopic, however multiplying by (n+ 2) · · · (n+ l), we have

(n+ l + 1)!
(n+ 1)!

d(n+ 1, l)− (n+ l)!
n!

d(n, l) = O(nl−2) as n→∞.

Summing both sides for n = 1, · · · , N − 1,

(N + l + 1)!
(N + 1)!

d(N + 1, l)− l!d(1, l) = O(N l−2) as N →∞.
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Hence, as N → ∞, (N+l+1)!
(N+1)! d(N, l) = O(N l−2), i.e., d(N, l) = O(N−1). This proves the

claim and establishes

lim
n→∞

E[
k(n)∑
i=1

XRi ]
l = γl,

where γl is as given in (5.2).
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