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Abstract
We investigate the rate of convergence of the distribution of the maximum likelihood esti-

mator (MLE) of an unknown parameter in the drift coefficient of a stochastic process described
by a linear stochastic differential equation driven by a fractional Brownian Motion (fBM). As a
special case, we obtain the rate of convergence for the case of the fractional Ornstein-Uhlenbeck
type process studied recently by Kleptsyna and Le Breton (2002).
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1 Introduction

Statistical inference for diffusion type processes satisfying stochastic differential equations
driven by Wiener processes have been studied earlier and a comprehensive survey of vari-
ous methods is given in Prakasa Rao (1999a). There has been a recent interest to study similar
problems for stochastic processes driven by a fractional Brownian motion. Le Breton (1998)
studied parameter estimation and filtering in a simple linear model driven by a fractional
Brownian motion. In a recent paper, Kleptsyna and Le Breton (2002) studied parameter esti-
mation problems for fractional Ornstein-Uhlenbeck type process. This is a fractional analogue
of the Ornstein-Uhlenbeck process, that is, a continuous time first order autoregressive process
X = {Xt, t ≥ 0} which is the solution of a one-dimensional homogeneous linear stochastic
differential equation driven by a fractional Brownian motion (fBm) WH = {WH

t , t ≥ 0} with
Hurst parameter H ∈ [1/2, 1). Such a process is the unique Gaussian process satisfying the
linear integral equation

Xt = θ

∫ t

0
Xsds+ σWH

t , t ≥ 0.(1. 1)

They investigate the problem of estimation of the parameters θ and σ2 based on the observation
{Xs, 0 ≤ s ≤ T} and prove that the maximum likelihood estimator θ̂T is strongly consistent
as T → ∞. In a recent paper (cf. Prakasa Rao (2003)), We studied more general classes
of stochastic processes satisfying linear stochastic differential equations driven by a fractional
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Brownian motion and investigated the asymptotic properties of the maximum likelihood and
the Bayes estimators for parameters involved in such processes. We now discuss rates of
convergence of the distribution of the maximum likelihood estimator for such processes.

2 Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions and the processes dis-
cussed in the following are (Ft)-adapted. Further the natural fitration of a process is understood
as the P -completion of the filtration generated by this process. Let WH = {WH

t , t ≥ 0} be a
normalized fractional Brownian motion with Hurst parameter H ∈ (0, 1), that is, a Gaussian
process with continuous sample paths such that WH

0 = 0, E(WH
t ) = 0 and

E(WH
s WH

t ) =
1
2
[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.(2. 1)

Let us consider a stochastic process Y = {Yt, t ≥ 0} defined by the stochastic integral equation

Yt =
∫ t

0
C(s)ds+

∫ t

0
B(s)dWH

s , t ≥ 0(2. 2)

where C = {C(t), t ≥ 0} is an (Ft)-adapted process and B(t) is a nonvanishing nonrandom
function. For convenience we write the above integral equation in the form of a stochastic
differential equation

dYt = C(t)dt+B(t)dWH
t , t ≥ 0;Y0 = 0(2. 3)

driven by the fractional Brownian motion WH . The integral∫ t

0
B(s)dWH

s(2. 4)

is not a stochastic integral in the Ito sense but one can define the integral of a deterministic
function with respect to the fBM in a natural sense (cf. Norros et al. (1999), Alos et al.
(2001)). Even though the process Y is not a semimartingale, one can associate a semimartingale
Z = {Zt, t ≥ 0} which is called a fundamental semimartingale such that the natural filtration
(Zt) of the process Z coincides with the natural filtration (Yt) of the process Y (Kleptsyna et
al. (2000)). Define, for 0 < s < t,

kH = 2HΓ (
3
2
−H)Γ(H +

1
2
),(2. 5)

kH(t, s) = k−1
H s

1
2
−H(t− s)

1
2
−H ,(2. 6)

λH =
2H Γ(3− 2H)Γ(H + 1

2)
Γ(3

2 −H)
,(2. 7)

wH
t = λ−1

H t2−2H ,(2. 8)

and
MH

t =
∫ t

0
kH(t, s)dWH

s , t ≥ 0.(2. 9)
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The process MH is a Gaussian martingale, called the fundamental martingale (cf. Norros et
al. (1999)) and its quadratic variation < MH

t >= wH
t . Further more the natural filtration of

the martingale MH coincides with the natural fitration of the fBM WH . In fact the stochastic
integral ∫ t

0
B(s)dWH

s(2. 10)

can be represented in terms of the stochastic integral with respect to the martingale MH . For
a measurable function f on [0, T ], let

Kf
H(t, s) = −2H

d

ds

∫ t

s
f(r)rH− 1

2 (r − s)H− 1
2dr, 0 ≤ s ≤ t(2. 11)

when the derivative exists in the sense of absolute continuity with respect to the Lebesgue
measure(see Samko et al. (1993) for sufficient conditions). The following result is due to
Kleptsyna et al. (2000).

Therorem 2.1: Let MH be the fundamental martingale associated with the fBM WH defined
by (2.9). Then ∫ t

0
f(s)dWH

s =
∫ t

0
Kf

H(t, s)dMH
s , t ∈ [0, T ](2. 12)

a.s [P ] whenever both sides are well defined.

Suppose the sample paths of the process {C(t)
B(t) , t ≥ 0} are smooth enough (see Samko et al.

(1993)) so that

QH(t) =
d

dwH
t

∫ t

0
kH(t, s)

C(s)
B(s)

ds, t ∈ [0, T ](2. 13)

is well-defined where wH and kH are as defined in (2.8) and (2.6) respectively and the derivative
is understood in the sense of absoulute continuity. The following theorem due to Kleptsyna et
al. (2000) associates a fundamental semimartingale Z associated with the process Y such that
the natural filtration (Zt) of Z coincides with the natural filtration (Yt) of Y.

Theorem 2.2: Suppose the sample paths of the process QH defined by (2.13) belong P -a.s to
L2([0, T ], dwH) where wH is as defined by (2.8). Let the process Z = (Zt, t ∈ [0, T ]) be defined
by

Zt =
∫ t

0
kH(t, s)B−1(s)dYs(2. 14)

where the function kH(t, s) is as defined in (2.6). Then the following results hold:
(i) The process Z is an (Ft) -semimartingale with the decomposition

Zt =
∫ t

0
QH(s)dwH

s +MH
t(2. 15)

where MH is the fundamental martingale defined by (2.9), (ii) the process Y admits the
representation

Yt =
∫ t

0
KB

H(t, s)dZs(2. 16)
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where the function KB
H is as defined in (2.11), and (iii) the natural fitrations (Zt) and (Yt)

coincide.

Kleptsyna et al. (2000) derived the following Girsanov-type formula as a consequence of
the Theorem 2.2.

Theorem 2.3: Suppose the assumptions of Theorem 2.2 hold. Define

ΛH(T ) = exp{−
∫ T

0
QH(t)dMH

t − 1
2

∫ t

0
Q2

H(t)dwH
t }.(2. 17)

Suppose that E(ΛH(T )) = 1. Then the measure P ∗ = ΛH(T )P is a probability measure and
the probability measure of the process Y under P ∗ is the same as that of the process V defined
by

Vt =
∫ t

0
B(s)dWH

s , 0 ≤ t ≤ T(2. 18)

under the probability measure P.

3 Maximum likelihood estimation

Let us consider the stochastic differential equation

dX(t) = [a(t,X(t)) + θ b(t,X(t))]dt+ σ(t)dWH
t , t ≥ 0(3. 1)

where θ ∈ Θ ⊂ R,W = {WH
t , t ≥ 0} is a fractional Brownian motion with known Hurst

parameter H ∈ (0, 1) and σ(t) is a positive nonvanishing function on [0,∞). In other words
X = {Xt, t ≥ 0} is a stochastic process satisfying the stochastic integral equation

X(t) = X(0) +
∫ t

0
[a(s,X(s)) + θ b(s,X(s))]ds+

∫ t

0
σ(s)dWH

s , t ≥ 0.(3. 2)

Let
C(θ, t) = a(t,X(t)) + θ b(t,X(t)), t ≥ 0(3. 3)

and assume that the sample paths of the process {C(θ,t)
σ(t) , t ≥ 0} are smooth enough so that the

the process

QH,θ(t) =
d

dwH
t

∫ t

0
kH(t, s)

C(θ, s)
σ(s)

ds, t ≥ 0(3. 4)

is well-defined where wH
t and kH(t, s) are as defined in (2.8) and (2.6) respectively. Suppose

the sample paths of the process {QH,θ, 0 ≤ t ≤ T} belong almost surely to L2([0, T ], dwH
t ).

Define
Zt =

∫ t

0

kH(t, s)
σ(s)

dXs, t ≥ 0.(3. 5)

Then the process Z = {Zt, t ≥ 0} is an (Ft)-semimartingale with the decomposition

Zt =
∫ t

0
QH,θ(s)dwH

s +MH
t(3. 6)
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where MH is the fundamental martingale defined by (2.9) and the process X admits the
representation

Xt =
∫ t

0
Kσ

H(t, s)dZs(3. 7)

where the function Kσ
H is as defined by (2.11). Let P T

θ be the measure induced by the process
{Xt, 0 ≤ t ≤ T} when θ is the true parameter. Following Theorem 2.3, we get that the
Radon-Nikodym derivative of P T

θ with respect to P T
0 is given by

dP T
θ

dP T
0

= exp[
∫ T

0
QH,θ(s)dZs −

1
2

∫ T

0
Q2

H,θ(s)dw
H
s ].(3. 8)

We now consider the problem of maximum likelihood estimation of the parameter θ based
on the observation of the process X = {Xt, 0 ≤ t ≤ T} and study the rate of convergence of
the distribution of a suitably normalized maximum likelihood estimator as T →∞.

Let LT (θ) denote the Radon-Nikodym derivative dP T
θ

dP T
0
. The maximum likelihood estimator

(MLE) is defined by the relation

LT (θ̂T ) = sup
θ∈Θ

LT (θ).(3. 9)

We assume that there exists a measurable maximum likelihood estimator. Sufficient conditions
can be given for the existence of such an estimator (cf. Lemma 3.1.2, Prakasa Rao (1987)).
Note that

QH,θ(t) =
d

dwH
t

∫ t

0
kH(t, s)

C(θ, s)
σ(s)

ds(3. 10)

=
d

dwH
t

∫ t

0
kH(t, s)

a(s,X(s))
σ(s)

ds+ θ
d

dwH
t

∫ t

0
kH(t, s)

b(s,X(s))
σ(s)

ds

= J1(t) + θJ2(t).(say)

Then
logLT (θ) =

∫ T

0
(J1(t) + θJ2(t))dZt −

1
2

∫ T

0
(J1(t) + θJ2(t))2dwH

t(3. 11)

and the likelihood equation is given by∫ T

0
J2(t)dZt −

∫ T

0
(J1(t) + θJ2(t))J2(t)dwH

t = 0.(3. 12)

Hence the MLE θ̂T of θ is given by

θ̂T =
∫ T
0 J2(t)dZt −

∫ T
0 J1(t)J2(t)dwH

t∫ T
0 J2

2 (t)dwH
t

.(3. 13)

Let θ0 be the true parameter. Using the fact that

dZt = (J1(t) + θ0J2(t))dwH
t + dMH

t(3. 14)

5



when θ0 is the true parameter, it can be shown that

dP T
θ

dP T
θ0

= exp[(θ − θ0)
∫ T

0
J2(t)dMH

t − 1
2
(θ − θ0)2

∫ T

0
J2

2 (t)dwH
t ].(3. 15)

Following this representation of the Radon-Nikodym derivative, we obtain that

θ̂T − θ0 =
∫ T
0 J2(t)dMH

t∫ T
0 J2

2 (t)dwH
t

.(3. 16)

Note that the quadratic variation < Z > of the process Z is the same as the quadratic variation
< MH > of the martingale MH which in turn is equal to wH . This follows from the relations
(2.15) and (2.9). Hence we obtain that

[wH
T ]−1 lim

n
Σ[Z

t
(n)
i+1

− Z
t
(n)
i

]2 = 1 a.s [Pθ0 ]

where (t(n)
i ) is a partition of the interval [0, T ] such that supi |t

(n)
i+1 − t

(n)
i | tends to zero as

n → ∞. If the function σ(t) is an unknown constant σ, the above property can be used to
obtain a strongly consistent estimator of σ2 based on the continuous observation of the process
X over the interval [0, T ]. Here after we assume that the nonrandom function σ(t) is known.

The following results on the strong consistency and the asympotic distribution of the MLE
θ̂T as T →∞ were proved in Prakasa Rao (2003).

Strong consistency: Theorem 3.1: The maximum likelihood estimator θ̂T is strongly con-
sistent, that is,

θ̂T → θ0 a.s [Pθ0 ] as T →∞(3. 17)

provided ∫ T

0
J2

2 (t)dwH
t →∞ a.s [Pθ0 ] as T →∞.(3. 18)

Limiting distribution: Let

Rt =
∫ t

0
J2(s)dMH

s , t ≥ 0.(3. 19)

Note that {Rt, t ≥ 0} is a square integrable local continuous martingale.
We now discuss the limiting distribution of the MLE θ̂T as T →∞.

Theorem 3.2: Assume that the functions b(t, s) and σ(t) are such that the process {Rt, t ≥ 0}
is a local continuous martingale and that there exists a norming function It, t ≥ 0 such that

I2
T < RT >= I2

T

∫ T

0
J2

2 (t)dwH
t → η2 in probability as T →∞(3. 20)

where IT → 0 as T →∞ and η is a random variable such that P (η > 0) = 1. Then

(ITRT , I
2
T < RT >) → (ηZ, η2) in law as T →∞(3. 21)
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where the random variable Z has the standard normal distribution and the random variables
Z and η are independent.

Observe that
I−1
T (θ̂T − θ0) =

ITRT

I2
T < RT >

(3. 22)

Applying the Theorem 3.2, we obtain the following result.

Theorem 3.3: Suppose the conditions stated in the Theorem 3.2 hold. Then

I−1
T (θ̂T − θ0) →

Z

η
in law as t→∞(3. 23)

where the random variable Z has the standard normal distribution and the random variables
Z and η are independent.

Remarks: If the random variable η is a constant with probability one, then the limiting distri-
bution of the maximum likelihood estimator is normal with mean 0 and variance η−2. Otherwise
it is a mixture of the normal distributions with mean zero and variance η−2 with the mixing
distribution as that of η.

4 Berry -Esseen type bound

Hereafter we assume that the random variable η in (3.20) is a positive constant with probability
one. Hence

I−1
T (θ̂T − θ0) → N(0, η−2) in law as t→∞(4. 1)

where N(0, η−2) denotes the Gaussian distribution with mean zero and variance η−2.

We will now study the rate of convergence of the asymptotic distribution of the maximum
likelihood estimator in (4.1). Suppose there exist nonrandom positive functions αT decreasing
to zero and εT decreasing to zero such that

α−1
T ε2(T ) →∞ as T →∞,(4. 2)

and
sup
θ∈Θ

P T
θ [|αT < RT > −1| ≥ εT ] = O(ε1/2

T )(4. 3)

where the process {Rt, t ≥ 0} is as defined in (3.19). Note that the process {Rt, t ≥ 0} is
a locally square integrable continuous martingale. From the results on the representation of
locally square integrable continuous martingales (cf. Ikeda and Watanabe (1981), Chapter II,
Thoerem 7.2), it follows that there exists a standard Wiener process {W̃ (t), t ≥ 0} adapted to
(Ft) such that Rt = W̃ (< Rt >), t ≥ 0. In particular

RTα
1/2
T = W̃ (< RT > αT ) a.s. [P ](4. 4)

for all T ≥ 0.
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We use the following lemmas in the sequel. Lemma 4.1: Let (Ω,F , P ) be a probability
space and f and g be F-measurable functions. Then, for any ε > 0,

sup
x
|P (ω :

f(ω)
g(ω)

≤ x)− Φ(x)|(4. 5)

≤ sup
y
|P (ω : f(ω) ≤ y)− Φ(x)|+ P (ω : |g(ω)− 1| > ε) + ε

where Φ(x) is the distribution function of the standard Gaussian distribution. Proof: See
Michel and Pfanzagl (1971).

Lemma 4.2: Let {W (t), t ≥ 0} be a standard Wiener process and V be a nonegative random
variable. Then, for every x ∈ R and ε > 0,

|P (W (V ) ≤ x)− Φ(x)| ≤ (2ε)1/2 + P (|V − 1| > ε).(4. 6)

Proof: See Hall and Heyde (1980), p.85.

Let us fix θ ∈ Θ. It is clear from the earlier remarks that

RT =< RT > (θ̂T − θ)(4. 7)

under P T
θ measure. Then it follows, from the Lemmas 4.1 and 4.2, that

P T
θ [α−1/2

T (θ̂T − θ) ≤ x]− Φ(x)|(4. 8)

= |P T
θ [

RT

< RT >
α
−1/2
T ≤ x]− Φ(x)|

= |P T
θ [

RT /α
−1/2
T

< RT > /α−1
T

≤ x]− Φ(x)|

≤ sup
x
|P T

θ [RTα
1/2
T ≤ x]− Φ(x)|

+P T
θ [|αT < RT > −1| ≥ εT ] + εT

= sup
y
|P (W̃ (< RT > αT ) ≤ y)− Φ(y)|+ P T

θ [|αT < RT > −1| ≥ εT ] + εT

≤ (2εT )1/2 + 2P T
θ [|αT < RT > −1| ≥ εT ] + εT .

It is clear that the bound obtained above is of the order O(ε1/2
T ) under the condition (4.3) and

it is uniform in θ ∈ Θ. Hence we have the following result.

Theorem 4.3: Under the conditions (4.2) and (4.3),

sup
θ∈Θ

sup
x∈R

|P T
θ [α−1/2

T (θ̂T − θ) ≤ x]− Φ(x)|(4. 9)

≤ (2εT )1/2 + 2P T
θ [|αT < RT > −1| ≥ εT ] + εT = O(ε1/2

T ).

As a consequence of this result, we have the following theorem giving the rate of convergence
of the MLE θ̂T .
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Theorem 4.4: Suppose the conditions (4.2) and (4.3) hold. Then there exists a constant c > 0
such that for every d > 0,

sup
θ∈Θ

P T
θ [|θ̂T − θ| ≥ d] ≤ cε

1/2
T + 2P T

θ [|αT < RT > −1| ≥ εT ] = O(ε1/2
T ).(4. 10)

Proof: Observe that

sup
θ∈Θ

P T
θ [|θ̂T − θ| ≥ d](4. 11)

≤ sup
θ∈Θ

|P T
θ [α−1/2

T (θ̂T − θ) ≥ dα
−1/2
T ]− 2(1− Φ(dα−1/2

T ))|

+2(1− Φ(dα−1/2
T ))

≤ (2εT )1/2 + 2 sup
θ∈Θ

P T
θ [|αT < RT > −1| ≥ εT ] + εT

+2d−1/2α
1/2
T (2π)−1/2 exp[−1

2
α−1

T d2]

by Theorem 4.3 and the inequality

1− Φ(x) <
1

x
√

2π
exp[−1

2
x2](4. 12)

for all x > 0 (cf. Feller (1968), p.175). Since

α−1
T ε2(T ) →∞ as T →∞,

by the condition (4.2), it follows that

sup
θ∈Θ

P T
θ [|θ̂T − θ| ≥ d] ≤ cε

1/2
T + 2 sup

θ∈Θ
P T

θ [|αT < RT > −1| ≥ εT ](4. 13)

for some constant c > 0 and the last term is of the order O(ε1/2
T ) by the condition (4.3). This

proves Theorem 4.4.

5 fractional Ornstein-Uhlenbeck type process

Following the notation introduced by Kleptsyna and Le Breton (2002), we now discuss the
rate of convergence for the maximum likelihood estimator for fractional Ornstein-Uhlenbeck
type process studied by them. Consider a stochastic process X = {Xt, t ≥ 0} satisfying the
stochastic integral equation

Xt = θ

∫ t

0
Xsds+WH

t , t ≥ 0(5. 1)

where θ ∈ Θ ⊂ R is a drift parameter and {WH
t , t ≥ 0 is the fractional Brownian Motion with

known Hurst coefficient H. We now assume that H ∈ [12 , 1). The equation (5.1) can be written
formally in the form of a stochastic differential equation

dXt = θXtdt+ dWH
t , X0 = 0, t ≥ 0.(5. 2)
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Suppose the process X is observed over the interval [0, T ]. Let XT = {Xt, 0 ≤ t ≤ T}.
For kH and wH defined earlier by (2.5) and (2.8), the sample paths of the process are smooth
enough so that the process Q is well-defined by the integral

Q(t) =
d

dwH
t

∫ t

0
kH(t, s)X(s)ds, t ≥ 0(5. 3)

where the derivative is understood in the sense of absolute continuity with respect to the
measure generated by wH . Further more the sample paths of the process {Q(t), 0 ≤ t ≤ T}
belong P -a.s to L2([0, T ], dwH). For H ∈ (1

2 , 1), define

KH(t, s) = H(2H − 1)
∫ t

s
rH− 1

2 (r − s)H− 3
2dr, 0 ≤ s ≤ t(5. 4)

and we define K1/2 ≡ 1. Let

MH
t =

∫ t

0
kH(t, s)dWH

s , t ≥ 0(5. 5)

and
Zt =

∫ t

0
kH(t, s)dXs, t ≥ 0.(19)(5. 6)

The following result is due to Kleptsyna and Le Breton (2002).

Theorem 5.1: Let the process Z be defined by the relation (5.6). Then (i) The process Z is
an (Ft) -semimartingale with the decomposition

Zt = θ

∫ t

0
Q(s)dwH

s +MH
t(5. 7)

where MH is the Gaussian martingale defined by (5.5),and (ii) the process X admits the
representation

Xt =
∫ t

0
KH(t, s)dZs(5. 8)

where the function KB
H is as defined in (5.4) and the natural filtrations (Zt) and (Xt) of Z and

X respectively coincide.

Let P T
θ be the probability measure induced by the process XT when θ is the true parameter.

Let P T
0 be the probability measure induced by the fBM. Then it follows, from the Girasnov

type formula given in Kleptsyna et al.(2000), that

dP T
θ

dP T
0

= exp[θ
∫ T

0
Q(t)dZt −

1
2
θ2

∫ T

0
Q2(t)dwH

t ].(5. 9)

Hence the maximum likelihood estimator θ̂T based on the observation of the process X on
[0, T ] is given by

θ̂T =
∫ T
0 Q(t)dZt∫ T

0 Q2(t)dwH
t

.(5. 10)
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If θ is the true parameter, then

θ̂T − θ =
∫ T
0 Q(t)dMH

t∫ T
0 Q2(t)dwH

t

.(5. 11)

Note that the quadratic variation process < M > of the martingale M and the quadratic
variation of the semimartingale Z are both equal to wH almost surely. Kleptsyna and Le
Breton (2002) obtained expressions for the bias and the mean square error of the estimator θ̂T

in terms of the function

ψH
T (θ; a) = Eθ[exp(−a

∫ T

0
Q2(s)dwH

s )], a > 0.(5. 12)

where Eθ denotes the expectation when θ is the true parameter. They have obtained a closed
form expression for this function involving modified Bessel functions of the first kind (cf. Watson
(1995)) and analyzed the asymptotic behaviour as T → ∞ for different values of θ. It follows
that

Eθ(
∫ T

0
Q2(s)dwH

s ) = − lim
a→0+

dψH
T (θ; a)
da

(5. 13)

from (5.12). Let

LH
T (θ; ρ) = Eθ[exp(−ρ

∫ T

0
Q(s)dZs)], ρ > 0.(5. 14)

Kleptsyna and Le Breton (2002) have also obtained explicit expression for the function LH
T (θ; ρ)

again in terms of the modified Bessel functions of the first kind and one can show that

Eθ(
∫ T

0
Q(s)dZs) = − lim

ρ→0+

dLH
T (θ; ρ)
dρ

.(5. 15)

It seems to be difficult to obtain an explicit functional form for the expectations defined in
(5.13) and (5.15). Suppose there exists functions αT decreasing to zero as T → ∞ and εT

decreasing to zero as T →∞ such that

sup
θ∈Θ

P T
θ [|αT

∫ T

0
Q2(t)dwH

t − 1| ≥ εT ] = O(ε1/2
T ).(5. 16)

Then it follows that

sup
θ∈Θ

sup
x
|P T

θ [|α−1/2
T (θ̂T − θ] ≤ x]− Φ(x)| = O((ε1/2

T ).(5. 17)

and
sup
θ∈Θ

sup
d
P T

θ [|α−1/2
T (θ̂T − θ] ≥ d] = O((ε1/2

T )(5. 18)

from the Theorems 4.3 and 4.4. Remarks: One can approach the above problem by com-
puting the joint characteristic function of the vector

(
∫ T

0
Q(s)dZs,

∫ T

0
Q2(s)dwH

s )

explicitly by using the results in Kleptsyna and Le Breton (2002) and then following the
technique in Bose (1986) using the Esseen’s lemma. However this approach does not seem
to be helpful in view of the complex nature of the above characteristic function involving the
modified Bessel functions of first kind.
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