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1 Introduction

Stochastic models for modeling long-range dependence has been the subject of investigation re-
cently and it is interesting to study whether the theory developed for continuous time stochastic
systems driven by a Brownian motion has an analogue for the systems driven by a fractional
Brownian motion. Statistical inference for diffusion type processes satisfying stochastic dif-
ferential equations driven by Wiener processes have been studied earlier and a comprehensive
survey of various methods is given in Prakasa Rao (1999a). Inference for a general class of semi-
martingales is reviewed in Prakasa Rao (1999b). Since a fBm is not a semimartingale, there has
been a recent interest to study similar problems for stochastic systems driven by a fractional
Brownian motion. Le Breton (1998) studied parameter estimation and filtering in a simple
linear model driven by a fractional Brownian motion. In a recent paper, Kleptsyna and Le
Breton (2002) studied parameter estimation problems for fractional Ornstein-Uhlenbeck pro-
cess. This is a fractional analogue of the Ornstein-Uhlenbeck process, that is, a continuous time
first order autoregressive process X = {Xt, t ≥ 0} which is the solution of a one-dimensional
homogeneous linear stochastic differential equation driven by a fractional Brownian motion
(fBm) WH = {WH

t , t ≥ 0} with Hurst parameter H ∈ [1/2, 1). Such a process is the unique
Gaussian process satisfying the linear integral equation

Xt = θ

∫ t

0
Xsds+ σWH

t , t ≥ 0.(1. 1)
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They investigate the problem of estimation of the parameters θ and σ2 based on the observation
{Xs, 0 ≤ s ≤ T} and prove that the maximum likelihood estimator θ̂T is strongly consistent
as T → ∞. Maximum likelihood estimation for a more general class of stochastic differential
equations driven by a fBm were studied recently in Prakasa Rao (2003a,b). Sequential esti-
mation of the drift for fractional Ornstein-Uhlenbeck type process was investigated in Prakasa
Rao (2003c). We now discuss the problem of nonparametric estimation or identification of
the ”drift” function θ(t) for a class of stochastic processes satisfying a stochastic differential
equation

dXt = θ(t)Xtdt+ dWH
t , X0 = τ, t ≥ 0(1. 2)

where τ is a gaussian random variable and {WH
t } is a fBm . We use the method of sieves

and study the asymptotic properties of the estimator. Identification of nonstationary diffusion
models by the method of sieves is studied in Nguyen and Pham (1982).

2 Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions and the processes dis-
cussed in the following are (FT )-adapted. Further the natural fitration of a process is under-
stood as the P -completion of the filtration generated by this process. Let WH = {WH

t , t ≥ 0}
be a normalized fractional Brownian motion with Hurst parameter H ∈ (0, 1), that is, a Gaus-
sian process with continuous sample paths such that WH

0 = 0, E(WH
t ) = 0 and

E(WH
s W

H
t ) =

1
2
[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.(2. 1)

Let us consider a stochastic process Y = {Yt, t ≥ 0} defined by the stochastic integral equation

Yt =
∫ t

0
C(s)ds+

∫ t

0
B(s)dWH

s , t ≥ 0(2. 2)

where C = {C(t), t ≥ 0} is an (Ft)-adapted process and B(t) is a nonvanishing nonrandom
function. For convenience we write the above integral equation in the form of a stochastic
differential equation

dYt = C(t)dt+B(t)dWH
t , t ≥ 0(2. 3)

driven by the fractional Brownian motion WH . The integral∫ t

0
B(s)dWH

s(2. 4)

is not a stochastic integral in the Ito sense but one can define the integral of a deterministic
function with respect to the fBM in a natural sense(cf. Norros et al. (1999)). Even though the
process Y is not a semimartingale, one can associate a semimartingale Z = {Zt, t ≥ 0} which
is called a fundamental semimartingale such that the natural filtration (Zt) of the process Z
coincides with the natural filtration (Yt) of the process Y (Kleptsyna et al. (2000)). Define,
for 0 < s < t,

kH = 2HΓ (
3
2
−H)Γ(H +

1
2
),(2. 5)
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kH(t, s) = k−1
H s

1
2
−H(t− s)

1
2
−H ,(2. 6)

λH =
2H Γ(3− 2H)Γ(H + 1

2)
Γ(3

2 −H)
,(2. 7)

wHt = λ−1
H t2−2H ,(2. 8)

and
MH
t =

∫ t

0
kH(t, s)dWH

s , t ≥ 0.(2. 9)

The process MH is a Gaussian martingale, called the fundamental martingale (cf. Norros et
al. (1999)), and its quadratic variance < MH

t >= wHt . Further more the natural filtration of
the martingale MH coincides with the natural fitration of the fBm WH . In fact the stochastic
integral ∫ t

0
B(s)dWH

s(2. 10)

can be represented in terms of the stochastic integral with respect to the martingale MH . For
a measurable function f on [0, T ], let

Kf
H(t, s) = −2H

d

ds

∫ t

s
f(r)rH−

1
2 (r − s)H−

1
2dr, 0 ≤ s ≤ t(2. 11)

where the derivative exists in the sense of absolute continuity with respect to the Lebesgue
measure(see Samko et al. (1993) for sufficient conditions). The following result is due to
Kleptsyna et al. (2000).

Therorem 2.1: Let MH be the fundamental martingale associated with the fBm WH defined
by (2.9). Then ∫ t

0
f(s)dWH

s =
∫ t

0
Kf
H(t, s)dMH

s , t ∈ [0, T ](2. 12)

a.s [P ] whenever both sides are well defined.

Suppose the sample paths of the process {C(t)
B(t) , t ≥ 0} are smooth enough (see Samko et al.

(1993)) so that

QH(t) =
d

dwHt

∫ t

0
kH(t, s)

C(s)
B(s)

ds, t ∈ [0, T ](2. 13)

is welldefined where wH and kH are as defined in (2.8) and (2.6) respectively and the derivative
is understood in the sense of absoulute continuity. The following theorem due to Kleptsyna et
al. (2000) associates a fundamental semimartingale Z associated with the process Y such that
the natural filtration (Zt) coincides with the natural filtration (Yt) of Y.

Theorem 2.2: Suppose the sample paths of the process QH defined by (2.13) belong P -a.s to
L2([0, T ], dwH) where wH is as defined by (2.8). Let the process Z = (Zt, t ∈ [0, T ]) be defined
by

Zt =
∫ t

0
kH(t, s)B−1(s)dYs(2. 14)
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where the function kH(t, s) is as defined in (2.6). Then the following results hold: (i) The
process Z is an (Ft) -semimartingale with the decomposition

Zt =
∫ t

0
QH(s)dwHs +MH

t(2. 15)

where MH is the fundamental martingale defined by (2.9), (ii) the process Y admits the
representation

Yt =
∫ t

0
KB
H(t, s)dZs(2. 16)

where the function KB
H is as defined in (2.11), and (iii) the natural fitrations of (Zt) and (Yt)

coincide.

Kleptsyna et al. (2000) derived the following Girsanov type formula as a consequence of
the Theorem 2.2.

Theorem 2.3: Suppose the assumptions of Theorem 2.2 hold. Define

ΛH(T ) = exp{−
∫ T

0
QH(t)dMH

t − 1
2

∫ t

0
Q2
H(t)dwHt }.(2. 17)

Suppose that E(ΛH(T )) = 1. Then the measure P ∗ = ΛH(T )P is a probability measure and
the probability measure of the process Y under P ∗ is the same as that of the process V defined
by

Vt =
∫ t

0
B(s)dWH

s , 0 ≤ t ≤ T.(2. 18)

.

3 Estimation by the method of sieves

Let us consider the linear stochastic system

dX(t) = θ(t)X(t)dt+ dWH
t , X(0) = τ, 0 ≤ t ≤ T(3. 1)

where θ(t) ∈ L2([0, T ], dt), W = {WH
t , t ≥ 0} is a fractional Brownian motion with Hurst

parameterH and τ is a gaussian random variable indeopendent of the fBm W. In other words
X = {Xt, t ≥ 0} is a stochastic process satisfying the stochastic integral equation

X(t) = τ +
∫ t

0
θ(s)X(s)ds+WH

t , 0 ≤ t ≤ T.(3. 2)

Let
Cθ(t) = θ(t) X(t), 0 ≤ t ≤ T(3. 3)

and assume that the sample paths of the process {Cθ(t), 0 ≤ t ≤ T} are smooth enough so that
the process

QH,θ(t) =
d

dwHt

∫ t

0
kH(t, s)Cθ(s)ds, 0 ≤ t ≤ T(3. 4)
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is welldefined where wHt and kH(t, s) are as defined in (2.8) and (2.6) respectively. Suppose
the sample paths of the process {QH(t), 0 ≤ t ≤ T} belong almost surely to L2([0, T ], dwHt ).
Define

Zt =
∫ t

0
kH(t, s)dXs, 0 ≤ t ≤ T.(3. 5)

Then the process Z = {Zt, 0 ≤ t ≤ T} is an (Ft)-semimartingale with the decomposition

Zt =
∫ t

0
QH,θ(s)dwHs +MH

t(3. 6)

where MH is the fundamental martingale defined by (2.9) and the process X admits the
representation

Xt = X0 +
∫ t

0
KH(t, s)dZs(3. 7)

where the function KH is as defined by (2.11) with f ≡ 1.. Let P Tθ be the measure induced by
the process {Xt, 0 ≤ t ≤ T} when θ(.) is the true ”drift” function. Following Theorem 2.3, we
get that the Radon-Nikodym derivative of P Tθ with respect to P T0 is given by

dP Tθ
dP T0

= exp[
∫ T

0
QH,θ(s)dZs −

1
2

∫ T

0
Q2
H,θ(s)dw

H
s ].(3. 8)

Suppose the process X is observable on [0, T ] and Xi, 1 ≤ i ≤ n is a random sample of n
independent observations of the process X on [0, T ]. Following the representation of the Radon-
Nikodym derivative of P Tθ with respect to P T0 given above, it follows that the log-likelihood
function corresponding to the observations {Xi, 1 ≤ i ≤ n} is given by

Ln(X1, . . . , Xn; θ) ≡ Ln(θ)(3. 9)

=
n∑
i=1

(
∫ T

0
Q

(i)
H,θ(s)dZi(s)−

1
2

∫ T

0
[Q(i)

H,θ]
2(s)dwHs ).

where the process Q(i)
H,θ is as defined by the relation (3.4) for the process Xi. For convenience in

notation, we write Qi,θ(s) hereafter for Q(i)
H,θ(s). Let {Vn, n ≥ 1} be an increasing sequence of

subspaces of finite dimensions {dn} such that ∪n≥1Vn is dense in L2([0, T ], dt). The method of
sieves consists in maximizing Ln(θ) on the subspace Vn. Let {ei} be a set of linearly independent
vectors in L2([0, T ], dt) such that the set of vectors {e1, . . . , edn} is a basis for the subspace Vn
for every n ≥ 1. For θ ∈ Vn, θ(.) =

∑dn
j=1 θjej(.), we have

Qi,θ(t) =
d

dwHt

∫ t

0
kH(t, s)θ(s)Xi(s)ds(3. 10)

=
d

dwHt

∫ t

0
kH(t, s)[

dn∑
j=1

θjej(s)]Xi(s)ds

=
dn∑
j=1

θj
d

dwHt

∫ t

0
kH(t, s)ej(s)Xi(s)ds

=
dn∑
j=1

θjΓi,j(t) (say).
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Furthermore ∫ T

0
Qi,θ(t)dZi(t) =

∫ T

0
[
dn∑
j=1

θjΓi,j(t)]dZi(t)(3. 11)

=
dn∑
j=1

θj

∫ T

0
Γi,j(t)dZi(t)

=
dn∑
j=1

θjRi,j (say)

and ∫ T

0
Q2
i,θ(t)dw

H
t =

∫ T

0
[
dn∑
j=1

θjΓi,j(t)]2dwHt(3. 12)

=
dn∑
j=1

dn∑
k=1

θjθk

∫ T

0
Γi,j(t)Γi,k(t)dwHt

=
dn∑
j=1

dn∑
k=1

θjθk < Ri,j , Ri,k >

where < ., . > denotes the quadratic covariation. Therefore the log-likelihood function corre-
sponding to the observations {Xi, 1 ≤ i ≤ n} is given by

Ln(θ) =
n∑
i=1

(
∫ T

0
Qi,θ(t)dZi(t)−

1
2

∫ T

0
Q2
i,θ(t)dw

H
t )(3. 13)

=
n∑
i=1

[
dn∑
j=1

θjRi,j −
1
2

dn∑
j=1

dn∑
k=1

θjθk < Ri,j , Ri,k >]

= n[
dn∑
j=1

θjB
(n)
j − 1

2

dn∑
j=1

dn∑
k=1

θjθkA
(n)
j,k ]

where

B
(n)
j = n−1

n∑
i=1

Ri,j , 1 ≤ j ≤ dn(3. 14)

and

A
(n)
j,k = n−1

n∑
i=1

< Ri,j , Ri,k >, 1 ≤ j, k ≤ dn.(3. 15)

Let θ(n), B(n) and A(n) be the vectors and the matrix with elements θj , j = 1, . . . , dn, B
(n)
j , j =

1, . . . , dn and A
(n)
j,k , j, k = 1, . . . , dn as defined above. Then the log-likelihood function can be

written in the form
Ln(θ) = n[B(n)θ(n) − 1

2
θ(n)′A(n)θ(n)].(3. 16)

Here α′ denotes the transpose of the vector α. The restricted maximum likelihood estimator
θ̂(n)(.) of θ(.) is given by

θ̂(n)(.) =
dn∑
j=1

θ̂
(n)
j ej(.)(3. 17)

6



where
θ̂(n) = (θ̂(n)

1 , . . . , θ̂
(n)
dn

)(3. 18)

is the solution of the equation
A(n)θ̂(n) = B(n).(3. 19)

Assuming that A(n) is invertible, we get that

θ̂(n) = (A(n))−1B(n).(3. 20)

We now construct an orthonormal basis for Vn with respect to a suitable inner product so that
the matrix A(n) is transformed into an identity matrix as n→∞. Note that

A
(n)
j,k →

∫ T

0
E[(

d

dwHt

∫ t

0
kH(t, s)ej(s)X(s)ds)(

d

dwHt

∫ t

0
kH(t, s)ek(s)X(s)ds)]dwHt(3. 21)

almost surely as n → ∞ by the strong law of large numbers. We now consider a sequence
ψj , j ≥ 1 such that ψj , 1 ≤ j ≤ dn is an orthonormal basis of Vn in the sense of the inner
product

(3. 22)

< h, g >=
∫ T

0
E[(

d

dwHt

∫ t

0
kH(t, s)h(s)X(s)ds)(

d

dwHt

∫ t

0
kH(t, s)g(s)X(s)ds)]dwHt .

Let η̂(n)
1 , η̂

(n)
2 , . . . , η̂

(n)
dn

be the coordinates of θ̂(n)(.) in the new basis ψj , 1 ≤ j ≤ dn. Then the
vector

η̂(n) = (η̂(n)
1 , η̂

(n)
2 , . . . , η̂

(n)
dn

)(3. 23)

is the solution of the equation
a(n)η̂(n) = b(n)(3. 24)

where a(n) and b(n) are the matrix and the vector with general elements

(3. 25)

a
(n)
j,k = n−1

n∑
i=1

∫ T

0
(
d

dwHt
[
∫ t

0
kH(t, s)ψj(s)Xi(s)ds]

d

dwHt
[
∫ t

0
kH(t, s)ψk(s)Xi(s)ds)])dwHt ,

and

b
(n)
j = n−1

n∑
i=1

∫ T

0

d

dwHt
[
∫ t

0
kH(t, s)ψj(s)Xi(s)ds]dZi(t).(3. 26)

Let θ(n)(.) =
∑dn
k=1 ηiψi(.) be the orthogonal projection of θ(.) onto Vn in the sense of the

innerproduct < ., . > defined above. Observe that

b
(n)
j −

dn∑
k=1

a
(n)
j,k ηk(3. 27)

= n−1
n∑
i=1

∫ T

0
Qi,ψj

(t)dZi(t)−
dn∑
k=1

a
(n)
j,k ηk
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= n−1
n∑
i=1

∫ T

0
Qi,ψj

(t)[Qi,θ(t)dwHt + dMH
t ]

−
dn∑
k=1

a
(n)
j,k ηk

= n−1
n∑
i=1

∫ T

0
Qi,ψj

(t)Qi,θ(t)dwHt + n−1
n∑
i=1

∫ T

0
Qi,ψj

(t)dMH
t

−
dn∑
k=1

a
(n)
j,k ηk

= n−1
n∑
i=1

∫ T

0
Qi,ψj

(t)(
∞∑
r=1

ηrQi,ψr(t))dw
H
t

+n−1
n∑
i=1

∫ T

0
Qi,ψj

(t)dMH
t

−
dn∑
k=1

a
(n)
j,k ηk

= n−1
n∑
i=1

∫ T

0
Qi,ψj

(t)(
dn∑
r=1

ηrQi,ψr(t) +
∞∑

r=dn

ηrQi,ψr(t))dw
H
t

+n−1
n∑
i=1

∫ T

0
Qi,ψj

(t)dMH
t

−n−1
dn∑
k=1

ηk

∫ T

0
Qi,ψj

(t)Qi,ψk
(t)dwHt

= n−1
n∑
i=1

∫ T

0
Qi,ψj

(t)Qi,θ−θ(n)(t)dwHt

+n−1
n∑
i=1

∫ T

0
Qi,ψj

(t)dMH
t

= n−1
n∑
i=1

∫ T

0
[Qi,ψj

(t)Qi,θ−θ(n)(t)− E(Qi,ψj
(t)Qi,θ−θ(n)(t))]dwHt

+n−1
n∑
i=1

∫ T

0
Qi,ψj

(t)dMH
t

since
< θ − θ(n), ψj >= 0(3. 28)

for 1 ≤ j ≤ dn by the orthogonality of the basis {ψk, k ≥ 1} and the fact that

< θ − θ(n), ψj >= E[
∫ T

0
Qi,ψj

(t)Qi,θ−θ(n)(t)dwHt ].(3. 29)

Hence
a(n)(η̂(n) − η(n)) = c(n)(3. 30)
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where η(n) and c(n) are vectors with components ηj , 1 ≤ j ≤ dn and

c
(n)
j = n−1

n∑
i=1

∫ T

0
[Qi,ψj

(t)Qi,θ−θ(n)(t)−E(Qi,ψj
(t)Qi,θ−θ(n)(t))]dwHt +n−1

n∑
i=1

∫ T

0
Qi,ψj

(t)dMH
t .

(3. 31)
Let δjk = 0 if j 6= k and δjk = 1 if j = k. In view of the orthonormality of the basis {ψj , j ≥ 1},
it follows that

a
(n)
j,k − δj,k = n−1

n∑
i=1

∫ T

0
(Qi,ψj

(t)Qi,ψk
(t)− E[Qi,ψj

(t)Qi,ψk
(t)])dwHt(3. 32)

= n−1ζijk (say)

and

c
(n)
j = n−1

n∑
i=1

∫ T

0
[Qi,ψj

(t)Qi,θ−θ(n)(t)− E(Qi,ψj
(t)Qi,θ−θ(n)(t))]dwHt(3. 33)

+n−1
n∑
i=1

∫ T

0
Qi,ψj

(t)dMH
t

= n−1
n∑
i=1

ζ
(n)
ij + n−1

n∑
i=1

ζ̃ij (say).

Note that E[a(n)
j,k ] = δjk and E(ζijk) = 0. Hence

E[a(n)
j,k − δjk]2 = V ar(a(n)

j,k )(3. 34)

= n−1V ar(ζ1jk) (since Xi, 1 ≤ i ≤ n are i.i.d.)

= n−1E(ζ2
1jk)

= n−1E[
∫ T

0
(Qi,ψj

(t)Qi,ψk
(t)− E[Qi,ψj

(t)Qi,ψk
(t)])dwHt ]2

≤ n−1E[
∫ T

0
(Qi,ψj

(t)Qi,ψk
(t)− E[Qi,ψj

(t)Qi,ψk
(t)])2dwHt wHT ]

(by the Cauchy-Schwarz inequality)

= n−1(
∫ T

0
E[Qi,ψj

(t)Qi,ψk
(t)− E[Qi,ψj

(t)Qi,ψk
(t)]2]dwHt ) wHT

≤ n−1wHT

∫ T

0
E[Qi,ψj

(t)Qi,ψk
(t)]2dwHt .

Note that the process {QH,θ(t), t ≥ 0} defined by the equation (3.4) is a gaussian process and
the fundamental martingale MH is a gaussian martingale. This follows from the remarks made
in the equation (19) in Kleptsyna et al. (2000) and the representation given in the equation (15)
of Kleptsyna et al.(2000). We now prove a Lemma to get an upper bound for the expression
on the right side of the equation (3.34).

Lemma 3.1: Let fi, i = 1, 2 be gaussian random variables. Then

E[f2
1 f

2
2 ] ≤ 32E(f2

1 )E(f2
2 ).(3. 35)
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Proof: Observe that
(E[f2

1 f
2
2 ])2 ≤ E(f4

1 )E(f4
2 )(3. 36)

by the Cauchy-Schwartz inequality. But

E(f4
i ) ≤ 8[E|fi − Efi|4 + |Efi|4](3. 37)

(by the Cr-inequality)

≤ 8[E(fi − Efi)4 + (E|fi|)4]

≤ 8[3(V ar(fi))2 + (E|fi|)4]

(since fi is Gaussian)

≤ 8[3(Ef2
i )

2 + ((Ef2
i )

1/2)4]

= (32)(E(f2
i ))

2.

Hence

(E[f2
1 f

2
2 ])2 ≤ E(f4

1 )E(f4
2 )(3. 38)

≤ (32)2(E(f2
1 ))2(E(f2

2 ))2

which proves that
E[f2

1 f
2
2 ]) ≤ (32)E(f2

1 )E(f2
2 ).(3. 39)

Aplying the Lemma 3.1 on the right side of equation (3.34), we get that

E[a(n)
j,k − δjk]2 ≤ n−1wHT

∫ T

0
E[Qi,ψj

(t)Qi,ψk
(t)]2dwHt(3. 40)

≤ (32)n−1wHT

∫ T

0
E[Qi,ψj

(t)2]E[Qi,ψk
(t)]2]dwHt

= (32)n−1wHT sup
0≤t≤T

E[Qi,ψj
(t)2]

∫ T

0
E[Qi,ψk

(t)]2dwHt

= (32)n−1wHT sup
0≤t≤T

E[Qi,ψj
(t)2]

since
∫ T
0 E(Qi,ψk

(t))2dwHt = 1 by the choice of the orthonormal basis ψj , j ≥ 1.

Observe that E(ζ̃ij) = 0 and E(ζ(n)
ij ) = 0. Furthermore

E(ζ̃2
ij) = E[

∫ T

0
Qi,ψj

(t)dMH
t ]2(3. 41)

=
∫ T

0
E[Q2

i,ψj
(t)]dwHt

= 1

and it follows by the arguments given earlier and Lemma 3.1 that

E((ζ(n)
ij )2) ≤ (32)wHT sup

0≤t≤T
E[Qi,ψj

(t)2]||θ − θ(n)||2.(3. 42)

10



We shall now estimate E(c(n)
j )2. Note that E(c(n)

j ) = 0. Hence

E(c(n)
j )2 = V ar(c(n)

j )(3. 43)

= n−1V ar(ζ(n)
1j + ζ̃1j)

≤ n−1E(ζ(n)
1j + ζ̃1j)2

≤ 2n−1[E(ζ(n)
1j )2 + E(ζ̃1j)2]

≤ 2n−1[1 + (32)wHT sup
0≤t≤T

E[Q1,ψj
(t)2]||θ − θ(n)||2]

Lemma 3.2: Let ||M || = sup{||Mx||, ||x|| ≤ 1} be the operator norm of a matrix M. Then
||M ||2 ≤

∑
M2
jk and

||M−1|| ≤ (1 + [
∑
j,k

(Mjk − δjk)2]−1/2)−1(3. 44)

provided that ∑
j,k

(Mjk − δjk)2 < 1.

Proof: See Lemma 3 of Nguyen and Pham (1982).

We now have the following result.

Theorem 3.3: Suppose Vn is an increasing sequence of subspaces of L2([0, T ], dt) of dimension
dn such that dn →∞ and d2nγn

n → 0 as n→∞ where

γn = sup
0≤t≤T

sup
f∈Vn

E[
d

dwHt

∫ t

0
kH(t, s)f(s)X(s)ds]2.(3. 45)

Then
||η̂(n) − η(n)|| → 0(3. 46)

in probability as n→∞.

Proof:Observe that
η̂(n) − η(n) = a(n)−1

c(n)(3. 47)

from equation (3.30). Applying Lemma 3.2, we get that

||η̂(n) − η(n)|| ≤ [1− {
dn∑
j=1

dn∑
k=1

(a(n)
j,k − δjk)2}1/2]−1||c(n)||.(3. 48)

Applying the estimates obtained in (3.42) and (3.43), we get that there exists a constant CT,H
depending only on T and H such that

E{
dn∑
j=1

dn∑
k=1

(a(n)
j,k − δjk)2} ≤ CT,Hn

−1d2
nγn(3. 49)

11



and the last term tends to zero as n→∞. Similarly

E||c(n)||2 ≤ CT,H [n−1dn + n−1dnγn||θ − θ(n)||2](3. 50)

the last term tends to zero as n→∞. Hence

||η̂(n) − η(n)|| → 0(3. 51)

in probability as n→∞.

As a consequence of the above theorem, we obtain the following corollary from the definition
of the inner product defined in (3.22).

Corollary 3.4: Under the conditions stated in Theorem 3.3,

lim
n→∞

d

dwHt

∫ t

0
kH(t, s)(θ̂(n)(s)− θ(n)(s))X(s)ds = 0(3. 52)

in probability.

Proof: Observe that

||θ̂(n) − θ(n)||2 =
∫ T

0
E[

d

dwHt

∫ t

0
kH(t, s)(θ̂(n)(s)− θ(n)(s))X(s)ds]2dwHt .(3. 53)

which can also be written in the form
dn∑
j=1

|η̂(n)
j − ηj |2 +

∞∑
j=dn+1

η2
j .

The first term in the above sum tends to zero by Theorem 3.3. Since the set ∪n≥1Vn is dense
in L2([0, T ], dt), it is also dense in the metric generated by the norm corresponding to the inner
product < .,> .

Lemma 3.5: Let λ(n) = (λ(n)
1 , λ

(n)
2 , . . . , λ

(n)
dn

) be such that

dn∑
j=1

(λ(n)
j )2 → λ2 as n→∞.(3. 54)

Then the random variable
√
n

∑dn
j=1 λ

(n)
j c

(n)
j is asymptotically normal with mean zero and

variance λ2.

Proof: In view of (3.33), it follows that

√
n
dn∑
j=1

λ
(n)
j c

(n)
j = n−1/2

n∑
i=1

[
dn∑
j=1

λ
(n)
j ζ

(n)
ij +

dn∑
j=1

λ
(n)
j ζ̃ij ].(3. 55)

As in the derivation of the inequality (3.33), it can be checked that

E[
n∑
i=1

[
dn∑
j=1

λ
(n)
j ζ

(n)
ij ]2 ≤ (32)wHT γn

dn∑
j=1

(λ(n)
j ]2||θ − θ(n)||2.(3. 56)
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Note that E(ζ(n)
ij ) = 0 and

E(
√
n
dn∑
j=1

λ
(n)
j c

(n)
j )2(3. 57)

= V ar(
√
n
dn∑
j=1

λ
(n)
j c

(n)
j )

= n−1
n∑
i=1

V ar[
dn∑
j=1

λ
(n)
j ζ

(n)
ij ]

= n−1V ar[
dn∑
j=1

λ
(n)
j ζ

(n)
1j ] (since Xi, 1 ≤ i ≤ n are i.i.d.)

= n−1E[[
dn∑
j=1

λ
(n)
j ζ

(n)
1j ]2

≤ n−1(32)wHT γn
dn∑
j=1

(λ(n)
j )2||θ − θ(n)||2.

The last term tends to zero since γn

n ≤ γnd2n
n → 0, ||θ − θ(n)|| → 0 and

dn∑
j=1

(λ(n)
j )2 → λ2

as n→∞. Hence
n∑
i=1

[
dn∑
j=1

λ
(n)
j ζ

(n)
ij ]2 = op(1).(3. 58)

Furthermore

V ar(
dn∑
j=1

λ
(n)
j ζ̃ij) =

dn∑
j=1

(λ(n)
j )2(3. 59)

by (3.41) and the last term tends to λ2 as n → ∞. We now obtain the asymptotic normality
from central limit theorems for triangular arrays.

As a consequence of the above lemma, the following theorem can be proved.

Theorem 3.6: Let λ(n) be as in the Lemma 3.5. Suppose that the conditions stated in the
Theorem 3.3 hold. In addition suppose that d3nγ

2
n

n → 0 as n→∞. Then

√
n
dn∑
j=1

λ
(n)
j (η̂(n)

i − ηi)(3. 60)

is asymptotically normal with mean zero and variance λ2.

Proof:Observe that
a(n)(η̂(n) − η(n)) = c(n)(3. 61)
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and hence
η̂(n) − η(n) = (a(n))−1c(n)(3. 62)

or equivalently
η̂(n) − η(n) − c(n) = (a(n))−1(I − a(n))c(n).(3. 63)

Denoting the operator norm and the Euclidean norm by the same symbol ||.||, we get that

|λ(n)′(η̂(n) − η(n) − c(n))| ≤ ||λ(n)|| ||a(n))−1|| ||a(n) − I|| ||c(n)||.(3. 64)

Relations (3.48) and (3.49) prove that

E||a(n) − I||2 ≤ E{
dn∑
j=1

dn∑
k=1

(a(n)
j,k − δjk)2}(3. 65)

≤ CT,Hn
−1d2

nγn

and
nE||c(n)||2 ≤ CT,H [dn + dnγn||θ − θ(n)||2].(3. 66)

Therefore

(E[||
√
n||a(n) − I||||c(n)||])2 ≤ nE||c(n)||2E||a(n) − I||2(3. 67)

≤ CT ([dn + dnγn||θ − θ(n)||2])(n−1d2
nγn)

and the last term tends to zero provided d3nγ
2
n

n → 0 as n→∞. Therefore

||
√
n||a(n) − I||||c(n)|| → 0(3. 68)

in probability as n→∞. We have observed earlier that

||a(n)|| → 1(3. 69)

in probability as n→∞. Hence

√
nλ(n)′(η̂(n) − η(n) − c(n)) → 0(3. 70)

in probabilty as n→∞. but
√
nλ(n)′c(n)

is asymptotically normal with mean zero and variance λ2 by the Lemma 3.5. This proves the
result.

As an application of the previous theorem, we get the following result.

Corollary 3.7: Let h(.) be a function such that ||h|| < ∞ in the sense of the inner product
defined by (3.22). Suppose that the conditions stated in Theorem 3.5 hold. Then

√
n < h, θ̂(n) − θ(n) >(3. 71)
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is asymptotically normal with mean zero and variance < h, h > .

Proof: Suppose that h(t) =
∑∞
j=1 hjψj(t). Note that

θ̂(n) − θ(n) =
dn∑
j=1

(η̂(n)
j − ηj)ψj(3. 72)

and hence

< h, θ̂(n) − θ(n) =
dn∑
j=1

hj(η̂
(n)
j − ηj).(3. 73)

Since
dn∑
j=1

h2
j →< h, h >= ||h||2(3. 74)

by the Parseval’s theorem, the result follows from Theorem 3.5.

Remarks: If in addition to the conditions stated in Corollary 3.7, we have

√
n(h, θ(n) − θ(n) >→ 0 as n→∞,(3. 75)

then
√
n < h, θ̂(n) − θ >(3. 76)

is asymptotically normal with mean zero and variance < h, h > .
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