isid/ms/2003/23 August 14, 2003 http://www.isid.ac.in/~statmath/eprints

Clarkson Inequalities With Several Operators

Rajendra Bhatia Fuad Kittaneh

Indian Statistical Institute, Delhi Centre 7, SJSS Marg, New Delhi–110016, India

Clarkson Inequalities With Several Operators

Rajendra Bhatia Fuad Kittaneh

August 14, 2003

Abstract : We prove several inequalities for trace norms of sums of n operators with roots of unity coefficients. When n = 2 these reduce to the classical Clarkson inequalities and their non-commutative analogues.

1 Introduction

The classical inequalities of Clarkson [9] for the Lebesgue spaces L_p , and their non-commutative analogues for the Schatten trace ideals C_p play an important role in analysis, operator theory, and mathematical physics. They have been generalised in various directions. Among these are versions for more general symmetric norms [4] and for the Haagerup L_p -spaces [10], as well as refinements [2]. In this paper we obtain extensions of these (and related) inequalities in another direction, replacing pairs of operators by *n*-tuples. Let *A* be a linear operator on a complex separable Hilbert space. If *A* is compact, we denote by $\{s_j(A)\}$ the sequence of decreasingly ordered singular values of *A*. For 0 , let

$$||A||_{p} = \left[\sum (s_{j}(A))^{p}\right]^{1/p}.$$
(1)

For $1 \le p < \infty$, this defines a norm on the class C_p consisting of operators A for which $||A||_p$ is finite. This is called the Schatten *p*-norm. By convention $||A||_{\infty} = s_1(A)$ is the operator bound norm of A. These *p*-norms belong to a larger class of symmetric or unitarily invariant norms. Such a norm |||.||| is characterized by the equality

$$|||A||| = |||UAV|||, (2)$$

for all A and unitary U, V. When we use the symbol $||A||_p$ or |||A||| it is implicit that the operator A belongs to the class of operators on which this norm is defined. See [3] for properties of these norms. For $1 \le p \le \infty$, we denote by q the conjugate index defined by the relation 1/p+1/q = 1. The symbol |A| stands for the positive operator $(A^*A)^{1/2}$. We prove the following four theorems.

In each of the statements $A_0, A_1, \ldots, A_{n-1}$ are linear operators and $\omega_0, \omega_1, \ldots, \omega_{n-1}$ are the *n* roots of unity with $\omega_j = e^{2\pi i j/n}, 0 \le j \le n-1$.

Theorem 1 For $2 \le p \le \infty$, we have

$$n^{\frac{2}{p}} \sum_{j=0}^{n-1} \|A_j\|_p^2 \le \sum_{k=0}^{n-1} \|\sum_{j=0}^{n-1} \omega_j^k A_j\|_p^2 \le n^{2-2/p} \sum_{j=0}^{n-1} \|A_j\|_p^2.$$
(3)

For 0 these two inequalities are reversed.

Theorem 2 For $2 \le p < \infty$, we have

$$n\sum_{j=0}^{n-1} \|A_j\|_p^p \le \sum_{k=0}^{n-1} \|\sum_{j=0}^{n-1} \omega_j^k A_j\|_p^p \le n^{p-1} \sum_{j=0}^{n-1} \|A_j\|_p^p.$$
(4)

For 0 , these two inequalities are reversed.

Theorem 3 For $2 \le p < \infty$, we have

$$n|||\sum_{j=0}^{n-1}|A_j|^p||| \le |||\sum_{k=0}^{n-1}|\sum_{j=0}^{n-1}\omega_j^k A_j|^p||| \le n^{p-1}|||\sum_{j=0}^{n-1}|A_j|^p|||,$$
(5)

for every unitarily invariant norm |||.|||. For 0 , these two inequalities are reversed.

Theorem 4 For $2 \le p < \infty$, we have

$$n\left(\sum_{j=0}^{n-1} \|A_j\|_p^p\right)^{q/p} \le \sum_{k=0}^{n-1} \|\sum_{j=0}^{n-1} \omega_j^k A_j\|_p^q.$$
 (6)

For 1 , this inequality is reversed.

When n = 2, Theorem 1 gives for any pair A, B the inequalities

$$2^{2/p} \left(\|A\|_p^2 + \|B\|_p^2 \right) \le \|A + B\|_p^2 + \|A - B\|_p^2 \le 2^{2-2/p} \left(\|A\|_p^2 + \|B\|_p^2 \right), \tag{7}$$

for $2 \le p \le \infty$, and the reverse inequalities for 0 . Theorem 2 gives

$$2\left(\|A\|_{p}^{p}+\|B\|_{p}^{p}\right) \leq \|A+B\|_{p}^{p}+\|A-B\|_{p}^{p} \leq 2^{p-1}\left(\|A\|_{p}^{p}+\|B\|_{p}^{p}\right),\tag{8}$$

for $2 \le p < \infty$, and the reverse inequalities for 0 . For <math>p = 2, (7) and (8) both reduce to the *parallelogram law*

$$||A + B||_2^2 + ||A - B||_2^2 = 2\left(||A||_2^2 + ||B||_2^2\right).$$
(9)

The special norm $||.||_2$ arises from an inner product $\langle A, B \rangle = \operatorname{tr} A^* B$ and must satisfy this law. The generalisation given in Theorem 1 can be obtained easily in this case. The inequalities (8) are one half of the celebrated Clarkson inequalities. A recent generalisation due to Hirzallah and Kittaneh [11] says

$$2|||||A|^{p} + |B|^{p}||| \le |||||A + B|^{p} + |A - B|^{p}||| \le 2^{p-1}|||||A|^{p} + |B|^{p}|||,$$
(10)

for $2 \le p < \infty$; and the two inequalities are reversed for 0 . The inequalities (8) followfrom these by choosing for <math>|||.||| the special norm $||.||_1$. Theorem 3 includes the inequalities (10) as a special case. When n = 2, (6) reduces to the inequality

$$2\left(\|A\|_{p}^{p}+\|B\|_{p}^{p}\right)^{q/p} \le \|A+B\|_{p}^{q}+\|A-B\|_{p}^{q},\tag{11}$$

for $2 \le p < \infty$, and the reverse inequality for 1 . These are the other half of the Clarksoninequalities. They are much harder to prove, and are stronger, than the inequalities (8). Asimple proof and a generalisation of the inequalities (8) were given by Bhatia and Holbrook in[4]. Some of their ideas were developed further in our paper [5]. In Section 2 we give a proof ofTheorems 1 and 2 using these results. In Section 3 we discuss some extensions of these resultsas in [4]. In section 4, we outline a proof of Theorem 3 and of some more general theorems. Wefollow the approach in [11]. This was based on results of Ando and Zhan [1], and we show howthese can be generalised to*n*-tuples. The harder Clarkson inequalities (11) are usually provedby complex interpolation methods. In section 5, we show how one such proof as given by Fackand Kosaki [10] can be modified to give Theorem 4. Sharper versions of (7), (8), (11) havebeen proved by Ball, Carlen and Lieb [2] by deeper arguments. Our results go in a differentdirection.

2 Proofs of Theorems 1 and 2

Consider the $n \times n$ matrix

$$T = [T_{jk}], \quad 0 \le j, k \le n-1$$
 (12)

where the entries T_{jk} are operators. In [5, Thm 1] we showed that

$$||T||_p^2 \le \sum_{j,k} ||T_{jk}||_p^2 \quad \text{for } 2 \le p \le \infty.$$
 (13)

Now, given n operators A_0, \ldots, A_{n-1} let T be the block circulant matrix

$$T = \operatorname{circ} \left(A_0, \dots, A_{n-1} \right). \tag{14}$$

This is the $n \times n$ matrix whose first row has entries A_0, \ldots, A_{n-1} and the other rows are obtained by successive cyclic permutations of these entries. Let

$$F_{n} = \frac{1}{\sqrt{n}} \begin{bmatrix} \omega_{0}^{0} & \omega_{1}^{0} & \dots & \omega_{n-1}^{0} \\ \\ \omega_{0}^{1} & \omega_{1}^{1} & \dots & \omega_{n-1}^{1} \\ \\ \\ \dots & \dots & \dots & \\ \\ \omega_{0}^{n-1} & \omega_{1}^{n-1} & \dots & \omega_{n-1}^{n-1} \end{bmatrix}$$

be the finite Fourier transform matrix of size n. Let $W = F_n \otimes I$. This is the block matrix whose jk entry is $\omega_k^j I$. It is easy to see that if T is the block circulant matrix in (14) then $X = W^*TW$ is a block-diagonal matrix and the kth entry on its diagonal is the operator

$$X_{kk} = \sum_{j=0}^{n-1} \omega_j^k A_j.$$
 (15)

Now note that

$$||T||_p = ||X||_p = \left(\sum_{k=0}^{n-1} ||X_{kk}||_p^p\right)^{1/p}.$$
(16)

Using (13)-(16) we obtain

$$\left[\sum_{k=0}^{n-1} \|\sum_{j=0}^{n-1} \omega_j^k A_j\|_p^p\right]^{2/p} \le n \sum_{j=0}^{n-1} \|A_j\|_p^2,$$
(17)

for $2 \leq p < \infty$. For these values of p the function $f(x) = x^{2/p}$ is concave on the positive half-line. Hence

$$n^{2/p-1}\left(x_0^{2/p} + \dots + x_{n-1}^{2/p}\right) \le \left(x_0 + \dots + x_{n-1}\right)^{2/p}.$$
(18)

Using this we get from (17) the inequality

$$n^{2/p-1} \sum_{k=0}^{n-1} \|\sum_{j=0}^{n-1} \omega_j^k A_j\|_p^2 \le n \sum_{j=0}^{n-1} \|A_j\|_p^2,$$
(19)

for $2 \le p \le \infty$. This is the second inequality in (3). The first inequality in (3) can be obtained from this by a change of variables. Let

$$B_{k} = \sum_{j=0}^{n-1} \omega_{j}^{k} A_{j} \quad \text{for } 0 \le k \le n-1.$$
(20)

Replace the *n*-tuple (A_0, \ldots, A_{n-1}) in the inequality just proved by (B_0, \ldots, B_{n-1}) . Note that the *n*-tuple whose *k*th entry is $\sum_j \omega_j^k B_j$ is the same as the *n*-tuple $(nA_0, nA_1, \ldots, nA_{n-1})$ up to a permutation. This leads to the first inequality in (3). When $1 \le p \le 2$, the inequality (13) is reversed [5, Thm 1]. So the inequality (17) is reversed. The function $f(x) = x^{2/p}$ is convex in this case, and the inequality (18) is reversed. As a result both inequalities in (3) are reversed. This completes the proof of Theorem 1 for $1 \le p \le \infty$. The case 0 is discussed in Section 3. The proof of Theorem 2 runs parallel to that of Theorem 1. For T as in (12) we have from [5, Thm 2]

$$\sum_{j,k} \|T_{jk}\|_p^p \le \|T\|_p^p \quad \text{for } 2 \le p < \infty,$$
(21)

and the inequality is reversed for 0 . Start with this instead of (13) and follow the steps $of the proof of Theorem 1. One obtains Theorem 2 for <math>1 \le p < \infty$. The case 0 is $discussed in Section 3. The inequalities of Theorems 1 and 2 are sharp. For <math>0 \le j \le n - 1$ let A_j be the diagonal matrix with its jj entry equal to 1 and all its other entries equal to 0. In this case the first inequality in (3) and in (4) is an equality. On the other hand if we choose $A_j = \left(\omega_0^j, \omega_1^j, \ldots, \omega_{n-1}^j\right)$ for $0 \le j \le n - 1$, we see that the other two inequalities are equalities in this case. A simple consequences of the inequality (7) is the following result proved in [6]. Let T be any operator and let T = A + iB be its Cartesian decomposition with A, B Hermitian. Then for $2 \le p \le \infty$

$$2^{2/p-1} \left(\|A\|_p^2 + \|B\|_p^2 \right) \le \|T\|_p^2 \le 2^{1-2/p} \left(\|A\|_p^2 + \|B\|_p^2 \right),$$
(22)

and the inequalities are reversed for 0 . Note that in this case we have from (8)

$$\|A\|_{p}^{p} + \|B\|_{p}^{p} \le \|T\|_{p}^{p} \le 2^{p-2} \left(\|A\|_{p}^{p} + \|B\|_{p}^{p}\right),$$
(23)

for $2 \le p < \infty$, and the reverse inequalities for 0 . The inequalities (22) can be derivedfrom (23) by a simple convexity argument. More subtle norm inequalities for the Cartesiandecomposition may be found in [7,8].

3 Extensions and Remarks

We have proved Theorems 1 and 2 using results in [5]. There are other connections between [4,5] and the present paper. We point out some of them.

1. Let T be the block matrix (12) and let U_j be the block-diagonal operator

$$U_j = \operatorname{diag}\left(\omega_0^j I, \dots, \omega_{n-1}^j I\right), \quad 0 \le j \le n-1.$$

Let $A_j = U_j^* T U_j$. The second inequality in (3) then gives

$$n^{4/p-2} \sum_{j,k} \|T_{jk}\|_p^2 \le \|T\|_p^2 \quad \text{for } 2 \le p \le \infty.$$

This is the inequality complementary to (13) proved in [5] by other arguments.

- 2. A unitarily invariant norm |||.||| is called a *Q*-norm if there exists another unitarily invariant norm |||.||| such that $|||A|||^2 = |||A^*A|||$. The Schatten *p*-norms for $p \ge 2$ are *Q*-norms since $||A||_p^2 = ||A^*A||_{p/2}$. The crucial observation in [4] was a reinterpretation of the Clarkson inequalities (8) in such a way that a generalisation to *Q*-norms and their duals became possible. The next remarks concern similar generalisations of Theorems 1 and 2.
- 3. The following useful identity can be easily verified.

$$\frac{1}{n} \sum_{k=0}^{n-1} \left(\sum_{j=0}^{n-1} \omega_j^k A_j \right)^{\star} \left(\sum_{j=0}^{n-1} \omega_j^k A_j \right) = \sum_{j=0}^{n-1} A_j^{\star} A_j.$$
(24)

For n = 2 this reduces to

$$\frac{(A+B)^{*}(A+B) + (A-B)^{*}(A-B)}{2} = A^{*}A + B^{*}B.$$
(25)

4. We use the notation $A_0 \oplus \cdots \oplus A_{n-1}$, or $\oplus A_j$, for the block-diagonal operator with operators A_j as its diagonal entries. For positive operators A_j , $0 \le j \le n-1$, we have the inequality

$$|||A_0 \oplus \cdots \oplus A_{n-1}||| \le ||| \left(\sum_{j=0}^{n-1} A_j\right) \oplus 0 \cdots \oplus 0|||,$$
(26)

for all unitarily invariant norms [5, Lemma 4]. For the p-norms this gives (for positive operators)

$$\sum_{j=0}^{n-1} \|A_j\|_p^p \le \|\sum_{j=0}^{n-1} A_j\|_p^p \quad 1 \le p < \infty.$$
(27)

For n = 2, this is a starting point of a proof of the Clarkson inequalities (8), and its generalisation as in (26) led to stronger versions in [4]. To bring out the relevance of Qnorms we give a different proof of Theorem 1 based on the identity (24) and the inequality (27). Let A_0, \ldots, A_{n-1} be any operators and let B_k be the sum defined in (20). Then for $2 \le p < \infty$

$$\sum_{k=0}^{n-1} \|B_k\|_p^2 = \sum_{k=0}^{n-1} \|B_k^* B_k\|_{p/2}$$

$$\geq \|\sum_{k=0}^{n-1} B_k^* B_k\|_{p/2} \quad \text{(triangle inequality)}$$

$$= n\|\sum_{j=0}^{n-1} A_j^* A_j\|_{p/2} \quad \text{(using (24))}$$

$$\geq n\left[\sum_{j=0}^{n-1} \|A_j^* A_j\|_{p/2}^{p/2}\right]^{2/p} \quad \text{(using (27))}$$

$$= n\left[\sum_{j=0}^{n-1} \left(\|A_j\|_p^2\right)^{p/2}\right]^{2/p}$$

$$\geq n \left[n^{1-p/2} \left(\sum_{j=0}^{n-1} \|A_j\|_p^2 \right)^{p/2} \right]^{2/p} \quad (\text{using (18)})$$
$$= n^{2/p} \sum_{j=0}^{n-1} \|A_j\|_p^2.$$

This is the first inequality in (3). In this chain of reasoning inequalities entered at three stages. All get reversed for $0 . It has been noted [6, Lemma 1] that for positive operators <math>A_j$ and 0

$$\sum \|A_j\|_p \le \|\sum A_j\|_p,$$

and also that the inequality (27) is reversed in this case [6, p.111] or [12, p.20]. The inequality (18) is reversed too in this case. So the statement of Theorem 1 for $1 \le p \le 2$ is, in fact, true when 0 .

5. Let us now recast Theorem 2 in the mould of [4]. Taking pth roots, the first inequality in (4) can be rewritten as

$$n^{1/p} \| \oplus_{j=0}^{n-1} A_j \|_p \le \| \oplus_{k=0}^{n-1} B_k \|_p, \quad 2 \le p < \infty,$$

where B_k is as in (20), and then as

$$\| \oplus_{n \text{ copies}} \left[\oplus_{j=0}^{n-1} A_j \right] \|_p \le \| \oplus_{k=0}^{n-1} B_k \|_p, \quad 2 \le p < \infty.$$

$$(28)$$

In the same way, the second inequality in (4) can be rewritten as

$$n^{1/p} \| \oplus_{k=0}^{n-1} B_k \|_p \le n \| \oplus_{j=0}^{n-1} A_j \|_p, \quad 2 \le p < \infty,$$

and then as

$$\| \oplus_{n \text{ copies}} \left[\oplus_{k=0}^{n-1} B_k \right] \|_p \le n \| \oplus_{j=0}^{n-1} A_j \|_p, \quad 2 \le p < \infty.$$

$$\tag{29}$$

In this form the inequalities (28) and (29) shed some of their dependence on p compared to the (equivalent) inequalities (4). What is left of p can be removed too. The inequalities (28) and (29) are true for all Q-norms. For the duals of Q-norms they are reversed. This can be proved using the ideas in [4] and this paper. We do not give the details here.

- 6. The case 0 of Theorem 2 is proved on the same lines as in Remark 4 above.
- 7. It is tempting to attempt a generalisation of Theorem 1 on the same lines as for Theorem 2 in Remark 5. Let us start with the special case n = 2. The first inequality in (7) can be rewritten as

$$||A \oplus A||_p^2 + ||B \oplus B||_p^2 \le ||A + B||_p^2 + ||A - B||_p^2 \quad \text{for } 2 \le p \le \infty.$$
(30)

This is the same as saying

$$\|A^*A \oplus A^*A\|_p + \|B^*B \oplus B^*B\|_p \le \|(A+B)^*(A+B)\|_p + \|(A-B)^*(A-B)\|_p \quad \text{for} 1 \le p \le \infty.$$
(31)

To ask whether the inequality (30) might be true for all *Q*-norms is to ask whether (31) might be true for all unitarily invariant norms; i.e., whether we have

$$|||A^*A \oplus A^*A||| + |||B^*B + B^*B||| \le |||(A+B)^*(A+B) \oplus 0||| + |||(A-B)^*(A-B) \oplus 0||| \quad (32)$$

for all unitarily invariant norms. The answer is no. On 8×8 matrices consider the norm

$$|||A||| = \left[(s_1(A) + s_2(A))^2 + (s_3(A) + s_4(A))^2 \right]^{1/2}$$

Let $A = \text{diag}(1, 1, 0, 0), B = \text{diag}(0, 0, 2^{1/4}, 0)$. The inequality (32) breaks down for this choice.

8. Ball, Carlen and Lieb [2] have proved the following inequalities for $1 \le p \le 2$:

$$\begin{aligned} \|A\|_{p}^{2} + (p-1)\|B\|_{p}^{2} &\leq \frac{1}{2} \left(\|A+B\|_{p}^{2} + \|A-B\|_{p}^{2} \right), \text{ and} \\ \|A\|_{p}^{2} + (p-1)\|B\|_{p}^{2} &\leq \frac{1}{2^{2/p}} \left(\|A+B\|_{p}^{p} + \|A-B\|_{p}^{p} \right)^{2/p}. \end{aligned}$$

Compare the first of these with one of the inequalities in (7)

$$2^{1-2/p} \left(\|A\|_p^2 + \|B\|_p^2 \right) \le \frac{1}{2} \left(\|A+B\|_p^2 + \|A-B\|_p^2 \right),$$

and compare the second with the inequality obtained by following some of the steps of Remark 4 :

$$||A||_p^2 + ||B||_p^2 \le \frac{1}{2} \left(||A + B||_p^p + ||A - B||_p^p \right)^{2/p}.$$

4 Proof of Theorem 3 and Generalisations

This part has to be read along with the papers of Ando-Zhan [1] and Hirzallah-Kittaneh [11]. We indicate how results obtained there for n = 2 can be proved for n > 2. Recall that a nonnegative function f on $[0, \infty)$ is said to be operator monotone if $f(A) \ge f(B)$ whenever A, Bare positive operators with $A \ge B$. The function $f(t) = t^p$ is operator monotone for 0 . $Thus for <math>1 \le p < \infty$ the inverse function of $f(t) = t^p$ is operator monotone. See [3, Chapter V].

Theorem 5 (Generalised Ando-Zhan Theorem) Let A_0, \ldots, A_{n-1} be positive operators. Then for every unitarily invariant norm *(i)*

$$|||\sum_{j=0}^{n-1} f(A_j)||| \ge |||f\left(\sum_{j=0}^{n-1} A_j\right)|||$$
(33)

for every non-negative operator monotone function f on $[0,\infty)$; and

(ii) this inequality is reversed if f is a non-negative increasing function on $[0,\infty)$ such that $f(0) = 0, f(\infty) = \infty$, and the inverse function of f is operator monotone.

Ando and Zhan [1] have proved this for n = 2. An analysis of their proof shows that all their arguments can be suitably modified when n > 2. In particular, in their crucial Lemma 1 we can replace the sum A + B by $\sum_j A_j$, and check that the same proof works. Using this we can prove the following.

Theorem 6 Let A_0, \ldots, A_{n-1} be any operators. Then for every unitarily invariant norm we have

(i)

$$n|||\sum_{j=0}^{n-1} f(|A_j|)||| \le |||\sum_{k=0}^{n-1} f\left(|\sum_{j=0}^{n-1} \omega_j^k A_j|\right)||| \le \frac{1}{n}|||\sum_{j=0}^{n-1} f(n|A_j|)|||, \quad (34)$$

for every increasing function f on $[0, \infty)$ such that f(0) = 0, $f(\infty) = \infty$, and the inverse function of $g(t) = f\left(\sqrt{t}\right)$ is operator monotone;

(ii) the two inequalities in (34) are reversed for every nonnegative function f on $[0, \infty)$ such that $h(t) = f(\sqrt{t})$ is operator monotone.

The n = 2 case of Theorem 6 has been proved by Hirzallah and Kittaneh [11]. Their arguments can be modified replacing the Ando-Zhan theorem by its generalisation pointed out above. Their Lemma 1 needs no change. At one stage we need the identity

$$\frac{1}{n}\sum_{k=0}^{n-1}\left|\sum_{j=0}^{n-1}\omega_j^k A_j\right|^2 = \sum_{j=0}^{n-1}|A_j|^2.$$
(35)

This is just the identity (24). This substitutes for its n = 2 version used in [11] (p. 366 line 6). We leave the rest of the details to the reader. The two parts of Theorem 3 follow from the corresponding parts of Theorem 6 upon choosing $f(t) = t^p$ with $p \ge 2$ and 0 ,respectively. We remark that Corollaries 1-3 of [1] and Corollaries 2,3 of [11] too can begeneralised to*n*-tuples of operators in this manner.

5 Proof of Theorem 4

Imitating the standard complex interpolation proof of the n = 2 case, we give a proof of Theorem 4 for 1 . The ideas are the same as in [10]. At a crucial stage we need ageneralisation of the parallelogram law provided by Theorem 1.**Lemma.** $<math>LetA_0, \ldots, A_{n-1}$ be operators in the Schatten p-class C_p for some $1 . Let <math>B_k$ be the sum defined in (20) and let Y_k , $0 \leq k \leq n-1$ be operators in the dual class C_q . Then

$$\left| \operatorname{tr} \sum_{k=0}^{n-1} Y_k B_k \right| \le n^{1/q} \left(\sum_{j=0}^{n-1} \|A_j\|_p^p \right)^{1/p} \left(\sum_{k=0}^{n-1} \|Y_k\|_q^p \right)^{1/p}.$$
(36)

Proof. Let $A_j = |A_j|W_j$ and $Y_k = V_k|Y_k|$ be right and left polar decompositions of A_j and Y_k , respectively. Here W_j and Y_k are partial isometries. We have $\frac{1}{2} \leq \frac{1}{p} < 1$. For the complex variable z = x + iy with $\frac{1}{2} \leq x \leq 1$ let

$$\begin{aligned} A_j(z) &= |A_j|^{pz} W_j \\ Y_k(z) &= \|Y_k\|_q^{pz-q(1-z)} V_k|Y_k|^{q(1-z)}. \end{aligned}$$

Note that $A_j(1/p) = A_j$ and $Y_k(1/p) = Y_k$. Let

$$f(z) = \operatorname{tr} \sum_{k=0}^{n-1} Y_k(z) B_k(z).$$

The left hand side of (36) is |f(1/p)|. We can estimate this if we have bounds for |f(z)| at $x = \frac{1}{2}$ and x = 1. If x = 1, we have

$$|\operatorname{tr} Y_k(z)A_j(z)| = ||Y_k||_q^p \left| \operatorname{tr} V_k |Y_k|^{-iqy} |A_j|^{p(1+iy)} W_j \right|$$

Using the facts that for any operator T, $|\operatorname{tr} T| \leq ||T||_1$ and $|||XTZ||| \leq ||X|| |||T||| ||Z||$ for any three operator X, T, Z and unitarily invariant norm |||.|||, we get from this

$$|\mathrm{tr} Y_k(z)A_j(z)| \le ||Y_k||_q^p ||A_j||_p^p,$$

for all $0 \leq j, k \leq n - 1$. Hence

$$|f(z)| = \left| \operatorname{tr} \sum_{k=0}^{n-1} Y_k(z) B_k(z) \right| \le \left(\sum_{k=0}^{n-1} \|Y_k\|_q^p \right) \left(\sum_{j=0}^{n-1} \|A_j\|_p^p \right),$$
(37)

when x = 1. When x = 1/2, the operators $A_j(z)$ and $Y_k(z)$ are in C_2 and

$$|f(z)| \leq \sum_{k=0}^{n-1} |\operatorname{tr} Y_k(z)B_k(z)|$$

$$\leq \sum_{k=0}^{n-1} \|Y_k(z)\|_2 \|B_k(z)\|_2$$

$$\leq \left(\sum_{k=0}^{n-1} \|Y_k(z)\|_2^2\right)^{1/2} \left(\sum_{k=0}^{n-1} \|B_k(z)\|_2^2\right)^{1/2}$$

$$= n^{1/2} \left(\sum_{k=0}^{n-1} \|Y_k(z)\|_2^2\right)^{1/2} \left(\sum_{j=0}^{n-1} \|A_j(z)\|_2^2\right)^{1/2}.$$

The equality at the last step is a consequence of Theorem 1 specialised to the case p = 2. Note that when x = 1/2 we have $||A_j(z)||_2^2 = ||A_j||_p^p$, and $||Y_k(z)||_2^2 = ||Y_k||_q^p$. Hence

$$|f(z)| \le n^{1/2} \left(\sum_{k=0}^{n-1} \|Y_k\|_q^p \right)^{1/2} \left(\sum_{j=0}^{n-1} \|A_j\|_p^p \right)^{1/2},$$
(38)

when x = 1/2. If M_1 is the right hand side of (37) and M_2 that of (38), then by the three line theorem, we have for $\frac{1}{2} \leq \frac{1}{p} < 1$

$$|f(1/p)| \le M_1^{2(1/p-1/2)} M_2^{2(1-1/p)}.$$

This gives (36).

Now to prove Theorem 4 let $B_k = U_k |B_k|$ be a polar decomposition and let

$$Y_k = \|B_k\|_p^{q-p} |B_k|^{p-1} U_k^{\star}.$$

It is easy to see that

tr
$$Y_k B_k = ||B_k||_p^q = ||Y_k||_q^p$$
.

So we get from (36)

$$\sum_{k=0}^{n-1} \|B_k\|_p^q \le n^{1/q} \left(\sum_{j=0}^{n-1} \|A_j\|_p^p\right)^{1/p} \left(\sum_{k=0}^{n-1} \|B_k\|_p^q\right)^{1/p}$$

This is the same as saying

$$\sum_{k=0}^{n-1} \|B_k\|_p^q \le n \left(\sum_{j=0}^{n-1} \|A_j\|_p^p\right)^{q/p}, \quad 1$$

This proves Theorem 4 for $1 . The reverse inequality for <math>2 \le p < \infty$ can be obtained from this by a duality argument. By a change of variables a pair of complementary inequalities can be obtained as in Theorems 1-3. As pointed out earlier [2,4] the inequalities of Theorem 2 follow from those of Theorem 4 by simple convexity arguments. Theorem 1 too can be derived from Theorem 4 by such arguments. For example, for $2 \le p < \infty$ we have from (6)

$$\left(\sum_{j=0}^{n-1} \|A_j\|_p^p\right)^{1/p} \le \left(\frac{1}{n} \sum_{k=0}^{n-1} \|\sum_{j=0}^{n-1} \omega_j^k A_j\|_p^q\right)^{1/q}.$$
(39)

On the positive half-line the function $f(x) = x^{2/q}$ is convex and the function $g(x) = x^{2/p}$ concave. Using this we can get the first inequality in (3) from the inequality (39). The proof given in Section 2 is based on easier ideas.

References :

- T. Ando and X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann., 315 (1999) 771-780.
- K. Ball, E. A. Carlen and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math., 115 (1994) 463-482.
- 3. R. Bhatia, Matrix Analysis, Springer, New York, 1997.
- R. Bhatia and J.A.R. Holbrook, On the Clarkson-McCarthy inequalities, Math. Ann., 281 (1988) 7-12.
- R. Bhatia and F. Kittaneh, Norm inequalities for partitioned operators and an application, Math. Ann., 287 (1990) 719-726.
- R. Bhatia and F. Kittaneh, Cartesian decompositions and Schatten norms, Linear Algebra Appl., 318 (2000) 109-116.
- R. Bhatia and X. Zhan, Compact operators whose real and imaginary parts are positive, Proc. Amer. Math. Soc., 129 (2001) 2277-2281.
- 8. R. Bhatia and X. Zhan, Norm inequalities for operators with positive real part, J. Operator Theory, to appear.
- 9. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936) 396-414.
- 10. T. Fack and H. Kosaki, Generalised s-numbers of τ -measurable operators, Pacific J. Math., 123 (1986) 269-300.
- 11. O. Hirzallah and F. Kittaneh, Non-commutative Clarkson inequalities for unitarily invariant norms, Pacific J. Math., 202 (2002) 363-369.
- 12. B. Simon, Trace Ideals and Their Applications, Cambridge University Press, 1979.