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Abstract : We prove several inequalities for trace norms of sums of n operators with roots
of unity coefficients. When n = 2 these reduce to the classical Clarkson inequalities and their
non-commutative analogues.

1 Introduction

The classical inequalities of Clarkson [9] for the Lebesgue spaces Lp, and their non-commutative
analogues for the Schatten trace ideals Cp play an important role in analysis, operator theory,
and mathematical physics. They have been generalised in various directions. Among these are
versions for more general symmetric norms [4] and for the Haagerup Lp-spaces [10], as well as
refinements [2]. In this paper we obtain extensions of these (and related) inequalities in another
direction, replacing pairs of operators by n-tuples. Let A be a linear operator on a complex
separable Hilbert space. If A is compact, we denote by {sj(A)} the sequence of decreasingly
ordered singular values of A. For 0 < p < ∞, let

‖A‖p =
[∑

(sj(A))p
]1/p

. (1)

For 1 ≤ p < ∞, this defines a norm on the class Cp consisting of operators A for which ‖A‖p is
finite. This is called the Schatten p-norm. By convention ‖A‖∞ = s1(A) is the operator bound
norm of A. These p-norms belong to a larger class of symmetric or unitarily invariant norms.
Such a norm |||.||| is characterized by the equality

|||A||| = |||UAV |||, (2)

for all A and unitary U, V. When we use the symbol ‖A‖p or |||A||| it is implicit that the operator
A belongs to the class of operators on which this norm is defined. See [3] for properties of these
norms. For 1 ≤ p ≤ ∞, we denote by q the conjugate index defined by the relation 1/p+1/q = 1.

The symbol |A| stands for the positive operator (A?A)1/2. We prove the following four theorems.
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In each of the statements A0, A1, . . . , An−1 are linear operators and ω0, ω1, . . . , ωn−1 are the n

roots of unity with ωj = e2πij/n, 0 ≤ j ≤ n− 1.

Theorem 1 For 2 ≤ p ≤ ∞, we have

n
2
p

n−1∑
j=0

‖Aj‖2
p ≤

n−1∑
k=0

‖
n−1∑
j=0

ωk
j Aj‖2

p ≤ n2−2/p
n−1∑
j=0

‖Aj‖2
p. (3)

For 0 < p ≤ 2 these two inequalities are reversed.

Theorem 2 For 2 ≤ p < ∞, we have

n
n−1∑
j=0

‖Aj‖p
p ≤

n−1∑
k=0

‖
n−1∑
j=0

ωk
j Aj‖p

p ≤ np−1
n−1∑
j=0

‖Aj‖p
p. (4)

For 0 < p ≤ 2, these two inequalities are reversed.

Theorem 3 For 2 ≤ p < ∞, we have

n|||
n−1∑
j=0

|Aj |p||| ≤ |||
n−1∑
k=0

|
n−1∑
j=0

ωk
j Aj |p||| ≤ np−1|||

n−1∑
j=0

|Aj |p|||, (5)

for every unitarily invariant norm |||.|||. For 0 < p ≤ 2, these two inequalities are reversed.

Theorem 4 For 2 ≤ p < ∞, we have

n

n−1∑
j=0

‖Aj‖p
p

q/p

≤
n−1∑
k=0

‖
n−1∑
j=0

ωk
j Aj‖q

p. (6)

For 1 < p ≤ 2, this inequality is reversed.

When n = 2, Theorem 1 gives for any pair A, B the inequalities

22/p
(
‖A‖2

p + ‖B‖2
p

)
≤ ‖A + B‖2

p + ‖A−B‖2
p ≤ 22−2/p

(
‖A‖2

p + ‖B‖2
p

)
, (7)

for 2 ≤ p ≤ ∞, and the reverse inequalities for 0 < p ≤ 2. Theorem 2 gives

2
(
‖A‖p

p + ‖B‖p
p

)
≤ ‖A + B‖p

p + ‖A−B‖p
p ≤ 2p−1

(
‖A‖p

p + ‖B‖p
p

)
, (8)

for 2 ≤ p < ∞, and the reverse inequalities for 0 < p ≤ 2. For p = 2, (7) and (8) both reduce
to the parallelogram law

‖A + B‖2
2 + ‖A−B‖2

2 = 2
(
‖A‖2

2 + ‖B‖2
2

)
. (9)
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The special norm ||.||2 arises from an inner product 〈A,B〉 = trA?B and must satisfy this law.
The generalisation given in Theorem 1 can be obtained easily in this case. The inequalities (8)
are one half of the celebrated Clarkson inequalities. A recent generalisation due to Hirzallah
and Kittaneh [11] says

2||| |A|p + |B|p ||| ≤ ||| |A + B|p + |A−B|p ||| ≤ 2p−1||| |A|p + |B|p |||, (10)

for 2 ≤ p < ∞; and the two inequalities are reversed for 0 < p ≤ 2. The inequalities (8) follow
from these by choosing for |||.||| the special norm ||.||1. Theorem 3 includes the inequalities (10)
as a special case. When n = 2, (6) reduces to the inequality

2
(
‖A‖p

p + ‖B‖p
p

)q/p
≤ ‖A + B‖q

p + ‖A−B‖q
p, (11)

for 2 ≤ p < ∞, and the reverse inequality for 1 < p ≤ 2. These are the other half of the Clarkson
inequalities. They are much harder to prove, and are stronger, than the inequalities (8). A
simple proof and a generalisation of the inequalities (8) were given by Bhatia and Holbrook in
[4]. Some of their ideas were developed further in our paper [5]. In Section 2 we give a proof of
Theorems 1 and 2 using these results. In Section 3 we discuss some extensions of these results
as in [4]. In section 4, we outline a proof of Theorem 3 and of some more general theorems. We
follow the approach in [11]. This was based on results of Ando and Zhan [1], and we show how
these can be generalised to n-tuples. The harder Clarkson inequalities (11) are usually proved
by complex interpolation methods. In section 5, we show how one such proof as given by Fack
and Kosaki [10] can be modified to give Theorem 4. Sharper versions of (7), (8), (11) have
been proved by Ball, Carlen and Lieb [2] by deeper arguments. Our results go in a different
direction.

2 Proofs of Theorems 1 and 2

Consider the n× n matrix
T = [Tjk] , 0 ≤ j, k ≤ n− 1 (12)

where the entries Tjk are operators. In [5, Thm 1] we showed that

‖T‖2
p ≤

∑
j,k

‖Tjk‖2
p for 2 ≤ p ≤ ∞. (13)

Now, given n operators A0, . . . , An−1 let T be the block circulant matrix

T = circ (A0, . . . , An−1) . (14)
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This is the n × n matrix whose first row has entries A0, . . . , An−1 and the other rows are
obtained by successive cyclic permutations of these entries. Let

Fn =
1√
n



ω0
0 ω0

1 . . . ω0
n−1

ω1
0 ω1

1 . . . ω1
n−1

. . . . . . . . . . . .

ωn−1
0 ωn−1

1 . . . ωn−1
n−1


be the finite Fourier transform matrix of size n. Let W = Fn ⊗ I. This is the block matrix
whose jk entry is ωj

kI. It is easy to see that if T is the block circulant matrix in (14) then
X = W ?TW is a block-diagonal matrix and the kth entry on its diagonal is the operator

Xkk =
n−1∑
j=0

ωk
j Aj . (15)

Now note that

‖T‖p = ‖X‖p =

(
n−1∑
k=0

‖Xkk‖p
p

)1/p

. (16)

Using (13)-(16) we obtain n−1∑
k=0

‖
n−1∑
j=0

ωk
j Aj‖p

p

2/p

≤ n
n−1∑
j=0

‖Aj‖2
p, (17)

for 2 ≤ p < ∞. For these values of p the function f(x) = x2/p is concave on the positive
half-line. Hence

n2/p−1
(
x

2/p
0 + · · ·+ x

2/p
n−1

)
≤ (x0 + · · ·+ xn−1)

2/p . (18)

Using this we get from (17) the inequality

n2/p−1
n−1∑
k=0

‖
n−1∑
j=0

ωk
j Aj‖2

p ≤ n
n−1∑
j=0

‖Aj‖2
p, (19)

for 2 ≤ p ≤ ∞. This is the second inequality in (3). The first inequality in (3) can be obtained
from this by a change of variables. Let

Bk =
n−1∑
j=0

ωk
j Aj for 0 ≤ k ≤ n− 1. (20)

Replace the n-tuple (A0, . . . , An−1) in the inequality just proved by (B0, . . . , Bn−1) . Note that
the n-tuple whose kth entry is

∑
j ωk

j Bj is the same as the n-tuple (nA0, nA1, . . . , nAn−1) up
to a permutation. This leads to the first inequality in (3). When 1 ≤ p ≤ 2, the inequality
(13) is reversed [5, Thm 1]. So the inequality (17) is reversed. The function f(x) = x2/p is
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convex in this case, and the inequality (18) is reversed. As a result both inequalities in (3)
are reversed. This completes the proof of Theorem 1 for 1 ≤ p ≤ ∞. The case 0 < p < 1 is
discussed in Section 3. The proof of Theorem 2 runs parallel to that of Theorem 1. For T as
in (12) we have from [5, Thm 2]∑

j,k

‖Tjk‖p
p ≤ ‖T‖p

p for 2 ≤ p < ∞, (21)

and the inequality is reversed for 0 < p ≤ 2. Start with this instead of (13) and follow the steps
of the proof of Theorem 1. One obtains Theorem 2 for 1 ≤ p < ∞. The case 0 < p < 1 is
discussed in Section 3. The inequalities of Theorems 1 and 2 are sharp. For 0 ≤ j ≤ n− 1 let
Aj be the diagonal matrix with its jj entry equal to 1 and all its other entries equal to 0. In
this case the first inequality in (3) and in (4) is an equality. On the other hand if we choose
Aj =

(
ωj

0, ω
j
1, . . . , ω

j
n−1

)
for 0 ≤ j ≤ n− 1, we see that the other two inequalities are equalities

in this case. A simple consequences of the inequality (7) is the following result proved in [6].
Let T be any operator and let T = A+iB be its Cartesian decomposition with A, B Hermitian.
Then for 2 ≤ p ≤ ∞

22/p−1
(
‖A‖2

p + ‖B‖2
p

)
≤ ‖T‖2

p ≤ 21−2/p
(
‖A‖2

p + ‖B‖2
p

)
, (22)

and the inequalities are reversed for 0 < p ≤ 2. Note that in this case we have from (8)

‖A‖p
p + ‖B‖p

p ≤ ‖T‖p
p ≤ 2p−2

(
‖A‖p

p + ‖B‖p
p

)
, (23)

for 2 ≤ p < ∞, and the reverse inequalities for 0 < p ≤ 2. The inequalities (22) can be derived
from (23) by a simple convexity argument. More subtle norm inequalities for the Cartesian
decomposition may be found in [7,8].

3 Extensions and Remarks

We have proved Theorems 1 and 2 using results in [5]. There are other connections between
[4,5] and the present paper. We point out some of them.

1. Let T be the block matrix (12) and let Uj be the block-diagonal operator

Uj = diag
(
ωj

0I, . . . , ωj
n−1I

)
, 0 ≤ j ≤ n− 1.

Let Aj = U?
j TUj . The second inequality in (3) then gives

n4/p−2
∑
j,k

‖Tjk‖2
p ≤ ‖T‖2

p for 2 ≤ p ≤ ∞.

This is the inequality complementary to (13) proved in [5] by other arguments.
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2. A unitarily invariant norm |||.||| is called a Q-norm if there exists another unitarily in-
variant norm |||.|||̂ such that |||A|||2 = |||A?A|||̂. The Schatten p-norms for p ≥ 2 are
Q-norms since ‖A‖2

p = ‖A?A‖p/2. The crucial observation in [4] was a reinterpretation of
the Clarkson inequalities (8) in such a way that a generalisation to Q-norms and their
duals became possible. The next remarks concern similar generalisations of Theorems 1
and 2.

3. The following useful identity can be easily verified.

1
n

n−1∑
k=0

n−1∑
j=0

ωk
j Aj

?n−1∑
j=0

ωk
j Aj

 =
n−1∑
j=0

A?
jAj . (24)

For n = 2 this reduces to

(A + B)?(A + B) + (A−B)?(A−B)
2

= A?A + B?B. (25)

4. We use the notation A0 ⊕ · · · ⊕ An−1, or ⊕Aj , for the block-diagonal operator with
operators Aj as its diagonal entries. For positive operators Aj , 0 ≤ j ≤ n − 1, we have
the inequality

|||A0 ⊕ · · · ⊕An−1||| ≤ |||

n−1∑
j=0

Aj

⊕ 0 · · · ⊕ 0|||, (26)

for all unitarily invariant norms [5, Lemma 4]. For the p-norms this gives (for positive
operators)

n−1∑
j=0

‖Aj‖p
p ≤ ‖

n−1∑
j=0

Aj‖p
p 1 ≤ p < ∞. (27)

For n = 2, this is a starting point of a proof of the Clarkson inequalities (8), and its
generalisation as in (26) led to stronger versions in [4]. To bring out the relevance of Q-
norms we give a different proof of Theorem 1 based on the identity (24) and the inequality
(27). Let A0, . . . , An−1 be any operators and let Bk be the sum defined in (20). Then for
2 ≤ p < ∞

n−1∑
k=0

‖Bk‖2
p =

n−1∑
k=0

‖B?
kBk‖p/2

≥ ‖
n−1∑
k=0

B?
kBk‖p/2 (triangle inequality)

= n‖
n−1∑
j=0

A?
jAj‖p/2 (using (24))

≥ n

n−1∑
j=0

‖A?
jAj‖p/2

p/2

2/p

(using (27))

= n

n−1∑
j=0

(
‖Aj‖2

p

)p/2

2/p
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≥ n

n1−p/2

n−1∑
j=0

‖Aj‖2
p

p/2


2/p

(using (18))

= n2/p
n−1∑
j=0

‖Aj‖2
p.

This is the first inequality in (3). In this chain of reasoning inequalities entered at three
stages. All get reversed for 0 < p ≤ 2. It has been noted [6, Lemma 1] that for positive
operators Aj and 0 < p ≤ 1 ∑

‖Aj‖p ≤ ‖
∑

Aj‖p,

and also that the inequality (27) is reversed in this case [6, p.111] or [12, p.20]. The
inequality (18) is reversed too in this case. So the statement of Theorem 1 for 1 ≤ p ≤ 2
is, in fact, true when 0 < p ≤ 2.

5. Let us now recast Theorem 2 in the mould of [4]. Taking pth roots, the first inequality
in (4) can be rewritten as

n1/p‖ ⊕n−1
j=0 Aj‖p ≤ ‖ ⊕n−1

k=0 Bk‖p, 2 ≤ p < ∞,

where Bk is as in (20), and then as

‖ ⊕n copies
[
⊕n−1

j=0 Aj

]
‖p ≤ ‖ ⊕n−1

k=0 Bk‖p, 2 ≤ p < ∞. (28)

In the same way, the second inequality in (4) can be rewritten as

n1/p‖ ⊕n−1
k=0 Bk‖p ≤ n‖ ⊕n−1

j=0 Aj‖p, 2 ≤ p < ∞,

and then as

‖ ⊕n copies
[
⊕n−1

k=0Bk

]
‖p ≤ n‖ ⊕n−1

j=0 Aj‖p, 2 ≤ p < ∞. (29)

In this form the inequalities (28) and (29) shed some of their dependence on p compared
to the (equivalent) inequalities (4). What is left of p can be removed too. The inequalities
(28) and (29) are true for all Q-norms. For the duals of Q-norms they are reversed. This
can be proved using the ideas in [4] and this paper. We do not give the details here.

6. The case 0 < p < 1 of Theorem 2 is proved on the same lines as in Remark 4 above.

7. It is tempting to attempt a generalisation of Theorem 1 on the same lines as for Theorem
2 in Remark 5. Let us start with the special case n = 2. The first inequality in (7) can
be rewritten as

‖A⊕A‖2
p + ‖B ⊕B‖2

p ≤ ‖A + B‖2
p + ‖A−B‖2

p for 2 ≤ p ≤ ∞. (30)
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This is the same as saying

‖A?A⊕A?A‖p+‖B?B⊕B?B‖p ≤ ‖(A+B)?(A+B)‖p+‖(A−B)?(A−B)‖p for1 ≤ p ≤ ∞.

(31)
To ask whether the inequality (30) might be true for all Q-norms is to ask whether (31)
might be true for all unitarily invariant norms; i.e., whether we have

|||A?A⊕A?A|||+|||B?B+B?B||| ≤ |||(A+B)?(A+B)⊕0|||+|||(A−B)?(A−B)⊕0||| (32)

for all unitarily invariant norms. The answer is no. On 8× 8 matrices consider the norm

|||A||| =
[
(s1(A) + s2(A))2 + (s3(A) + s4(A))2

]1/2
.

Let A = diag (1, 1, 0, 0), B = diag (0, 0, 21/4, 0). The inequality (32) breaks down for this
choice.

8. Ball, Carlen and Lieb [2] have proved the following inequalities for 1 ≤ p ≤ 2 :

‖A‖2
p + (p− 1)‖B‖2

p ≤ 1
2

(
‖A + B‖2

p + ‖A−B‖2
p

)
, and

‖A‖2
p + (p− 1)‖B‖2

p ≤ 1
22/p

(
‖A + B‖p

p + ‖A−B‖p
p

)2/p
.

Compare the first of these with one of the inequalities in (7)

21−2/p
(
‖A‖2

p + ‖B‖2
p

)
≤ 1

2

(
‖A + B‖2

p + ‖A−B‖2
p

)
,

and compare the second with the inequality obtained by following some of the steps of
Remark 4 :

‖A‖2
p + ‖B‖2

p ≤
1
2

(
‖A + B‖p

p + ‖A−B‖p
p

)2/p
.

4 Proof of Theorem 3 and Generalisations

This part has to be read along with the papers of Ando-Zhan [1] and Hirzallah-Kittaneh [11].
We indicate how results obtained there for n = 2 can be proved for n > 2. Recall that a non-
negative function f on [0,∞) is said to be operator monotone if f(A) ≥ f(B) whenever A, B

are positive operators with A ≥ B. The function f(t) = tp is operator monotone for 0 < p ≤ 1.

Thus for 1 ≤ p < ∞ the inverse function of f(t) = tp is operator monotone. See [3, Chapter
V].

Theorem 5 (Generalised Ando-Zhan Theorem) Let A0, . . . , An−1 be positive operators. Then
for every unitarily invariant norm
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(i)

|||
n−1∑
j=0

f(Aj)||| ≥ |||f

n−1∑
j=0

Aj

 ||| (33)

for every non-negative operator monotone function f on [0,∞); and

(ii) this inequality is reversed if f is a non-negative increasing function on [0,∞) such that
f(0) = 0, f(∞) = ∞, and the inverse function of f is operator monotone.

Ando and Zhan [1] have proved this for n = 2. An analysis of their proof shows that all their
arguments can be suitably modified when n > 2. In particular, in their crucial Lemma 1 we
can replace the sum A + B by

∑
j Aj , and check that the same proof works. Using this we can

prove the following.

Theorem 6 Let A0, . . . , An−1 be any operators. Then for every unitarily invariant norm we
have

(i)

n|||
n−1∑
j=0

f (|Aj |) ||| ≤ |||
n−1∑
k=0

f

| n−1∑
j=0

ωk
j Aj |

 ||| ≤ 1
n
|||

n−1∑
j=0

f (n|Aj |) |||, (34)

for every increasing function f on [0,∞) such that f(0) = 0, f(∞) = ∞, and the inverse
function of g(t) = f

(√
t
)

is operator monotone;

(ii) the two inequalities in (34) are reversed for every nonnegative function f on [0,∞) such
that h(t) = f(

√
t) is operator monotone.

The n = 2 case of Theorem 6 has been proved by Hirzallah and Kittaneh [11]. Their arguments
can be modified replacing the Ando-Zhan theorem by its generalisation pointed out above.
Their Lemma 1 needs no change. At one stage we need the identity

1
n

n−1∑
k=0

∣∣∣∣∣∣
n−1∑
j=0

ωk
j Aj

∣∣∣∣∣∣
2

=
n−1∑
j=0

|Aj |2. (35)

This is just the identity (24). This substitutes for its n = 2 version used in [11] (p. 366 line
6). We leave the rest of the details to the reader. The two parts of Theorem 3 follow from
the corresponding parts of Theorem 6 upon choosing f(t) = tp with p ≥ 2 and 0 < p ≤ 2,

respectively. We remark that Corollaries 1-3 of [1] and Corollaries 2,3 of [11] too can be
generalised to n-tuples of operators in this manner.
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5 Proof of Theorem 4

Imitating the standard complex interpolation proof of the n = 2 case, we give a proof of
Theorem 4 for 1 < p ≤ 2. The ideas are the same as in [10]. At a crucial stage we need a
generalisation of the parallelogram law provided by Theorem 1. Lemma.LetA0, . . . , An−1 be
operators in the Schatten p-class Cp for some 1 < p ≤ 2. Let Bk be the sum defined in (20)
and let Yk, 0 ≤ k ≤ n− 1 be operators in the dual class Cq. Then

∣∣∣∣∣ tr
n−1∑
k=0

YkBk

∣∣∣∣∣ ≤ n1/q

n−1∑
j=0

‖Aj‖p
p

1/p(
n−1∑
k=0

‖Yk‖p
q

)1/p

. (36)

Proof. Let Aj = |Aj |Wj and Yk = Vk|Yk| be right and left polar decompositions of Aj and
Yk, respectively. Here Wj and Yk are partial isometries. We have 1

2 ≤
1
p < 1. For the complex

variable z = x + iy with 1
2 ≤ x ≤ 1 let

Aj(z) = |Aj |pzWj

Yk(z) = ‖Yk‖pz−q(1−z)
q Vk|Yk|q(1−z).

Note that Aj(1/p) = Aj and Yk(1/p) = Yk. Let

f(z) = tr
n−1∑
k=0

Yk(z)Bk(z).

The left hand side of (36) is |f(1/p)| . We can estimate this if we have bounds for |f(z)| at
x = 1

2 and x = 1. If x = 1, we have

|tr Yk(z)Aj(z)| = ‖Yk‖p
q

∣∣∣tr Vk|Yk|−iqy|Aj |p(1+iy)Wj

∣∣∣
Using the facts that for any operator T, |tr T | ≤ ‖T‖1 and |||XTZ||| ≤ ||X|| |||T ||| ||Z|| for any
three operator X, T, Z and unitarily invariant norm |||.|||, we get from this

|tr Yk(z)Aj(z)| ≤ ‖Yk‖p
q‖Aj‖p

p,

for all 0 ≤ j, k ≤ n− 1. Hence

|f(z)| =
∣∣∣∣∣tr

n−1∑
k=0

Yk(z)Bk(z)

∣∣∣∣∣ ≤
(

n−1∑
k=0

‖Yk‖p
q

)n−1∑
j=0

‖Aj‖p
p

 , (37)

when x = 1. When x = 1/2, the operators Aj(z) and Yk(z) are in C2 and

|f(z)| ≤
n−1∑
k=0

|tr Yk(z)Bk(z)|
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≤
n−1∑
k=0

‖Yk(z)‖2‖Bk(z)‖2

≤
(

n−1∑
k=0

‖Yk(z)‖2
2

)1/2(n−1∑
k=0

‖Bk(z)‖2
2

)1/2

= n1/2

(
n−1∑
k=0

‖Yk(z)‖2
2

)1/2
n−1∑

j=0

‖Aj(z)‖2
2

1/2

.

The equality at the last step is a consequence of Theorem 1 specialised to the case p = 2. Note
that when x = 1/2 we have ‖Aj(z)‖2

2 = ‖Aj‖p
p, and ‖Yk(z)‖2

2 = ‖Yk‖p
q . Hence

|f(z)| ≤ n1/2

(
n−1∑
k=0

‖Yk‖p
q

)1/2
n−1∑

j=0

‖Aj‖p
p

1/2

, (38)

when x = 1/2. If M1 is the right hand side of (37) and M2 that of (38), then by the three line
theorem, we have for 1

2 ≤
1
p < 1

|f(1/p)| ≤ M
2(1/p−1/2)
1 M

2(1−1/p)
2 .

This gives (36).

Now to prove Theorem 4 let Bk = Uk|Bk| be a polar decomposition and let

Yk = ‖Bk‖q−p
p |Bk|p−1U?

k .

It is easy to see that
tr YkBk = ‖Bk‖q

p = ‖Yk‖p
q .

So we get from (36)

n−1∑
k=0

‖Bk‖q
p ≤ n1/q

n−1∑
j=0

‖Aj‖p
p

1/p(
n−1∑
k=0

‖Bk‖q
p

)1/p

.

This is the same as saying

n−1∑
k=0

‖Bk‖q
p ≤ n

n−1∑
j=0

‖Aj‖p
p

q/p

, 1 < p ≤ 2.

This proves Theorem 4 for 1 < p ≤ 2. The reverse inequality for 2 ≤ p < ∞ can be obtained
from this by a duality argument. By a change of variables a pair of complementary
inequalities can be obtained as in Theorems 1-3. As pointed out earlier [2,4] the inequalities of
Theorem 2 follow from those of Theorem 4 by simple convexity arguments. Theorem 1 too can
be derived from Theorem 4 by such arguments. For example, for 2 ≤ p < ∞ we have from (6)n−1∑

j=0

‖Aj‖p
p

1/p

≤

 1
n

n−1∑
k=0

‖
n−1∑
j=0

ωk
j Aj‖q

p

1/q

. (39)
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On the positive half-line the function f(x) = x2/q is convex and the function g(x) = x2/p

concave. Using this we can get the first inequality in (3) from the inequality (39). The proof
given in Section 2 is based on easier ideas.
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