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1 Introduction

Let (Ω,F , P ) be a probability space and let (X, Y ) be a bivariate random vector defined on it.
Suppose that E(X2) < ∞ and E(Y 2) < ∞. Hoeffding proved that

Cov(X, Y ) =
∫

R2
[P (X ≤ x, Y ≤ y)− P (X ≤ x)P (Y ≤ y)]dxdy.(1. 1)

Lehmann (1966) gave a simple proof of this identity and used it in his study of some concepts of
dependence. This identity was generalised to functions h(X) and g(Y ) with E[h2(X)] < ∞ and
E[g2(Y )] < ∞ and with finite derivatives h′(.) and g′(.) by Newman (1980). Multidimensional
versions of these results were proved by Block and Fang (1988), Yu(1993) and more recently in
Prakasa Rao (1998). Related covariance identities for exponential and other distributions are
given in Prakasa Rao (1999a, 2000).

Suppose that M is a sub σ-algebra of clf and Y is measurable with respect to M. Let
σ(X) be the sub σ-algebra generated by the random variable X.. Define

α(M, X) = sup{|P (A ∩B)− P (A)P (B)|, A ∈M, B ∈ σ(X)}.

Define
QX(u) = inf{x : P (|X| > x) ≤ u},

GX(s) = inf{z :
∫ z

0
QX(t)dt ≥ s},

and
HX,Y (s) = inf{t : E(|X|I[|Y |>t]) ≤ s}.

Rio (1993) proved that

|Cov(X, Y )| ≤ 2
∫ α(M,X)

0
QY (u)QX(u)du(1. 2)
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Related results are given in Rio (2000), p.9. These results were generalised by Bradley (1996)
for a strong-mixing process and by Prakasa Rao (1999b) for r-th order joint cumulant under
r-th order strong mixing. In a recent work, Dedecker and Doukhan (2003) proved that

|E(XY )| ≤
∫ ||E(X|M)||1

0
HX,Y (t)dt ≤

∫ ||E(X|M)||1

0
QY oGX(t)dt

and obtained an improved version of the above inequality. If Xi, 1 ≤ i ≤ n are positive valued
random variables, it is easy to see that

E(X1X2 . . . Xn) ≤
∫ 1

0
QX1(u)QX2(u) . . . QXn(u)du.

For a proof, see Lemma 2.1 in Rio (2000), p.35.
We now obtain an improved version of the above inequality following the techniques in

Dedecker and Doukhan (2003) and Block and Fang (1988).

2 Main Result

Let {Xi, 1 ≤ i ≤ n} be a sequence of nonnegative random variables defined on a probability
space {Ω,F , P )}. Then the random variable Xi can be represented in the form

Xi =
∫ ∞

0
I(xi,∞)(Xi)dxi(2. 1)

where

I(xi,∞)(Xi) = 1 if Xi > xi

= 0 if Xi ≤ xi.

Hence

E(X1X2 . . . Xn) = E[X1Πn
i=2

∫ ∞

0
I(xi,∞)(Xi)dxi](2. 2)

=
∫

Rn−1
+

E[X1Πn
i=2I(xi,∞)(Xi)]dx2 . . . dxn

=
∫

Rn−1
+

E[X1I(Xi>xi,2≤i≤n](X2, . . . Xn)]dx2 . . . dxn

by the Fubini’s theorem where Rn−1
+ = {(x2, . . . xn) : xi ≥ 0, 2 ≤ i ≤ n}. Observe that

E(X1I[Xi>xi,2≤i≤n](X2, . . . , Xn)) ≤ min(E[X1], E(X1I[Xi>xi,2≤i≤n](X2, . . . , Xn)))

and hence

E(X1X2 . . . Xn) ≤
∫

Rn−1
+

{
∫ EX1

0
χ(E[X1I[Xi>xi,2≤i≤n](X2,...,Xn)]>u)(u)du}dx2 . . . dxn.(2. 3)

Here χA(.) denotes the indicator function of the set A. Let

gX1(x2, . . . , xn) = E[X1I[Xi>xi,2≤i≤n](X2, . . . , Xn)].
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Then

E(X1X2 . . . Xn) ≤
∫

Rn−1
+

{
∫ EX1

0
χ[gX1

(x2,...,xn)>u](u)du}dx2 . . . dxn(2. 4)

≤
∫ E(X1)

0
{
∫
[(x2,...,xn):gX1

(x2,...,xn)>u]
1 dx2 . . . dxn}du.

Let
HX1,X2,...,Xn(u) = λ[(x2, . . . , xn) : gX1(x2, . . . , xn) > u]

where λ is the Lebesgue measure on the space Rn−1
+ . Hence

E(X1X2 . . . Xn) ≤
∫ E(X1)

0
HX1,X2,...,Xn(u).(2. 5)

Observe that

gX1(x2, . . . , xn) = E[X1I[Xi>xi,2≤i≤n](X2, . . . , Xn)](2. 6)

≤
∫ E[I[Xi>xi,2≤i≤n](X2,...,Xn)]

0
QX1(u)du

from the Frechet’s inequality (1957). Here QX1(.) is the generalized inverse of the function
TX1(x) = P (X1 > x) as defined earlier. Let

MX1(y) =
∫ y

0
QX1(t)dt.

Observe that MX1(.) is nondecreasing in y. Let GX1(u) = inf{z : MX1(z) ≥ u} as defined
earlier. Let

TX2,...,Xn(x2, . . . , xn) = P (Xi > xi, 2 ≤ i ≤ n).

For any 0 ≤ u ≤ 1, define
Q∗

X2,...,Xn
(u) = inf Πn

i=2xi

where the infimum is taken over xi ≥ 0, 2 ≤ i ≤ n such that P (Xi > xi, 2 ≤ i ≤ n) ≤ u. If
there exists a point (x20, . . . , xn0) ∈ Rn−1

+ such that

Q∗
X2,...,Xn

(u) = Πn
i=2xi0,

then we define
QX2,...,Xn(u) = (x20, . . . , xn0).

If there are more than one such point, we choose any one of them. We will see later that this
choice does not affect the final inequality. Note that

gX1(x2, . . . , xn) ≤ MX1(E(I[Xi>xi,2≤i≤n](X2, . . . , Xn)))

and

gX1(x2, . . . , xn) > u ⇔ MX1(E(I[Xi>xi,2≤i≤n](X2, . . . , Xn))) > u(2. 7)

⇔ E(I[Xi>xi,2≤i≤n](X2, . . . , Xn)) > GX1(u)

⇔ P [Xi > xi, 2 ≤ i ≤ n] > GX1(u).
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Hence the set
[(x2, . . . , xn) ∈ Rn−1

+ : gX1(x2, . . . , xn) > u]

is contained in the set

[(x2, . . . , xn) ∈ Rn−1
+ : QX2,...,Xn(GX1(u)) > (x2, . . . , xn)]

with the interpretation that the inequality holds in the sense that (x2, . . . , xn) ≤ (y2, . . . , yn)
in Rn−1

+ if and only if Πn
i=2xi ≤ Πn

i=2yi. In particular, it follows that the Lebesgue measure of
the former set is less than or equal to that of the latter. Therefore

HX1,X2,...,Xn(u) ≤ Q∗
X2,...,Xn

(GX1(u))(2. 8)

for all 0 ≤ u ≤ 1. Hence

E(X1X2 . . . Xn) ≤
∫ E(X1)

0
Q∗

X2,...,Xn
(GX1(u))du.(2. 9)

We have proved the following inequality.

Theorem 2.1: Let Xi, 1 ≤ i ≤ n be nonnegative random variables defined on a probability
space (Ω,F , P ). Then

E(X1X2 . . . Xn) ≤
∫ E(X1)

0
HX1,X2,...,Xn(u)du ≤

∫ E(X1)

0
Q∗

X2,...,Xn
oGX1(u)du

where the functions H,Q and G are as defined earlier.

3 Applications

Let us now suppose that the random variables {Xi, 1 ≤ i ≤ n} are arbitrary but with

E|X1X2 . . . Xn| < ∞.

Define
gX1(x2, . . . , xn) = E(|X1|I[|Xi|>xi,2≤i≤n](X2, . . . , Xn)),

HX1,X2,...,Xn(u) = λ[(x2, . . . , xn) : gX1(x2, . . . , xn) ≤ u],

TX2,...,Xn(x2, . . . , xn) = P (|Xi| > xi, 2 ≤ i ≤ n),

and define MX1(.), QX1(.), Q
∗
X2,...,Xn

and GX1 accordingly. The following theorem follows by
arguments analogous to those given in the Section 2.

Theorem 3.1: Let Xi, 1 ≤ i] ≤ n be arbitrary random variables defined on a probability space
(Ω,F , P ).. Then

E(|X1X2 . . . Xn|) ≤
∫ E(|X1|)

0
HX1,X2,...,Xn(u)du ≤

∫ E(|X1|)

0
Q∗

X2,...,Xn
oGX1(u)du
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where the functions H,Q∗ and G are as defined above.

In particular, for n = 2, we have

E(|X1X2|) ≤
∫ E(|X1|)

0
HX1,X2(u)du ≤

∫ E(|X1|)

0
QX2oGX1(u)du

since Q∗
X = QX for any univariate random variable X. Further more

GX1−E(X1)(u) ≥ GX1(u/2), 0 ≤ u ≤ 1

(cf. Dedecker and Doukhan (2003)). Hence

E[|X1X2|] ≤
∫ G−1

X1
(

E(|X1|)
2

)

0
QX2(u)QX1(u)du.(3. 1)

Therefore, for any two fuctions fi(.), i = 1, 2 with fi(0) = 0 such that E|f1(X1)f2(X2)| < ∞,

we obtain that

E[|f1(X1)f2(X2)|] ≤
∫ G−1

f1(X1)
(

E(|f1(X1)|)
2

)

0
Qf2(X2)(u)Qf1(X1)(u)du.(3. 2)

Applying the Theorem 3.1 for the random variables X1 − E(X1), X2, . . . , Xn, we get that

E[|(X1 − E(X1))X2 . . . Xn|] ≤
∫ E(|X1−E(X1)|)

0
Q∗

X2,...,Xn
oGX1−E(X1)(u)du.

But
GX1−E(X1)(u) ≥ GX1(u/2), u ≥ 0

(cf. Dedecker and Doukhan (2003)). Hence

E[|(X1 − E(X1))X2 . . . Xn|] ≤
∫ E(|X1−E(X1)|)

2

0
Q∗

X2,...,Xn
oGX1(u)du.

Observing that GX1(.) is the inverse of the function MX1(y) =
∫ y
0 QX1(t)dt, it follows that

E[|(X1 − E(X1))X2 . . . Xn|] ≤
∫ G−1

X1
(

E(|X1−E(X1)|)
2

)

0
Q∗

X2,...,Xn
(u)QX1(u)du.

Hence we have the following result.

Theorem 3.2: Let Xi, 1 ≤ i ≤ n be arbitrary random variables defined on a probability space
(Ω,F , P ) with E|X1| < ∞ and E|X1X2 . . . Xn| < ∞.. Then

E[|(X1 − E(X1))X2 . . . Xn|] ≤
∫ G−1

X1
(

E(|X1−E(X1)|)
2

)

0
Q∗

X2,...,Xn
(u)QX1(u)du.
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Observe that Q∗
X = QX for any univariate random variable X. Let n = 2 in Theorem 3.2.

Then Q∗
X2

= QX2 and the above result reduces to

E[|(X1 − E(X1))X2|] ≤
∫ G−1

X1
(

E(|X1−E(X1)|)
2

)

0
QX2(u)QX1(u)du.

As a further consequence, we get that

E[|(X1 − E(X1))(X2 − E(X2))|] ≤
∫ G−1

X1
(

E(|X1−E(X1)|)
2

)

0
QX2−E(X2)(u)QX1(u)du.

Since
QX2−E(X2) ≤ QX2 + E|X2|,

we obtain that

E[|(X1 − E(X1))(X2 − E(X2))|] ≤
∫ G−1

X1
(

E(|X1−E(X1)|)
2

)

0
QX2(u)QX1(u)du

+E|X2|
∫ G−1

X1
(

E(|X1−E(X1)|)
2

)

0
QX1(u)du.

Let
α(X1, X2) = max{G−1

X1
(
E(|X1 − E(X1)|)

2
), G−1

X2
(
E(|X2 − E(X2)|)

2
)}.(3. 3)

Then it follows that

E[|(X1 − E(X1))(X2 − E(X2))|] ≤
∫ α(X1,X2)

0
QX1(u)QX2(u)du(3. 4)

+
1
2
(E|X1|

∫ α(X1,X2)

0
QX1(u)du + E|X2|

∫ α(X1,X2)

0
QX2(u)du).

This inequality is different from the inequality in Rio (2000),p.9.

Let f1 and f2 be differentiable functions on R+ with fi(0) = 0. Let Xi, i = 1, 2 be nonneg-
ative random variables. Supose that E[f2

i (Xi)] < ∞, i = 1, 2. It is easy to that

fi(Xi) =
∫ ∞

0
f ′i(Xi)I(xi,∞)(Xi)dxi.

Then

E(f1(X1)f2(X2)) = E[f1(X1)
∫ ∞

0
f ′2(X2)I(x2,∞)(X2)dx2](3. 5)

=
∫

R+

E[f1(X1)f ′2(X2)I(x2,∞)(X2)]dx2

by the Fubini’s theorem. Observe that

E(|f1(X1)f ′2(X2)|I[X2>x2](X2)) ≤ min(E[|f1(X1)f ′2(X2)|], E(|f1(X1)f ′2(X2)|I[X2>x2](X2))
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and hence

(3. 6)

|E(f1(X1)f2(X2)|)| ≤
∫

R+
{
∫ E[|f1(X1)f ′2(X2)|]

0
χ(E[|f1(X1)f ′2(X2)|I[X2>x2](X2)]>u)(u)du}dx2.

Here χA(.) denotes the indicator function of the set A. Let

gf1(X1),f ′2(X2)(x2) = E[|f1(X1)f ′2(X2)|I[X2>x2],(X2)].

Then

E(|f1(X1)f2(X2)|) ≤
∫

R+

{
∫ E[|f1(X1)f ′2(X2)|]

0
χ([gf1(X1),f ′

2
(X2)(x2)]>u)(u)du}dx2(3. 7)

≤
∫ E[|f1(X1)f ′2(X2)|]

0
{
∫
[x2:gf1(X1),f ′

2
(X2)(x2)>u]

1 dx2}du.

Let
Hf1(X1),f ′2(X2)(u) = inf{x2 : gf1(X1),f ′2(X2)(x2) ≤ u}].

Then it follows that

E(|f1(X1)f2(X2)|) ≤
∫ E[|f1(X1)f ′2(X2)|]

0
Hf1(X1),f ′2(X2)(u)du.(3. 8)

An analogous inequality holds by interchanging f1(X1) and f2(X2) :

E(|f1(X1)f2(X2)|) ≤
∫ E[|f ′1(X1)f2(X2)|]

0
Hf ′1(X1),f2(X2)(u)du.(3. 9)
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