isid/ms/2003/26
September 11, 2003
http://www.isid.ac.in/~statmath/eprints

Rio-type inequality for the expectation of products of random variables

B. L. S. Prakasa Rao

Rio-type inequality for the expectation of products of random variables

B.L.S.PRAKASA RAO

INDIAN STATISTICAL INSTITUTE, NEW DELHI

Abstract: We develop an inequality for the expection of a product of n random variables generalizing the recent work of Dedecker and Doukhan (2003) and the earlier results in Rio (1993).

Keywords and phrases: Covariance inequality; Hoeffding identity; Inequality for expectations of products.

AMS 2000 subject classification: Primary 60E15.

1 Introduction

Let (Ω, \mathcal{F}, P) be a probability space and let (X, Y) be a bivariate random vector defined on it. Suppose that $E\left(X^{2}\right)<\infty$ and $E\left(Y^{2}\right)<\infty$. Hoeffding proved that

$$
\begin{equation*}
\operatorname{Cov}(X, Y)=\int_{R^{2}}[P(X \leq x, Y \leq y)-P(X \leq x) P(Y \leq y)] d x d y . \tag{1.1}
\end{equation*}
$$

Lehmann (1966) gave a simple proof of this identity and used it in his study of some concepts of dependence. This identity was generalised to functions $h(X)$ and $g(Y)$ with $E\left[h^{2}(X)\right]<\infty$ and $E\left[g^{2}(Y)\right]<\infty$ and with finite derivatives $h^{\prime}($.$) and g^{\prime}($.$) by Newman (1980). Multidimensional$ versions of these results were proved by Block and Fang (1988), Yu(1993) and more recently in Prakasa Rao (1998). Related covariance identities for exponential and other distributions are given in Prakasa Rao (1999a, 2000).

Suppose that \mathcal{M} is a sub σ-algebra of $c l f$ and Y is measurable with respect to \mathcal{M}. Let $\sigma(X)$ be the sub σ-algebra generated by the random variable X.. Define

$$
\alpha(\mathcal{M}, X)=\sup \{|P(A \cap B)-P(A) P(B)|, A \in \mathcal{M}, B \in \sigma(X)\} .
$$

Define

$$
\begin{aligned}
Q_{X}(u) & =\inf \{x: P(|X|>x) \leq u\}, \\
G_{X}(s) & =\inf \left\{z: \int_{0}^{z} Q_{X}(t) d t \geq s\right\},
\end{aligned}
$$

and

$$
H_{X, Y}(s)=\inf \left\{t: E\left(|X| I_{[|Y|>t]}\right) \leq s\right\} .
$$

Rio (1993) proved that

$$
\begin{equation*}
|\operatorname{Cov}(X, Y)| \leq 2 \int_{0}^{\alpha(\mathcal{M}, X)} Q_{Y}(u) Q_{X}(u) d u \tag{1.2}
\end{equation*}
$$

Related results are given in Rio (2000), p.9. These results were generalised by Bradley (1996) for a strong-mixing process and by Prakasa Rao (1999b) for r-th order joint cumulant under r-th order strong mixing. In a recent work, Dedecker and Doukhan (2003) proved that

$$
|E(X Y)| \leq \int_{0}^{\|E(X \mid \mathcal{M})\|_{1}} H_{X, Y}(t) d t \leq \int_{0}^{\|E(X \mid \mathcal{M})\|_{1}} Q_{Y o} G_{X}(t) d t
$$

and obtained an improved version of the above inequality. If $X_{i}, 1 \leq i \leq n$ are positive valued random variables, it is easy to see that

$$
E\left(X_{1} X_{2} \ldots X_{n}\right) \leq \int_{0}^{1} Q_{X_{1}}(u) Q_{X_{2}}(u) \ldots Q_{X_{n}}(u) d u
$$

For a proof, see Lemma 2.1 in Rio (2000), p. 35 .
We now obtain an improved version of the above inequality following the techniques in Dedecker and Doukhan (2003) and Block and Fang (1988).

2 Main Result

Let $\left\{X_{i}, 1 \leq i \leq n\right\}$ be a sequence of nonnegative random variables defined on a probability space $\{\Omega, \mathcal{F}, P)\}$. Then the random variable X_{i} can be represented in the form

$$
\begin{equation*}
X_{i}=\int_{0}^{\infty} I_{\left(x_{i}, \infty\right)}\left(X_{i}\right) d x_{i} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
I_{\left(x_{i}, \infty\right)}\left(X_{i}\right) & =1 \text { if } X_{i}>x_{i} \\
& =0 \text { if } X_{i} \leq x_{i} .
\end{aligned}
$$

Hence

$$
\begin{align*}
E\left(X_{1} X_{2} \ldots X_{n}\right) & =E\left[X_{1} \Pi_{i=2}^{n} \int_{0}^{\infty} I_{\left(x_{i}, \infty\right)}\left(X_{i}\right) d x_{i}\right] \tag{2.2}\\
& =\int_{R_{+}^{n-1}} E\left[X_{1} \Pi_{i=2}^{n} I_{\left(x_{i}, \infty\right)}\left(X_{i}\right)\right] d x_{2} \ldots d x_{n} \\
& =\int_{R_{+}^{n-1}} E\left[X_{1} I_{\left(X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots X_{n}\right)\right] d x_{2} \ldots d x_{n}
\end{align*}
$$

by the Fubini's theorem where $R_{+}^{n-1}=\left\{\left(x_{2}, \ldots x_{n}\right): x_{i} \geq 0,2 \leq i \leq n\right\}$. Observe that

$$
E\left(X_{1} I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right) \leq \min \left(E\left[X_{1}\right], E\left(X_{1} I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right)\right)
$$

and hence
(2. 3)
$E\left(X_{1} X_{2} \ldots X_{n}\right) \leq \int_{R_{+}^{n-1}}\left\{\int_{0}^{E X_{1}} \chi_{\left(E\left[X_{1} I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right]>u\right)}(u) d u\right\} d x_{2} \ldots d x_{n}$.
Here $\chi_{A}($.$) denotes the indicator function of the set A$. Let

$$
g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)=E\left[X_{1} I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right]
$$

Then

$$
\begin{align*}
E\left(X_{1} X_{2} \ldots X_{n}\right) & \leq \int_{R_{+}^{n-1}}\left\{\int_{0}^{E X_{1}} \chi_{\left[g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)>u\right]}(u) d u\right\} d x_{2} \ldots d x_{n} \tag{2.4}\\
& \leq \int_{0}^{E\left(X_{1}\right)}\left\{\int_{\left[\left(x_{2}, \ldots, x_{n}\right): g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)>u\right]} 1 d x_{2} \ldots d x_{n}\right\} d u .
\end{align*}
$$

Let

$$
H_{X_{1}, X_{2}, \ldots, X_{n}}(u)=\lambda\left[\left(x_{2}, \ldots, x_{n}\right): g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)>u\right]
$$

where λ is the Lebesgue measure on the space R_{+}^{n-1}. Hence

$$
\begin{equation*}
E\left(X_{1} X_{2} \ldots X_{n}\right) \leq \int_{0}^{E\left(X_{1}\right)} H_{X_{1}, X_{2}, \ldots, X_{n}}(u) \tag{2.5}
\end{equation*}
$$

Observe that

$$
\begin{align*}
g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right) & =E\left[X_{1} I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right] \tag{2.6}\\
& \leq \int_{0}^{E\left[I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right]} Q_{X_{1}}(u) d u
\end{align*}
$$

from the Frechet's inequality (1957). Here $Q_{X_{1}}($.$) is the generalized inverse of the function$ $T_{X_{1}}(x)=P\left(X_{1}>x\right)$ as defined earlier. Let

$$
M_{X_{1}}(y)=\int_{0}^{y} Q_{X_{1}}(t) d t
$$

Observe that $M_{X_{1}}($.$) is nondecreasing in y$. Let $G_{X_{1}}(u)=\inf \left\{z: M_{X_{1}}(z) \geq u\right\}$ as defined earlier. Let

$$
T_{X_{2}, \ldots, X_{n}}\left(x_{2}, \ldots, x_{n}\right)=P\left(X_{i}>x_{i}, 2 \leq i \leq n\right)
$$

For any $0 \leq u \leq 1$, define

$$
Q_{X_{2}, \ldots, X_{n}}^{*}(u)=\inf \prod_{i=2}^{n} x_{i}
$$

where the infimum is taken over $x_{i} \geq 0,2 \leq i \leq n$ such that $P\left(X_{i}>x_{i}, 2 \leq i \leq n\right) \leq u$. If there exists a point $\left(x_{20}, \ldots, x_{n 0}\right) \in R_{+}^{n-1}$ such that

$$
Q_{X_{2}, \ldots, X_{n}}^{*}(u)=\prod_{i=2}^{n} x_{i 0}
$$

then we define

$$
Q_{X_{2}, \ldots, X_{n}}(u)=\left(x_{20}, \ldots, x_{n 0}\right)
$$

If there are more than one such point, we choose any one of them. We will see later that this choice does not affect the final inequality. Note that

$$
g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right) \leq M_{X_{1}}\left(E\left(I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right)\right)
$$

and

$$
\begin{align*}
g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)>u & \Leftrightarrow M_{X_{1}}\left(E\left(I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right)\right)>u \tag{2.7}\\
& \Leftrightarrow E\left(I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right)>G_{X_{1}}(u) \\
& \Leftrightarrow P\left[X_{i}>x_{i}, 2 \leq i \leq n\right]>G_{X_{1}}(u) .
\end{align*}
$$

Hence the set

$$
\left[\left(x_{2}, \ldots, x_{n}\right) \in R_{+}^{n-1}: g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)>u\right]
$$

is contained in the set

$$
\left[\left(x_{2}, \ldots, x_{n}\right) \in R_{+}^{n-1}: Q_{X_{2}, \ldots, X_{n}}\left(G_{X_{1}}(u)\right)>\left(x_{2}, \ldots, x_{n}\right)\right]
$$

with the interpretation that the inequality holds in the sense that $\left(x_{2}, \ldots, x_{n}\right) \leq\left(y_{2}, \ldots, y_{n}\right)$ in R_{+}^{n-1} if and only if $\prod_{i=2}^{n} x_{i} \leq \prod_{i=2}^{n} y_{i}$. In particular, it follows that the Lebesgue measure of the former set is less than or equal to that of the latter. Therefore

$$
\begin{equation*}
H_{X_{1}, X_{2}, \ldots, X_{n}}(u) \leq Q_{X_{2}, \ldots, X_{n}}^{*}\left(G_{X_{1}}(u)\right) \tag{2.8}
\end{equation*}
$$

for all $0 \leq u \leq 1$. Hence

$$
\begin{equation*}
E\left(X_{1} X_{2} \ldots X_{n}\right) \leq \int_{0}^{E\left(X_{1}\right)} Q_{X_{2}, \ldots, X_{n}}^{*}\left(G_{X_{1}}(u)\right) d u \tag{2.9}
\end{equation*}
$$

We have proved the following inequality.

Theorem 2.1: Let $X_{i}, 1 \leq i \leq n$ be nonnegative random variables defined on a probability space (Ω, \mathcal{F}, P). Then

$$
E\left(X_{1} X_{2} \ldots X_{n}\right) \leq \int_{0}^{E\left(X_{1}\right)} H_{X_{1}, X_{2}, \ldots, X_{n}}(u) d u \leq \int_{0}^{E\left(X_{1}\right)} Q_{X_{2}, \ldots, X_{n}}^{*} o G_{X_{1}}(u) d u
$$

where the functions H, Q and G are as defined earlier.

3 Applications

Let us now suppose that the random variables $\left\{X_{i}, 1 \leq i \leq n\right\}$ are arbitrary but with

$$
E\left|X_{1} X_{2} \ldots X_{n}\right|<\infty
$$

Define

$$
\begin{gathered}
g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)=E\left(\left|X_{1}\right| I_{\left[\left|X_{i}\right|>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right), \\
H_{X_{1}, X_{2}, \ldots, X_{n}}(u)=\lambda\left[\left(x_{2}, \ldots, x_{n}\right): g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right) \leq u\right], \\
T_{X_{2}, \ldots, X_{n}}\left(x_{2}, \ldots, x_{n}\right)=P\left(\left|X_{i}\right|>x_{i}, 2 \leq i \leq n\right),
\end{gathered}
$$

and define $M_{X_{1}}(),. Q_{X_{1}}(),. Q_{X_{2}, \ldots, X_{n}}^{*}$ and $G_{X_{1}}$ accordingly. The following theorem follows by arguments analogous to those given in the Section 2.

Theorem 3.1: Let $\left.X_{i}, 1 \leq i\right] \leq n$ be arbitrary random variables defined on a probability space (Ω, \mathcal{F}, P).. Then

$$
E\left(\left|X_{1} X_{2} \ldots X_{n}\right|\right) \leq \int_{0}^{E\left(\left|X_{1}\right|\right)} H_{X_{1}, X_{2}, \ldots, X_{n}}(u) d u \leq \int_{0}^{E\left(\left|X_{1}\right|\right)} Q_{X_{2}, \ldots, X_{n}}^{*} o G_{X_{1}}(u) d u
$$

where the functions H, Q^{*} and G are as defined above.
In particular, for $n=2$, we have

$$
E\left(\left|X_{1} X_{2}\right|\right) \leq \int_{0}^{E\left(\left|X_{1}\right|\right)} H_{X_{1}, X_{2}}(u) d u \leq \int_{0}^{E\left(\left|X_{1}\right|\right)} Q_{X_{2}} o G_{X_{1}}(u) d u
$$

since $Q_{X}^{*}=Q_{X}$ for any univariate random variable X. Further more

$$
G_{X_{1}-E\left(X_{1}\right)}(u) \geq G_{X_{1}}(u / 2), 0 \leq u \leq 1
$$

(cf. Dedecker and Doukhan (2003)). Hence

$$
\begin{equation*}
E\left[\left|X_{1} X_{2}\right|\right] \leq \int_{0}^{G_{X_{1}}^{-1}\left(\frac{E\left(\left|X_{1}\right|\right)}{2}\right)} Q_{X_{2}}(u) Q_{X_{1}}(u) d u \tag{3.1}
\end{equation*}
$$

Therefore, for any two fuctions $f_{i}(),. i=1,2$ with $f_{i}(0)=0$ such that $E\left|f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right|<\infty$, we obtain that

$$
\begin{equation*}
E\left[\left|f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right|\right] \leq \int_{0}^{\left.\left.G_{f_{1}\left(X_{1}\right)}^{-1}\right) \frac{E\left(\left|f_{1}\left(X_{1}\right)\right| \mid\right.}{2}\right)} Q_{f_{2}\left(X_{2}\right)}(u) Q_{f_{1}\left(X_{1}\right)}(u) d u . \tag{3.2}
\end{equation*}
$$

Applying the Theorem 3.1 for the random variables $X_{1}-E\left(X_{1}\right), X_{2}, \ldots, X_{n}$, we get that

$$
E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right) X_{2} \ldots X_{n}\right|\right] \leq \int_{0}^{E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right)} Q_{X_{2}, \ldots, X_{n}}^{*} o G_{X_{1}-E\left(X_{1}\right)}(u) d u
$$

But

$$
G_{X_{1}-E\left(X_{1}\right)}(u) \geq G_{X_{1}}(u / 2), u \geq 0
$$

(cf. Dedecker and Doukhan (2003)). Hence

$$
E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right) X_{2} \ldots X_{n}\right|\right] \leq \int_{0}^{\frac{E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right)}{2}} Q_{X_{2}, \ldots, X_{n}}^{*} o G_{X_{1}}(u) d u
$$

Observing that $G_{X_{1}}($.$) is the inverse of the function M_{X_{1}}(y)=\int_{0}^{y} Q_{X_{1}}(t) d t$, it follows that

$$
E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right) X_{2} \ldots X_{n}\right|\right] \leq \int_{0}^{G_{X_{1}}^{-1}\left(\frac{E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right)}{2}\right)} Q_{X_{2}, \ldots, X_{n}}^{*}(u) Q_{X_{1}}(u) d u
$$

Hence we have the following result.
Theorem 3.2: Let $X_{i}, 1 \leq i \leq n$ be arbitrary random variables defined on a probability space (Ω, \mathcal{F}, P) with $E\left|X_{1}\right|<\infty$ and $E\left|X_{1} X_{2} \ldots X_{n}\right|<\infty$.. Then

$$
E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right) X_{2} \ldots X_{n}\right|\right] \leq \int_{0}^{G_{X_{1}}^{-1}\left(\frac{E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right)}{2}\right)} Q_{X_{2}, \ldots, X_{n}}^{*}(u) Q_{X_{1}}(u) d u
$$

Observe that $Q_{X}^{*}=Q_{X}$ for any univariate random variable X. Let $n=2$ in Theorem 3.2. Then $Q_{X_{2}}^{*}=Q_{X_{2}}$ and the above result reduces to

$$
E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right) X_{2}\right|\right] \leq \int_{0}^{G_{X_{1}}^{-1}\left(\frac{E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right)}{2}\right)} Q_{X_{2}}(u) Q_{X_{1}}(u) d u
$$

As a further consequence, we get that

$$
E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right)\left(X_{2}-E\left(X_{2}\right)\right)\right|\right] \leq \int_{0}^{G_{X_{1}}^{-1}\left(\frac{E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right)}{2}\right)} Q_{X_{2}-E\left(X_{2}\right)}(u) Q_{X_{1}}(u) d u
$$

Since

$$
Q_{X_{2}-E\left(X_{2}\right)} \leq Q_{X_{2}}+E\left|X_{2}\right|,
$$

we obtain that

$$
\begin{aligned}
E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right)\left(X_{2}-E\left(X_{2}\right)\right)\right|\right] \leq & \int_{0}^{G_{X_{1}}^{-1}\left(\frac{E\left(X_{1}-E\left(X_{1}\right) \mid\right)}{2}\right)} Q_{X_{2}}(u) Q_{X_{1}}(u) d u \\
& +E\left|X_{2}\right| \int_{0}^{G_{X_{1}}^{-1}\left(\frac{E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right)}{2}\right)} Q_{X_{1}}(u) d u .
\end{aligned}
$$

Let

$$
\begin{equation*}
\alpha\left(X_{1}, X_{2}\right)=\max \left\{G_{X_{1}}^{-1}\left(\frac{E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right)}{2}\right), G_{X_{2}}^{-1}\left(\frac{E\left(\left|X_{2}-E\left(X_{2}\right)\right|\right)}{2}\right)\right\} . \tag{3.3}
\end{equation*}
$$

Then it follows that

$$
\begin{aligned}
E\left[\left|\left(X(3-\mathcal{M})\left(X_{1}\right)\right)\left(X_{2}-E\left(X_{2}\right)\right)\right|\right] \leq & \int_{0}^{\alpha\left(X_{1}, X_{2}\right)} Q_{X_{1}}(u) Q_{X_{2}}(u) d u \\
& +\frac{1}{2}\left(E\left|X_{1}\right| \int_{0}^{\alpha\left(X_{1}, X_{2}\right)} Q_{X_{1}}(u) d u+E\left|X_{2}\right| \int_{0}^{\alpha\left(X_{1}, X_{2}\right)} Q_{X_{2}}(u) d u\right) .
\end{aligned}
$$

This inequality is different from the inequality in Rio (2000),p.9.
Let f_{1} and f_{2} be differentiable functions on R_{+}with $f_{i}(0)=0$. Let $X_{i}, i=1,2$ be nonnegative random variables. Supose that $E\left[f_{i}^{2}\left(X_{i}\right)\right]<\infty, i=1,2$. It is easy to that

$$
f_{i}\left(X_{i}\right)=\int_{0}^{\infty} f_{i}^{\prime}\left(X_{i}\right) I_{\left(x_{i}, \infty\right)}\left(X_{i}\right) d x_{i} .
$$

Then

$$
\begin{align*}
E\left(f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right) & =E\left[f_{1}\left(X_{1}\right) \int_{0}^{\infty} f_{2}^{\prime}\left(X_{2}\right) I_{\left(x_{2}, \infty\right)}\left(X_{2}\right) d x_{2}\right] \tag{3.5}\\
& =\int_{R_{+}} E\left[f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right) I_{\left(x_{2}, \infty\right)}\left(X_{2}\right)\right] d x_{2}
\end{align*}
$$

by the Fubini's theorem. Observe that

$$
E\left(\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right| I_{\left[X_{2}>x_{2}\right]}\left(X_{2}\right)\right) \leq \min \left(E\left[\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right|\right], E\left(\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right| I_{\left[X_{2}>x_{2}\right]}\left(X_{2}\right)\right)\right.
$$

and hence
(3. 6)

$$
\left|E\left(f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right) \mid\right)\right| \leq \int_{R+}\left\{\int_{0}^{E\left[\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right|\right]} \chi_{\left(E\left[\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right| I_{\left[X_{2}>x_{2}\right]}\left(X_{2}\right)\right]>u\right)}(u) d u\right\} d x_{2}
$$

Here $\chi_{A}($.$) denotes the indicator function of the set A$. Let

$$
g_{f_{1}\left(X_{1}\right), f_{2}^{\prime}\left(X_{2}\right)}\left(x_{2}\right)=E\left[\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right| I_{\left[X_{2}>x_{2}\right]}\left(X_{2}\right)\right]
$$

Then
(3. 7)

$$
\begin{aligned}
E\left(\left|f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right|\right) & \leq \int_{R_{+}}\left\{\int_{0}^{\left.E\left[\mid f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right]\right]} \chi_{\left(\left[g_{f_{1}\left(X_{1}\right), f_{2}^{\prime}\left(X_{2}\right)}\left(x_{2}\right)\right]>u\right)}(u) d u\right\} d x_{2} \\
& \leq \int_{0}^{\left.E\left[\mid f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right]\right]}\left\{\int_{\left[x_{2}: g_{f_{1}\left(X_{1}\right), f_{2}^{\prime}\left(X_{2}\right)}\left(x_{2}\right)>u\right]} 1 d x_{2}\right\} d u .
\end{aligned}
$$

Let

$$
\left.H_{f_{1}\left(X_{1}\right), f_{2}^{\prime}\left(X_{2}\right)}(u)=\inf \left\{x_{2}: g_{f_{1}\left(X_{1}\right), f_{2}^{\prime}\left(X_{2}\right)}\left(x_{2}\right) \leq u\right\}\right]
$$

Then it follows that

$$
\begin{equation*}
E\left(\left|f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right|\right) \leq \int_{0}^{E\left[\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right|\right]} H_{f_{1}\left(X_{1}\right), f_{2}^{\prime}\left(X_{2}\right)}(u) d u \tag{3.8}
\end{equation*}
$$

An analogous inequality holds by interchanging $f_{1}\left(X_{1}\right)$ and $f_{2}\left(X_{2}\right)$:

$$
\begin{equation*}
E\left(\left|f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right|\right) \leq \int_{0}^{E\left[\left|f_{1}^{\prime}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right|\right]} H_{f_{1}^{\prime}\left(X_{1}\right), f_{2}\left(X_{2}\right)}(u) d u \tag{3.9}
\end{equation*}
$$

References

Block, H. and Fang, Z. (1988) A multivariate extension of Hoeffding's lemma, Ann. Probab., 16, 1803-1820.

Bradley, R.C. (1996) A covariance inequality under a two-part dependence assumption, Statist. Probab. Lett., 30, 287-293.

Dedecker, J. and Doukhan, P. (2003) A new covariance inequality and applications, Stochastic Process. Appl., 106, 63-80.

Frechet, M. (1957) Sur le distance de deux lois de probabilite, C.R. Acad. Sci. Paris,244, 689-692.

Hoeffding, W. (1940) Masstabinvariante Korrelationsthorie, Schriften Math. Inst. Univ. Berlin, 5, 181-233.

Newman, C.M. (1980) Normal fluctuations and the FKG inequalities, Comm. Math. Phy., 91, 75-80.

Prakasa Rao, B.L.S. (1998) Hoeffding identity, multivariance and multicorrelation, Statistics, 32, 13-29.

Prakasa Rao, B.L.S. (1999a) Covariance identities for exponential and related distributions, Statist. Probab. Lett., 42, 305-311.

Prakasa Rao, B.L.S. (1999b) Bounds for r-th order joint cumulant under r-th order strong mixing, Statist. Probab. Lett., 43, 427-431.

Prakasa Rao, B.L.S. (2000) Some covariance identities, inequalities and their applications: A review, PINSA Ser.A, 66 A, 537-543.

Rio, E. (1993) Covariance inequalities for strongly mixing proceses, Ann. Inst. Henri. Poincare Probab. Statist., 29, 587-597.

Rio, E. (2000) Theorie Asymptotique des Processu Aleatoires Faiblement Dependants, Springer, Berlin.

Yu, H. (1993) A Glivenko-Cantelli lemma and weak convergence for empirical process of associated sequences, Probab. theory Relat. Fields, 95, 357-370.

