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Summary

Most of the available results on optimal block designs for diallel crosses are based on stan-
dard linear model assumptions where the general combining ability effects are taken as fixed.
In many practical situations, this assumption may not be tenable since often one studies only
a sample of inbred lines from a possibly large (hypothetical) population. Recently Ghosh and
Das (2003) proposed a random effects model and then estimated the variance components and
the variances of these estimates. While comparing the yielding capacities of the cross (i, j),
Kempthorne and Curnow (1961) have proposed the estimation of the yielding capacity of any
cross based on the least square estimators of the general combining ability effects and/or the
mean yield of the cross (i, j). In this paper, the problem of predicting the yielding capacity
of the cross (i, j) from the sample of inbred lines has been considered. The properties of the
best linear unbiased predictor for predicting the unobserved general combining ability effects
together with general mean effect has been studied. We characterize A-optimal complete diallel
cross designs and some efficient partial diallel cross designs under this setup.

Keywords : A-optimality; BLUP; Efficient design; Partial diallel cross; Variance components.

1. Introduction

Diallel crosses as mating designs are used to study the genetic properties of inbred lines
in plant breeding experiments. Plant breeders frequently need overall information on average
performance of individual inbred lines in crosses for subsequent choosing the best amongst
them for further breeding.

Consider a (possibly) hypothetical population involving a large number of lines and crosses
so that all means are estimated without error. Crossing a line to several others provides the
mean performance of the line in all its crosses. This mean performance, when expressed as a
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deviation from the mean of all crosses, is called the general combining ability (g.c.a.) of the line.
Any particular cross, then, has an expected value which is the sum of the general combining
abilities of its two parental lines. The cross may, however, deviate from this expected value to
a greater or lesser extent. This deviation is called the specific combining ability (s.c.a.) of the
two lines in combination. In statistical terms, the g.c.a.’s are main effects and the s.c.a. is an
interaction. Griffing (1956) defines diallel crosses in terms of genotypic values where the sum
of g.c.a. effects for the two gametes is the breeding value of the cross (i, j). Similarly, s.c.a.
represents the dominance deviation value in the simplest case ignoring epistatic deviation; see
Kempthorne (1969) and Mayo (1980) for details.

In practice, often a plant breeder carries out a diallel cross experiment by selecting p lines
randomly from a population consisting of a large number of lines. In such a case, the expected
value of an observation Yij , conditional on the realized value of the g.c.a. and s.c.a., arising
out of cross (i, j) involving lines i and j, i < j; i, j = 1, . . . , p can be modeled as

E(Yij) = µ + g∗i + g∗j + s∗ij , (1.1)

where µ is the general mean, g∗i (g∗j ) is the realized value of gi (gj), the g.c.a. effect of sampled
i-th (j-th) line and s∗ij is the realized value of sij , the s.c.a. effect of cross (i, j).

Accordingly, in experimental mating design, the analysis of the observations arising out of
n crosses involving p lines may be carried out based on a model

Yijl = µ + gi + gj + eijl ; i < j, (1.2)

where Yijl is the observation arising out of the l-th replication of the cross (i, j), gi is the g.c.a.
effect of the i-th line with E(gi) = 0, V ar(gi) = σ2

g ≥ 0, Cov(gi, gj) = 0, µ is the general
mean and eijl is the random error component, uncorrelated with gi, with expectation zero and
variance σ2

e > 0, 1 ≤ i < j ≤ p. Here µ, σ2
e and σ2

g are unknown parameters. Also, the specific
combining ability effects are assumed to be negligible and have been absorbed in the error
component; see Hinkelmann (1975) and Hinkelmann and Kempthorne (1963) for a discussion
on this assumption. In the model (1.2), µ is a fixed effect while gi, gj (i < j) and eijl are
random effects.

An experiment is carried out using a diallel cross design with p lines and n crosses. A diallel
cross experiment is said to be complete if each of the

(p
2

)
crosses appears equally often in the

experiment, otherwise it is said to be a partial diallel cross experiment. Most of the available
literature on optimal designs for diallel crosses is based on standard linear model assumptions
where the g.c.a. effects are taken as fixed and the primary interest lies in comparing the lines
with respect to their g.c.a. effects. Under such a model, among others, Gupta and Kageyama
(1994), Dey and Midha (1996), Mukerjee (1997), Das, Dey and Dean (1998) and Das, Dean
and Gupta (1998) have characterised and obtained optimal completely randomised designs and
incomplete block designs for diallel crosses. When one is studying only a sample of inbred lines
from a possibly large hypothetical population the fixed effects assumption may not be tenable.
Inbred lines are often developed and then crossed in an attempt to produce crosses with a high
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yielding capacity where µ + gi + gj represents the yielding capacity of a cross (i, j). In this
paper, the problem of predicting the yielding capacity of the cross (i, j) from the sample of
inbred lines has been considered.

The properties of the best linear unbiased predictor (BLUP) for predicting the unobserved
g.c.a. effects together with general mean effect has been studied. We first obtain the BLUP of
µ + gi, i = 1, 2, . . . , p and its mean square prediction error. Then we characterize A-optimal
complete diallel cross designs and some efficient partial diallel cross designs.
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2. BLUP of g.c.a. Effects And Optimal Diallel Cross Designs

The starting point is the traditional fixed effects linear model written as

y = Xβ + e (2.1)

where y is N × 1 vector of observations, β is a p × 1 vector of fixed effects parameters, X is
the N × p incidence matrix and e is an error vector defined as e = y − IE(y) = y − Xβ and
thus has IE(e) = 0. To e is usually attributed the dispersion matrix ID(e) = σ2

eIN . Here It

denotes an identity matrix of order t. In situations where the order is evident from the context,
we write I instead of It. In variance components model the random effects of a model can be
represented as Zu (of a nature that parallels Xβ), where u is the vector of the random effects
that occur in modelling an observation, and Z the corresponding matrix, usually an incidence
matrix. Moreover, u can be partitioned into a series of r sub-vectors.

u =
[
u′1 u′2 . . . u′r

]′
. (2.2)

Incorporating u of (2.2) into y = Xβ + e gives a general form of model equation for a mixed
model as

y = Xβ + Zu + e (2.3)

with β and u representing fixed and random effects respectively.
To u we now attribute the usual variance-covariance structure, i.e.,

ID(ui) = σ2
i Iqi for i = 1, . . . , r (2.4)

Cov(ui,uj) = 0 for i 6= j, (2.5)

and similarly for all elements of u and e, Cov(u, e) = 0.

Utilizing (2.2)-(2.5), the mean and variance structures of u are µu = IE(u) = 0, and

ID(u) =


σ2

1Iq1 0 · · · 0
0 σ2

2Iq2 0
...

...
0 0 · · · σ2

rIqr

 .

Then partitioning Z conformably with u of (2.2) as Z = [Z1 Z2 . . . Zr] gives

y = Xβ + Zu + e = Xβ +
r∑

i=1

Ziui + e. (2.6)

Hence

µy = IE(y) = Xβ, Vy = ID(y) = ZID(u)Z ′ + σ2
eI =

r∑
i=1

σ2
i ZiZ

′
i + σ2

eI (2.7)

and
Cuy = Cov (u, y) = ID(u)Z ′. (2.8)
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In case of mixed model prediction, we consider the problem of predicting

w = L′β + u (2.9)

for some known matrix L, such that L′β is estimable, i.e., L′ = T ′X for some matrix T. Since
w involves both fixed effects and random effects, we will ‘predict’ w, and will choose

∼
w as the

Best Predictor having the following three properties:

“Best” in the sense of minimizing IE(w− ∼
w)′A(w− ∼

w), for some p.d. matrix A (2.10)

Linear in y :
∼
w= a + By, with a and B not involving β (2.11)

Unbiased : IE(
∼
w) = IE(w) (2.12)

The unbiasedness of
∼
w in (2.12) demands that a + BXβ = L′β for all β, and if a is not to

depend on β then a = 0 and BX = L′.

It can be shown that (see Searle et al., 1992, page 270)

BLUP (w) =
∼
w= L′β◦ + CuyV

−1
y (y −Xβ◦) (2.13)

with
BLUE(Xβ) = Xβ◦ = X(X ′V −1

y X)−X ′V −1
y y. (2.14)

We shall make the same assumption and use the same notation as above, while obtaining
best linear unbiased predictor of g.c.a. effects. When a complete diallel cross experiment is
not possible due to limitations of experimental units, one may consider a partial diallel cross,
with some unobserved crosses, as a method for predicting the yielding capacities of all the
possible single crosses among p inbred lines. The yielding capacity of all crosses in the diallel
cross including the unsampled crosses whose yields are not observed in case of partial diallel
cross can be predicted in two ways. Firstly, they can be predicted by their mean yields in the
experiment when the yield of the crosses are observed in the experiment. Secondly, specific
combining ability can be ignored and the yielding capacity of the cross (i, j) is estimated by
µ̂ + ĝi + ĝj where ĝi is some predicted value of g.c.a. effect gi, both for sampled crosses as
well as unsampled crosses. Kempthorne and Curnow (1961) have designated the methods of
estimation A and B, where A and B are defined as follows:

[A.] Unsampled crosses estimated by µ̂ + ĝi + ĝj but sampled crosses estimated by cross means
ȳij..

[B.] Both unsampled and sampled crosses estimated by µ̂ + ĝi + ĝj .

We show that, in general, method B will perform better than method A when the ĝi’s are
chosen by the method of BLUP.

When an experiment is carried out using unblocked diallel cross design (d) with p lines and
n crosses, we can represent the model in matrix notation as

Y = µ1n + D′
1g + e (2.15)
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where Y is the vector of n observation, g is the p× 1 vector of general combining ability effects
with IE(g) = 0 and ID(g) = σ2

gIp, e is the error vector with IE(e) = 0 and ID(e) = σ2
eIn,

and D1 = (d(1)
uv ) is the p × n line versus observation incidence matrix with d

(1)
uv = 1 if v-th

observation is out of a cross involving uth line and d
(1)
uv = 0 otherwise. Here 1t represents a

t× 1 column vector of all ones and in situation where the order is evident from the context, we
write 1 instead of 1t. Equivalently (2.15) can be written as Y = Xµ + Zu + e where X = 1n,

Z = D′
1, u = g. Here,

IE(Y ) = µ1n, ID(Y/σ2
g , σ

2
e) = σ2

gD
′
1D1 + σ2

eIn (2.16)

Also,
Cov (g, Y ) = Cov (g, µ1n + D′

1g + e) = σ2
gD1. (2.17)

We consider the problem of predicting w = L′µ + g where L′ = 1p.

Then, as described in equations (2.9)-(2.14), the Best Linear Unbiased Predictor of w is
∼
w= BLUP (w) = L′µ0 + CV −1(Y − µ01n) (2.18)

where µ0 is the GLSE of µ, C = σ2
gD1 and V = σ2

gD
′
1D1 +σ2

eIn. Also define D = ID(g) = σ2
gIp.

Let D(p, n) be a class of unblocked diallel cross designs involving p inbred lines and n crosses.
Given a design d ∈ D(p, n), the minimum mean square prediction error is

MSE(BLUP (w), d) = IE
[
(
∼
w −w)′(

∼
w −w)

]
= IE

[
tr (

∼
w −w)(

∼
w −w)′

]
= tr IE

[
(
∼
w −w)(

∼
w −w)′

]
= tr ID

[∼
w −w

]
. (2.19)

Clearly, MSE(BLUP (w), d) depends on the design d. A design d∗ ∈ D(p, n) will be called
A-optimal over D(p, n) if

MSE(BLUP (w), d∗) = min
d∈D(p,n)

MSE(BLUP (w), d). (2.20)

Now, using the properties of BLUP given in Searle et al. (1992, page 272) we observe that,

tr ID
[∼
w −w

]
= tr ID

[
(L′µ0 − L′µ) + (g0 − g)

]
where g0 = CV −1(Y − µ01n)

= tr
[
IE(L′µ0 − L′µ)(L′µ0 − L′µ)′ + IE(g0 − g)(g0 − g)′

+IE(L′µ0 − L′µ)(g0 − g)′ + IE(g0 − g)(L′µ0 − L′µ)′
]
.

= tr ID(L′µ0) + tr ID(g0 − g)

+2tr Cov (L′µ0, g0 − g), since tr Cov (X, Y ) = tr Cov (Y, X)

= tr ID(L′µ0) + tr ID(g0 − g)− 2 tr Cov (L′µ0, g), since Cov (L′µ0, g0) = 0

= tr
[
L′(X ′V −1X)−L

]
+ tr

[
D − ID(g0)

]
−2 tr

[
L′(X ′V −1X)−X ′V −1C ′

]
, since ID(L′µ0) = L′(X ′V −1X)−L,

ID(g0 − g) = D − ID(g0)

and Cov (L′µ0, g) = L′(X ′V −1X)−X ′V −1C ′
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= tr
[
L′(X ′V −1X)−L

]
+ tr D − tr

[
CV −1C ′

]
+ tr

[
CV −1X(X ′V −1X)−X ′V −1C ′

]
− 2tr

[
L′(X ′V −1X)−X ′V −1C ′

]
. (2.21)

Here tr(·) denotes the trace of a square matrix. The first term in (2.21) simplifies to

tr
[
L′(X ′V −1X)−L

]
= tr

[
1(1′V −11)−1′

]
=

p

1′V −11
. (2.22)

We now give a standard matrix result.

Lemma 2.1 Let A and B be two non negative definite matrices each of order p, such that
AB = BA. Then there exists an orthogonal matrix P = (l1, l2, . . . , lp) such that P ′AP = D1,

P ′BP = D2 where D1 = diag(λ(1)
1 λ

(1)
2 . . . λ

(1)
p ) and D2 = diag(λ(2)

1 λ
(2)
2 . . . λ

(2)
p ), λ

(1)
i , i = 1, . . . , p

are the eigenvalues of A and λ
(2)
i , i = 1, . . . , p are the eigenvalues of B. Also, Ali = λ

(1)
i li and

Bli = λ
(2)
i li, i = 1, . . . , p or equivalently (A + B)li = (λ(1)

i + λ
(2)
i )li, i = 1, . . . , p.

Since the matrix V involves D′
1D1, to obtain eigen vectors of D′

1D1 orthogonal to the
vector 1, we restrict the class of design to D0(p, n) = {d : sd1 = sd2 = · · · = sdp = s} where
sdi = number of times ith line being appeared in the design d.

Then D′
1D11 = D′

1s1 = 2s1. Hence using Lemma 2.1 we get σ2
gD

′
1D1

1√
n

= (2sσ2
g)

1√
n

i.e.,
(σ2

gD
′
1D1 + σ2

eIn) 1√
n

= (2sσ2
g + σ2

e)
1√
n

which means l1 = 1√
n

is an eigen vector corresponding
to eigenvalue λ1 = (2sσ2

g +σ2
e). Let l2, l3, . . . , ln be the other (n− 1) orthonormal eigen vectors

of V corresponding to eigenvalues λ2, λ3, . . . , λn. Then,

1′V −11 = 1′
[
(2sσ2

g + σ2
e)
−1 1√

n

1′√
n

+
n∑

i=2

λ−1
i lil

′
i

]
1 = n(2sσ2

g + σ2
e)
−1. (2.23)

Then, combining (2.22) and (2.23) we get

tr
[
L′(X ′V −1X)−L

]
=

p(2sσ2
g + σ2

e)
n

. (2.24)

The second term in (2.21) is
tr D = tr σ2

gIp = pσ2
g (2.25)

and the third term in (2.21) is

−tr CV −1C ′ = −tr σ2
gD1V

−1σ2
gD

′
1 = −σ4

gtr D1V
−1D′

1 = −σ4
g tr D′

1D1V
−1

= −σ4
g tr

[
V − σ2

eIn

]
V −1 = −σ2

g tr
[
In − σ2

eV
−1
]

= −σ2
g

[
n− σ2

e

(
1

2sσ2
g + σ2

e

)
− σ2

e

n∑
i=2

1
λi

]
. (2.26)

Note that the non zero eigenvalues of D′
1D1 are the non zero eigenvalues of D1D

′
1 = G which are

λG1 = 2s, λG2, . . . , λGp. Then λi = σ2
gλGi+σ2

e , for i = 2, . . . , p and λi = σ2
e for i = (p+1), . . . , n,
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and, (2.26) reduces to

−σ2
g

n− σ2
e

(
1

2sσ2
g + σ2

e

)
−

p∑
i=2

σ2
e

σ2
gλGi + σ2

e

− σ2
e

n∑
i=p+1

1
σ2

e


= −σ2

g

[
n− σ2

e

(
1

2sσ2
g + σ2

e

)
−

p∑
i=2

σ2
e

σ2
gλGi + σ2

e

− (n− p)

]

= −σ2
g

[
p− σ2

e

(
1

2sσ2
g + σ2

e

)
−

p∑
i=2

σ2
e

σ2
gλGi + σ2

e

]
. (2.27)

Using (2.23), the fourth term in (2.21) reduces to

tr
[
CV −1X(X ′V −1X)−X ′V −1C ′

]
= tr

[
σ2

gD1V
−11(1′V −11)−1′V −1σ2

gD
′
1

]

= σ4
g tr

[
D′

1D1V
−111′(2sσ2

g + σ2
e)
−1 1 1′

n

]/
(1′V −11) =

σ4
g(2sσ2

g + σ2
e)

n(2sσ2
g + σ2

e)
tr
[
D′

1D1V
−111′

]
=

σ4
g

n
tr

[
1
σ2

g

(V − σ2
eIn)V −111′

]
=

σ2
g

n
tr
[
(I − σ2

eV
−1)11′

]
=

σ2
g

n

[
n− tr σ2

e1
′V −11

]
=

σ2
g

n

[
n− σ2

e

n

2sσ2
g + σ2

e

]
,

i.e.,

tr
[
σ2

gD1V
−11(1′V −11)−1′V −1σ2

gD
′
1

]
= σ2

g −
σ2

gσ
2
e

2sσ2
g + σ2

e

=
2sσ4

g

2sσ2
g + σ2

e

. (2.28)

Finally, the fifth term in (2.21) is

−2tr
[
L′(X ′V −1X)−X ′V −1C ′

]
= −2tr

[
1(1′V −11)−1′V −1σ2

gD
′
1

]
= −2σ2

g

[
1′V −1D′

11
]
/(1′V −11) = −2σ2

g

[
21′V −11

]
/(1′V −11),

i.e.,
−2tr

[
L′(X ′V −1X)−X ′V −1C ′

]
= −4σ2

g . (2.29)

Using (2.21)-(2.29) we get

MSE(BLUP (w), d) =
(2ps− 3n)σ2

g + pσ2
e

n
+ σ2

e

p∑
i=2

1

λGi + σ2
e

σ2
g

. (2.30)

Theorem 2.1 The design d∗ with λGd∗ i = λ, i = 2, . . . , p is A-optimal in D0(p, n) for Best
Linear Unbiased Prediction of w = L′µ+g, where L′ = 1p and g is p×1 vector of g.c.a. effects.

Proof. From (2.30) we observe that it is enough to minimize
∑p

i=2
1

λGdi+
σ2

e
σ2

g

which is equivalent

to minimizing
∑p

i=2
1

λ∗Gdi
where λ∗Gdi = λGdi + σ2

e
σ2

g
.
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Now, from AM − HM inequality we have,
∑n

i=1
xi

n ≥ n∑n

i=1
x−1

i

where x1, x2, . . . , xn are n

positive real numbers. That is
∑n

i=1
1
xi
≥ n2∑n

i=1
xi

, equality being attained when x1 = x2 =
· · · = xn = x.

Now
∑p

i=1 λ∗Gdi = tr Gd + pσ2
e

σ2
g

= 2n + pσ2
e

σ2
g

and λGd1 = 2s which implies
∑p

i=2 λ∗Gdi =

2n− 2s + (p− 1)σ2
e

σ2
g

= 2(n− s) + (p− 1)σ2
e

σ2
g
.

Hence,
p∑

i=2

1
λ∗Gdi

≥ (p− 1)2

2(n− s) + (p− 1)σ2
e

σ2
g

, (2.31)

equality being attained if and only if λ∗Gd2 = λ∗Gd3 = · · · = λ∗Gdp = λ∗ which is equivalent to
λG2 = λG3 = · · · = λGp = λ.

Corollary 2.1 The design d∗ with a completely symmetric G-matrix is A-optimal in D0(p, n)
for Best Linear Unbiased Prediction of g.c.a. effects. Equivalently, a complete diallel cross
design with p lines and n crosses is A-optimal in D0(p, n).

3. Efficient Partial Diallel Cross Designs

In case of partial diallel cross experiment where n <
(p
2

)
, the optimal diallel cross design

which minimizes MSE(BLUP (w), d) over the class D0(p, n) = {d : sd1 = sd2 = · · · = sdp = s},
is not straightforward to identify as compared to that of complete diallel cross experiment.
Mukerjee (1997) has investigated the optimality of certain partial diallel crosses, under fixed
effects model, which are linked with a certain class of group divisible designs. Though his
results are on E-optimality, he also presented results on A-optimality in the saturated case. In
general, the E-optimal designs turn out to be highly efficient under the D- and A-optimality
criteria.

Let p = n1n2 where n1 ≥ 2, n2 ≥ 3. Partition the set {1, 2, . . . , p} into n1 mutually exclusive
and exhaustive subsets {S1, S2, . . . , Sn1} each of cardinality n2. Let

d∗ = {(i, j) : 1 ≤ i < j ≤ p and i, j ∈ Su for some u} . (3.1)

Then d∗ ∈ D(n1n2,
1
2n1n2(n2−1)). From Mukerjee (1997), for i = 1, . . . , n1(n2−1), λd∗i = n2−2

and for i = n1(n2 − 1) + 1, . . . , n1n2 − 1, λd∗i = 2(n2 − 1). Now since d∗ is E-optimal in
D(n1n2,

1
2n1n2(n2 − 1)) the following holds:

λd1 ≤ λd∗1 = n2 − 2, for d ∈ D(n1n2,
1
2
n1n2(n2 − 1)). (3.2)

Here λd1 ≤ λd2 ≤ · · · ≤ λd(p−1) are the non zero eigenvalues of the information matrix Cd =
Gd − 1

nsds
′
d, sd = (sd1, sd2, . . . , sdp) , p = n1n2, n = 1

2n1n2(n2 − 1). Also, the design d∗ is
A-optimal if and only if

∑p−1
i=1

1
λd∗i

= mind∈D(p,n)
∑p−1

i=1
1

λdi
.

Now it is easy to see that d∗ ∈ D0(p, n) and the non zero eigenvalues λdi of Cd, 1 ≤ i ≤ p−1,

are the same as the eigenvalues λGdi of Gd, 2 ≤ i ≤ p where d ∈ D0(p, n).
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Thus, using (2.31), a lower bound to
∑p

i=2
1

λGdi+
σ2

e
σ2

g

for d ∈ D0(p, n) is given by

p∑
i=2

1

λGdi + σ2
e

σ2
g

≥ (p− 1)2

2(n− s) + (p− 1)σ2
e

σ2
g

(3.3)

where s = n2 − 1.

The lower bound in (3.3) will be attained only when λGd2 = λGd3 = · · · = λGdp = 2(n−s)
p−1

i.e. d is a complete diallel cross design. But 2(n−s)
p−1 = (n2−1)(p−2)

p−1 = (n2 − 1) − n2−1
p−1 > n2 − 2

which is not possible since from (3.2) it follows that λGd2 ≤ n2 − 2 where λGd2 ≤ · · · ≤ λGdp

and d ∈ D0(p, n). Based on this fact the following theorem establishes a sharper lower bound
for

∑p
i=2

1

λGdi+
σ2

e
σ2

g

.

Theorem 3.1 Given the class D0(p, n) of partial diallel cross designs, where p = n1n2, n =
1
2n1n2(n2 − 1), and sd1 = sd2 = · · · = sdp = n2 − 1,

p∑
i=2

1

λGdi + σ2
e

σ2
g

≥ 1

n2 − 2 + σ2
e

σ2
g

+
(p− 2)2

(n2 − 1)(p− 3) + 1 + (p− 2)σ2
e

σ2
g

(= L(n1, n2,
σ2

e

σ2
g

), say) (3.4)

for all d ∈ D0(p, n).

Proof. Writing λGdi = λi, we obtain

p∑
i=2

1

λi + σ2
e

σ2
g

=
1

λ2 + σ2
e

σ2
g

+
p∑

i=3

1

λi + σ2
e

σ2
g

≥ 1

λ2 + σ2
e

σ2
g

+
(p− 2)2∑p

i=2 λi + σ2
e

σ2
g
(p− 1)− λ2 − σ2

e
σ2

g

, by AM-HM inequality

=
1

λ2 + σ2
e

σ2
g

+
(p− 2)2

(n2 − 1)(p− 2)− λ2 + (p− 2)σ2
e

σ2
g

, since
p∑

i=2

λi = (n2 − 1)(p− 2)

Let f(λ2) = 1

λ2+
σ2

e
σ2

g

+ (p−2)2

(n2−1)(p−2)+(p−2)
σ2

e
σ2

g
−λ2

. Then

f ′(λ2) = − 1(
λ2 +

σ2
e

σ2
g

)2
+

(p− 2)2{
(n2 − 1)(p− 2) + (p− 2)

σ2
e

σ2
g
− λ2

}2
= 0

⇔
(p− 2)2

(
λ2 +

σ2
e

σ2
g

)2

−
{

(n2 − 1)(p− 2) + (p− 2)
σ2

e

σ2
g
− λ2

}2

{
(n2 − 1)(p− 2) + (p− 2)

σ2
e

σ2
g
− λ2

}2 (
λ2 +

σ2
e

σ2
g

)2
= 0

⇔
{

(n2 − 1)(p− 2) + (p− 2)
σ2

e

σ2
g
− λ2 + (p− 2)λ2 +

σ2
e

σ2
g
(p− 2)

}
{

(p− 2)λ2 + (p− 2)
σ2

e

σ2
g
− (n2 − 1)(p− 2)− (p− 2)

σ2
e

σ2
g

+ λ2

}
= 0

⇔
{

(n2 − 1)(p− 2) + (p− 3)λ2 + 2(p− 2)
σ2

e

σ2
g

}
{(p− 1)λ2 − (n2 − 1)(p− 2)} = 0

10



Thus, the possible stationary values of the function f(λ2) are −p−2
p−3

[
2σ2

e
σ2

g
+ n2 − 1

]
and

(n−1)(p−2)
p−1 out of which only the second one is admissible.
Now,

f ′(λ2) =
(p− 3)(p− 1)

[
λ2 + p−2

p−3

{
n2 − 1 + 2

σ2
e

σ2
g

}] [
λ2 − (n2−1)(p−2)

p−1

]
{

(n2 − 1)(p− 2) + (p− 2)
σ2

e

σ2
g
− λ2

}2 (
λ2 +

σ2
e

σ2
g

)2

is negative when 0 < λ2 < (n2−1)(p−2)
p−1 and positive when λ2 > (n2−1)(p−2)

p−1 .

Thus f(λ2) is a decreasing function for 0 < λ2 < (n2−1)(p−2)
p−1 and since λ2 = (n2−1)(p−2)

p−1 >

n2 − 2, from (3.2), the minima is attained at λ2 = n2 − 2. Hence a sharper lower bound for
f(λ2) is

f(n2 − 2) =
1

n2 − 2 + σ2
e

σ2
g

+
(p− 2)2

(n2 − 1)(p− 3) + 1 + (p− 2)σ2
e

σ2
g

.

From (2.30) and (3.4), taking into account the given values of σ2
g , σ2

e , the efficiency of the
design d∗ ∈ D0(p, n) due to MSE(BLUP(w), d∗) is at least as large as eBLUP (n1, n2) where

eBLUP (n1, n2) =
n−1{(2ps− 3n)σ2

g

σ2
e

+ p}+ L(n1, n2,
σ2

e
σ2

g
)

n−1{(2ps− 3n)σ2
g

σ2
e

+ p}+
∑p

i=2{λGd∗ i + σ2
e

σ2
g
}−1

,

i.e. substituting the values of λGd∗ i, we have

eBLUP (n1, n2) =
n−1{(2ps− 3n)σ2

g

σ2
e

+ p}+ L(n1, n2,
σ2

e
σ2

g
)

n−1{(2ps− 3n)σ2
g

σ2
e

+ p}+ n1s{n2 − 2 + σ2
e

σ2
g
}−1 + (n1 − 1){2s + σ2

e
σ2

g
}−1

. (3.5)

The efficiency lower bound eBLUP (n1, n2) has been obtained for the designs in the practical
range n1 ≥ 2, n2 ≥ 3, p ≤ 30 and 0.01 ≤ σ2

e/σ2
g ≤ 1 with increments of 0.01. Of the 3800

possible cases, 99.6%, 91%, 77.8% and 51.9% of the designs have eBLUP greater than 0.8, 0.85,
0.9 and 0.95 respectively. Also, if we restrict to designs having n1 ≤ n2 then of the 2700 possible
cases, 100%, 100%, 98% and 72.1% of the designs have eBLUP greater than 0.8, 0.85, 0.9 and
0.95 respectively. For the sake of brevity, these efficiencies for the designs are not tabulated
here and they will be reported elsewhere.

Finally, note that Mukerjee (1997) has shown the A-optimality of d∗ for n2 = 3. Also,∑p
i=2{λGd∗ i + σ2

e
σ2

g
}−1 considered as a function of σ2

e
σ2

g
is continuous. Thus it can be shown that

there exists a neighbourhood N0, say, at σ2
e/σ2

g = 0 for which d∗ is A-optimal in D0(3n1, 3n1).
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