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Abstract
In accelerated life testing, the products are tested at high stress conditions and the results are
used to draw inferences about the product lifetime at the normal stress condition. The products
can fail due to one of the several possible causes of failure which need not be independent. In
this paper, we consider the accelerated life testing in the presence of dependent competing
risks. We propose suitable models using the subsurvival functions for the data arising from
such situations and carry out the estimation of the parameters involved in the models. Finally,
the method is applied to a real data.
Key words: Dependent competing risks, accelerated testing, maximum likelihood estimation,
stress levels, subsurvival function

1 Introduction

Engineers and management spend time and money in assessing new designs, identifying causes
of failure and trying to eliminate them so that the product produced is acceptable to the
consumer. Due to the longer lifetimes of the products, accelerated life testing is used to
determine the reliability of the products. In accelerated life testing, the products are tested
at high stress conditions and the results are used to draw inferences about the product at the
normal stress condition. We refer to Nelson (1990) for the examples of accelerated life testing.

A few examples where the system can fail due to more than one cause are: (1) fatigue
specimens of a certain sintered superalloy can fail from a surface defect or an interior one, (2)
in ball bearing assemblies, a ball or the race can fail, (3) in motors, the Turn, Phase or Ground
insulation can fail, (4) a cylindrical fatigue specimen can fail in the cylindrical portion , in the
fillet (or radius), or in the grip, (5) a semiconductor device can fail at a junction or at a lead
and (6) cars can fail due to electrical failure or mechanical failure. Hence, studying accelerated
lifetesting data in the presence of competing risks is essential.

The simplest accelerated model is described by the modification in the failure time due to
the application of stress or a treatment or an exposure. Let T0 be the failure time under the
normal condition. The failure time Ts under stress s is defined as T0/θ(s) for some fixed scaling
factor. Under this model, the survival function of Ts is S(t | s) = P (T0 > θ(s)t) = S0(θ(s)t)
and the hazard rate of Ts is h(t | s) = θ(s)h0(θ(s)t), where h0(t) is the hazard rate of T0. This
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can also be described by a regression model in terms of the logarithm of the failure times as
logTs = logT0 − logθ(s).

Denote Xs = logTs, X0 = logT0 and Ws = logθ(s). The accelerated model is Xs = X0−Ws

where X0 and Ws are independent. This model is similar to the random clipping model for
competing risks described in Cooke et al. (1993) and it is logical that the failures occur
sooner after the application of the stress. Parametric models under the accelerated failure
time assumptions are obtained by specifying the underlying distribution S0(.) and the form
of dependence on the stress s through θ(s). Some important special cases of the underlying
distribution include

S0(t) = exp(−ktα) (Weibull)

S0(t) =
1

1 + ktα
(log − logistic) (1)

and the lognormal where logTs has normal distribution. The commonly used models for θ(s)
are discussed in Nelson (1990) and Bagdonavicius and Nikulin (2002). Some of them are listed
below

θ(s) = exp(−β0 − β1s) (Log-linear)

θ(s) = α1s
β1 (Power rule model)

θ(s) = exp(β0 − β1/s) (Arrhenius model)

θ(s) = α1(
s

1 − s
)−β1 , 0 < s < 1 (Meeker-Luvalle model) (2)

An accelerated failure time model is generally proposed as an alternative to Cox’s propor-
tional hazards model. In practice, which one of the two is valid will depend on the operating
mechanisms. The only distribution that satisfies both the accelerated failure time and propor-
tional hazards condition is the Weibull distributions with underlying hazard rate of the form
h(t) = αktα−1.

There has been little done in modelling accelerated failure time in the presence of com-
peting causes of failure for the obvious reasons of the difficulty in modelling the joint ef-
fect of stress on both the failure time and the cause of failure. Consider a latent failure
model where k competing risks are acting simultaneously with hypothetical failure times
X1, X2, . . . , Xk, which are assumed to be independent. The data consist of the minimum
of these hypothetical times T = min(X1, X2, . . . , Xk), and an indicator function δ giving
the cause of the failure, (δ = j if T = Xj). Trivially, the reliability of the system will be
S(t) = P [T > t] =

∏k
i=1 P [Xi > t]. Let v1 < v2 < . . . < vm be m stress levels at which the

accelerated life test is conducted. At stress vs, let Xsj denote the failure time under the jth

risk, j = 1, 2, . . . , k and s = 1, 2, . . . ,m. Under the above latent failure time model, Nelson
(1990) gave the maximum likelihood estimators of the parameters at normal stress for each
risk. He also worked out the maximum likelihood estimator of the product life that would
result if certain failure modes were eliminated by product design. He also discussed graphical
procedures for fitting a parametric distribution at each stress level.
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Klein and Basu(1981, 1982a, 1982b) studied accelerated life times when the latent failure
times have exponential distribution or Weibull with equal and unequal shape parameters in the
presence of censoring. They assumed that the component lifetimes are independent and each
lifetime is exponentially distributed with survival function

P [Xsj > x] = exp(−λsjx), x > 0, λsj > 0, j = 1, 2, . . . , k, s = 1, 2, . . . ,m.

They further assumed that the stress and component life distributions are related by the power
rule model, λsj = exp(Aj)v

Bj
s , where Ai, Bj are constants to be estimated from the accelerated

life test.
For an item put to test at stress vs we observe Ys = min(Xs1, Xs2, . . . , Xsk) and the corre-

sponding indicator function which identifies the cause of failure.
Under Type I censoring , ns items are put to test at stress level vs, and testing is continued

until fixed time τs. The τ ′ss may differ from one stress level to another to allow for increased
testing time at low stress levels.

Let rs be the number of items failing before τs. Let Ys1, Ys2, . . . , Ysrs , denote the corre-
sponding failure times. That is, Ys` = min(Xs1`, . . . , Xsk`) where Xsj` is the lifetime of the
jth component of the `th system which failed prior to time τs at stress vs. Let msj denote the
number of items which failed doe to failure of jth component. Let rs =

∑k
j=1 msj The total

time on test is given by Ts =
∑rs

`=1 Ys` + (ns − rs)τs.

The likelihood equations are given by

Âj = log(
m∑

i=1

mij) − log(
m∑

i=1

Tiv
Bj

i )

(
m∑

i=1

mij log vi)(
m∑

i=1

Tiv
Bj

i ) = (
m∑

i=1

mij)(
m∑

i=1

Tiv
Bj

i log vi)

These estimators are then used to estimate the parameters at used or normal conditions. They
also consider the case for Type II censoring.

Starting from Bernoulli (1760), there has been debate about how the competing risks data
are to be modelled. Because of the inherent identifiability problems associated with the latent
failure times, in the last few years researchers have tried to analyse the data in terms of the
subsurvival functions or cause-specific hazards (Kalbfleisch and Prentice, 1980, Deshpande,
1990 and Aras and Deshpande, 1992). For a recent review of the competing risks literature
see Crowder (2001). In the situations where the failure time T and cause of failure δ are
independent, it is straight forward to model the survival function S(t) = P (T > t) using
proper parametric distribution and a multinomial distribution for δ. This then provides the
model for the subsurvival function Sj(t) = P (T > t, δ = j) = P (δ = j)S(t). In fact, inferences
can be drawn separately for T and δ. The situations where the assumptions of independence
of T and δ is not justifiable, it is essential to model the subsurvival functions directly (see
Deshpande, 1990, Aras and Deshpande, 1992 and Dewan et al., 2004). There has been attempt
in using the proportional hazards model for the cause-specific hazards. It might be just simpler
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to propose models for the cause-specific hazards and for the survival function of T which can
then provide the subsurvival function. This approach has been suggested by Crowder (2001).
In such cases, the subsurvival functions need not be in a nice analytic form. Other approaches
are to specify the conditional distribution of T given δ or the conditional distribution of δ given
T.

To the best of our knowledge accelerated life testing in the presence of competing risks
has been studied only under the latent failure time models. In the present paper, we attempt
to combine the competing risks models and accelerated failure time models to propose some
likely models for the accelerated life test in the presence of dependent competing risks. We also
discuss estimation of the parameters involved in the proposed models.

One way to define models for competing risks is to assume that the cause-specific hazards
with parameters which depend on stress as well as risk. Depending on the situation in hand,
one can build up the appropriate model possibly using the guide lines given in section 2. In
section 3, we discuss the estimation of the parameters. In section 4, we reanalyse a part of the
data given in Klein and Basu (1981). We conclude in the last section.

2 Models

In modelling the competing causes in the accelerated life tests, there are two distinct situations:
one when the causes of failure remain the same at all the stresses, the other when the causes
of failure are affected by the stress in the sense that the probability of failure due to a specific
cause depends on the stress. Let (Ts, δs) denote the failure time and the cause of failure at
stress vs, s = 1, 2, . . . ,m and (T0, δ0) denote these variables at the normal stress condition
denoted by v0. Without loss of generality, we assume that v0 < v1 < . . . < vm.

2.1 Stress does not change the causes of failure

In case when the stress does not change the cause of failure, we assume that δs, cause of
failure at the stress vs does not depend on vs, that is δs and δ0 are identical in distribution.
This implies that P (δs = δ0) = 1 and also that P (δs = j) = P (δ0 = j) = pj for all vs and∑k

j=1 pj = 1.

A natural extension of the simplest accelerated model to the competing risks set-up is to
allow the shift function to vary with the cause as well as stress. The subsurvival function at
stress vs for failure mode j = 1, 2, ..., k, and t > 0 can be defined as

Sj(t | vs) = P (Ts > t, δs = j)

= P (T0 > θ(vs)t, δ0 = j) = S0j(θ(vs)t), (3)

where S0j(t) = P (T0 > t, δ0 = j) is the subsurvival function corresponding to the cause j at
the normal stress. Let the overall survival function at stress vs be denoted by S(t | vs) and at
the normal stress by S0(t). Then S(t | vs) =

∑k
j=1 S0j(θ(vs)t) = S0(θ(vs)t). Let fj(t | vs) and
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hj(t | vs) denote the subdensity function and the cause-specific hazard rate for cause j and
f(t | vs) and h(t | vs) denote the overall density function and the hazard rate at the stress level
vs.

Further, when the failure time and the cause of failure are also independent at all stresses,
S0j(t) = pjS0(t) and Sj(t | vs) = pjS0(θ(vs)t). Hence, the standard underlying distributions
used in accelerated life test can be employed for the survival function of the failure time. The
cause of failure can be studied separately.

In case when the failure time and cause are not independent, the model proposed by Dewan
et al. (2004) to specify the subsurvival function at the normal stress when there are only two
causes of failure can be used

S(t | vs) = S0(θ(vs)t) (4)

S1(t | vs) = [pS0(θ(vs)t)]α (5)

S2(t | vs) = S0(θ(vs)t) − [pS0(θ(vs)t)]α. (6)

When the shift function varies with the cause also, the overall survival function does not
have a simple form as given above. Due to the lack of the models proposed in terms of the
subsurvival functions, it is difficult to say more here.

2.2 Stress changes the causes of failure

Here, we assume that P (δs = j) = pj(vs) so that the probability of failure due to cause j

depends on stress. Note that
∑k

j=1 pj(vs) = 1 at any stress vs. It is also implicit here that the
stress does not introduce new causes of failure but it might eliminate some cause. If some cause
has the probability zero at all the stresses except at the normal stress then it will never be
identified. So, we assume that pj(vs) is nonzero at least at some stress for all j. One way and
may be the best way to model in such situations is to specify the conditional survival functions
of the type

S(t | vs, j) = P (Ts > t | vs, δs = j) (7)

If Ts and δs are not independent then the equation (7) is defined as

S(t | vs, j) = P (T0 > θ(vs, j)t) = S0(θ(vs, j)t), (8)

which is the survival function at normal stress with shift θ(vs, j). Note that the shifting
parameter is a function of stress as well as the cause of failure. The unconditional subsurvival
function

Sj(t | vs) = pj(vs)S0(θ(vs, j)t) (9)

and the overall survival function is the mixture of such k components.
If Ts and δs are independent then

S(t | vs, j) = P (Ts > t | vs) = P (T0 > θ(vs)t) = S0(θ(vs)t), (10)
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and the unconditional subsurvival function is Sj(t | vs) = pj(s)S0(θ(vs)t). Further, if δs does not
depend on vs then Sj(t | vs) = pjS0(θ(vs)t) which is the same as that in the earlier subsection.

A general form of the shift function which can be used here (see equation 2.3, page 2077,
Klein and Basu, 1981) is

θ(vs, j) = exp{
kj∑
l=0

βjlθjl(vs)}, j = 1, 2, . . . , k, s = 1, 2, . . . ,m, (11)

where θj0(vs) = 1 and θj1(vs), . . . , θjkj
(vs) are kj non-decreasing functions of vs. The power

model with θ(vs, j) = βj0v
βj1
s , the Arrhenius model with θ(vs, j) = exp{βj0 − βj1/vs}, and the

Eyring model with θ(vs, j) = v
βj2
s exp{βj0−βj1/vs} are special cases of the above shift function.

The probabilities pj(vs) can be modelled using any standard distribution like logistic dis-
tribution so that pj(vs) = eµ+γvs/(1+ eµ+γvs). Depending on whether γ is positive or negative,
the effect of stress on causes can be studied. The survival function S0(t) can assume any of the
standard functional form used in the accelerated life tests.

In general, it is easy to see that when the effect of stress is multiplicative independence
of the failure time and failure cause at the normal stress level implies independence at higher
stresses and vice-versa.

3 Estimation

Estimation procedure will depend on the distributional assumption regarding the failure time
at the normal stress. Below, we give an expression for likelihood function which can be used
in various situations.

Let n independent and identical copies of systems be put to test and out of these ns systems
are put at stress level vs, s = 1, ...,m. Let (Tsi, δsi), i = 1, 2, ..., ns be the data obtained from
ns i.i.d. copies put on test at stress vs. Note that n =

∑m
s=1 ns. Let Θ denote the parameters

involved in the accelerated model and (t, δ) denote the data.
The likelihood function in terms of the subdensity functions is given by

L1(t, δ; Θ) =
m∏

s=1

ns∏
i=1

k∏
j=1

fj(tsi | vs)I(δsi=j) (12)

and the likelihood function in terms of the cause-specific hazards is given by

L2(t, δ; Θ) =
m∏

s=1

ns∏
i=1

k∏
j=1

hj(tsi | vs)I(δsi=j)exp(−
∫ tsi

0

k∑
j=1

hj(u | vs))du. (13)

In case an independent right censoring is imposed, the likelihood contribution from the
censored observation at stress vs is S(t | vs) = exp(−

∫ t
0 h(u | vs)du) and the above likelihood

function can be used directly since the censoring intensity does not include the parameters of
interest.
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3.1 Stress does not change the causes of failure

In case if the failure time and the cause of failure are independent then the likelihood function
L1(t, δ; Θ) simplifies to

L(t, δ; Θ) =
m∏

s=1

ns∏
i=1

k∏
j=1

p
I(δsi=j)
j f(tsi | vs)

=
m∏

s=1

ns∏
i=1

k∏
j=1

p
I(δsi=j)
j h(tsi | vs)exp(−

∫ tsi

0
h(u | vs))du. (14)

Under this model, the standard theory of estimating the survival function in the accelerated
life testing applies (Nelson, 1990).

Consider the case when failure time and the cause of failure are dependent and there are
two risks operating in the population. Let the accelerated model be specified by equations
(4)-(6) with S0(t) = exp(−λt). The likelihood function is given as

L1(t, δ; Θ) =
m∏

s=1

ns∏
i=1

(pααλθ(vs)exp(−αλtsiθ(vs)))I(δsi=1)

(λθ(vs)exp(−λtsiθ(vs)) − (pααλθ(vs)exp(−αλtsiθ(vs)))I(δsi=2).

The shift function θ(vs) can be appropriately specified according to the equation (2). Numerical
method may be required to obtain the maximum likelihood estimates of the parameters.

3.2 Stress changes the causes of failure

Let us consider the model specified by (9) and the shift function given by Arrhenius model
θ(vs, j) = exp{βj0 − βj1/vs}, for j = 1, 2, . . . , k and s = 1, 2, . . . ,m. Here,

Sj(t|vs) = pj(vs)exp(−
k∑

l=1

exp{βl0 − βl1/vs}tα) (15)

fj(t|s) = pj(vs)(
k∑

l=1

exp{βl0 − βl1/vs})αtα−1exp(−
k∑

l=1

exp{βl0 − βl1/vs}tα).

Then, the likelihood function (13) is given by

L1(t, δ; Θ) =
m∏

s=1

ns∏
i=1

k∏
j=1

[fj(tsi | s)]I(δsi=j).

The likelihood factorises into two parts - function of pj(vs) and function of (α, β0j , β1j) for
j = 1, 2, . . . , k and s = 1, 2, . . . ,m. Differentiating the log-likelihood function with respect to
β0j , β1j , and α, following likelihood equations are obtained

β0j = log

[ ∑m
s=1 nsj∑m

s=1

∑ns
i=1 I(δsi = j)tαsi exp{−β1j/vs}

]
,
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m∑
s=1

nsj

vs
=

m∑
s=1

1
vs

ns∑
i=1

I(δsi = j)tαsi exp{β0j − β1j/vs},

α = n

[
m∑

s=1

ns∑
i=1

tαsi log tsi(
k∑

l=1

exp{β0l − β1l/vs} −
m∑

s=1

ns∑
i=1

log tsi

]−1

,

where nsj =
∑ns

i=1 I(δsi = j).
Solving the above equations, the maximum likelihood estimates of the parameters are ob-

tained. The probabilities pj(vs) can be modelled appropriately as a function of stress and the
estimators can be obtained using the second part of the likelihood, so as the probabilities at
the normal stress levels can be inferred.

As a special case, take

p1(vs) = P (δ = 1 | vs) =
exp(µ + ηvs)

1 + exp(µ + ηvs)
.

The maximum likelihood estimators of µ and η are obtained by maximising the first part of
the likelihood in the usual way. The log-likelihood is

L(δ; p1, p2, p3) =
m∑

s=1

ns1log(p1(vs)) + ns2log(1 − p1(vs))

= n1µ + α
m∑

s=1

ns1vs −
m∑

s=1

nslog(1 + exp(µ + ηvs)).

Now, it is straight forward to obtain the maximum likelihood estimators of µ and η. An
estimate of the probability of failures due to risk 1 at normal stress is obtained by allowing
stress vs = v0.

All the standard procedures for testing parameters and for finding confidence intervals are
valid.

4 Illustration

We reanalyse the data given in Klein and Basu (1981) by considering the model (15) with
α = 1. Here, we consider three stress levels v0 = (190+273.16)/1000, v1 = (220+273.16)/1000,

and v2 = (240 + 273.16)/1000. There are three possible types of failures corresponding to the
distinct parts of insulation system namely turn (risk 1), phase (risk 2) and ground (risk 3).
We also assume that a priori the number of failures due to each cause is known. Here, the
stress level v0 is the normal stress. Equal number of units (ns = 20) are tested at each stress
level. Table 1 gives the proportion of failures due to each cause at various stress levels. Table
2 gives the maximum likelihood estimates of the parameters (β01, β02, β03, β11, β12, β13). Their
respective variances are (1.28, 0.19, 2.13, 0.31, 0.47, 0.49) and the covariances between β0j and
β1j are (0.63, 0.96, 1.21), respectively for j = 1, 2, 3. Note that the covariance between the
extomators of β0j and β1j′ is zero for j 6= j′.
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Figures 1a, 1b and 1c show the comparison of the empirical estimates of the subsurvival
functions corresponding to turn failure at stress levels v1, v2 and v0, respectively. Similarly,
Figures 2a-2c and 3a-3c show the comparison of the empirical estimates of the subsurvival
functions corresponding to phase and ground failures at stress levels v1, v2 and v0, respectively.
The comparison of overall survival function at various stress levels is shown in Figures 4a-4c. It
is clear from figures that the fitted distributions match the corresponding empirical functions
in almost all the cases. The estimates of the parameters using stress levels v1 and v2 are used
to estimate the subsurvival functions at the normal stress. It can be seen from Figures 1c, 2c,
3c and 4c that the estimated subsurvival functions are close to the empirical functions obtained
using the data from the normal stress.

5 Discussion

The present paper proposes the models to analyse the accelerated failure data in the presence
of dependent competing risks. To the best of our knowledge this approach has been described
in detail for the first time here. We have also suggested procedures for estimating the subsur-
vival functions under normal stress in the presence of accelerated testing when the risks are
dependent. In the illustration, the proportions of failures due to various causes are assumed to
be known. In general, when the units are tested at several stress levels, unlike just two stress
levels in our iluustration, it is possible to model the pj(s) for j = 1, 2, . . . , k and use it to infer
the proportions at the normal stress level.

The proposed methods can also be used for any form of subdensity function, stress function,
and adjusted to include step-stress models and also situations where stress is time dependent.

In practical situations, it is likely that the stress affects some competing causes and increase
in stess levels decreases the subsurvival function corresponding to a specific cause. We are
currently working on nonparametric estimation of subsurvival functions under such ordered
restriction.
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Table 1: Proportion of failures due to the three causes at various stress levels
Stress ns Turn Phase Ground

v0 20 0.4 0.25 0.35
v1 20 0.55 0.25 0.20
v2 20 0.5 0.35 0.15
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Table 2: Maximum likelihood estimates of β0 and β1 parameters for the three causes
Cause β0 β1

Turn 3.087 4.696
Phase 3.262 4.911
Ground -1.302 2.522
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Figure 1a: Empirical and fitted subsurvival functions 
corresponding to the cause turn at the stress v1
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Figure 2a: Empirical and fitted subsurvival functions 
corresponding to the cause phase at the stress v1
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Figure 1b: Empirical and fitted subsurvival functions 
corresponding to the cause turn at the stress v2
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Figure 2b: Empirical and fitted subsurvival functions 
corresponding to the cause phase at the stress v2

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 200 400 600 800 1000 1200 1400

time

Su
bs

ur
vi

va
l f

un
ct

io
n

Empirical

Fitted

 

16



Figure 1c: Empirical and fitted subsurvival functions 
corresponding to the cause turn at the stress v0
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Figure 2c: Empirical and fitted subsurvival functions 
corresponding to the cause phase at the stress v0
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Figure 3a: Empirical and fitted subsurvival functions 
corresponding to the cause ground at the stress v1
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Figure 4a: Empirical and fitted overall survival function at the 
stress v1
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Figure 3b: Empirical and fitted subsurvival functions 
corresponding to the cause ground at the stress v2
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Figure 4b: Empirical and fitted overall survival function at the 
stress v2
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Figure 3c: Empirical and fitted subsurvival functions 
corresponding to the cause ground at the stress v0
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Figure 4c: Empirical and fitted overall survival function at the 
stress v0
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