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Abstract

For every positive real number p that lies between even integers 2(m − 1) and 2m

we demonstrate a matrix A = [aij ] of order 2(m + 1) such that A is positive definite

but the matrix with entries |aij |p is not.



1 Introduction

Let A = [aij ] be an n × n complex matrix, and let |A|◦ = [|aij |] be the matrix obtained by

replacing each entry of A by its absolute value. Suppose A is positive semidefinite. When

n = 2, this is equivalent to the conditions a11 ≥ 0, a22 ≥ 0, and |a12|2 ≤ a11a22. This shows

that |A|◦ is also positive semidefinite. A small calculation with determinants shows that if A

is a 3 × 3 positive semidefinite matrix, then so is |A|◦. When n = 4, this is no longer true

as can be seen from the instructive example [5, p.462]

A =




1 1/
√

2 0 −1/
√

2

1/
√

2 1 1/
√

2 0

0 1/
√

2 1 1/
√

2

−1/
√

2 0 1/
√

2 1.




. (1)

If A = [aij ] and B = [bij] are two n×n matrices, we denote by A ◦B their Hadamard

product (entrywise product) [aij bij ]. By a famous theorem of I. Schur, if A and B are

positive semidefinite, then so is the product A ◦ B. As a consequence, all Hadamard powers

A◦m = [am
ij ] of a positive semidefinite matrix A share the same property. Obviously, the

matrix A = [aij ] is positive semidefinite along with A. Hence by Schur’s theorem all matrices[
|aij |2m

]
, m = 0, 1, 2, . . . , are positive semidefinite.

Let p be any nonnegative real number. If aij ≥ 0, we use the notation A◦p for the

matrix [ap
ij]. If aij are complex numbers we let |A|◦p◦ stand for the matrix [|aij |p].

The following fact is known. It seems remarkable and is the object of this note.

Theorem 1. Let p be a positive real number not equal to any even integer. Then there exists

a positive integer n, and an n× n matrix A such that A is positive semidefinite but |A|◦p◦
is not.

Though this will be subsumed in the ensuing discussion, the reader may check that for the

matrix A given in (1), none of the matrices |A|◦p◦ is positive semidefinite for 0 < p < 2.

Theorem 1 can be derived from two other theorems of wider range and greater depth. The

first of them addresses the most general question of the type we are discussing. Let ϕ be

any function of a complex variable. When does ϕ have the property that whenever [aij ] is

a positive semidefinite matrix (of any size n ), then so is the matrix [ϕ(aij)]? The answer,

following from the work of I. J. Schoenberg [9], C. Herz [4], and W. Rudin [8] is that ϕ satisfies

this (rather stringent) requirement if and only if it has a series expansion of the form

ϕ(z) =
∞∑

k,`=0

bk`z
kz`, (2)

with coefficients bk` ≥ 0.

It is not difficult to see that if ϕ(z) = |z|p, then ϕ can be expressed in this way if and

only if p = 2m. Theorem 1 follows as a corollary.
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The second theorem from which we can derive Theorem 1 concerns positive definite func-

tions. A function f : R → C is said to be positive definite if for all n and for all choices

of points x1, x2, . . . , xn in R the matrix [f(xi − xj)] is positive semidefinite. Continuous

positive definite functions with the normalisation f(0) = 1 are characteristic functions of

probability distributions and have been extensively studied in that context. It is known that

if a positive definite function f is analytic on an open interval of the form (−a, a), then it

is analytic on R. See [6]. So, if g is a positive definite function such that g(x) = f(x) for

−a < x < a, then g = f everywhere on R.

The function f(x) = cos x is positive definite and the general theorem we have just cited

can be used to show that |cos x|p is a positive definite function if and only if p = 2m. See [2,

Theorem 2.2]. We remark here that the entries of the matrix (1) are aij = cos (xi − xj) with

x1 = 0, x2 = π/4, x3 = π/2, and x4 = 3π/4.

We carry further the idea behind this example to obtain another proof of Theorem 1. The

merits of this proof are that it is constructive, does not depend on deeper general theorems,

gives more information about the dependence of n on p, and suggests further questions. Our

main result is the following.

Theorem 2. Let n = 2m be an even integer, m = 2, 3, . . . , and for 0 ≤ j ≤ n − 1 let

xj = j π
n . Let A be the n×n matrix with entries aij = cos (xi −xj). Then the matrix |A|◦p◦

is not positive semidefinite for any p in the range 2(m − 2) < p < 2(m − 1).

2 The Proof

To avoid cluttering the proof of our theorem we record separately the principal ideas and facts

that we use. A circulant matrix C is one whose rows are cyclic permutations of its first row.

Thus

C =




c0 c1 . . . cn−1

cn−1 c0 . . . cn−2

. . . . . .

. . . . . .

. . . . . .

c1 c2 . . . c0




.

Let ω = e2πi/n. Then the eigenvalues of C are given by the formula

λj = c0 + c1ω
j + c2ω

2j + · · · + cn−1ω
(n−1)j , (3)

0 ≤ j ≤ n − 1.

The following lemma is well-known. See [7, p46] for a more general statement. For the

reader’s convenience we outline a quick proof.
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Lemma 1. Let λ0 > λ1 > · · · > λn > 0 be any positive real numbers and for x ∈ R let

f(x) = a0λ
x
0 + a1λ

x
1 + · · · + anλx

n,

where aj ∈ R, a0 6= 0. Then f has at most n zeros on the real line.

Proof We use induction. When n = 1, we have

f(x) = a0λ
x
0 + a1λ

x
1 = λx

1 (a0µ
x
0 + a1) = λx

1g(x),

where g(x) = a0µ
x
0 + a1, and µ0 = λ0/λ1. Since µ0 6= 1 and a0 6= 0, g(x) has at most one

zero. Since f(x) = 0 if and only if g(x) = 0, the statement of the Lemma is true for n = 1.

Suppose it is true for some n ≥ 1. Then consider

f(x) = a0λ
x
0 + a1λ

x
1 + · · · + an+1λ

x
n+1 = λx

n+1g(x),

where g(x) = a0µ
x
0 + a1µ

x
1 + · · · + anµx

n + an+1, and µj = λj/λn+1. Note that µ0 > µ1 >

· · · > µn > 1. Differentiating, we get

g′(x) = b0µ
x
0 + b1µ

x
1 + · · · + bnµx

n,

where bj = aj log µj . We have b0 6= 0. So, by the induction hypothesis g ′ has at most n

zeros. By Rolle’s theorem g has at most n + 1 zeros. The functions f and g are zero at

exactly the same points. �

We will use the vanishing of a special trigonometric sum. This is given by

Lemma 2. Let p and n be positive integers such that p < n and p + n is even. Then

n−1∑

j=0

(−1)j

(
cos

jπ

n

)p

= 0. (4)

Proof Let ω = eπi/n. Then ωn = −1, and we have

n−1∑

j=0

(−1)j

(
cos

jπ

n

)p

=

n−1∑

j=0

ωnj

(
ωj + ω−j

2

)p

=
1

2p

n−1∑

j=0

ωnj
p∑

k=0

(
p

k

)
ωj(p−k)(ω−j)k

=
1

2p

p∑

k=0

(
p

k

) n−1∑

j=0

ωj(n+p−2k)

=
1

2p

p∑

k=0

(
p

k

)
Sk, (5)

where

Sk =
n−1∑

j=0

ωj(n+p−2k), 0 ≤ k ≤ p. (6)
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Now note that n + p − 2k is an even number smaller than 2n. So ω is a primitive root of

unity of order 2n. Hence Sk = 0 for all 0 ≤ k ≤ p. �

Proof of Theorem 2 For any real number p, the matrix |A|◦p◦ in the statement of the

theorem is a Hermitian circulant matrix. The entries on its first row are

1,
∣∣∣cos

π

n

∣∣∣
p
,

∣∣∣∣cos
2π

n

∣∣∣∣
p

, . . . ,

∣∣∣∣cos
(n − 1)π

n

∣∣∣∣
p

.

Since n = 2m, one of the n th roots of unity is −1. So one of the eigenvalues of the matrix

|A|◦p◦ is

f(p) = 1 −
∣∣∣cos

π

n

∣∣∣
p
+

∣∣∣∣cos
2π

n

∣∣∣∣
p

− · · · −
∣∣∣∣cos

(n − 1)π

n

∣∣∣∣
p

. (7)

Using the relation cos θ = cos (π − θ), this can be expressed also as

f(p) = 1 − 2
(
cos

π

2m

)p
+ 2

(
cos

2π

2m

)p

− · · · + (−1)m−12

(
cos

(m − 1)π

2m

)p

. (8)

An application of Lemma 1 shows that the function f(p) is zero for at most m− 1 values of

p. On the other hand from the expression (7) and Lemma 2 we see that f(p) is zero when

p = 2, 4, . . . , 2(m − 1). These are then all the zeros of f(p). At p = ∞, f(p) is equal to 1.

The last sign change of f(p) occurs at p = 2(m−1). Thus f(p) is positive for p > 2(m−1),

and negative for 2(m − 2) < p < 2(m − 1).

We have shown that one of the eigenvalues of the n × n matrix |A|◦p◦ is negative when

2(m − 2) < p < 2(m − 1), and hence this matrix cannot be positive semidefinite.

�

3 Remarks

• An interesting question raised by our analysis is the following. Let p be a positive real

number not equal to any even integer. What is the smallest n for which there exists an

n × n positive semidefinite matrix A such that |A|◦p◦ is not positive semidefinite?

• Lemma 2 is included in a more general result given as Formula (18.1.8) on page 257 of

[3]. This says that if n is any positive integer, then

n−1∑

j=0

(−1)j

(
cos

jπ

n

)p

=

{
1
2 [1 − (−1)n+p] , p = 0, 1, . . . , n − 1

n/2n−1, p = n.
(9)

The case p = n , with a proof similar to ours, is given in [10]. We give here a proof of

all the cases for completeness. Proceed as in the proof of our Lemma 2 upto (5) and (6).

Let p = n. Then

Sk =

n−1∑

j=0

ωj2(n−k).
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This sum is zero for 0 < k < n and it is equal to n when k = 0 or n. This proves (9)

when p = n. Let p < n. The only case left to consider is that when n + p is odd. In

this case

Sk =
1 − ωn(n+p−2k)

1 − ωn+p−2k
=

2

1 − ωn+p−2k
, (10)

since ωn = −1 and n + p − 2k is odd. Using the identity

1

1 − x
+

1

1 − 1/x
= 1, (x 6= 1)

we have
1

1 − ωn+p−2k
+

1

1 − ωn+p−2(p−k)
= 1.

So, from (10) we have

Sk + Sp−k = 2 for 0 ≤ k ≤ p.

Note also that when p is even we have from (10)

Sp/2 =
2

1 − ωn
= 1.

Thus when n + p is odd we have

p∑

k=0

(
p

k

)
Sk =

p∑

k=0

(
p

k

)
= 2p,

and the expression (5) reduces to 1. This establishes (9) in all cases.

• Positivity preserving maps of various kinds have been studied extensively in the last few

decades. The recent book [1] describes some of the major results.
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