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Abstract. In this paper, we study a model which exhibits burst-type features such

as ECG signals, under certain condition. The model is proposed by Sharma and Sircar

(2001) and we call it burst-type signals. It is a generalization of the fixed amplitude

sinusoidal model. The amplitudes take a certain deterministic function. We assume

that the error random variables are independent and identically distributed. The least

square method is proposed to estimate the unknown parameters. We show that the

least squares estimators are strongly consistent and find their asymptotic distribution

as Gaussian. Some numerical results based on simulations results are reported for

illustrative purposes.
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1. Introduction

Estimation of parameters of a parametric model is of prime interest in almost all

problems involved in statistical modelling. In signal detection, once the model in decided,

the next step is the estimation of parameters from the given set of observations. The

present article addresses the estimation problem of parameters in the following model.

y(t) =

q∑

i=1

Ai exp[bi{1 − cos(αt+ ci)}] cos(θit+ φi) + e(t), t = 1, . . . , N, (1)

where for i = 1, . . . , q, Ai is the amplitude of the carrier wave; bi and ci are the gain

part and the phase part of the exponential modulation signal; θi is the carrier angular

frequency, α is the modulation angular frequency and φi is the phase corresponding to

the carrier angular frequency. The number of components present in the signal is denoted

by q. The error random variables {e(t)} are assumed to be independent and identically
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distributed (i.i.d.) with mean zero and finite variance. The model (1) is a sinusoidal

model with time-dependent amplitude like
∑q

i=1 si(t) cos(θit + φi) + e(t). Here si(t) is

taking the particular exponential form exp[bi{1− cos(αt+ ci)}] multiplied by a constant

Ai. The modulation angular frequency α is assumed to be same through all components

which ensures the presence of burst like signal.

The model (1) is proposed by Sharma and Sircar (2001). The authors used the

complex-valued model corresponding to (1). In real life, we mostly deal with real-valued

observations, hence it is suggested in Sharma and Sircar (2001) to estimate the imagi-

nary part of each of them using Hilbert transform. Then, one has complex-valued data

(as observed, estimated by Hilbert transform) and the techniques of complex model can

be implemented. Sharma and Sircar (2001) used the proposed model in describing a

segment of real electrocardiograph (ECG) signal. In an earlier article, Mukhopadhyay

and Sircar (1996) proposed a similar kind of model to analyze an ECG signal. Actually it

is the same model as (1) with a different representation of parameters. Also some of the

parameters themselves are related with certain relationships. In both these papers the

authors analyzed ECG data using some ad-hoc estimation procedures of the unknown

parameters. Here we consider the particular form as the real model given in (1) (real in

the sense of carrier part). The maim aim of this paper is to provide a proper estimation

procedure of the unknown parameters and study their properties in a systematic manner.

ECG signals like many other signals exhibit burst-type features. Similar structures

have been observed in the plot of data generated by equation (1) for different set of

values. For an example, see Fig. 2 in section 4. Model (1) was proposed to employ

one or more amplitude modulated sinusoidal signals with the aim of modelling different

features of an ECG output signal separately. Following Sharma and Sircar (2001), we

term (1) as the burst-type signal. For another type of amplitude modulated sinusoidal

model, the readers are referred to Sircar and Syali (1996) and Nandi, Iyer and Kundu

(2004).

We discuss the problem of parameter estimation of the burst-type signal in presence

of i.i.d. noise. We implement the least square method for estimation and study the

properties of the estimators. It is known that the constant amplitude multiple sinusoidal

model does not satisfy the sufficient conditions of Jennrich (1969) or Wu (1981) for

the LSEs to be consistent. Model (1), being a more complicated general model does

not satisfy them. However, the special structure of the model allows us to establish

the strong consistency and the large sample distribution of the LSEs of the unknown

parameters.
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The paper is organized as follows. In section 2, we state the asymptotic properties

of the LSEs for single burst-type signal (q = 1). The results for general q are discussed

in section 3. Numerical results are presented in section 4 and we conclude the paper in

section 5. All proofs are provided in Appendix A.

2. Asymptotic Distribution of LSEs for Single Burst-Type Signal

In this section, we consider the case when the number of signals q = 1 and write the

model (1) as

y(t) = A exp[b{1 − cos(αt+ c)}] cos(θt+ φ) + e(t), t = 1, . . . , N. (2)

It is assumed that |b| ≤ J , therefore, eb cos(αt) ≤ e|b| ≤ eJ = K(say) a finite constant, ∀ t
and the frequencies α, θ ∈ (0, π); the phases c, φ ∈ (−π, π); A ∈ R is a finite constant;

and e(t) is i.i.d. with mean zero and finite variance σ2. Thus, {y(t)} is a sequence of mean

non-stationary random variables. Our problem is to estimate the unknown parameters,

A, b, α, c, θ and φ from a given sample of size N .

Define the parameter vector η = (A, b, α, c, θ, φ) and η0 denote the true value of η.

The LSE of η, η̂ for the model (2) minimizes the following residual sum of squares

Q(η) =
N∑

t=1

[
y(t) − A exp[b{1 − cos(αt+ c)}] cos(θt+ φ)

]2

, (3)

with respect to η. In the following we first state the consistency property of η̂ in the

following Theorem 2.1.

Theorem 2.1. Let η0 = (A0, b0, α0, c0, θ0, φ0), the true parameter value, be an interior

point of the parameter space {(−∞,∞)×(− log(K), log(K))×(0, π)×(−π, π)×(0, π)×
(−π, π)}, where K is a large positive real number, so that exp{|b0|} < K. If the error

random variables e(t)s are i.i.d., then η̂, the LSE of η0, is a strongly consistent estimator

of η0.

Proof of Theorem 2.1: See in Appendix A.

In rest of this section, we develop the joint asymptotic distribution of the LSEs of the

unknown parameters for single component model (2). We use the usual Taylor series

expansion. We denote the first derivative vector of Q(η) as Q′(η) which is of order 1×6

and the 6×6 matrix of second order derivatives as Q′′(η). Now expanding Q′(η̂) around

η0 by multivariate Taylor series up to first order terms, we have

Q′(η̂) −Q′(η0) = (η̂ − η0)Q′′(η̄), (4)
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where η̄ is a point between η̂ and η0. Now define a diagonal matrix of order six as

follows:

D = diag{N− 1

2 , N− 1

2 , N− 3

2 , N− 1

2 , N− 3

2 , N− 1

2}. (5)

Since Q′(η̂) = 0, (4) can be written as

(η̂ − η0)D−1 = −
[
Q′(η0)D

]
[DQ′′(η̄)D]

−1
. (6)

We can write (6) because
[
DQ′′(θ̄)D

]
is an invertible matrix a.e. for large N . From

Theorem 2.1, it follows that η̂ converges a.s. to η0 and since each element of Q′′(η) is a

continuous function of θ, therefore,

lim
N→∞

[DQ′′(η̄)D] = lim
N→∞

[
DQ′′(θ0)D

]
= 2Σ(η0) (say). (7)

In obtaining the exact form of the limit matrix Σ(η), let us write η = (A, ξ), where

ξ = (b, α, c, θ, φ). Then Σ(η) = e2b0∆(η0), where

∆(η) =




δ1(0) Aδ5(0) Abδ6(1) Abδ6(0) Aδ7(1) Aδ7(0)

Aδ5(0) A2δ2(0) A2bδ8(1) A2bδ8(0) −A2δ9(1) −A2δ9(0)

Abδ6(1) A2bδ8(1) A2b2δ3(2) A2b2δ3(1) −A2bδ10(2) −A2bδ10(1)

Abδ6(0) A2bδ8(0) A2b2δ3(1) A2b2δ3(0) −A2bδ10(1) −A2bδ10(0)

Abδ7(1) −A2δ9(1) −A2bδ10(2) −A2bδ10(1) A2δ4(2) A2δ4(1)

Aδ7(0) −A2δ9(0) −A2bδ10(1) −A2bδ10(0) A2δ4(1) A2δ4(0)




,

(8)

where δk(m) = δk(η, m), m = 0, 1, 2, k = 1, . . . , 10 are defined in Appendix B. Now let

us consider the random vector Q′(η0)D of order 1 × 6,

Q′(η0)D =




− 2√
N

∑N
t=1 e(t) exp{b0(1 − cos(α0t+ c0))} cos(θ0t+ φ0)

− 2√
N
A0

∑N
t=1 e(t) exp{b0(1 − cos(α0t+ c0))}(1 − cos(α0t+ c0)) cos(θ0t+ φ0)

− 2

N
3

2

A0b0
∑N

t=1 te(t) exp{b0(1 − cos(α0t+ c0))} sin(α0t+ c0) cos(θ0t+ φ0)

− 2√
N
A0b0

∑N
t=1 e(t) exp{b0(1 − cos(α0t+ c0))} sin(α0t+ c0) cos(θ0t+ φ0)

2

N
3

2

A0
∑N

t=1 te(t) exp{b0(1 − cos(α0t+ c0))} sin(θ0t+ φ0)

2√
N
A0

∑N
t=1 e(t) exp{b0(1 − cos(α0t+ c0))} sin(θ0t+ φ0)




.

All the elements of Q′(η0)D satisfy the Lindeberg-Feller’s condition, therefore it con-

verges to a 6-variate normal distribution. Using the limits given in Appendix B, it

follows that

Q′(η0)D → N6

(
0, 4σ2Σ(η0)

)
. (9)
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Therefore, using (7) and (9) in (6), we have the asymptotic distribution as

(η̂ − η0)D−1 → N6

(
0, σ2Σ−1(η0)

)
. (10)

Now using the inequality (25), we have shown in Appendix B, that δk(ξ, p) = 0 for

k = 6, . . . , 10 and δ5(ξ, p) = δ1(ξ, p), p = 0, 1, 2, ... Thus

∆(η) =



∆1(η) 0 0

0 ∆2(η) 0

0 0 ∆3(η)


 ,

where

∆1(η) =

[
δ1(0) Aδ1(0)

Aδ1(0) A2δ2(0)

]
, ∆2(η) = A2b2

[
δ3(2) δ3(1)

δ3(1) δ3(0)

]
, ∆3(η) = A2

[
δ4(2) δ4(1)

δ4(1) δ4(0)

]
.

(11)

Thus, the asymptotic variance-covariance matrix of (η̂ − η0)D−1 is

σ2Σ−1(η0) = σ2e−2b0∆−1(η0) = σ2e−2b0



∆−1

1 (η) 0 0

0 ∆−1
2 (η) 0

0 0 ∆−1
3 (η)


 (12)

with

∆−1
1 (η) =

1

δ2(0) − δ1(0)

[
δ2(0)
δ1(0)

− 1
A

− 1
A

1
A2

]
, ∆−1

2 (η) =
1

A2b2[δ3(2)δ3(0) − δ3(1)2]

[
δ3(0) −δ3(1)

−δ3(1) δ3(2)

]
,

and

∆−1
3 (η) =

1

A2[δ4(2)δ4(0) − δ4(1)2]

[
δ4(0) −δ4(1)

−δ4(1) δ4(2)

]
.

So (12) implies that the pairs of parameters (A, b), (α, c) and (θ, φ) are asymptoti-

cally independent to each other whereas the parameters in each pair are asymptoti-

cally dependent. In comparison to the constant amplitude frequency model, in present

case, the amplitude is a deterministic function of the time variable t, which is equal to

A exp{b(1 − cos(αt + c))}. Thus, it depends on parameters A, b, α and c. For constant

amplitude case least square estimator of amplitude is independent of that of frequency

and phase. Along the same line, we observe that for model (2) that the estimators of

amplitude parameters Â, b̂, α̂ and ĉ are independent of frequency and phase estimators,

θ̂ and φ̂.

Remark 1. The rate of convergence of each of A, b, c and φ is Op(N
−1/2) whereas

for the carrier angular frequency θ as well as for the modulating frequency α, the rate

of convergence is Op(N
−3/2). In comparison to constant amplitude sinusoidal model,

α is a parameter of the amplitude. In this case it is observed that its LSE has the

same convergence rate as that of the carrier angular frequency θ as α, multiplied by t
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is appearing as the argument of a cosine function in the time varying amplitude of the

model.

3. Theoretical Properties of LSEs for general p

In this section, we provide the asymptotic results of the LSEs for model (1). Let us

write ψk = (Ak, bk, ck, θk, φk), k = 1, . . . , q and ψ = (ψ1, . . . ,ψq, α) be the parameter

vector. Then the LSE of ψ is obtained by minimizing the residual sum of squares

which can be defined similarly as (3). Let ψ̂ and ψ0 denote the least squares estimator

and the true value of ψ. The consistency of ψ̂ follows similarly as the consistency of η̂,

considering the parameter vector as ψ instead of η. We state the asymptotic distribution

of ψ̂ here. The proof involves routine calculations and the use of multiple Taylor series

and a central limit theorem similarly as in section 2.

For asymptotic distribution of ψ̂, following the notation used in previous section,

we write ξj = (bj , α, cj, θj , φj), j = 1, . . . , q; δk(ξj, p) = δj
k(p), k = 1(1)4, j = 1(1)q,

p = 0, 1, 2, . . .. Now let Dq be a diagonal matrix of order (5q + 1), defined as follows;

Dq =




D1 0 · · · 0 0

0 D1 · · · 0 0
...

...
...

...
...

0 0 · · · D1 0

0 0 · · · 0 N− 3

2



,

where D1 = diag{N− 1

2 , N− 1

2 , N− 1

2 , N− 3

2 , N− 1

2}. Then the asymptotic distribution of ψ̂

is

(ψ̂ −ψ0)D−1
q

d→ N5q+1

(
0, σ2G−1

q (ψ0)
)
, (13)

Gq(ψ) =




e2b1Γ(ψ1) 0 · · · 0 w(ψ1)

0 e2b2Γ(ψ2) · · · 0 w(ψ2)
...

...
...

...
...

0 · · · 0 e2bqΓ(ψq) w(ψq)

w′(ψ1) w′(ψ2) · · · w′(ψq) f ∗



.

Here f ∗ =
∑q

j=1 e
2bjA2

jb
2
jδ

j
3(2) and w′(ψj) =

(
0 0 e2bjA2

jb
2
jδ

j
3(1) 0 0

)
. The sub-

matrix Γ(ψj) is obtained by deleting third row and third column of matrix ∆(η) and
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replacing (A, b, c, θ, φ) by (Aj , bj , cj, θj , φj). Thus,

Γ(ψj) =




δj
1(0) Ajδ

j
1(0) 0 0 0

Ajδ
j
1(0) A2

jδ
j
2(0) 0 0 0

0 0 A2
jb

2
jδ

j
3(0) 0 0

0 0 0 A2
jδ

j
4(2) A2

jδ
j
4(1)

0 0 0 A2
jδ

j
4(1) A2

jδ
j
4(0)



.

The inverse matrix G−1
q (ψ0) is given by

G−1
q (ψ) =




e−2b1Γ(ψ1)
−1 + F11 F12 · · · F1q e−2b1Γ(ψ1)w(ψ1)

F21 e−2b2Γ(ψ2)
−1 + F22 · · · F2q e−2b2Γ(ψ2)w(ψ2)

...
...

...
...

...

Fq1 Fq2 · · · e−2bqΓ(ψq)
−1 + Fqq e−2bqΓ(ψq)w(ψq)

e−2b1Γ(ψ1)w(ψ1) e−2b2Γ(ψ2)w(ψ2) · · · e−2bqΓ(ψq)w(ψq) 1/d∗




where d∗ =
∑q

j=1 e
2bjA2

jb
2
j

[
δj
3(2) − δj

3
(1)2

δj
3
(0)

]
and Fjk, j, k = 1, . . . , q is a 5 × 5 symmetric

matrix whose all elements are zero except (3,3) element which is equal to 1
d∗

δj
3
(1)δk

3
(1)

δj
3
(0)δk

k (0)
.

In the previous section, we have observed that for q = 1, the estimator of α only

asymptotically depends on the estimator of c1, but for q > 1, the estimator of α depends

on all cj, j = 1, . . . , q for large N . This is expected also as in the model, the modulating

angular frequency is same for each component.

4. Numerical Experiments

In this section, for illustration, we present some numerical results based on simulations.

We consider the model (1) with q = 4. Data are generated using the following values;

A1 = 5.70166706 × 10−5, A2 = 3.3049426× 10−25,

A3 = 1.002 × 10−3, A4 = 3.7575 × 10−4

b1 = 4.989495798, b2 = 28.886554622, b3 = 2.62605042, b4 = 2.62605042,

c1 = .1904, c2 = 2.05632, c3 = 5.9024, c4 = 3.2368, (14)

θ1 = .07616, θ2 = .26656, θ3 = .03808, θ4 = .03808,

φ1 = 1.166198163, φ2 = 18.007071552 φ3 = 10.928948246 φ4 = 6.378392654

α = .03808.

These parameter values have been obtained from Muthopadhyay and Sircar (1996). We

consider the case when carrier frequencies are harmonics of the modulation angular
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frequency i.e. θi’s are integer multiples of α. As ECG signal is periodic, θi has to be

some integer multiple of α. We use the sample size N = 100 for simulations study. The

error random variables are independent and identically distributed N (0, σ2). We have

reported results for σ2 = .00001 and .0001. We generate the data using (1) and the true

parameter values as mentioned above. The LSEs of different parameters are estimated by

minimizing the residual sum of squares given in (3). The minimization has been carried

out by using the simplex method and for that purposes, routines given in Press et al.

(1987) have been used. The true parameter values are taken as the initial estimates.

Though with q = 4, the parameter set contains 21 parameters and the optimization is

taken place in quite a higher dimensional space, the final results are quite satisfactory.

We replicate the procedure of data generation and estimation of parameters 1000 times,

then calculate the average estimate (AVEST) and the mean squared error (MSE) of each

parameter. We summarize results in Tables 1 and 2 for error variance .00001 and .0001

respectively. In section 3, we have developed the asymptotic distribution of LSEs when

q > 1, which may be used for interval estimation for finite samples . As the limiting

distribution in section 3 involves several limiting quantities, for samples of moderate

size, we wish to see how the percentile bootstrap (boot-p) method - a well-used form of

parametric bootstrap, works. In Nandi, Iyer and Kundu (2002) and Kundu and Nandi

(2006), similar bootstrapping method has been used for interval estimation in case of

sinusoidal frequency model and real chirp signal model respectively. In each replication

of our experiment, we generate 1000 bootstrap resamples using the estimated parameters

and then the bootstrap confidence intervals using the bootstrap quantiles at 95% nominal

level. Thus, from the replicated experiment, we have 1000 intervals for each parameter.

Then we estimate the 95% boot-p coverage probability by calculating the proportion

covering the true value of the parameter. We report them as B-CVP in Tables 1 and

2. In addition, we also report the average length of the boot-p confidence intervals as

B-AVLEN.

We observe that the average estimates are quite good, which is reflected in the fact that

biases (not reported) are quite small in absolute values. The MSEs are reasonably small.

Their dependence on the magnitude of the constant amplitude A0 is quite clear. The

asymptotic variances of all parameters, except A, are reciprocally proportional to A02

which is also visible in MSEs to some extent. As the error variance increases the biases

and MSEs increase. The bootstrap coverage percentages attain the nominal level in all

cases, except in c1 and A3. B-CVPs are quite high and close to 1 in both cases considered

here. The average confidence length is quite small, depending on the magnitude of the

true parameter value and the order of the asymptotic variance is reflected in the length

of the interval in each case.
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Apart from the replicated experiment, we consider the same model in data analysis

format. For that, we generate the data of sample size N = 500 and the error variance

σ2 = .05. The generated data are plotted when no noise is present, in Fig. 1. The

corrupted version of the same data set with σ2 = .05 are presented in Fig. 2. Now we

estimate the parameters by minimizing the residual sum of square and plugging them

in the model, we estimate the signal. It is plotted in Fig. 3. Now if the level of noise

increases to σ2 = 1.0, then the form of the original signal (Fig. 1) is totally distorted. We

wanted to see, whether in this case it is possible to extract the signal. The signal with

noise level σ2 = 1.0 is plotted in Fig. 4 and one can see that the form is totally destroyed.

Now we estimate the LSEs and the estimated signal is plotted in Fig. 5. In both cases,

the LSEs are able to estimate quite satisfactorily and the estimated graphs (Figs. 3

and 5) match well with the no-noise signal. In simulated experiments, we have used

percentile bootstrap method for interval estimation. In single data example, we used the

same method. Using 1000 bootstrap resamples, we estimate the 95% confidence intervals

of each parameter in case of σ2 = .05 and σ2 = 1.0. They are reported in Table 3 along

with their point estimates. We see that bias is negligible in most of the cases when

σ2 = .05. Though, it is not true, in each parameter estimate with larger noise level, the

estimated signal is quite good. The boot-p confidence intervals in each case include the

true parameter value and the order of asymptotic variance is reflected in the length of

the interval.
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Figure 1. The signal

using model (14) sub-

jected to no noise.
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Generated signal with noise variance = .05

Figure 2. The same sig-

nal as in Fig. 1 corrupted

by noise (variance=.05).

5. Conclusion

In the present article, we study a comparatively new model. The model is proposed by

Sharma and Sircar (2001) to analyse ECG data. We propose the least square estimators

to estimate the unknown parameters. The model is a particular functional amplitude
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Table 1. True value, average estimate, MSE, Boot-p coverage probability

and average length of LSE of different parameter for model (1) with p = 4

when sample size is N = 100 and σ2 = .00001.

PARA T-VALUE AVEST MSE B-AVLEN B-CVP

A1 5.70166706e-5 5.70145239e-5 1.02906152e-16 3.8605424e-8 0.957

b1 4.989495798 4.9894557 3.11893842e-7 2.19602301e-3 0.942

c1 .1904 .190409496 1.05839382e-9 1.20837358e-4 1.0

θ1 .07616 .0761569068 8.81921092e-10 1.13200498e-4 0.950

φ1 1.166198163 1.16615772 1.38404461e-8 40067191e-4 0.978

A2 3.3049426e-25 3.31255587e-25 0. 1.32071863e-26 0.924

b2 28.886554622 28.8854427 2.6715863e-5 1.9776715e-2 0.959

c2 2.05632 2.0562737 4.35365415e-8 7.97438901e-4 0.981

θ2 .26656 .266568691 3.24213345e-9 7.97438901e-4 0.981

φ2 18.007071552 18.0068378 2.85143915e-6 6.59841439e-3 0.957

A3 1.002e-3 1.00206817e-3 1.42561622e-13 1.72421574e-6 1.0

b3 2.62605042 2.6258955 3.92893924e-7 2.37937062e-3 0.958

c3 5.9024 5.90223742 1.37313691e-6 4.46954789e-3 0.961

θ3 .03808 0.0381004699 1.96623624e-8 5.32256323e-4 0.924

φ3 10.928948246 10.9286032 2.77993604e-6 6.36323635e-3 0.958

A4 3.7575e-4 3.75736476e-4 4.33552713e-15 2.54767286e-7 0.974

b4 2.62605042 2.62593865 2.47176132e-7 1.90590811e-3 0.965

c4 3.2368 3.23656392 9.79961783e-7 3.74561013e-3 0.969

θ4 .03808 .0380559228 2.22348078e-8 3.74561013e-3 0.969

φ4 6.378392654 6.37809134 3.65015421e-6 7.19337584e-3 0.963

α .03808 .0380816758 8.213831e-11 3.51257004e-5 0.936

sinusoidal model and the form is quite complicated specially when the number compo-

nents is large. However, we observe that the LSEs satisfy the large sample properties,

strong consistency and asymptotic normality, under the assumptions that errors are i.i.d.

In numerical experiments, we find that one can use the percentile bootstrap method for

interval estimation. We have used the true values as the starting estimates in simula-

tions, but given a data set, it is extremely important to guess the initial estimates. We

feel that the use of different combination of periodogram function may be used for this

purpose. Further work is required in this direction and these computational aspects will

be addressed elsewhere. Another point we would like to mention that we have assumed

that the number of components is known. So the estimation of the number of burst
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Table 2. True value, average estimate, MSE, Boot-p coverage probability

and average length of LSE of different parameter for model (1) with p = 4

when sample size is N = 100 and σ2 = .0001.

PARA T-VALUE AVEST MSE B-AVLEN B-CVP

A1 5.70166706e-5 5.70133125e-5 1.15013776e-15 1.25403702e-7 0.963

b1 4.989495798 4.9893713 3.14257386e-6 7.05490913e-3 0.938

c1 .1904 .190418169 1.13296146e-8 3.31763964e-4 0.998

θ1 .07616 .0761515722 8.63750405e-9 3.634319e-4 0.955

φ1 1.166198163 1.16611457 1.86317749e-7 1.43747276e-3 0.977

A2 3.3049426e-25 3.32128243e-25 0. 4.37729703e-26 0.942

b2 28.886554622 28.8843803 2.63705937e-4 6.29487708e-2 0.960

c2 2.05632 2.0562005 4.93348864e-7 2.79974216e-3 0.988

θ2 .26656 .266580075 3.70137982e-8 7.67455786e-4 0.952

φ2 18.007071552 18.0065517 3.29326722e-5 2.22241636e-2 0.964

A3 1.002e-3 1.0022046e-3 1.29145674e-12 4.84236125e-6 0.997

b3 2.62605042 2.62576246 4.06719164e-6 7.53721222e-3 0.966

c3 5.9024 5.90209675 1.36529898e-5 1.41755259e-2 0.966

θ3 .03808 .0381309576 1.99165257e-7 1.75511267e-3 0.931

φ3 10.928948246 10.9282236 3.26206246e-5 2.13409178e-2 0.963

A4 3.7575e-4 3.7571229e-4 5.05222491e-14 8.09413677e-7 0.983

b4 2.62605042 2.6258409 2.63120751e-6 6.04074216e-3 0.964

c4 3.2368 3.23635507 9.69904522e-6 1.20087676e-2 0.967

θ4 .03808 .0380305238 1.88419975e-7 1.6579018e-3 0.983

φ4 6.378392654 6.37799883 3.98849552e-5 2.26221029e-2 0.968

α .03808 .0380841866 8.76801465e-10 1.21157573e-4 0.943

components is of utmost important. LSEs for burst-type signals have the desirable the-

oretical properties. At the same time, obtaining LSEs is difficult; so the estimation of

the number of signals as well as developing an efficient algorithm need to be addressed.
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Appendix A

In Appendix A, we provide the proofs of the results for model (1) (with q = 1), stated

in section 2.
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Lemma 1. Let X(1), X(2), . . . be i.i.d. random variables with mean zero and finite

second moment and b is a real number such that e|b| ≤ K. Define Π = (0, π)×(0, π) ∈ R2.

Then as n→ ∞,

sup
(α,θ)∈Π

1

N

N∑

t=1

X(t) exp{b cos(αt)} cos(θt)
a.s.→ 0, as N → ∞ (15)

Proof of Lemma 1: Define

Z(t) =

{
X(t) if |X(t)| ≤ t

1

2

0 if |X(t)| > t
1

2

Then
∞∑

t=1

P [Z(t) 6= X(t)] =
∞∑

t=1

P [|X(t)| > t
1

2 ]

=
∞∑

t=1

∑

2t−1≤n≤2t

P [|X(1)| > n
1

2 ]

≤
∞∑

t=1

2tP [|X(1)| > 2
t−1

2 ]

≤
∞∑

t=1

2t

∞∑

j=t

P [2
j−1

2 ≤ |X(1)| < 2
j
2 ]

≤
∞∑

j=1

P [2
j−1

2 ≤ |X(1)| < 2
j
2 ]

j∑

t=1

2t

≤ c

∞∑

j=1

2j−1P [2
j−1

2 ≤ |X(1)| < 2
j
2 ] ≤ cE|X(1)|2 <∞.

So, P [Z(t) 6= X(t) i.o.] = 0 and Z(t) and X(t) are equivalent random variables. Thus

sup
(α,θ)∈Π

1

N

N∑

t=1

X(t) exp{b cos(αt)} cos(θt)
a.s.→ 0 ⇔ sup

(α,θ)∈Π

1

N

N∑

t=1

Z(t) exp{b cos(αt)} cos(θt)
a.s.→ 0.

(16)

Let Ut = Z(t) − E(Z(t)). Then

sup
(α,θ)∈Π

∣∣∣∣∣
1

N

N∑

t=1

Z(t) exp{b cos(αt)} cos(θt)

∣∣∣∣∣ ≤ e|b|
1

N

N∑

t=1

|Z(t)| → 0.

Thus, it is enough to show that

sup
(α,θ)∈Π

1

N

N∑

t=1

Ut exp{b cos(αt)} cos(θt)
a.s.→ 0. (17)
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For any fixed ǫ > 0, assume that 0 ≤ h ≤ 1
2N1/2K

. Then |hUt cos(θt)eb cos(αt)| ≤ 1
2
.

Now, using e|x| ≤ 2ex and ex ≤ 1 + x+ 2x2 for |x| ≤ 1
2
, we have

P

[∣∣∣∣∣
1

N

N∑

t=1

Ut cos(θt)eb cos(αt)

∣∣∣∣∣ ≥ ǫ

]
≤ e−hNǫ

N∏

t=1

E
(
exp{|hUt cos(θt)eb cos(αt)|}

)

≤ 2e−hNǫ

N∏

t=1

E
(
exp{hUt cos(θt)eb cos(αt)}

)

≤ 2e−hNǫ
N∏

t=1

(1 + 2h2σ2K2)

≤ 2e−hNǫ+2Nh2σ2K2

.

Take h = 1
2N1/2K

in the above inequality.

P

[∣∣∣∣∣
1

N

N∑

t=1

Ut cos(θt)eb cos(αt)

∣∣∣∣∣ ≥ ǫ

]
≤ 2e−

1

2
N

1
2 K−1ǫ+ 1

2
σ2 ≤ ce−

1

2
N

1
2 K−1ǫ.

Let L = N2. Choose (α1, θ1), . . . , (αL, θL) such that for each (α, θ) ∈ Π, we have a

(αj , θj) satisfying |αj − α| ≤ π
N2 and |θj − θ| ≤ π

N2 . Now let us consider

∣∣cos(θt)eb cos(αt) − cos(θjt)e
b cos(αj t)

∣∣

=
∣∣cos(θt)eb cos(αt) − cos(θjt)e

b cos(αt) + cos(θjt)e
b cos(αt) − cos(θjt)e

b cos(αjt)
∣∣

≤ |eb cos(αt)| |cos(θt) − cos(θjt)| + | cos(θjt)|
∣∣eb cos(αt) − eb cos(αj t)

∣∣

≤ Kt|θj − θ| +Kt|b||αj − α|.

So,

∣∣∣∣∣
1

N

N∑

t=1

Ut

(
cos(θt)eb cos(αt) − cos(θjt)e

b cos(αj t)
)
∣∣∣∣∣ ≤ 2

N

N∑

t=1

t
1

2Kt(|θj − θ| + |b||αj − α|)

≤ 2

N

N∑

t=1

t
1

2Kt
π

N2
(1 + |b|)

≤ 2K(1 + |b|) π√
N

→ 0, as N → ∞.

Therefore, for large N ,

P

[
sup
α,θ

∣∣∣∣∣
1

N

N∑

t=1

Ut cos(θt)eb cos(αt)

∣∣∣∣∣ ≥ 2ǫ

]
≤ P

[
max
j≤N2

∣∣∣∣∣
1

N

N∑

t=1

Ut cos(θjt)e
b cos(αjt)

∣∣∣∣∣ ≥ ǫ

]

≤ cN2e−
1

2
N

1

2 K−1ǫ.
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Since
∑∞

n=1 n
2e−

1

2
n

1

2 K−1ǫ <∞, we have the following

sup
(α,θ)∈Π

1

N

N∑

t=1

X(t) exp{b cos(αt)} cos(θt)
a.s.→ 0, (18)

as N → ∞, using Borel Canteli Lemma.

Lemma 2. Let us denote the set

Sǫ,M =
{
η : |η − η0| > 6ǫ, |A| ≤M

}
.

If for any ǫ > 0 and for some M <∞,

lim inf
N→∞

inf
η∈Sǫ,M

1

N

[
Q(η) −Q(η0)

]
> 0 a.s.

then η̂ is a strongly consistent estimator of η0.

Proof of Lemma 2: It is simple, so it is not provided here.

Proof of Theorem 1:

In this proof, we denote η̂ by η̂N = (AN , bN , αN , cN , θN , φN), to emphasize that η̂

depends on N . Let us assume that η̂N is not a consistent estimator for η0. Then either:

Case I: For all sub sequences {Nk} of {N}, |ÂNk
| → ∞. This implies

1

Nk

[
Q(η̂Nk

) −Q(η0)
]
→ ∞.

But as η̂Nk
is the LSE of η0 with sample size Nk, we have

Q(η̂Nk
) −Q(η0) < 0,

which leads to a contradiction. So η̂N is a strongly consistent estimator of η0.

Case II: For at least one sub sequence {Nk} of {N}, η̂Nk
∈ Sǫ,M , for some ǫ > 0 and

for an 0 < M <∞. Now we write

1

N

[
Q(η) −Q(η0)

]
= f(η) + g(η),

where

f(η) =
1

N

N∑

t=1

[
A0 exp{b0(1 − cos(α0t+ c0))} cos(θ0t+ φ0)

−A exp{b(1 − cos(αt+ c))} cos(θt+ φ)
]2

g(η) =
2

N

N∑

t=1

e(t)
[
A0 exp{b0(1 − cos(α0t+ c0))} cos(θ0t+ φ0)

−A exp{b(1 − cos(αt+ c))} cos(θt+ φ)
]
.
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Using Lemma 1, we have

lim
N→∞

sup
η∈Sǫ,M

g(η) = 0, a.s. (19)

Define sets Si
ǫ, i = 1, . . . , 6 as follows:

Si
ǫ,M =

{
η : |ηi − η0

i | > ǫ, |A| ≤M
}
, (20)

where ηi, i = 1, . . . , 6 stands for the elements of η, that is, A, b, α, c, θ and φ. Note that

Sǫ,M ⊂ ∪6
i=1S

i
ǫ,M = S (say). Therefore,

lim inf
N→∞

inf
Sǫ,M

1

N

[
Q(η) −Q(η0)

]
≥ lim inf

N→∞
inf
S

1

N

[
Q(η) −Q(η0)

]
. (21)

Next, our aim is to show that

lim inf
N→∞

inf
Si

ǫ,M

1

N

[
Q(η) −Q(η0)

]
= lim inf

N→∞
inf
Si

ǫ,M

f(η) > 0, a.s. (22)

for i = 1, . . . , 6 which implies (using (21)) that

lim inf
N→∞

inf
Sǫ,M

1

N

[
Q(η) −Q(η0)

]
> 0, a.s. (23)

So, for i = 1,

lim inf
N→∞

inf
S1

ǫ,M

f(η)

= lim inf
N→∞

inf
|A−A0|>ǫ

1

N

N∑

t=1

[
A0 exp{b0(1 − cos(α0t+ c0))} cos(θ0t+ φ0)

−A exp{b(1 − cos(αt+ c))} cos(θt+ φ)
]2

= lim
N→∞

inf
|A−A0|>ǫ

1

N

N∑

t=1

(A− A0)2 exp{2b0(1 − cos(α0t+ c0))} cos2(θ0t+ φ0)

≥ e2b0ǫ2 lim
N→∞

1

N

N∑

t=1

exp{−2b0 cos(α0t+ c0))} cos2(θ0t+ φ0)

≥ e2b0e−|2b0|ǫ2 lim
N→∞

1

N

N∑

t=1

cos2(θ0t+ φ0) =
cb0ǫ

2

2
> 0 a.s.

where cb = 1, if b > 0 and cb = e−|4b0|. Using similar technique, the inequality (22)

can be shown for other i also and that proves the theorem.
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Appendix B

The following limits have been used to obtain the asymptotic distribution of the LSE

η̂ of η0.

lim
N→∞

1

Np + 1

N∑

t=1

tp exp{−2b cos(αt+ c)} cos2(θt+ φ) = δ1(ξ, p)

lim
N→∞

1

Np + 1

N∑

t=1

tp exp{−2b cos(αt+ c)}(1 − cos(αt+ c))2 cos2(θt+ φ) = δ2(ξ, p)

lim
N→∞

1

Np + 1

N∑

t=1

tp exp{−2b cos(αt+ c)} sin2(αt+ c) cos2(θt+ φ) = δ3(ξ, p)

lim
N→∞

1

Np + 1

N∑

t=1

tp exp{−2b cos(αt+ c)} sin2(θt+ φ) = δ4(ξ, p)

lim
N→∞

1

Np + 1

N∑

t=1

tp exp{−2b cos(αt+ c)}(1 − cos(αt+ c)) cos2(θt+ φ) = δ5(ξ, p) (24)

lim
N→∞

1

Np + 1

N∑

t=1

tp exp{−2b cos(αt+ c)} sin(αt+ c) cos2(θt+ φ) = δ6(ξ, p)

lim
N→∞

1

Np + 1

N∑

t=1

tp exp{−2b cos(αt+ c)} sin(θt+ φ) cos(θt+ φ) = δ7(ξ, p)

lim
N→∞

1

Np + 1

N∑

t=1

tp exp{−2b cos(αt+ c)} sin(αt+ c)}(1 − cos(αt+ c)) cos2(θt+ φ) = δ8(ξ, p)

lim
N→∞

1

Np + 1

N∑

t=1

tp exp{−2b cos(αt+ c)}(1 − cos(αt+ c)) sin(θt+ φ) cos(θt+ φ) = δ9(ξ, p)

lim
N→∞

1

Np + 1

N∑

t=1

tp exp{−2b cos(αt+ c)} sin(αt+ c) sin(θt+ φ) cos(θt+ φ) = δ10(ξ, p)

for p = 0, 1, 2.....

Note that

exp{−2|b|} ≤ exp{−2b cos(αt+ c)} ≤ exp{2|b|}. (25)

Using it in the first sequence listed above with p = 0, we have

e−2|b| 1

N

N∑

t=1

cos2(θt+φ) ≤ 1

N

N∑

t=1

exp{−2b cos(αt+c)} cos2(θt+φ) ≤ e2|b|
1

N

N∑

t=1

cos2(θt+φ).

(26)
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Now taking limit as limN→∞, we get

e−2|b|

2
≤ δ1(ψ, 0) ≤ e2|b|

2
. (27)

For notational simplicity, δk(ψ, p) = δk(p), k = 1, . . . , 10 has been used in obtaining the

asymptotic distribution of the LSEs.

Using the inequality given in (25), in δ6(ξ, p), we have

δ6(ξ, p) ≤
{
≥

}
e|2b|

{
e−|2b|

}
lim

N→∞

1

Np+1

N∑

t=1

tp sin(αt+ c) cos2(θt+ φ)

→ e|2b|
{
e−|2b|

}
× 0.

This implies that

0 ≤ δ6(ξ, p) ≤ 0

⇒ δ6(ξ, p) → 0, for all p and ξ.

In a similar way, we find that δk(ξ, p) → 0 for all p and ξ for k = 7, . . . , 10 and δ5(ξ, p) =

δ1(ξ, p).
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