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Twenty years ago we formulated and proved a matrix version of the arithmetic-

geometric mean inequality [13]. This seems to have stimulated several authors who

have found different proofs, equivalent statements, extensions, and generalisations in dif-

ferent directions. In this article we survey these developments, and discuss other closely

related matters.

While our main focus is on the arithmetic-geometric mean inequality, the article can

also serve as an introduction to the basic ideas and typical problems of the flourishing

subject of matrix inequalities.

1. Notations

Let M(n) be the space of n × n complex matrices. If A is a Hermitian element of

M(n), then we enumerate its eigenvalues as λ1(A) ≥ · · · ≥ λn(A). If A is arbitrary, then

its singular values are enumerated as s1(A) ≥ · · · ≥ sn(A). These are the eigenvalues of

the positive (semidefinite) matrix |A| = (A∗A)1/2. If A and B are Hermitian matrices,

and A − B is positive, then we say that

(1.1) B ≤ A.

Weyl’s monotonicity theorem [9, p.63] says that the relation (1.1) implies

(1.2) λj(B) ≤ λj(A) for all 1 ≤ j ≤ n.

The condition (1.2) is equivalent to the following: there exists a unitary matrix U such

that

(1.3) B ≤ UAU∗.

We say that the n-tuple {λj(B)} is weakly majorised by {λj(A)} , if we have

(1.4)

k∑

j=1

λj(B) ≤
k∑

j=1

λj(A) for all 1 ≤ k ≤ n.

In a condensed notation, the family of inequalities (1.4) is expressed as

(1.5) {λj(B)} ≺w {λj(A)} .

A norm ||| · ||| on M(n) is said to be unitarily invariant if |||UAV ||| = |||A||| for all A

and for all unitary matrices U and V. Special examples of such norms are the Schatten

p-norms

(1.6) ‖A‖p :=

[
n∑

j=1

[sj(A)]p
]1/p

, 1 ≤ p ≤ ∞,
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Here it is understood that ‖A‖∞ = s1(A). This norm called the operator norm is denoted

simply by ‖A‖. The Schatten 2-norm, also called the Hilbert-Schmidt norm is somewhat

special. It can be calculated easily from the entries of the matrix:

(1.7) ‖A‖2 =

(
∑

i,j

|aij|2
)1/2

.

By the Fan dominance theorem [9], {sj(B)} ≺w {sj(A)} is equivalent to the statement

(1.8) |||B||| ≤ |||A||| for every unitarily invariant norm.

Arguments with block matrices are often useful. If A, B, C, D are elements of M(n), then[
A C

D B

]
is an element of M(2n). The block diagonal matrix

[
A 0

0 B

]
is denoted as

A⊕B. Block matrices of higher order and those in which the diagonal blocks are square

matrices of different sizes are defined in the obvious way.

2. Levels of matrix inequalities

After defining the object |A|, the authors of the famous text [35] warn

“The reader should be wary of the emotional connotations of the symbol

| · |.”
and go on to point out that, among other things, the prospective triangle inequality

(2.1) |A + B| ≤ |A| + |B|,

is not true in general.

Inequalities for positive numbers could have several plausible extensions to positive

matrices. Only some of them turn out to be valid. Let us illustrate this by an example.

If a and b are positive numbers, then we have the inequality

(2.2) |a − b| ≤ a + b.

A natural extension of this to positive matrices A and B could be

(2.3) |A − B| ≤ A + B.

This, however, is not always true. If we choose

A =

[
4 −2

−2 1

]
, B =

[
1 −2

−2 4

]
,

then

|A − B| =

[
3 0

0 3

]
, A + B =

[
5 −4

−4 5

]
,
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and the putative inequality |A − B| ≤ A + B is violated. This having failed, one may

wonder whether the weaker assertion

(2.4) sj(A − B) ≤ sj(A + B), for all 1 ≤ j ≤ n,

is always true. In the example above A − B has singular values {3, 3} and A + B has

{9, 1}. Thus s2(A − B) is bigger than s2(A + B) and (2.4) is violated. An assertion

weaker than (2.4) would be

(2.5) |||A − B||| ≤ |||A + B|||,

for all unitarily invariant norms. This turns out to be true.

If an inequality like (2.3), (2.4) or (2.5) is valid we call it an extension of (2.2) at Level

1, 2 or 3, respectively.

A proof of (2.5) goes as follows. Since ±(A − B) ≤ A + B, the inequality (2.5) is a

consequence of the following:

Lemma 2.1 Let X and Y be Hermitian matrices such that ±Y ≤ X. Then |||Y ||| ≤
|||X||| for every unitarily invariant norm.

Proof. Choose an orthonormal basis e1, e2, . . . , en, such that Y ej = µjej , where

|µ1| ≥ |µ2| ≥ · · · |µn|. Then for 1 ≤ k ≤ n, we have

k∑

j=1

sj(Y ) =

k∑

j=1

|µj| =

k∑

j=1

|〈ej , Y ej〉| ≤
k∑

j=1

〈ej, Xej〉.

By Ky Fan’s maximum principle [9, p.24] the sum on the extreme right is bounded by
k∑

j=1

sj(X). So the assertion of the Lemma follows from the Fan dominance theorem. �

If x and y are real numbers such that ±y ≤ x, then |y| ≤ x. If X and Y are Hermitian

matrices and ±Y ≤ X, then the lemma says that the Level 3 inequality |||Y ||| ≤ |||X|||
is true. The higher Level 2 inequality sj(Y ) ≤ sj(X), 1 ≤ j ≤ n, is not always true.

3. The arithmetic-geometric mean inequality (AGMI).

The familiar AGMI for positive real numbers a and b can be written either as
√

ab ≤
(a + b)/2, or as ab ≤ (a2 + b2)/2. We seek an attractive version for positive matrices A

and B. If A and B commute, then AB is positive, and the inequality AB ≤ (A2 + B2) /2

is true. In the general case AB is not positive. So, a possible “Level 1 AGMI” would be

the assertion

|AB| ≤ A2 + B2

2
.

This turns out to be false. If

A =

[
1 1

1 1

]
, B =

[
1 0

0 0

]
,
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then

|AB| =

[ √
2 0

0 0

]
,

1

2

(
A2 + B2

)
=

[
3/2 1

1 1

]
,

and the putative inequality is not true.

A Level 2 version of the inequality does hold and was proved by us in [13]. For positive

matrices A and B

(3.1) 2 sj(AB) ≤ sj

(
A2 + B2

)
for 1 ≤ j ≤ n.

We stated this in another form: for all n × n matrices A and B

(3.2) 2 sj(A
∗B) ≤ sj(AA∗ + BB∗), for 1 ≤ j ≤ n.

It is clear that if A and B are positive, then (3.2) reduces to (3.1). If A and B are

arbitrary, then we use their polar decompositions A = PU, B = RV, in which P and R

are positive, and U and V unitary, to obtain (3.2) from (3.1).

Our original proof, with a simplification suggested by X. Zhan, goes as follows. Let

X =

[
A B

0 0

]
. Then

XX∗ =

[
AA∗ + BB∗ 0

0 0

]
, X∗X =

[
A∗A A∗B

B∗A B∗B

]
.

Let U =

[
I 0

0 −I

]
. Then the off-diagonal part of X∗X can be expressed as

Y =

[
0 A∗B

B∗A 0

]
=

X∗X − U(X∗X)U∗

2
.

The matrix U(X∗X)U∗ is positive. Hence, this implies the inequality Y ≤ 1

2
X∗X. By

Weyl’s monotonicity principle,

(3.3) λj(Y ) ≤ 1

2
λj(X

∗X) for all j = 1, 2, . . . , 2n.

But the eigenvalues of X∗X are the same as those of XX∗ which, in turn, are the

eigenvalues of AA∗ + BB∗ together with n zeros. The eigenvalues of Y are the singular

values of A∗B together with their negatives. Hence the inequality (3.2) follows from

(3.3). The use of block matrices in this argument is typical of several other proofs of this

and related results.

X. Zhan [38] and Y. Tao [36] have shown that the AGMI is equivalent to other inter-

esting matrix inequalities for which they have found different proofs. We discuss these

ideas in brief.
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Let A and B be positive matrices, and let X =

[
A1/2 B1/2

0 0

]
. Then

XX∗ =

[
A + B 0

0 0

]
, X∗X =

[
A A1/2B1/2

B1/2A1/2 B

]
.

The block diagonal matrix

[
A 0

0 B

]
= A ⊕ B is a pinching of the matrix X∗X, and

hence |||A ⊕ B||| ≤ |||X∗X||| for every unitarily invariant norm [9, p.97]. On the other

hand |||X∗X||| = |||XX∗|||, and hence

(3.4) |||A ⊕ B||| ≤ |||(A + B) ⊕ 0|||.

This inequality could be abbreviated to |||A⊕B||| ≤ |||A+B|||, provided we are careful in

interpreting such inequalities between matrices of different sizes. Thus if X is of smaller

size than Y, an inequality like |||X||| ≤ |||Y ||| really means that |||X⊕0||| ≤ |||Y ||| where

the zero block is added to make the size of X ⊕ 0 the same as that of Y.

In [13] we observed that for all positive matrices A and B we have

(3.5) |||A − B||| ≤ |||A ⊕ B|||

for all unitarily invariant norms. In view of (3.4) this is an improvement on the inequality

(2.5). Zhan [38] showed that the Level 3 inequality (3.5) can be enhanced to a Level 2

version,

(3.6) sj(A − B) ≤ sj(A ⊕ B), 1 ≤ j ≤ n,

and further, this statement is equivalent to the AGMI (3.1). We show how (3.6) follows

from (3.2). Let

X =

[
A1/2 0

−B1/2 0

]
, Y =

[
A1/2 0

B1/2 0

]

Then,

X∗Y =

[
A − B 0

0 0

]
, XX∗ + Y Y ∗ =

[
2A 0

0 2B

]
.

So, the inequality (3.2) (applied to X and Y in place of A and B) says that

sj ((A − B) ⊕ 0) ≤ sj(A ⊕ B), 1 ≤ j ≤ 2n.

This is the inequality (3.6). In turn, this implies another proposition proved by Tao [36].

Suppose the block matrix X =

[
A C

C∗ B

]
is positive. Let U =

[
I 0

0 −I

]
. Then the

matrix Y = UXU∗ =

[
A −C

−C∗ B

]
is also positive. Therefore, by (3.6) we have

sj(X − Y ) ≤ sj(X ⊕ Y ) for 1 ≤ j ≤ 2n.
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But X − Y =

[
0 2C

2C∗ 0

]
. So the singular values of X − Y are the singular values

of 2C, each repeated twice. The matrices X and Y, being unitarily equivalent, have the

same singular values, and therefore the singular values of X ⊕ Y are the singular values

of X, each repeated twice. Thus we have shown that:

If X =

[
A C

C∗ B

]
is positive, then

2 sj(C) ≤ sj(X), for 1 ≤ j ≤ n.(3.7)

Tao proved (3.7) and showed that this implies the AGMI (3.1). To see this implication,

let A and B be positive matrices, and let T =

[
A 0

B 0

]
. Then

X := TT ∗ =

[
A2 AB

BA B2

]
, Y := T ∗T =

[
A2 + B2 0

0 0

]
.

From (3.7) we have the inequality

2 sj(AB) ≤ sj(X) = sj(Y ) = sj(A
2 + B2),

for 1 ≤ j ≤ n. That is the AGMI (3.1).

We have shown that the statements (3.1), (3.2), (3.6) and (3.7) can be derived from

each other. Zhan [38] and Tao [36] have given alternative proofs of (3.6) and (3.7).

Yet another proof by Zhan [40] is remarkably simple, and goes as follows. If H is any

Hermitian matrix, then

(3.8) sj(H) = λj(H ⊕−H), 1 ≤ j ≤ n.

Apply this to the matrix H = A−B, and note that (A−B)⊕ (B −A) ≤ A⊕B. Using

Weyl’s monotonicity principle we get (3.6). Another interesting proof of (3.1) is given

by Aujla and Bourin [8].

The formulation (3.1) of AGMI is somewhat delicate. For example, another possible

formulation could have been

sj (AB + BA) ≤ sj (A2 + B2).

This is not always true. If we choose

A =

[
a 0

0 0

]
, B =

[
1 1

1 1

]
,

then

|AB + BA|2 = a2

[
5 2

2 1

]
, A2 + B2 =

[
a2 + 2 2

2 2

]
.
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Clearly, s2(A
2 + B2) ≤ 2, but the two singular values of AB + BA are of the same order

of magnitude as a.

In the same vein, the positioning of the stars in (3.2) is just right. Any change destroys

the inequality.

4. Stronger Level 3 inequalities

A corollary of (3.1) is the norm inequality

(4.1) |||A1/2B1/2||| ≤ 1

2
|||A + B|||

for all unitarily invariant norms. Stronger versions of this were obtained by R. Bhatia

and C. Davis [11]. Among other things they showed that for all positive matrices A, B

and for all X, we have

(4.2) |||A1/2XB1/2||| ≤ 1

2
|||AX + XB|||.

For the operator norm alone this inequality had been proved earlier by A. McIntosh

[32] and used by him to obtain simple proofs of some famous inequalities of E. Heinz in

perturbation theory. Following [11] different proofs of (4.2) were found by F. Kittaneh

[26], R. A. Horn [24], R. Mathias [34] and others. One of these ideas has been particularly

fruitful, and we explain it briefly.

The insertion of the matrix X in (4.2) greatly enhances the scope of the inequality

(4.1). At the same time it leads to a simpler proof. The trick is that the general case of

(4.2) follows from its very special case when A = B. (In this case the original inequality

(4.1) is a tautology.) In order to prove that

(4.3) |||A1/2XA1/2||| ≤ 1

2
|||AX + XA|||,

we may assume that A = diag (λ1, . . . , λn), a diagonal matrix. The (i, j) entry of the

matrix A1/2XA1/2 is
√

λiλj xij , and this is bounded in absolute value by 1

2
(λi+λj)xij , the

(i, j) entry of 1

2
(AX+XA). There is one unitarily invariant norm ‖·‖2 for which entrywise

domination |sj| ≤ |tij | implies ‖S‖2 ≤ ‖T‖2. So, the inequality (4.3) is obviously true

for this norm. For other norms a more elaborate argument is required. Let S ◦ T be the

entrywise product sijtij . If S is a positive (semidefinite) matrix, then by Theorem 5.5.19

in [25] we have

|||S ◦ T ||| ≤ max
i

sii |||T |||.
Let Y be the matrix with entries

yij =
2
√

λiλj

λi + λj
.

Then

A1/2XA1/2 = Y ◦
[
1

2
(AX + XA)

]
.
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So, if we show that Y is positive, then the inequality (4.3) would follow. The matrix Y

is equal to 2 A1/2CA1/2 where cij = 1

λi+λj
. It is a well-known fact that C is positive, and

hence so is Y.

The passage from (4.3) to (4.2) is affected by a block matrix argument. Let

Ã =

[
A 0

0 B

]
, X̃ =

[
0 X

0 0

]
,

and apply (4.3) to this pair. The inequality (4.2) follows.

Bhatia and Davis [11] proved a strong generalisation of (4.2). In the light of later work

this can be interpreted as follows. For 0 ≤ ν ≤ 1, the family of Heinz means of positive

numbers a and b is defined as

Hν(a, b) =
aνb1−ν + a1−νbν

2
.

Then Hν(a, b) = H1−ν(a, b); H1/2(a, b) =
√

ab; H0(a, b) = H1(a, b) = 1

2
(a + b). It can be

seen that

(4.4)
√

ab ≤ Hν(a, b) ≤ 1

2
(a + b).

Thus Hν is a family of means that interpolates between the geometric and the arithmetic

means. A matrix version of (4.4) proved in [11] says

(4.5) 2 |||A1/2XB1/2||| ≤ |||AνXB1−ν + A1−νXBν ||| ≤ |||AX + XB|||.

The argument that we adumbrated for proving (4.3) can be adapted to this situation.

For example, to prove the second inequality in (4.5), we need to prove that the matrix

Z with entries

zij =
λν

i λ
1−ν
j + λ1−ν

i λν
j

λi + λj
,

is positive. This is more complicated than the matrix Y considered earlier. In [15] and

[31] the authors establish a connection between such matrices and the theory of positive

definite functions. Using this they prove many inequalities involving different means.

This theme is carried out further in [19] and [20]. It has led to a wealth of new results.

A convenient summary and a list of references can be obtained from the monographs

[21], [40], and the recent book [10].

A norm inequality equivalent to (4.2) was proved by Corach, Porta and Recht [16]

with a different motivation. See [28] for a further discussion. Other papers with different

emphases and viewpoints include [3, 4, 5, 18].

In Section 3 we gave a Level 2 version of the inequality (4.1). The inequality (4.2)

cannot be raised to this higher level. Choose 2×2 positive definite matrices A and X such

that AX+XA is also positive. Then the diagonal entries of A1/2XA1/2 are equal to those
1

2
(AX + XA). The sum of these diagonal entries is equal to the trace of these matrices,
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which is the sum of their singular values. Since s1(A
1/2XA1/2) ≤ 1

2
s1(AX + XA), we

must have s2(A
1/2XA1/2) ≥ 1

2
s2(AX + XA).

If we do not insist on inserting the factor X, then there are Level 2 stronger versions

of the AGMI. These are given in the next section. There seems to be a delicate balance

between raising the level and inserting X.

5. Stronger Level 2 inequalities

The inequality ab ≤ (a2 +b2)/2 has a generalisation in Young’s inequality that is often

used in analysis. This says that

ab ≤ ap

p
+

bq

q
,

where p and q are conjugate indices; i.e. they are positive numbers such that 1/p+1/q =

1. T. Ando [2] obtained an analogous extension of our matrix AGMI (3.1); he showed

that

(5.1) sj(AB) ≤ sj

(
Ap

p
+

Bq

q

)
for all 1 ≤ j ≤ n,

where A and B are positive matrices, and 1/p + 1/q = 1. Of course, this implies that

(5.2) |||AB||| ≤
∣∣∣∣

∣∣∣∣

∣∣∣∣
Ap

p
+

Bq

q

∣∣∣∣

∣∣∣∣

∣∣∣∣ .

It has been pointed out by Ando [1] that the stronger version

|||AXB||| ≤
∣∣∣∣
∣∣∣∣
∣∣∣∣
ApX

p
+

XBq

q

∣∣∣∣
∣∣∣∣
∣∣∣∣

does not hold in general. H. Kosaki [31] showed that an inequality weaker than this:

(5.3) |||AXB||| ≤ |||ApX|||
p

+
|||XBq|||

q

does hold, and used this to give another proof of the multiplicative inequality

(5.4) |||AXB||| ≤ |||ApX|||1/p |||XBq|||1/q

proved earlier by Kittaneh [27] and by Bhatia and Davis [12].

Young’s inequality in the infinite-dimensional setting has been investigated by D.

Farenick et al in [6, 17, 33]. Another paper on the inequality is [22].

In another direction, the second of the inequalities (4.4) has a Level 2 matrix version.

In response to a conjecture by X. Zhan [39], K. Audenaert [7] has recently proved the

inequality

(5.5) sj

(
AνB1−ν + A1−νBν

)
≤ sj(A + B), 1 ≤ j ≤ n,

for 0 ≤ ν ≤ 1.

Audenaert’s proof depends on the following general theorem about matrix monotone

functions. We give a short and simple proof of it.
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Theorem [7] Let f be a matrix monotone function on [0,∞). Then for all positive

matrices A and B

(5.6) A f(A) + B f(B) ≥ 1

2
(A + B)1/2 (f(A) + f(B)) (A + B)1/2.

Proof. The function f is also matrix concave, and g(t) = t f(t) is matrix convex.

(See Theorems V.25 and V.29 in [9]) The matrix convexity of g implies the inequality

Af(A) + B f(B)

2
≥ A + B

2
f

(
A + B

2

)
.

The expression on the right hand side is equal to 1

2
(A + B)1/2f

(
A+B

2

)
(A + B)1/2. The

matrix concavity of f implies that

f

(
A + B

2

)
≥ f(A) + f(B)

2
.

Combining these two inequalities we get (5.6). �

We now show how (5.5) is derived from (5.6). The proof cleverly exploits the fact that

the matrices XY and Y X have the same eigenvalues.

Let f(t) = tr, 0 ≤ r ≤ 1. This function is matrix monotone. Hence from (5.6) we have

(5.7) 2 λj

(
A1+r + B1+r

)
≥ λj ((A + B)(Ar + Br)) .

Except for trivial zeros the eigenvalues of (A+B)(Ar +Br) are the same as those of the

matrix [
A1/2 B1/2

0 0

] [
A1/2 0

B1/2 0

] [
Ar + Br 0

0 0

]
,

and in turn, these are the same as the eigenalues of
[

A1/2 0

B1/2 0

] [
Ar + Br 0

0 0

] [
A1/2 B1/2

0 0

]

=

[
A1/2(Ar + Br)A1/2 A1/2(Ar + Br)B1/2

B1/2(Ar + Br)A1/2 B1/2(Ar + Br)B1/2

]
.

So, the inequalities (3.7) and (5.7) together give

λj(A
1+r + B1+r) ≥ sj

(
A1/2(Ar + Br)B1/2

)

= sj

(
A1/2+rB1/2 + A1/2B1/2+r

)

Replacing A and B by A1/1+r and B1/1+r, respectively, we get from this

sj(A + B) ≥ sj ≥
(
A

2r+1

2r+2 B
1

2r+2 + A
1

2r+2 B
2r+1

2r+2

)
, 0 ≤ r ≤ 1.

In other words

sj(A + B) ≥ sj

(
AνB1−ν + A1−νBν

)
, 1/2 ≤ ν ≤ 3/4,

and we have proved (5.5) for this special range.
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Again, except for trivial zeros, the eigenvalues of (A + B)(Ar + Br) are the same as

those of

[
Ar/2 0

Br/2 0

] [
A + B 0

0 0

] [
Ar/2 Br/2

0 0

]
.

If we repeat the arguments above we have, at the end, the inequality (5.5) for 3

4
≤ ν ≤ 1.

This establishes (5.5) for 1

2
≤ ν ≤ 1, and by symmetry for all ν in [0, 1].

Here it is interesting to note that the first inequality in (4.4) fails to have a Level 2

matrix extension. Audenaert [7] gives an example of 3 × 3 matrices A and B for which

s2

(
A1/2B1/2

)
> s2 (Hν(A, B)) for 0 < ν < 0.13.

Another generalisation of (3.1) that can be proved using these ideas is

(5.8) 2 sj

(
A1/2(A + B)rB1/2

)
≤ sj

(
(A + B)r+1

)
for r ≥ 0.

The special case r = 1 was proved by Bhatia and Kittaneh [14], and Tao [36] has proved

this for all positive integers r. Using the polar decomposition X = UP one sees that

(XX∗)r+1 = X(X∗X)rX∗ for every matrix X. Let X =

[
A1/2 0

B1/2 0

]
. Then

(XX∗)r+1 = X(X∗X)rX∗

=

[
A1/2 0

B1/2 0

][
(A + B)r 0

0 0

][
A1/2 B1/2

0 0

]
,

=

[
A1/2(A + B)rA1/2 A1/2(A + B)rB1/2

B1/2(A + B)rA1/2 B1/2(A + B)rB1/2

]

So using (3.7) we get for 1 ≤ j ≤ n,

2 sj

(
A1/2(A + B)rB1/2

)
≤ sj(XX∗)r+1 = sj(X

∗X)r+1 = sj

(
(A + B)r+1

)
,

as claimed.

An X-version of (3.5) has been recently proved by Kittaneh [29, 30]: if A and B are

positive, and X arbitrary, then

(5.9) |||AX − XB||| ≤ ||X|| |||A ⊕ B|||.

Note that this implies in particular, that ||AX − XA|| ≤ ||X|| ||A||, a significant im-

provement on the inequality ||AX − XA|| ≤ 2 ||X|| ||A|| that a raw use of the triangle

inequality leads to. A simple proof goes as follows. Let U be any unitary matrix, then

using unitary invariance of the norm, and (3.5) we get

|||AU − UB||| = |||A − UBU∗||| ≤ |||A ⊕ UBU∗||| = |||A ⊕ B|||.
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Now let X be any contraction, i.e. ||X|| ≤ 1. Then there exist unitary matrices U and

V such that X = 1

2
(U + V ). Hence

|||AX − XB||| ≤ 1

2
(|||AU − UB||| + |||AV − V B|||) ≤ |||A ⊕ B|||.

Finally, if X is any matrix, then X/||X|| is a contraction and the inequality above leads

to (5.9).

Improving upon this, Kittaneh [30] has obtained an X-version of (3.6) as well. This

says that for A, B positive and X arbitrary we have

(5.10) sj(AX − XB) ≤ ||X|| sj(A ⊕ B), 1 ≤ j ≤ n.

The reader can find more inequalities of this type and their applications in [30].

6. Another level of matrix inequalities

If the Level 2 inequality sj(Y ) ≤ sj(X), 1 ≤ j ≤ n, fails, we may still have a weaker

inequality

sj(Y ⊕ 0) ≤ sj(X ⊕ X), 1 ≤ j ≤ 2n.

We express this in an abbreviated form as

(6.1) sj(Y ) ≤ sj(X ⊕ X), 1 ≤ j ≤ n,

and note that this is equivalent to saying

(6.2) sj(Y ) ≤ s⌊ j+1

2
⌋(X), 1 ≤ j ≤ n,

where ⌊r⌋ denotes the integer part of r. Some examples of such inequalities germane to

ones discussed above are presented below.

Lemma 6.1 let X and Y be Hermitian matrices such that ±Y ≤ X. Then

sj(Y ) ≤ sj(X ⊕ X), 1 ≤ j ≤ n.

Proof. The condition ±Y ≤ X implies that Y ⊕ (−Y ) ≤ X ⊕ X. Using (3.8) and

Weyl’s monotonicity principle we have for 1 ≤ j ≤ n,

sj(Y ) ≤ λj(X ⊕ X) = sj(X ⊕ X). �

This leads to another version of the AGMI:

Proposition 6.2 For all A, B ∈ M(n) we have

(6.3) sj (A∗B + B∗A) ≤ sj ((A∗A + B∗B) ⊕ (A∗A + B∗B)) , 1 ≤ j ≤ n.

Proof. Since (A ± B)∗(A ± B) ≥ 0, we have ±(A∗B + B∗A) ≤ A∗A + B∗B. The

inequality (6.3) follows from Lemma 6.1.�
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If A and B are Hermitian, this reduces to

(6.4) sj(AB + BA) ≤ sj

(
(A2 + B2) ⊕ (A2 + B2)

)
, 1 ≤ j ≤ n.

See the discussion at the end of Section 3. Hirzallah and Kittaneh [23] have shown that

we also have

(6.5) sj(AB∗ + BA∗) ≤ sj ((A∗A + B∗B) ⊕ (A∗A + B∗B)) , 1 ≤ j ≤ n.

We have remarked at the beginning of Section 2 that a Level 1 triangle inequality (2.1)

is not true. Even a Level 3 inequality

(6.6) |||A + B||| ≤ ||| |A| + |B| |||

is not always true for 2 × 2 matrices. If

A =

[
1 0

0 0

]
, B =

[
0 1

0 0

]
,

then A + B has singular values
{√

2, 0
}

, whereas |A| + |B| = I and its singular values

are {1, 1} .

For these matrices, there does not exist any unitary U with the property

(6.7) |A + B| ≤ U(|A| + |B|)U∗.

A well-known theorem of R. C. Thompson [37] says that given any A, B in M(n), there

exist unitary matrices U and V such that

(6.8) |A + B| ≤ U |A|U∗ + V |B|V ∗.

We prove another version of the triangle inequality:

Theorem 6.2 Let A, B be any two n × n matrices. Then

(6.9) sj(A + B) ≤ sj ((|A| + |B|) ⊕ (|A∗| + |B∗|)) ,

for 1 ≤ j ≤ n.

Proof. The matrices

[
|X| ±X∗

±X |X∗|

]
are positive for every X ∈ M(n); see [9,p.10].

Hence

[
|A| + |B| ±(A + B)∗

±(A + B) |A∗| + |B∗|

]
are positive, and therefore,

±
[

0 (A + B)∗

A + B 0

]
≤
[

|A| + |B| 0

0 |A∗| + |B∗|

]
.

So, using Lemma 6.1 we get

sj ((A + B) ⊕ (A + B)∗)

≤ sj ((|A| + |B|) ⊕ (|A∗| + |B∗|) ⊕ (|A| + |B|) ⊕ (|A∗| + |B∗|)) ,
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for j = 1, 2, . . . , 2n. Now note that sj(X) = sj(X
∗), and sj(Y ⊕ Y ) ≤ sj(X ⊕ X) for all

j if and only if sj(Y ) ≤ sj(X) for all j. Hence the last inequality above is equivalent to

(6.9). �

Corollary 6.3 If A and B are n × n normal matrices, then for all j = 1, 2, . . . , n,

sj(A + B) ≤ sj ((|A| + |B|) ⊕ (|A| + |B|))
= s⌊ j+1

2
⌋(|A| + |B|).(6.10)

We remark that for normal matrices A and B the Level 3 inequality (6.6) is true, but

the Level 2 inequality (6.7) is not true even for Hermitian matrices. If

A =

[
1 1

1 1

]
, B =

[
0 0

0 −2

]
,

then s2(A + B) =
√

2, and this is bigger than s2(|A| + |B|) = 2 −
√

2.

Another well-known and very useful result is the pinching inequality. Let A = [Aij ] be

an m × m block matrix where the diagonal blocks A11, . . . , Amm are square matrices of

sizes n1, . . . , nm, with n1+· · ·+nm = n. The block diagonal matrix C(A) = A11⊕· · ·⊕Amm

is called a pinching (or m-pinching) of A. The pinching inequality says

|||C(A)||| ≤ |||A|||

for every unitary invariant norm. A Level 2 version of this inequality is not true. The

identity matrix is a pinching of A =

[
1 1

1 1

]
, and s2(I) = 1 whereas s2(A) = 0.

However, we do have the following:

Theorem 6.4 Let C(A) be an m-pinching of an n × n matrix A. Then for j =

1, 2, . . . , n,

sj(C(A)) ≤ sj(A ⊕ A ⊕ + · · · ⊕ A)(6.11)

(m copies).

Proof. Every m-pinching can be expressed as C(A) = 1

m

m−1∑
k=0

U∗kAUk where U is a

unitary matrix; see [10, p.88]. Recently it has been shown in [23] that if X0, . . . , Xm−1

are any elements of M(n), then 1

m
sj

(
m−1∑
i=0

Xi

)
≤ sj (X0 ⊕ · · · ⊕ Xm−1) . Combining these

two facts we obtain (6.11). �

7. Other versions of the AGMI

The AGMI for positive numbers a and b could be written in different ways as

(i)
√

ab ≤ a+b
2

,



15

(ii) ab ≤ a2+b2

2
,

(iii) ab ≤
(

a+b
2

)2
.

Each of these three can be obtained from another. However, they suggest different

plausible matrix versions. For example, instead of the formulation (3.1) we could ask

whether

(7.1) s
1/2

j (AB) ≤ 1

2
sj(A + B), 1 ≤ j ≤ n.

The level 3 inequality that would follow from this is

(7.2) ||| |AB|1/2 ||| ≤ 1

2
|||A + B|||,

for all unitarily invariant norms. The Level 2 inequality suggested by (iii) above is

sj(AB) ≤ 1

4
s2

j(A + B), and this is no different from (7.1). The Level 3 inequality

suggested by (iii) is

(7.3) |||AB||| ≤ 1

4
|||(A + B)2|||.

for all unitarily invariant norms. It turns out that this is a weaker statement than (7.2).

Bhatia and Kittaneh [14] considered all these different formulations. They proved the

inequality (7.3) for all unitarily invariant norms. This is equivalent to saying that (7.2)

is true for all Q-norms, a class that includes all Schatten p-norms for p ≥ 2. They showed

that (7.2) is valid also for the trace norm (p = 1). Further they showed that the Level 2

inequality (7.1) is true for the case n = 2. Other cases of this remain open.

Finally we remark that there is a large body of work on a positive matrix valued

geometric mean of A and B with several connections to problems in matrix theory,

electrical networks, physics, and geometry. The interested reader could see Chapters 4-6

of [10].
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