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Abstract

Consider the d-dimensional lattice Z
d where each vertex is ‘open’ or ‘closed’ with prob-

ability p or 1 − p respectively. An open vertex v is connected by an edge to the closest

open vertex w in the 45◦ (downward) light cone generated at v. In case of non-uniqueness

of such a vertex w, we choose any one of the closest vertices with equal probability and

independently of the other random mechanisms. It is shown that this random graph is a

tree almost surely for d = 2 and 3 and it is an infinite collection of distinct trees for d ≥ 4.

In addition, for any dimension, we show that there is no bi-infinite path in the tree.
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1 Introduction

During the last two decades there has been a considerable amount of study to understand the

structure of random spanning trees. In particular, for the uniform spanning tree model the

tree/forest dichotomy according to the dimension of the lattice was established by Pemantle

[10]. Also, for the Euclidean minimal weight spanning tree/forest model Alexander [1] showed

that the two dimensional structure of the random graph is that of a tree and Newman and

Stein [9] through a study of the fractal dimension of the incipient cluster in the Bernoulli bond

percolation problem suggest that the random graph is a forest in suitably high dimensions.

Lately there has been an interest in studying these random spanning trees where the edges

have a preferred direction of propogation. These studies have been motivated by studies of

Alpine drainage patterns (see e.g., Leopold and Langbein [7], Scheidegger [12], Howard [6]).

In a survey of such models, Rodriguez-Iturbe and Rinaldo [11] have explored (non-rigorously)

power law structures and other physical phenomenon, while Nandi and Manna [8] obtained

relations between these ‘river networks’ and scale-free networks.

Gangopadhyay, Roy and Sarkar [5] studied a random graph motivated by Scheidegger river

networks. They considered the d-dimensional lattice Z
d where each vertex is ‘open’ or ‘closed’

with probability p or 1 − p respectively. The open vertices representing the water sources.

An open vertex v was connected by an edge to the closest open vertex w such that the dth

co-ordinates of v and w satisfy w(d) = v(d) − 1. In case of non-uniqueness of such a vertex
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w, any one of the closest open vertices was chosen with equal probability and independent

of the other random mechanisms. They established that for d = 2 and 3, the random graph

constructed above is a tree, while for d ≥ 4, the graph is a forest (i.e. infinitely many trees).

Ferrari, Landim and Thorisson [3] have obtained a similar dichotomy for a continuous version

of this model which they termed Poisson trees. In this model, the vertices are Poisson points

in R
d and, given a Poisson point u, it is connected to another Poisson point v by an edge if (i)

the first (d − 1) co-ordinates of v lie in a (d − 1) dimensional ball of a fixed radius r centred

at the first (d − 1) co-ordinates of u and (ii) if v is the first such point from u in the direction

specified by the dth co-ordinate.

Mathematically these models are also attractive by their obvious connection to the Brownian

web as described by Fontes, Isopi, Newman and Ravishankar [4]. In particular, Ferrari, Fontes

and Wu [2] have shown that, when properly rescaled, Poisson trees converge to the Brownian

web. Tóth and Werner [14] considered coalescing oriented random walks on Z
2, oriented so as

to allow steps only upwards or rightwards. Wilson’s method of ‘rooted at infinity’ associates

to this Markov chain a wired random spanning tree on Z
2. Tóth and Werner also obtained an

invariance principle for the Markov chain they studied.

Motivated by the above, we consider a general class of such models. Here a source of water is

connected by an edge to the nearest (see Figure 1) source lying downstream in a 45 degree light

cone generating from the source. Like above we choose uniformly in case of non-uniqueness.

The random graph obtained by this construction is the object of study in this paper. We

establish that for d = 2 and 3, all the tributaries connect to form a single delta, while for d ≥ 4,

there are infinitely many delta, each with its own distinct set of tributaries. Further we also

show that there are no bi-infinite paths in this oriented random graph.

In the next subsection we define the model precisely, state our main results and compare it

with the existing results in the literature.

u

Figure 1: In the 45 degree light cone generated at the open point u each level is examined for

an open point and a connection is made. If there are more than one choice at a certain level

then the choice is made uniformly. As illustrated above the connection could be made to the

open point that is not the closest in the conventional graph distance on Z
d.
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1.1 Main Results

Before we describe the model we shall fix some notation which describe special regions in Z
d.

For u = (u1, . . . , ud) ∈ Z
d and k ≥ 1 let mk(u) = (u1, . . . , ud−1, ud − k).

Also, for k, h ≥ 1 define the regions

H(u, k) = {v ∈ Z
d : vd = ud − k and ||v − mk(u)||L1 ≤ k},

Λ(u, h) = {v : v ∈ H(u, k) for some 1 ≤ k ≤ h}, Λ(u) = ∪∞
h=1Λ(u, h) and

B(u, h) = {v : v ∈ H(u, k) and ||v − mk(u)||L1 = k for some 1 ≤ k ≤ h} .

We set H(u, 0) = Λ(u, 0) = ∅.

u

Figure 2: The region Λ(u, 3). The seven vertices at the bottom constitute H(u, 3) while the

six vertices on the two linear ‘boundary’ segments containing u constitute B(u, 3)

We equip Ω = {0, 1}Z
d

with the σ-algebra F generated by finite-dimensional cylinder sets

and a product probability measure Pp defined through its marginals as

Pp{ω : ω(u) = 1} = 1 − Pp{ω : ω(u) = 0} = p for u ∈ Z
d and 0 ≤ p ≤ 1. (1)

On another probability space (Ξ,S, µ) we accomodate the collection {Uu,v : v ∈ Λ(u),u ∈ Z
d}

of i.i.d. uniform (0, 1) random variables. The random graph, defined on the product space

(Ω × Ξ,F × S, P := Pp × µ), is given by the vertex set

V := V(ω, ξ) = {u ∈ Zd : ω(u) = 1} for (ω, ξ) ∈ Ω × Ξ,

and the (almost surely unique) edge set

E =
{
< u,v >: u,v ∈ V, and for some h ≥ 1,v ∈ Λ(u, h),

Λ(u, h − 1) ∩ V = ∅ and Uu,v ≤ Uu,w for all w ∈ Λ(u, h) ∩ V
}

. (2)

The graph G = (V, E) is the object of our study here. The construction of the edge-set

ensures that, almost surely, there is exactly one edge going ‘down’ and, as such, each connected

component of the graph is a tree.

Our first result discusses the structure of the graph and the second result discusses the

structure of each connected component of the graph.
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Theorem 1. For 0 < p < 1 we have, almost surely

(i) for d = 2, 3, the graph G is almost surely connected and consists of a connected tree

(ii) for d ≥ 4 the graph G is almost surely disconnected and consists of infinitely components

each of which is a tree.

While the model guarantees that no river source terminates in the downward direction, this

is not the case in the upward direction. This is our next result.

Theorem 2. For d ≥ 2, the graph G contains no bi-infinite path almost surely.

Our specific choice of ‘right-angled’ cones is not important for the results. Thus if, for some

1 < a < ∞ we had Λa(u, h) = ∪h
a=1Ha(u, k) where Ha(u, k) = {v ∈ Z

d : vd = ud −k, and ||v−

mk(u)||L1 ≤ ak} then also our results hold. In the case a = ∞ then this corresponds to the

model considered in [5]. The reuslts would also generalise to the model considered in [3].

Using the notation as in (2), we chose the “nearest” vertex at level h uniformly among all

open vertices available at that level to connect to the vertex u. One could relax the latter

and choose among all open vertices available at level h in any random fashion. If the random

fashion is symmetric in nature then our results will still hold.

For proving Theorem 1 we first observe that the river flowing down from any open point

u is a random walk on Z
d. The walk jumps downward only in the d-th coordinate and also

conditional on this jump the new position in the first d−1 coordinates are given by a symmetric

distribution. Then the broad idea of estabilishing the results for the case d = 2, 3 is that we

show that two random walks starting from two arbitrary open points u and v meet in finite

time almost surely. The random walks are dependent and as oppposed to the model considered

in [5] they also carry information,(which we call history), as they traverse downwards in Z
d.

The second fact makes the problem harder to work with. Consequently, we construct a suitable

Markov chain which carries the “history set” along with it and then find a suitable Lyaponov

function to establish that the Foster’s criterion for recurrence (See Lemma 2.2). We also benefit

from the observation that this “history set” is always a triangle. The precise definitions and

the complete proof of Theorem 1 (i), is presented in Section 2.

For proving Theorem 1 (ii) one shows that two random walks starting from two open points

u and v which are far away do not ever meet. Once the starting points are far away one is able

to couple these dependent random walks with a system of independent random walks. The

coupling has to be done carefully because of the “history set” information in the two walks. To

finish the proof one needs estimates regarding intersections of two independent random walks

and these may be of intrinsic interest (See Lemma 3.2 and Lemma 3.3).The details are worked

out in Section 3.

The proof of Theorem 2 requires a delicate use of the Burton–Keane argument regarding

the embedding of trees in an Euclidean space. This is carried out in Section 4.
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2 Dimensions 2 and 3

In this section we prove Theorem 1(i). We present the proof for d = 2 and later outline the

modifications required to prove the theorem for d = 3. To begin with we have a collection

{Uu,v : v ∈ Λ(u, h), h ≥ 1,u ∈ Z
d} of i.i.d. uniform (0, 1) random variables.

Consider two distinct vertices u := (u1, u2) and v := (v1, v2) where

u, v are such that |u1 − v1| > 1 and v2 = u2 − 1; (3)

This ensures that u 6∈ Λ(v, h), v 6∈ Λ(u, h) for any h ≥ 1. We will show that given u and v

open, they are contained in the same component of G with probability 1.

This suffices to prove the theorem, because if two open vertices u and v do not satisfy the

condition (3) then, almost surely, we may get open vertices w1, . . . ,wn such that each of the

pairs wi and wi+1 as well as the pairs u and w1, and v and wn satisfy the condition (3). This

ensures that all the above vertices, and hence both u and v belong to the same component of

G.

To prove our contention we construct the process dynamically from the two vertices u and

v as given in (3). The construction will guarantee that the process obtained is equivalent in

law to the marginal distributions of the ‘trunk’ of the trees as seen from u and v in G. Without

loss of generality we take

u := (0, 0) and v := (l0,−1). (4)

Note that all the processes we construct in this section are independent of those constructed

in Section 1.1.

u

u1

v

v1

Figure 3: The construction of the process from u and v.

Before we embark on the formal details of the construction we present the main ideas. From

the points u and v we look at the region Λ(u)∪Λ(v). On this region we label the vertices open

or closed independently and find the vertices u1 and v1 to which u and v connect (respectively)
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according to the mechanism of constructing edges given in Section 1.1. Having found u1 and

v1 we do the same process again for these vertices. However now we have to remember that we

are carrying a history , i.e., there is a region, given by the shaded triangle in Figure 3, whose

configuration we know. In case the vertical distance between u1 and v1 is much larger than the

horizontal distance or the history set is non-empty we move the vertex on the top (see Figures

4 and 5), otherwise we move both the vertices simultaneously (see Figure 6).
u

v

u

v = v1

u1

Figure 4: The movement of the vertices : case non-empty history (the lightly shaded region),

only the top vertex moves, the darker shaded region in (b) is the new history.

u

v

u

v = v1

u1

Figure 5: The movement of the vertices : case empty history, ratio of height to length is large.

Only the top vertex moves.

u

v

u

v

u1

v1

Figure 6: The movement of the vertices : case empty history, ratio of height to length is small.

Both the vertices move.

Note that in this construction, the history will always be a triangular region. Also, at every

move during the construction of the process we will keep a track of the vertical height, the

horizontal length and the history. This triplet will form a Markov process whose recurrence

properties will be used to establish Theorem 1(i).
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For the formal construction of the process we take

H0 = 1, L0 = |l0| and V0 = ∅.

Now let ωu,v ∈ {0, 1}Λ(u)∪Λ(v). Let hu := inf{h : ωu,v(w) = 1 for some w ∈ Λ(u, h)} and

hv := inf{h : ωu,v(w) = 1 for some w ∈ Λ(v, h)}. Note that under the product measure P as

defined earlier via the marginals (1) on {0, 1}Λ(u)∪Λ(v) , the quantities hu and hv are finite for

P-almost all ωu,v.

Let u1 := (u1(1), u1(2)) ∈ H(u, hu) be such that ωu,v(u1) = 1 and Uu,u1 ≤ Uu,w for all

w ∈ H(u, hu) with ωu,v(w) = 1. Similarly let v1 := (v1(1), v1(2)) ∈ H(v, hv) be such that

ωu,v(v1) = 1 and Uv,v1 ≤ Uv,w for all w ∈ H(v, hv) with ωu,v(w) = 1. Further define,

H1 = |u1(2) − v1(2)|, L1 = |u1(1) − v1(1)| and V1 = (Λ(v1) ∩ Λ(u, hu)) ∪ (Λ(u1) ∩ Λ(v, hv)).

Having obtained uk := (uk(1), uk(2)), vk := (vk(1), vk(2)) and Hk, Lk and Vk we consider

the following cases

(i) if Vk 6= ∅ or if Vk = ∅ and Hk/Lk ≥ C0 for a constant C0 to be specified later in (15) and

(a) if uk(2) ≥ vk(2) (see Figure 4 for Vk 6= ∅ and Figure 5 for Vk = ∅) then we set

vk+1 := vk

and consider ω ∈ {0, 1}Λ(uk)\Vk . Let

ωuk,vk
(w) :=





ω(w) if w ∈ Λ(uk) \ Vk,

ωuk−1,vk−1
(w) if w ∈ Vk ∩ Λ(uk)

and let huk
:= inf{h : ωuk,vk

(w) = 1 for some w ∈ Λ(uk, h)}. Again under the

product measure P on Λ(uk) such a huk
is finite almost surely.

Now let uk+1 := (uk+1(1), uk+1(2)) be such that ωuk,vk
(uk+1) = 1 and Uuk,uk+1

≤

Uuk ,w for all w ∈ H(uk, huk
) with ωuk,vk

(w) = 1.

We take

Hk+1 = |uk+1(2) − vk+1(2)|, Lk+1 = |uk+1(1) − vk+1(1)| and

Vk+1 = (Λ(vk+1) ∩ Λ(uk, huk
)) ∪ (Λ(uk+1) ∩ Vk));

(before we proceed further we note that either Λ(vk+1) ∩ Λ(uk) or Λ(uk+1) ∩ Vk is

empty – the set which is non-empty is necessarily a triangle)

(b) if uk(2) < vk(2) then we set

uk+1 := uk

and consider ω ∈ {0, 1}Λ(vk)\Vk . Let

ωuk,vk
(w) :=





ω(w) if w ∈ Λ(vk) \ Vk,

ωuk−1,vk−1
(w) if w ∈ Vk ∩ Λ(vk)
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and let hvk
:= inf{h : ωuk,vk

(w) = 1 for some w ∈ Λ(vk, h)}. Again under the

product measure P on Λ(vk) such a hvk
is finite almost surely.

Now let vk+1 := (vk+1(1), vk+1(2)) be such that ωuk,vk
(vk+1) = 1 and Uvk ,vk+1

≤

Uvk,w for all w ∈ H(vk, hvk
) with ωuk,vk

(w) = 1. We take

Hk+1 = |uk+1(2) − vk+1(2)|, Lk+1 = |uk+1(1) − vk+1(1)| and

Vk+1 = (Λ(uk+1) ∩ Λ(vk, hvk
)) ∪ (Λ(vk+1) ∩ Vk))

(again, note that either Λ(uk+1) ∩ Λ(vk) or Λ(vk+1) ∩ Vk is empty – the set which

is non-empty is necessarily a triangle);

(ii) if Vk = ∅, and Hk/Lk < C0 (See Figure 6) then we take ωuk,vk
∈ {0, 1}Λ(uk)∪Λ(vk). Let

huk
:= inf{h : ωuk,vk

(w) = 1 for some w ∈ Λ(uk, h)} and hvk
:= inf{h : ωuk,vk

(w) =

1 for some w ∈ Λ(vk, h)}. Again under the product measure P the quantities huk
and

hvk
are finite for P-almost all ωuk,vk

.

Let uk+1 := (uk+1(1), uk+1(2)) be such that ωuk,vk
(uk+1) = 1 and Uuk,uk+1

≤ Uuk ,w for

all w ∈ H(uk, huk
) with ωuk,vk

(w) = 1.

Similarly let vk+1 := (vk+1(1), vk+1(2)) be such that ωuk,vk
(vk+1) = 1 and Uvk,vk+1

≤

Uvk,w for all w ∈ H(vk, hvk
) with ωuk,vk

(w) = 1.

We take

Hk+1 = |uk+1(2) − vk+1(2)|, Lk+1 = |uk+1(1) − vk+1(1)| and

Vk+1 = (Λ(vk+1) ∩ Λ(uk, huk
)) ∪ (Λ(uk+1) ∩ Λ(vk, hvk

)).

(again, note that either Λ(vk+1) ∩ Λ(uk, huk
) or Λ(uk+1) ∩Λ(vk, hvk

) is empty – the set

which is non-empty is necessarily a triangle).

We will now briefly sketch the connection between the above construction and the model

as described in Section 1.1. For this with a slight abuse of notation we take ωuk,vk
to

be the sample point ωuk,vk
restricted to the set Λ(uk, huk

) ∪ Λ(vk, hvk
). Also let ω1 ∈

{0, 1}Z
2\∪∞

k=0(Λ(uk ,hu
k
)∪Λ(vk,hv

k
)), where u0 = u and v0 = v. Now define ω ∈ Ω as

ω(w) =





ωuk,vk
(w) if w ∈ Λ(uk, huk

) ∪ Λ(vk, hvk
) for some k

ω1(w) otherwise.

Thus for every sample path from u and v obtained by our construction we obtain a realisation

of our graph with u and v open. Conversely if ω ∈ Ω gives a realisation of our graph with u

and v open then we label vertices ui and vi as vertices such that < ui−1,ui > is an edge in

the realisation with hui
:= ui(2) − ui+1 > 0, and hvi

:= vi(2) − vi+1(2) > 0 is an edge in the

realisation with vi(2) < vi−1(2). Now the restriction of ω on ∪∞
i=0(Λ(ui, hui

) ∪ Λ(vi, hvi
)) will

correspond to the concatenation of the ωuk,vk
we obtained through the construction.

Lemma 2.1. The process {(Hk, Lk, Vk) : k ≥ 0} is a Markov process with state space S =

(N ∪ {0}) × (N ∪ {0}) × {Λ(w, h)),w ∈ Z
2, h ≥ 0}.
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u

v
(a)

u

v
(b)

Figure 7: The geometry of the history region.

Proof: If uk = u and vk = v are as in Figure 7 (a) or (b) (i.e. uk(2) ≥ vk(2)) then we

make the following observations about the history region Vk.

Observations:

(i) Vk is either empty or a triangle (i.e. the shaded region in the figure),

(ii) all vertices in the triangle Vk, except possibly on the base of the triangle, are closed under

ωuk,vk
,

(iii) the base of the triangle Vk must be on the horizontal line containing the vertex v,

(iv) one of the sides of the triangle Vk must lie on the boundary B(u,Hk) of Λ(u,Hk), while

the other side does not lie on B(u,Hk) unless u and v coincide,

(v) the side which does not lie on B(u,Hk) is determined by the location of vk−1,

(vi) if uk(2) = vk(2) then Vk = ∅,

(vii) the vertex uk+1 may lie on the base of the triangle, but not anywhere else in the triangle.

While observations (ii) – (vi) are self-evident, the reason for (i) above is that if the history

region has two or more triangles, then there must necessarily be a fourth vertex w besides the

vertices under consideration, u, v and vk−1 which initiated the second triangle. This vertex w

must either be a vertex uj for some j ≤ k − 1 or a vertex vj for some j ≤ k − 2. In the former

case, the history region due to w must lie above uk and in the latter case it must lie above

vk−1. In either case it cannot have any non-empty intersection with the region Λ(u).

In Figure 7 (a) where the vertex v does not lie on the base of the shaded triangle, however

it lies on the horizontal line containing the base, there may be open vertices on the base of the

triangle. If that be the case, the vertex uk+1 may lie anywhere in the triangle subtended by

the sides emanating from the vertex u and the horizontal line; otherwise it may lie anywhere

in the region Λ(u).
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In Figure 7 (b) where the vertex v lies on the base of the shaded triangle, the vertex uk+1

may lie anywhere in the triangle subtended by the sides emanating from the vertex u and the

horizontal line.

Finally having obtained uk+1, if Vk 6= ∅ or if Vk = ∅ and Hk/Lk ≥ C0 then we take

vk+1 = vk; otherwise we obtain vk+1 by considering the region Λ(v) and remembering that in

obtaining uk+1 we may have already specified the configuration of a part of the region in Λ(v).

The new history region Vk+1 is now determined by the vertices uk, vk, uk+1 and vk+1.

This justifies our claim that {(Hk, Lk, Vk) : k ≥ 0} is a Markov process.

We will now show that

P{(Hk, Lk, Vk) = (0, 0, ∅) : for some k ≥ 0} = 1. (5)

For this we change the Markov process slightly. We define a new Markov process with

state space S which has the same transition probabilities as {(Hk, Lk, Vk) : k ≥ 0} except that

instead of (0, 0, ∅) being an absorbing state, we introduce a transition

P{(0, 0, ∅) → (0, 1, ∅)} = 1.

We will now show using Lyapunov’s method that this modified Markov chain is recurrent.

This will imply that P{(Hk, Lk, Vk) = (0, 0, ∅) : for some k ≥ 0} = 1. With a slight abuse of

notation we let the modified Markov chain be denoted by {(Hk, Lk, Vk) : k ≥ 0}.

Define a function g : R+ 7→ R+ by :

g(x) = log(1 + x). (6)

Some properties of g :

g(1)(x) =
1

1 + x
,

g(2)(x) =
−1

(1 + x)2
< 0,

g(3)(x) =
2

(1 + x)3
,

g(4)(x) =
−6

(1 + x)4
< 0 for all x > 0.

Thus, using Taylor’s expansion and above formulae for derivatives, we have two inequalities:

for x, x0 ∈ R+

g(x) − g(x0) ≤
(x − x0)

(1 + x0)
(7)

and

g(x) − g(x0) ≤
(x − x0)

(1 + x0)
−

(x − x0)
2

2(1 + x0)2
+

(x − x0)
3

3(1 + x0)3

=
1

6(1 + x0)3

[
6(1 + x0)

2(x − x0) − 3(1 + x0)(x − x0)
2 + (x − x0)

3

]
. (8)
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Now, define f : S 7→ R+ by,

f(h, l, V ) = h4 + l4. (9)

Also, we define u : S 7→ R+ by

u(h, l, V ) = g(f(h, l, V )) + (|V |) = log
[
1 + (l4 + h4)

]
+ (|V |) (10)

where |V | denotes the cardinality of V .

Lemma 2.2. For all but finitely many (h, l, V ) ∈ S, we have

E

(
u(Hn+1, Ln+1, Vn+1) | (Hn, Ln, Vn) = (h, l, V )

)
≤ u(h, l, V ). (11)

Proof : Before we embark on the proof we observe that using the inequality (7) and the

expression (9), we have that

E

[
u(Hn+1, Ln+1, Vn+1) − u(h, l, V )|(Hn, Ln, Vn) = (h, l, V )

]

= E

[
g(f(Hn+1, Ln+1, Vn+1) − g(f(h, l, V ))|(Hn, Ln, Vn) = (h, l, V )

]

+E

[
|Vn+1| − |V ||(Hn, Ln, Vn) = (h, l, V )

]

= E

[
log(1 + H4

n+1 + L4
n+1) − log(1 + h4 + l4)|(Hn, Ln, Vn) = (h, l, V )

]

+E

[
|Vn+1| − |V ||(Hn, Ln, Vn) = (h, l, V )

]

≤
1

1 + h4 + l4
E

[
H4

n+1 + L4
n+1 − (h4 + l4)|(Hn, Ln, Vn) = (h, l, V )

]

+E

[
|Vn+1| − |V ||(Hn, Ln, Vn) = (h, l, V )

]
. (12)

Let a0 = 0 and for k ≥ 1 let bk = 2k + 1 and ak =
∑k

i=1 bi. We define two integer valued

random variables T and D whose distributions are given by:

P(T = k) = (1 − p)ak−1(1 − (1 − p)bk) for k ≥ 1 (13)

P(D = j|T = k) =
1

2k + 1
for − k ≤ j ≤ k (14)

For i = 1, 2, let Ti,Di be i.i.d. copies of T,D. Let

β1 = E(D1 − D2)
2

β2 = E(T1 − T2)
2

Let C0 > 0 be small enough so that

36(1 + C4
0 )(β1 + C2

0β2) − 48β1 < 0 (15)

We shall consider three cases for establishing (11)

Case 1: V is non-empty.

We will prove the following inequalities:

11



sup
(h,l,V ):V 6=∅,h≥1

E

[
H4

n+1 − h4|(Hn, Ln, Vn) = (h, l, V )
]

h3
≤ C1, (16)

sup
(h,l,V ):V 6=∅,l≥1

E

[
L4

n+1 − l4|(Hn, Ln, Vn) = (h, l, V )
]

|l|3
≤ C1 (17)

and

E

[
|V | − |Vn+1||(Hn, Ln, Vn) = (h, l, V )

]
≥ C2 − C3 exp(−C4(h + |l|)/2) (18)

where C1, C2, C3 and C4 are positive constants. Putting the inequalities (16), (17) and (18) in

(12), for all (h, l, V ) ∈ S with V non-empty, we have

E

[
u(Hn+1, Ln+1, Vn+1) − u(h, l, V )|(Hn, Ln, Vn) = (h, l, V )

]

≤
C1h

3 + C1|l|
3

1 + h4 + l4
− C2 + C3 exp(−C4(h + |l|)/2) < 0

for all (h, l) such that h + |l| sufficiently large. Therefore, outside a finite number of choices

of (h, l), we have the above inequality. Now, for these finite choices for (h, l), there are only

finitely many possible choices of V which is non-empty. This takes care of the case when the

history is non-empty.

Now, we prove (16), (17) and (18). Define the random variables

Tn+1 = max(un(2) − un+1(2),vn(2) − vn+1(2)) (19)

and

Dn+1 = (vn(1) − vn+1(1)) − (un(1) − un+1(1)). (20)

It is easy to see that the conditional distribution of Hn+1 given (Hn, Ln, Vn) = (h, l, V ) is same

as that of |Tn+1 − h|.

Note that, for any given non-empty set V , as noted in observations (iv), at least one diagonal

line will be unexplored, and consequently Tn+1 is dominated by a geometric random variable

G with parameter p. Further, given Tn+1 = j, the value of |Dn+1| is at most 2j. Thus, for any

k ≥ 1

E(T k
n+1) ≤ E(Gk) < ∞ and E(Dk

n+1) < ∞.

Therefore, we have

E

[
H4

n+1 − h4|(Hn, Ln, Vn) = (h, l, V )
]

= E

[
(Tn+1 − h)4 − h4

]

≤ 4h3
E(Tn+1) + 6h2

E(T 2
n+1) + 4hE(T 3

n+1) + E(T 4
n+1)

≤ h3C1

for a suitable choice of C1.
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Similarly, we have that the conditional distribution of Ln+1 given (Hn, Ln, Vn) = (h, l, V )

is same as that of |Dn+1 − l|. Therefore, we have,

E

[
L4

n+1 − l4|(Hn, Ln, Vn) = (h, l, V )
]

= E

[
(Dn+1 − l)4 − l4

]

≤ 4|l|3E(|Dn+1|) + 6|l|2E(|Dn+1|
2) + 4|l|E(|Dn+1|

3) + E(|Dn+1|
4)

≤ 4|l|3E(G) + 6|l|2E(G2) + 4|l|E(G3) + E(G4)

≤ |l|3C1.

For the inequality (18), we require the following observations:

• If Tn+1 ≤ h then Vn+1 ⊆ Vn.

• If h < Tn+1 < (h + |l|)/2 then Vn+1 = ∅.

• If Tn+1 ≥ (h + |l|)/2 then |Vn+1| ≤ (Tn+1 − (h + |l|)/2)2.

Further, when Tn+1 ≤ h, we have

P(|V | − |Vn+1| ≥ 1) ≥ min{p(1 − p), p/2} =: α(p).

This is seen in the following way. We look at the case when Tn+1 = 1 and connect to the point

which will always be unexplored. In that case, |V | − |Vn+1| ≥ 1. Note that if both points on

the line Tn+1 = 1 were available, this probability is at least p(1 − p). If both points were not

available, then there are two possible cases, i.e., the history point on the top line is open or

the history point on the top line is closed. In the first case, the probability is p/2 while in the

second case the probability is p.

Thus, we have

E

[
|V | − |Vn+1||(Hn, Ln, Vn) = (h, l, V )

]

= E

[[
|V | − |Vn+1

]
1(Tn+1 ≤ h)|(Hn, Ln, Vn) = (h, l, V )

]

+E

[[
|V | − |Vn+1

]
|1(h < Tn+1 < (h + |l|)/2)|(Hn, Ln, Vn) = (h, l, V )

]

+E

[[
|V | − |Vn+1

]
|1(Tn+1 ≥ (h + |l|)/2)|(Hn, Ln, Vn) = (h, l, V )

]

≥ E

[[
|V | − |Vn+1

]
1(Tn+1 ≤ h)|(Hn, Ln, Vn) = (h, l, V )

]

−E

[
|Vn+1|1(Tn+1 ≥ (h + |l|)/2)|(Hn, Ln, Vn) = (h, l, V )

]

≥ α(p) − E

[
(Tn+1 − (h + |l|)/2)21(Tn+1 ≥ (h + |l|)/2)

]

≥ α(p) − E

[
T 2

n+11(Tn+1 ≥ (h + |l|)/2)
]

≥ α(p) − E

[
G21(G ≥ (h + |l|)/2)

]

≥ α(p) − C3 exp(−C4(h + |l|)/2)
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where C3 and C4 are positive constants. This completes the proof in the case when history is

non-null.

Case 2: V = ∅, h
|l| ≥ C0

For this case, we use the inequality (12) with |V | = 0. We will show that, for all h large

enough,

E

[
H4

n+1 − h4|(Hn, Ln, Vn) = (h, l, ∅)
]

= −C5h
3 + O(h2), (21)

E

[
L4

n+1 − l4|(Hn, Ln, Vn) = (h, l, ∅)
]

≤ C6h
2, (22)

E

[
|Vn+1||(Hn, Ln, Vn) = (h, l, ∅)

]
≤ C7 exp(−C8h) (23)

where C5, C6, C7 and C8 are positive constants.

Using the above estimates (21), (22) and (23) in (12) with |V | = 0, we have,

E

[
u(Hn+1, Ln+1, Vn+1) − u(h, l, ∅)|(Hn, Ln, Vn) = (h, l, ∅)

]

≤
−C5h

3 + C6h
2

1 + h4 + l4
+ C7 exp(−C8h) < 0 for all h large enough.

Now, we prove the estimates (21), (22) and (23). It is easy to see that the conditional

distribution of Hn+1 given (Hn, Ln, Vn) = (h, l, ∅) is same as that of |Tn+1 − h| where Tn+1 is

as defined in (19). Therefore, we have

E

[
H4

n+1 − h4|(Hn, Ln, Vn) = (h, l, ∅)
]

= E

[
(Tn+1 − h)4 − h4

]

= −4h3
E(Tn+1) + 6h2

E(T 2
n+1) − 4hE(T 3

n+1) + E(T 4
n+1)

= −h3C5 + O(h2)

where C5 = 4E(Tn+1) > 0.

Again, we have that the conditional distribution of Ln+1 given (Hn, Ln, Vn) = (h, l, ∅) is

same as that of |Dn+1 − l|. Therefore, we have,

E

[
L4

n+1 − l4|(Hn, Ln, Vn) = (h, l, ∅)
]

= E

[
(Dn+1 − l)4 − l4

]

= 4l3E(Dn+1) + 6l2E(D2
n+1) + 4lE(D3

n+1) + E(D4
n+1)

≤ 6|l|2E(|Dn+1|
2) + 4|l|E(|Dn+1|

3) + E(|Dn+1|
4)

≤ 6h2
E(|Dn+1|

2)/C2
0 + 4hE(|Dn+1|

3)/C0 + E(|Dn+1|
4)

≤ C6h
2

for suitable choice of C6 > 0.
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Finally, to prove (23), we observe that if Tn+1 < (|l| + h)/2 then Vn+1 = ∅. If Tn+1 ≥

(|l| + h)/2 then |Vn+1| ≤ (Tn+1 − (|l| + h)/2)2. Therefore, we have

E

[
|Vn+1||(Hn, Ln, Vn) = (h, l, ∅)

]

≤ E

[
(Tn+1 − (h + |l|)/2))21(Tn+1 ≥ (h + |l|)/2)

]

≤ E

[
T 2

n+11(Tn+1 ≥ (h + |l|)/2)
]

≤ E

[
T 2

n+11(Tn+1 ≥ h/2)
]

≤ C7 exp(−C8h)

for suitable choices of positive constants C7 and C8.

Case 3 V = ∅, h
|l| < C0. Using (8), we have,

u(Hn+1, Ln+1, Vn+1) − u(h, l, ∅)

≤
1

(1 + h4 + l4)

[
6(1 + h4 + l4)2

[
(H4

n+1 + L4
n+1) − (h4 + l4)

]

−3(1 + h4 + l4)
[
(H4

n+1 + L4
n+1) − (h4 + l4)

]2

+
[
(H4

n+1 + L4
n+1) − (h4 + l4)

]3
]

+ |Vn+1|.

Taking conditional expectation and denoting, (H4
n+1 + L4

n+1) − (h4 + l4) by Rn, we have,

E
(
u(Hn+1, Ln+1, Vn+1) − u(h, l, ∅) | (Hn, Ln, Vn) = (h, l, ∅)

)

≤
1

(1 + h4 + l4)

[
6(1 + h4 + l4)2E

(
Rn | (Hn, Ln, Vn) = (h, l, ∅)

)

−3(1 + h4 + l4)E
(
R2

n | (Hn, Ln, Vn) = (h, l, ∅)
)

+E
(
R3

n | (Hn, Ln, Vn) = (h, l, ∅)
)]

+E
(
|Vn+1| | (Hn, Ln, Vn) = (h, l, ∅)

)
. (24)

We want to show that: for all l large enough,

E
(
Rn | (Hn, Ln, Vn) = (h, l, ∅)

)
≤ 6|l|2[β1 + C2

0β2] (25)

E
(
R2

n | (Hn, Ln, Vn) = (h, l, ∅)
)

≥ 16|l|6β1 (26)

E
(
R3

n | (Hn, Ln, Vn) = (h, l, ∅)
)

≤ C10|l|
9 (27)

E
(
|Vn+1| | (Hn, Ln, Vn) = (h, l, ∅)

)
≤ C11 exp(−C12|l|) (28)

where β1, β2 are as defined earlier and C9, C10, C11 and C12 are positive constants.
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Using the above inequalities in (24), and the definition of C0, we have,

E

[
u(Hn+1, Ln+1, Vn+1) − u(h, l, ∅)|(Hn, Ln, Vn) = (h, l, ∅)

]

≤
1

(1 + h4 + l4)3

[
36(1 + h4 + l4)2|l|2(β1 + C2

0β2)

−48(1 + h4 + l4)|l|6β1 + C10|l|
9
]

+ C11 exp(−C12|l|)

< 0 for all |l| large enough.

Proof of (25) and (26): Let us assume without loss of generality that vn(1) = un(1) + l

and vn(2) = un(2) + h. Let T v
n+1 = vn(2) − vn+1(2), Dv

n+1 = vn(1) − vn+1(1) and T u
n+1 =

un(2) − un+1(2), Du
n+1 = un(1) − un+1(1). Using this notation, we have

Rn = [h + (T v
n+1 − T u

n+1)]
4 − h4 + (l + (Dv

n+1 − Du
n+1))

4 − l4

= 4h3(T v
n+1 − T u

n+1) + 6h2(T v
n+1 − T u

n+1)
2 + 4h(T v

n+1 − T u
n+1)

3

+(T v
n+1 − T u

n+1)
4 + 4l3(Dv

n+1 − Du
n+1) + 6l2(Dv

n+1 − Du
n+1)

2

+4l(Dv
n+1 − Du

n+1)
3 + (Dv

n+1 − Du
n+1)

4. (29)

Now, it is easy to observe that if both T u
n+1 < (|l| + h)/2 and T v

n+1 < (|l| − h)/2, both of

them will behave independently and the distribution on that set is same as that of T . Further,

the tail probabilities of the height distribution T decays exponentially. Thus,

E(T j1
T> |l|−h

2

) = O(exp(−|l| − |h|)) for all j ≥ 1.

Hence we have for all j ≥ 1,

E((T v
n+1 − T u

n+1)
j | (Hn, Ln, Vn) = (h, l, ∅)

)
= E((T2 − T1)

j) + O(exp(−|l|))

where T1, T2 are i.i.d. copies of T and similarly we have

E((Dv
n+1 − Du

n+1)
j | (Hn, Ln, Vn) = (h, l, ∅)

)
= E((D2 − D1)

j) + O(exp(−|l|))

where and D1, D2 are i.i.d copies of D.

Now, to conclude (25), we just need the observation that all odd moments of the terms

T1 − T2 and D1 − D2 are 0. Thus in the conditional expectation of (29), we see that the

terms involving h3 and l3 do not contribute, the coefficient of l2 in the second term contributes

6E(D1 − D2)
2, the coefficient of h2 contributes 6E(T1 − T2)

2 and all other terms have smaller

powers of h and l. From the fact that h/|l| < C0 and our choice of C0 given by (15), we

conclude the result.

To show (26), studying R2
n, we note that there are only three terms which are important,

(a) coefficient of l6, (b) coefficient of h6 and (c) coefficient of h3l3. All other terms, are of

type hilj have i + j < 6 and, since h/|l| < C0, these terms are of order smaller than l6. The

coefficient of l6 is 16E
(
(D1 − D2)

2
)

= 16β1, the coefficient of h6 is 16E
(
(T1 − T2)

2
)

> 0 while
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the coefficient of h3l3 is 16E
(
(T1−T2)(D1−D2)

)
= 16E((T1−T2)E(D1−D2|T1, T2)) = 0. Thus

(26) holds.

Proof of (27): In the expansion of R3
n, all the terms are of type hilj with i+ j ≤ 9. Thus,

using the fact that h/|l| < C0, and all terms have finite expectation, we conclude the result.

Proof of (28) : Finally, the history set Vn+1 is empty if T u
n+1 < (|l| + h)/2 and T v

n+1 <

(|l| − h)/2. Otherwise, the history is bounded by (T u
n+1 − (|l|+ h)/2)21T u

n+1>(|l|+h)/2 + (T v
n+1 −

(|l| − h)/2)21T v

n+1>(|l|−h)/2. Again, since the tails probabilities decay exponentially, the above

expectations decay exponentially with |l|.

This completes the proof of Lemma 2.2 and we obtain that

E

(
u(Hn+1, Ln+1, Vn+1) | (Hn, Ln, Vn) = (h, l, V )

)
≤ u(h, l, V )

holds outside l ≥ l0, h ≤ h0 and |V | ≤ k for some constants l0, h0 and k.

By Foster’s criteria (see Asmussen (1987), Proposition 5.3 of Chapter I) we have that the

Markov chain is recurrent. Therefore, we have

P
[
(Hn, Ln, Vn) = (0, 0, ∅) for some n ≥ 1|(H0, L0, V0) = (h, l, v)

]
= 1

for any (h, l, v) ∈ S.

For d = 3 we need to consider the ‘width’, i.e. the displacement in the third dimension.

Thus we have now a process (Hn, Ln,Wn, Vn), n ≥ 0 where Hn is the displacement in the

direction of propogation of the tree (i.e. the third coordinate), and Ln and Wn are the lateral

displacements in the first and the second coordinates respectively. Now the history region Vn

would be a tetrahedron. Instead of (10) we now consider the Lyapunov function

u(h, l, w, V ) = g(f(h, l, w, V )) + (|V |) = log
[
1 + (l4 + h4 + w4)

]
+ (|V |)

where

f(h, l, w, V ) = l4 + h4 + w4

and g(x) = log(1+x) is as in (6). This yields the required recurrence of the state (0, 0, 0, ∅) for

the Markov process (Hn, Ln,Wn, Vn) thereby completing the proof the first part of Theorem 1.

3 d ≥ 4

For notational simplicity we present the proof only for d = 4. We first claim that on Z
4 the

graph G admits two distinct trees with positive probability, i.e.,

P{G is disconnected} > 0. (30)

We start with two distinct open vertices and follow the mechanism described below to

generate the trees emanating from these vertices. Given two vertices u and v, we say u ≻ v if
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u(4) > v(4) or if u(4) = v(4), and u is larger than v in the lexicographic order. Starting with

two distinct open vertices, u and v with u ≻ v we set

Tu,v(0) = (u0,v0, V0) where u0 = u,v0 = v, and V0 = ∅.

Let R(u) ∈ Z
4 be the unique open vertex such that 〈u, R(u)〉 ∈ G. We set u1 =

max{R(u),v} and v1 = min{R(u),v} where the maximum and minimum is over vectors and

henceforth understood to be with respect to the ordering ≻. We define,

Tu,v(1) = (u1,v1, V1)

where

V1 =
(
Λ(v) ∩ Λ(u,u(4) − R(u)(4))

)
∪

(
V0 ∩ Λ(u1)

)
.

= Λ(v) ∩ Λ(u,u(4) − R(u)(4))

The set V1 is exactly the history set in this case.

Having defined, {Tu,v(k) : k = 0, 1, . . . , n} for n ≥ 1, we define Tu,v(n + 1) in the same

manner. Let R(un) ∈ Z
4 be the unique open vertex such that 〈un, R(un)〉 ∈ G. Define

un+1 = max{R(un),vn},vn+1 = min{R(un),vn} and

Tu,v(n + 1) = (un+1,vn+1, Vn+1)

where

Vn+1 =
(
Λ(vn) ∩ Λ(un,un(4) − R(un)(4))

)
∪

(
Vn ∩ Λ(un+1)

)
.

The process {Tu,v(k) : k ≥ 0} tracks the the position of trees after the kth step of the

algorithm defined above along with the history carried at each stage. Clearly, if uk = vk for

some k ≥ 1, the trees emanating from u and v meet while the event that the trees emanating

from u and v never meet corresponds to the event that {uk 6= vk : k ≥ 1}.

A formal construction of the above process is achieved in the following manner. We start

with an independent collection of i.i.d. random variables, {Ww
1 (z),Ww

2 (z) : z ∈ Λ(w),w ∈ Z
4},

defined on some probability space (Ω,F , P), with each of these random variables being uniformly

distributed on [0, 1]. Starting with two open vertices u and v, set u0 = max(u,v),v0 =

min(u,v) and V0 = ∅. For ω ∈ Ω, we define ku0 = ku0(ω) as

ku0 := min{k : Wu0
1 (z) < p for some z ∈ H(u0, k)}

and

Nu0 := {z ∈ H(u0, ku0) : Wu0
1 (z) < p}.

We pick

R(u0) ∈ Nu0 such that Wu0
2 (R(u0)) = min{Wu0

2 (z) : z ∈ Nu0}.
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Define, as earlier,

u1 = max(R(u0),v0), v1 = min(R(u0),v0)

and

V1 =
(
Λ(v0) ∩ Λ(u0, ku0)

)
∪

(
V0 ∩ Λ(u1)

)
=

(
Λ(v0) ∩ Λ(u0, ku0)

)
.

Further, for z ∈ V1, define

W 1
H(z) = Wu0

1 (z).

Having defined {(uk,vk, Vk, {W
k
H(z) : z ∈ Vk}) : 1 ≤ k ≤ n}, we define un+1,vn+1, Vn+1,

{W n+1
H (z) : z ∈ Vn+1} as follows: for ω ∈ Ω, we define kun

= kun
(ω) as

kun
:= min{k : W n

H(z) < p for some z ∈ Vn ∩ H(un, k)

or Wun

1 (z) < p for some z ∈ H(un, k) \ Vn}

and

Nun
:= {z ∈ H(un, kun

) : W n
H(z) < p if z ∈ Vn ∩ H(un, k)

or Wun

1 (z) < p if z ∈ H(un, k) \ Vn}.

We pick

R(un) ∈ Nun
such that Wun

2 (R(un)) = min{Wun

2 (z) : z ∈ Nun
}.

Finally, define

un+1 = max(R(un),vn), vn+1 = min(R(un),vn)

and

Vn+1 =
(
Λ(vn) ∩ Λ(un, kun

)
)
∪

(
Vn ∩ Λ(un)

)
.

For z ∈ Vn+1, define

W n+1
H (z) =





W n
H(z) if z ∈ Vn ∩ Λ(un)

Wun

1 (z) if Λ(vn) ∩ Λ(un, kun
).

This construction shows that the {(uk,vk, Vk, {W
k
H(z) : z ∈ Vk}) : k ≥ 0} is a Markov chain

starting at (u0,v0, ∅, ∅). A formal proof that this Markov chain describes the joint distribution

of the trees emanating from the vertices u and v can be given in the same manner as in Lemma

2.1.

For z ∈ Z
4, define

‖z‖1 = |z(1)| + |z(2)| + |z(3)|

where z(i) is the ith co-ordinate of z. Fix n ≥ 1, 0 < ǫ < 1/3 and two open vertices u,v and

consider the trees emanating from u and v. Define the event,

An,ǫ = An,ǫ(u0,v0) :=





uk 6= vk for 1 ≤ k ≤ n4 − 1, Vn4 = ∅,

n2(1−ǫ) ≤ ‖un4 − vn4‖1 ≤ n2(1+ǫ),

0 ≤ un4(4) − vn4(4) < log(n2)





for which we show that the following Lemma holds:
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Lemma 3.1. For 0 < ǫ < 1/3 there exist constants C1, β > 0 and n0 ≥ 1 such that, for all

n ≥ n0,

inf
n1−ǫ≤‖u−v‖1≤n1+ǫ,
0≤u(4)−v(4)<log n

P
(
An,ǫ | (u0,v0, V0) = (u,v, ∅)

)
≥ 1 − C1n

−β.

First we prove the result using the Lemma 3.1. First, for fixed 0 < ǫ < 1/3, we choose n0

from the above lemma. Now, fix any n ≥ n0 and u such that n1−ǫ ≤ ‖u‖1 ≤ n1+ǫ, 0 ≤ u(4) <

log n. With positive probability, the vertices 0 and u are both open. On the event that both

the vertices 0 and u are both open, we consider the trees emanating from u and v = 0. We

want to show that P{uk 6= vk for k ≥ 1} > 0.

Let τ0 = 0 and for i ≥ 1, let τi := n4 + (n2)4 + · · · + (n2i−1
)4. For i ≥ 1, define the event

Bi =





uk 6= vk, for τi−1 < k ≤ τi, Vτi
= ∅,

n2i(1−ǫ) ≤ ‖uτi
− vτi

‖1 ≤ n2i(1+ǫ),

and 0 ≤ uτi
(4) − vτi

(4) < log n2i





.

Then, we have

P
{
for all k ≥ 1,uk 6= vk

}
= lim

i→∞
P
{
for 1 ≤ k ≤ τi,uk 6= vk

}

≥ lim sup
i→∞

P
{
for 1 ≤ k ≤ τi,uk 6= vk, and for 1 ≤ l ≤ i, Vτl

= ∅,

n2l(1−ǫ) ≤ ‖uτl
− vτl

‖1 ≤ n2l(1+ǫ) and 0 ≤ uτl
(4) − vτl

(4) < log n2l}

= lim sup
i→∞

P
(
∩i

l=1Bl

)

= lim sup
i→∞

i∏

l=2

P
(
Bl | ∩

l−1
j=1Bj

)
P(B1). (31)

For l ≥ 2, Bl is a event which involves the random variables (uk,vk, Vk) for k = τl−1 +

1, . . . , τl. Using the Markov property, we have that P
(
Bl | ∩

l−1
j=1Bj

)
depends only on (uτl−1

,vτl−1
, Vτl−1

).

Furthermore, on the set ∩l−1
j=1Bj , we note that n2l−1(1−ǫ) ≤ ‖uτl−1

− vτl−1
‖
1
≤ n2l−1(1+ǫ), 0 ≤

uτl−1
(4) − vτl−1

(4) < log n2l−1
and Vτl−1

= ∅. Therefore we have that, for l ≥ 2,

P
(
Bl | ∩

l−1
j=1Bj

)

≥ inf
n2l−1(1−ǫ)≤‖z1−z2‖1≤n2l−1(1+ǫ),

0≤z1(4)−z2(4)<log n

P
(
Bl | (uτl−1

,vτl−1
, Vτl−1

) = (z1, z2, ∅)
)

= inf
n2l−1(1−ǫ)≤‖z1−z2‖1≤n2l−1(1+ǫ),

0≤z1(4)−z2(4)<log n

P
(
A

n2l−1 ,ǫ
| (u0,v0, V0) = (z1, z2, ∅)

)

≥ 1 − C1n
−2l−1β (32)

and since n1−ǫ ≤ ‖u‖1 ≤ n1+ǫ, 0 ≤ u(4) < log n.

P(B1) = P
(
An,ǫ | (u0,v0, V0) = (u,0, ∅)

)
≥ 1 − C1n

−β (33)
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Therefore, from (31), (32) and (33), we have,

P{G is disconnected} ≥ P
{
u,0 are both open

}
× lim

i→∞

i∏

l=1

(
1 − C1n

−2l−1β
)

> 0.

This completes the proof of the claim.

We will work towards the proof of Lemma 3.1. Towards that, we introduce an independent

version of the above process. In the same probability space, starting with two vertices u and

v, and the same set of uniformly distributed random variables, define u
(I)
0 = max{u0,v0} and

v
(I)
0 = min{u0,v0}. For ω ∈ Ω, we define k

(I)
u0 = k

(I)
u0 (ω) as

k
(I)

u
(I)
0

:= min{k : W
u

(I)
0

1 (z) < p for some z ∈ H(u
(I)
0 , k)}

and

N
(I)

u
(I)
0

:= {z ∈ H(u
(I)
0 , k

u
(I)
0

) : W
u

(I)
0

1 (z) < p}.

We pick

R(I)(u
(I)
0 ) ∈ N

(I)

u
(I)
0

such that W
u

(I)
0

2 (R(I)(u
(I)
0 )) = min{W

u
(I)
0

2 (z) : z ∈ N
(I)

u
(I)
0

}.

Now, define u
(I)
1 = max{R(I)(u

(I)
0 ),v

(I)
0 } and v

(I)
1 = min{R(I)(u

(I)
0 ),v

(I)
0 }.

Having defined, {(u
(I)
k ,v

(I)
k ) : 1 ≤ k ≤ n}, we set,

k
(I)

u
(I)
n

:= min{k : Wu
(I)
n

1 (z) < p for some z ∈ H(u(I)
n , k)}

and

N
(I)

u
(I)
n

:= {z ∈ H(u(I)
n , k

(I)

u
(I)
n

) : Wu
(I)
n

1 (z) < p}.

We pick

R(I)(u(I)
n ) ∈ N

(I)

u
(I)
n

such that Wu
(I)
n

2 (R(I)(u(I)
n )) = min{Wu

(I)
n

2 (z) : z ∈ N
(I)

u
(I)
n

}

and define u
(I)
n+1 = max{R(I)(u

(I)
n ),v

(I)
n } and v

(I)
n+1 = min{R(I)(u

(I)
n ),v

(I)
n }.

The independent version tracks the two trees, emanating from the vertices u and v, with

the condition that the trees do not depend on the information (history) carried. The only

constraint is that while growing the tree from a vertex, it waits for the tree from the other

vertex to catch up, before taking the next step. Note that if the history set is empty, then both

constructions match exactly.

We define an event similar to An,ǫ but in terms of {(u
(I)
k ,v

(I)
k ) : 1 ≤ k ≤ n4}. Fix n ≥ 1,

0 < ǫ < 1/3 and two open vertices u,v ∈ Z and define the event,

Bn,ǫ(u
(I)
0 ,v

(I)
0 ) :=





‖u
(I)
k − v

(I)
k ‖1 ≥ log(n2) for 1 ≤ k ≤ n4 − 1,

0 ≤ u
(I)
k (4) − v

(I)
k (4) < log(n2) for 1 ≤ k ≤ n4,

n2(1−ǫ) ≤ ‖u
(I)
n4 − v

(I)
n4‖1

≤ n2(1+ǫ).





We will show that the following lemma holds:
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Lemma 3.2. For 0 < ǫ < 1/3 there exist constants C2, γ > 0 and n0 ≥ 1 such that, for all

n ≥ n0,

inf
n1−ǫ≤‖u−v‖1≤n1+ǫ,
0≤u(4)−v(4)<log n

P
(
Bn,ǫ(u,v)

)
≥ 1 − C2n

−γ.

First we prove Lemma 3.1, assuming Lemma 3.2.

Proof of Lemma 3.1: Given 0 < ǫ < 1/3, fix n0 ≥ 1 from Lemma 3.2. Now fix n ≥ n0 and

u,v ∈ Z
4 such that n1−ǫ ≤ ‖u − v‖1 ≤ n1+ǫ and 0 ≤ u(4)− v(4) < log n. Now note that both

the events An,ǫ(u,v) and Bn,ǫ(u,v) are defined on the same probability space.

We claim that An,ǫ(u,v) ⊇ Bn,ǫ(u,v). To prove this, we show that, on the set Bn,ǫ(u,v), we

have that {(uk,vk, Vk) = (u
(I)
k ,v

(I)
k , ∅) : 1 ≤ k ≤ n4}. This follows easily from the observation

that if Vk = ∅, for some k ≥ 0, then the two constructions, given before, match exactly.

That is, if (uk,vk, Vk) = (u
(I)
k ,v

(I)
k , ∅) for k ≤ i, i ≥ 0, we have, R(ui) = R(I)(u

(I)
i ). Thus,

we have ui+1 = u
(I)
i+1 and vi+1 = v

(I)
i+1. Furthermore, on the event Bn,ǫ(u,v), we have that

‖ui+1 − vi+1‖1 ≥ log(n2) and 0 ≤ ui+1(4) − vi+1(4) < log n2. From the definition of the

history set, the separation of u and v implies that Vi+1 = ∅. Therefore the claim follows by an

induction argument. Thus, we have

P
(
An,ǫ|(u0,v0, V0) = (u,v, ∅)

)
≥ P

(
Bn,ǫ(u,v)

)
≥ 1 − C2n

−γ .

Hence, Lemma 3.1 follows by choosing C1 = C2 and β = γ.

Now define for k ≥ 0, S
(I)
k = uk −vk. Then, the event Bn,ǫ can be restated in terms of S

(I)
k .

Indeed, define s = u− v where u ≻ v and

Cn,ǫ(s) :=





‖S
(I)
k ‖

1
≥ log(n2) for 1 ≤ k ≤ n4 − 1,

0 ≤ S
(I)
k (4) < log(n2) for 1 ≤ k ≤ n4,

n2(1−ǫ) ≤ ‖S
(I)
n4 ‖1

≤ n2(1+ǫ).





Lemma 3.2 now can be restated as

Lemma 3.3. For 0 < ǫ < 1/3 there exist constants C2, γ > 0 and n0 ≥ 1 such that, for all

n ≥ n0,

inf
n1−ǫ≤‖s‖1≤n1+ǫ,

0≤s(4)<log n

P
(
Cn,ǫ(s)

)
≥ 1 − C2n

−γ.

In order to study the event Cn,ǫ(s), we have to look at the steps taken by u
(I)
k for each k ≥ 1.

Let Xk = R(I)(u
(I)
k ) − u

(I)
k for k ≥ 0. The construction clearly shows that each {Xk : k ≥ 1} is

a sequence of i.i.d. random variables.

The distribution of Xk can be easily found. Let a0 = 0, and for i ≥ 1, ai = |Λ(0, i)| and

bi = |H(0, i)|. Define a random variable T on {1, 2, . . . }, given by

P(T = i) = (1 − p)ai−1
(
1 − (1 − p)bi

)
. (34)

22



Now, define D on Z
3 as follows:

P(D = z | T = i) =





1
bi

for (z,−i) ∈ H(0, i)

0 otherwise.
(35)

Note T and D are higher dimensional equivalents of T and D in (19) and (20). It is easy to

see that Xk and (D,−T ) are identical in distribution. Let {(Di,−Ti) : i ≥ 1} be independent

copies of (D,−T ). Then, {S
(I)
k : k ≥ 0} can be represented as follows : set S

(I)
0 = s and for

k ≥ 1,

S
(I)
k

d
=





S
(I)
k−1 + (Dk,−Tk) if S

(I)
k−1 + (Dk,−Tk) ≻ 0

−
(
S

(I)
k−1 + (Dk,−Tk)

)
otherwise.

Note that, from the definition of the order relation, S
(I)
k (4)

d
= |S

(I)
k−1(4)−Tk| ≥ 0 for each k ≥ 1.

Now, we define a random walk version of the above process in the following way: given s ≻ 0

and the collection {(Di,−Ti) : i ≥ 1} of i.i.d. steps, define : S
(RW)
0 = s and for k ≥ 1,

S
(RW)
k =

(
s(1), s(2), s(3)

)
+

( k∑

i=1

Di, |S
(RW)
k−1 (4) − Tk|

)
.

The random walk S
(RW)
k executes a three dimensional random walk in its first three co-ordinates,

starting at
(
s(1), s(2), s(3)

)
with step size distributed as D on Z

3. The fourth co-ordinate

follows the fourth co-ordinate of the process S
(I)
k .

Note that, we have constructed both the processes using the same steps {(Di,−Ti) : i ≥ 1}

and on the same probability space. Therefore, it is clear that the fourth co-ordinate of both

the processes are the same, i.e., S
(I)
k (4) = S

(RW)
k (4) for k ≥ 1. We will show that the first three

co-ordinates of both the the processes have the same norm. In other words,

Lemma 3.4. For k ≥ 1 and αi, βi ≥ 0 for 1 ≤ i ≤ k,

P
{
‖S

(RW)
i ‖1 = αi, S

(RW)
i (4) = βi for 1 ≤ i ≤ k

}

= P
{
‖S

(I)
i ‖1 = αi, S

(I)
i (4) = βi for 1 ≤ i ≤ k

}
.

We postpone the proof of Lemma 3.4 for the time being. We define a random walk version

of the event Cn,ǫ(s). For n ≥ 1 and 0 < ǫ < 1/3 and s ≻ 0, define

Dn,ǫ(s) :=





‖S
(RW)
k ‖1 ≥ log(n2) for 1 ≤ k ≤ n4 − 1,

0 ≤ S
(RW)
k (4) < log(n2) for 1 ≤ k ≤ n4,

n2(1−ǫ) ≤ ‖S
(RW)
n4 ‖

1
≤ n2(1+ǫ).





In view of Lemma 3.4, it is enough to prove the following lemma:

Lemma 3.5. For 0 < ǫ < 1/3 there exist constants C2, γ > 0 and n0 ≥ 1 such that, for all

n ≥ n0,

inf
n1−ǫ≤‖s‖1≤n1+ǫ,

0≤s(4)<log n

P
(
Dn,ǫ(s)

)
≥ 1 − C2n

−γ .
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We first prove Lemma 3.5 and then return to proof of Lemma 3.4.

Proof of Lemma 3.5: For z ∈ Z
3, define ‖z‖ = |z(1)| + |z(2)| + |z(3)|, the usual L1 norm in

Z
3. Define, ∆i = {z ∈ Z

3 : ‖z‖ ≤ k}. Let s(1) = (s(1), s(2), s(3)) be the first three co-ordinates

of the starting point s. Let rk represent the random walk part (first three co-ordinates) of

S
(RW)
k , i.e., rk = s(1) +

∑k
i=1 Di. Now note that

(
Dn,ǫ(s)

)c
⊆ En,ǫ ∪ Fn,ǫ ∪ Gn,ǫ ∪ Hn,ǫ

where

En,ǫ :=
n4−1⋃

k=1

{
‖rk‖ < log(n2)

}
,

Fn,ǫ :=
{
‖rn4‖ > n2(1+ǫ)

}
=

{
rn4 6∈ ∆n2(1+ǫ)

}
,

Gn,ǫ :=
{
‖rn4‖ ≤ n2(1−ǫ)

}
=

{
rn4 ∈ ∆n2(1−ǫ)

}
,

and

Hn,ǫ :=

n4⋃

k=1

{
S

(RW)
k (4) ≥ log(n2)

}
.

Note that the events En,ǫ, Fn,ǫ and Gn,ǫ depend on the random walk part while Hn,ǫ de-

pends on the fourth co-ordinate of S
(RW)
k . Also note that

∑k
j=1 Dj is an aperiodic, isotropic,

symmetric random walk whose steps are i.i.d. with each step having the same distribution as D

where Var(D) = σ2I, for some σ > 0 and
∑

z∈Z3‖z‖2
P(D = z) < ∞. The events Fn,ǫ and Gn,ǫ

are exactly as in Lemma 3.3 of Gangopadhyay, Roy and Sarkar (2004). Hence, we conclude

that there exist constants C3, C4 > 0 and α > 0 such that for all n sufficiently large,

sup
n1−ǫ≤‖s‖1≤n1+ǫ,

0≤s(4)<log n

P
(
Fn,ǫ

)
= sup

s(1)∈∆
n1+ǫ\∆n1+ǫ

P
(
Fn,ǫ

)
≤ C3n

−α

and

sup
n1−ǫ≤‖s‖1≤n1+ǫ,

0≤s(4)<log n

P
(
Gn,ǫ

)
= sup

s(1)∈∆
n1+ǫ\∆n1+ǫ

P
(
Gn,ǫ

)
≤ C4n

−α.

The probability of the event En,ǫ can be computed in the same fashion as in Lemma 3.3 of

24



Gangopadhyay, Roy and Sarkar (2004). Indeed, we have,

P
(
En,ǫ

)
= P

(
‖rk‖ ≤ 2 log n for some k = 1, 2, . . . , n4 − 1

)

= P

( k∑

i=1

Di ∈ (−s(1) + ∆2 log n) for some k = 1, 2, . . . , n4 − 1
)

≤ P

( k∑

i=1

Di ∈ (−s(1) + ∆2 log n) for some k ≥ 1
)

≤ P

( ⋃

z∈−s(1)+∆2 log n

{ k∑

i=1

Di = z for some k ≥ 1
})

≤ C5(2 log n)3 sup
z∈−s(1)+∆2 log n

P
{ k∑

i=1

Di = z for some k ≥ 1
}

(36)

for some suitable positive constant C5.

From Proposition P26.1 of Spitzer [1964] (pg. 308),

lim
|z|→∞

|z|P

{ i∑

j=1

Dj = z for some i ≥ 1

}
= (4πσ2)−1 > 0. (37)

For s(1) ∈ (∆n(1+ǫ) \ ∆n(1−ǫ)) and z ∈ −s(1) + ∆2 log n, we must have that ‖z‖ ≥ n1−ǫ/2 for

all n sufficiently large. Thus, for all n sufficiently large, we have, using (37) and (36),

P
(
En,ǫ

)
≤ C5(2 log n)3C6n

−(1−ǫ) ≤ C7n
− (1−ǫ)

2

where C5, C6 and C7 are suitably chosen positive constants.

Finally, for the event Hn,ǫ, let Ek =
{

S
(RW)
k (4) ≥ log(n2)

}
. Then,

Hn,ǫ = E1 ∪
n4⋃

k=2

Ek ∩k−1
j=1 Ec

k,

and we have

P
(
Hn,ǫ

)
= P(E1) +

n4∑

k=2

P
(
Ek ∩k−1

j=1 Ec
k

)
≤ P(E1) +

n4∑

k=2

P
(
Ek | ∩k−1

j=1Ec
k

)
.

On the set ∩k−1
j=1Ec

k, we have 0 ≤ S
(RW)
k−1 (4) < log(n2) and S

(RW)
k (4) = |S

(RW)
k−1 (4)−Tk| ≥ log(n2)

implies that Tk ≥ log(n2). Hence, P
(
Ek | ∩k−1

j=1Ec
k

)
≤ P(Tk ≥ log(n2)). Similarly, P(E1) ≤

P(T1 ≥ log(n2)). Thus, we get

P
(
Hn,ǫ

)
≤ n4

P(T ≥ log(n2)) ≤ n4(1 − p)(2 log(n))4 ≤ C8 exp(−C9 log n)

for some positive constants C8, C9 > 0. This completes the proof of the lemma 3.5.

Finally, we are left with the proof of Lemma 3.4.
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Proof of Lemma 3.4: We define an intermediate process on Z
4 × {−1, 1} in the following

way. Given s ≻ 0 and the steps {(Di,−Ti) : i ≥ 1}, define (S̃0, F0) = (s, 1) and for k ≥ 1,

(
S̃k, Fk

)
=





(
S̃k−1 + (Fk−1Dk,−Tk), Fk−1

)
if S̃k−1 + (Fk−1Dk,−Tk) ≻ 0

−
(
S

(I)
k−1 + (Fk−1Dk,−Tk), Fk−1

)
otherwise.

We first claim that for k ≥ 1,

S̃
(1)
k = Fk

(
S̃

(1)
0 +

k∑

i=1

Di

)
= Fk

(
s(1) +

k∑

i=1

Di

)

where z(1) is the first three co-ordinates of z. Indeed, the claim is obvious for k = 1. Assume

that it is true for k = 1, 2, . . . , n. Then, S̃
(1)
n = Fn

(
S̃

(1)
0 +

∑n
i=1 Di

)
. If Fn = 1, then, S̃

(1)
n =

S̃
(1)
0 +

∑n
i=1 Di. Hence, if S̃n+(FnDn+1,−Tn+1) ≻ 0, we have Fn+1 = Fn = 1 and S̃

(1)
n+1 = S̃

(1)
n +

FnDn+1 = S̃
(1)
0 +

∑n
i=1 Di + Dn+1 = S̃

(1)
0 +

∑n+1
i=1 Di = Fn+1

(
S̃

(1)
0 +

∑n+1
i=1 Di

)
. Otherwise, we

have Fn+1 = −Fn = −1 and S̃
(1)
n+1 = −

(
S̃

(1)
n + FnDn+1

)
= −

(
S̃

(1)
0 +

∑n+1
i=1 Di

)
= Fn+1

(
S̃

(1)
0 +

∑n+1
i=1 Di

)
. If Fn = −1, then, S̃

(1)
n = −S̃

(1)
0 −

∑n
i=1 Di. Hence, if S̃n + (FnDn+1,−Tn+1) ≻

0, we have Fn+1 = Fn = −1 and S̃
(1)
n+1 = S̃

(1)
n + FnDn+1 = −S̃

(1)
0 −

∑n
i=1 Di − Dn+1 =

−S̃
(1)
0 −

∑n+1
i=1 Di = Fn+1

(
S̃

(1)
0 +

∑n+1
i=1 Di

)
. Otherwise, we have Fn+1 = −Fn = 1 and S̃

(1)
n+1 =

−
(
S̃

(1)
n +FnDn+1

)
= −

(
−S̃

(1)
0 −

∑n
i=1 Di−Dn+1

)
= S̃

(1)
0 +

∑n+1
i=1 Di = Fn+1

(
S̃

(1)
0 +

∑n+1
i=1 Di

)
.

Therefore, we have that for k ≥ 1, ‖S̃k‖1 = ‖s(1)+
∑k

i=1 Di‖ = ‖S
(RW )
k ‖1 since Fk ∈ {−1, 1}.

Further, from the definition, we have S
(I)
k (4) = S̃k(4) = S

(RW )
k (4) for each k ≥ 1.

Now we claim that, for k ≥ 1,

{S
(I)
i : i = 0, 1, . . . , k} and {S̃i : i = 0, 1, . . . , k} (38)

are identical in distribution. Note that, from the definition of S
(I)
k and S̃k, we can write, for

k ≥ 0,

S
(I)
k+1 = f(S

(I)
k ,Dk+1, Tk) and S̃k+1 = f(S̃k, FkDk+1, Tk) (39)

where f : Z
4×Z

3×N → Z
4 is a suitably defined function. The exact form of f is unimportant,

the only observation that is crucial is that we can use the same f for both the cases.

To show (38), we note that it trivially holds for k = 1. Furthermore, from (39) we have

that {S
(I)
i : i ≥ 1} is a Markov chain starting at s and {(S̃i, Fi) : i ≥ 1} is also a Markov chain

starting at (s, 1).

Assume that (38) holds. Using the fact that Dk+1 is symmetric and the Markov property,

26



we have that

P{S̃i = zi : i = 0, 1, . . . , k + 1}

= P{S̃i = zi : i = 0, 1, . . . , k + 1, Fk = 1}

+P{S̃i = zi : i = 0, 1, . . . , k + 1, Fk = −1}

= P{S̃i = zi : i = 0, 1, . . . , k, Fk = 1}P(f(zk,Dk+1, Tk) = zk+1)

+P{S̃i = zi : i = 0, 1, . . . , k, Fk = −1}P(f(zk,−Dk+1, Tk) = zk+1)

= P{S̃i = zi : i = 0, 1, . . . , k, Fk = 1}P(f(zk,Dk+1, Tk) = zk+1)

+P{S̃i = zi : i = 0, 1, . . . , k, Fk = −1}P(f(zk,Dk+1, Tk) = zk+1)

= P{S̃i = zi : i = 0, 1, . . . , k}P(f(zk,Dk+1, Tk) = zk+1)

= P{S
(I)
i = zi : i = 0, 1, . . . , k}P(f(zk,Dk+1, Tk) = zk+1)

= P{S
(I)
i = zi : i = 0, 1, . . . , k + 1}.

This establishes (38) and completes the proof of Lemma 3.4.

Hence we have shown that

P{G is disconnected} > 0

and by ergodicity this implies that

P{G is disconnected} = 1.

A similar argument along with the ergodicity of the random graph, may further be used to

establish that for any k ≥ 1

P{G has at least k trees} = 1.

Consequently, we have that

P

{⋂

k≥1

{G has at least k trees }
}

= 1

and thus

P{G has infinitely many trees} = 1.

4 Geometry of the graph G

We now show that the tree(s) are not bi-infinite almost surely. For this argument, we consider,

d = 2. Similar arguments, with minor modifications go through for any dimensions.

For t ∈ Z, define the set of all open points on the line Lt := {(u, t) : −∞ < u < ∞} by

Nt. In other words, Nt := {y ∈ V : y = (y1, t)}. Fix x ∈ Nt and n ≥ 0, set Bn(x) := {y ∈

V : hn(y) = x}, where hn(y) is the (unique) nth generation off-spring of the vertex y. Thus,

Bn(x) stands for the set of the nth generation ancestors of the vertex x.
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Now consider the set of vertices in Nt which have nth order ancestors, i.e., M
(n)
t := {x ∈

Nt : Bn(x) 6= ∅}. Clearly, M
(n)
t ⊆ M

(m)
t for n > m and so Rt := limn→∞ M

(n)
t = ∩n≥0M

(n)
t is

well defined. Clearly, this is the set of vertices in Nt which have bi-infinite paths. Our aim is

to show that P(Rt = ∅) = 1 for all t ∈ Z. Since {Rt : t ∈ Z} is stationary, it suffices to show

that P(R0 = ∅) = 1.

We claim, for any 1 ≤ k < ∞,

P(|R0| = k) = 0. (40)

Indeed, if P(|R0| = k) > 0 for some 1 ≤ k < ∞, we must have, for some −∞ < x1 < x2 <

. . . < xk < ∞ such that,

P
(
R0 = {(x1, 0), (x2, 0), . . . , (xk, 0)}

)
> 0.

Clearly, by stationarity again, for any t ∈ Z,

P
(
R0 = {(x1 + t, 0), (x2 + t, 0), . . . , (xk + t, 0)}

)

= P
(
R0 = {(x1, 0), (x2, 0), . . . , (xk, 0)}

)
> 0. (41)

However, using (41)

P(|R0| = k) =
∑

E={(x1,0),(x2,0),...,(xk,0)}

P(R0 = E) = ∞.

This is obviously not possible, proving (40) .

Thus, we have that

P(|R0| = 0) + P(|R0| = ∞) = 1.

Assume that P(|R0| = 0) < 1, so that P(|R0| = ∞) > 0.

Now, call a vertex x ∈ Rt a branching point if there exist distinct points x1 and x2 such

that x1,x2 ∈ B1(x) and Bn(x1) 6= ∅, Bn(x2) 6= ∅ for all n ≥ 1, i.e, x has at least two distinct

infinite branches of ancestors.

We first show that, if P(|R0| = ∞) > 0,

P(Origin is a branching point) > 0. (42)

Since P(|R0| = ∞) > 0, we may fix two vertices x = (x1, 0) and y = (y1, 0) such that

P(x,y ∈ R0) > 0.

Suppose that x1 < y1 and set M = y1−x1 and xM = (0,M) and yM = (M,M). By translation

invariance of the model, we must have,

P(xM ,yM ∈ RM ) = P(x,y ∈ R0) > 0.

Thus the event E1 := {Bn(xM ) 6= ∅, Bn(yM ) 6= ∅ for all n ≥ 1} has positive probability.

Further this event depends only on sites {u := (u1, u2) : u2 ≥ M}.
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Now, consider the event E2 := {origin is open and all sites other than the origin in

Λ(xM ,M) ∪ Λ(yM ,M) is closed}. Clearly, the event E2 depends only on a finite subset

{u = (u1, u2) : 0 ≤ u2 ≤ M − 1, |u1| ≤ 2M} and P(E2) > 0. Since E1 and E2 depend on

disjoint sets of vertices, we have,

P(Origin is a branching point) ≥ P(E1 ∩ E2) = P(E1)P(E2) > 0.

Now, we define Ct as the set of all vertices with their second co-ordinates strictly larger

than t, each vertex having infinite ancestry and its immediate off-spring having the second co-

ordinate at most t, i.e., Ct = {y = (y1, u) ∈ V : u > t,Bn(y) 6= ∅ for n ≥ 1, and h(y) = (x1, v),

with v ≤ t}. Since every open vertex has a unique off-spring, for each y ∈ Ct, the edge joining

y and h(y) intersects the line Lt at a single point only, say (Iy(t), t). We define, for all n ≥ 1,

Ct(n) := {y ∈ Ct : 0 ≤ Iy(t) < n} and rt(n) = |Ct(n)|.

We show that E(rt(n)) < ∞ and consequently rt(n) is finite almost surely. First, note that

Ct(n) = ∪n
j=1{y ∈ Ct : j − 1 ≤ Iy(t) < j}.

Since the sets on the right hand side of above equality are disjoint, we have

rt(n) =
n∑

j=1

r
(j)
t

where r
(j)
t = |{y ∈ Ct : j − 1 ≤ Iy(t) < j}| for 1 ≤ j ≤ n. By the translation invariance of the

model, it is clear that the marginal distribution of r
(j)
t , are the same for 1 ≤ j ≤ n. Thus, it is

enough to show that E(r
(1)
t ) < ∞.

Now, we observe that {y ∈ Ct : 0 ≤ Iy(t) < 1} ⊆ Ut := {y = (y1, u) ∈ V : u > t, h(y) =

(x1, v), v ≤ t, 0 ≤ Iy(t) < 1}. The second set represents the vertices whose second co-ordinates

are strictly larger than t, for each such vertex its immediate off-spring having a second co-

ordinate at most t and the edge connecting the vertex and its off-spring intersecting the line

Lt at some point between 0 and 1. Note that we have relaxed the condition of having infinite

ancestry of the vertices above.

Set ai = 1 + 2i, for i = 1, 2, . . . and si =
∑i

j=1 aj . Here, ai is the number of vertices on

the line Lt+i which can possibly be included in the set Ut. Now, if si+1 ≥ |Ut| > si, then some

vertex x whose second co-ordinate is at least (t + i + 1) will connect to some vertex y whose

second co-ordinate is at most t. Thus, the probability of such an event is dominated by the

probability of the event that the vertices in the cone Λ(y) up to the level x are closed. Since

there are at least i2 − 1 many vertices in this region, we have

P(si+1 ≥ |Ut| > si) ≤ (1 − p)i
2−1.

Thus, E(|Ut|) < ∞.
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Now, consider C0(n) and divide it into two parts, C
(1)
0 (n) and C

(2)
0 (n) where C

(1)
0 (n) =

{y ∈ C0(n) : y = (y1, 1)} and C
(2)
0 (n) = {y ∈ C0(n) : y = (y1, u), u > 1}. We divide the set

C
(2)
0 (n) into two further subsets. It is clear that for each y ∈ C

(2)
0 (n), the edge joining y and

h(y) intersects both the lines L0 and L1. Let us denote by (I(y; 1), 1)(= Iy(t + 1)) the point

of intersection of the edge 〈y, h(y)〉 with L1. Define,

C
(2)
0 (n; 1) = {y ∈ C

(2)
0 (n) : 0 ≤ I(y; 1) < n}

and

C
(2)
0 (n; 2) = {y ∈ C

(2)
0 (n) : I(y; 1) ≥ n or I(y; 1) < 0}.

Thus, by definition of C
(2)
0 (n; 1), we have C

(2)
0 (n; 1) ⊆ C1(n). Further, for any vertex x, h(x)

can lie at an angle at most π
4 from the vertical line passing through x, so we see that any vertex

of C
(2)
0 (n) which intersects L0 at (It(y), 0) with 1 ≤ It(y) < n − 1, must intersect L1 at some

point (I(y; 1), 1) with 0 ≤ I(y; 1) < n. Therefore, we must have that,

C
(2)
0 (n; 2) ⊆ {y ∈ C0 : 0 ≤ Iy(0) < 1}

⋃
{y ∈ C0 : n − 1 ≤ Iy(0) < n}.

Thus, we get,

|C
(2)
0 (n; 2)| ≤ r

(1)
0 + r

(n)
0 . (43)

Now, consider the set C
(1)
0 (n) \ {(−1, 1), (n, 1)} and partition it into two sets, one of

which contains only branching points and the other does not contain any branching point,

i.e., C
(1)
0 (n) \ {(−1, 1), (n, 1)} = C

(1)
0 (n; 1) ∪ C

(1)
0 (n; 2), where

C
(1)
0 (n; 1) =

{
y ∈ C

(1)
0 (n) \ {(−1, 1), (n, 1)} : y is a not branching point

}

and

C
(1)
0 (n; 2) =

{
y ∈ C

(1)
0 (n) \ {(−1, 1), (n, 1)} : y is a branching point

}
.

Now, it is clear that for each y ∈ C
(1)
0 (n; 1), there exists a unique ancestor which further

has infinite ancestry. Therefore, we can define,

D1 = {z : h(z) ∈ C
(1)
0 (n; 1) and Bn(z) 6= ∅ for n ≥ 1}.

For y ∈ C
(1)
0 (n; 2), being a branching point, there exists at least two distinct vertices, both of

which has infinite ancestry. Thus, we may define,

D2 = {z1, z2 : h(z1), h(z2) ∈ C
(1)
0 (n; 2) and Bn(z1) 6= ∅, Bn(z2) 6= ∅, for n ≥ 1}.

Since every vertex has a unique off-spring, we must have, D1 ∩ D2 = ∅. Further, by definition

of C1(n), we have, D1 ∪ D2 ⊆ C1(n). Also, it is clear that (D1 ∪ D2) ∩ C
(2)
0 (n; 1) = ∅ as the

off-spring of any vertex in D1 and D2 lie on the line L1 while the off-spring of any vertex in
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C
(2)
0 (n; 1) lie on Lu for u ≤ 0. Thus, we have,

|C1(n)| ≥ |C
(2)
0 |(n; 1) + |C

(1)
0 (n; 1)| − 2 + 2(|C

(1)
0 (n; 2)| − 2)

=
[
|C

(2)
0 (n; 1)| + |C

(2)
0 (n; 2)| + |C

(1)
0 (n; 1)| + |C

(1)
0 (n; 2)|

]

+|C
(1)
0 (n; 2)| − 6 − |C

(2)
0 (n; 2)|

≥ |C0(n)| + |C
(1)
0 (n; 2)| − 6 − r

(1)
0 + r

(n)
0 (44)

where we have used the inequality (43) in the last step.

But, we have from stationarity, E(|C1(n))| = E(|C0(n)|) for all n ≥ 1. Thus, for n suffi-

ciently large, from (42) we have

0 = E
(
C1(n) − C0(n)

)

≥ E
(
|C

(1)
0 (n; 2)|

)
− 6 − 2E(r

(1)
0 )

= nP(Origin is a branching point) − 6 − 2E(r
(1)
0 )

> 0.

This contradiction establishes Theorem 2.
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