isid/ms/2008/01
March 12, 2008
http://www.isid.ac.in/statmath/eprints

Random directed trees and forest

SivA ATHREYA
RAnHUL Roy
ANISH SARKAR

Indian Statistical Institute, Delhi Centre
7, SJSS Marg, New Delhi—-110 016, India






Random directed trees and forest

Siva Athreya, Rahul Roy and Anish Sarkar

March 30, 2008

Abstract

Consider the d-dimensional lattice Z% where each vertex is ‘open’ or ‘closed’ with prob-
ability p or 1 — p respectively. An open vertex v is connected by an edge to the closest
open vertex w in the 45° (downward) light cone generated at v. In case of non-uniqueness
of such a vertex w, we choose any one of the closest vertices with equal probability and
independently of the other random mechanisms. It is shown that this random graph is a
tree almost surely for d = 2 and 3 and it is an infinite collection of distinct trees for d > 4.

In addition, for any dimension, we show that there is no bi-infinite path in the tree.
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1 Introduction

During the last two decades there has been a considerable amount of study to understand the
structure of random spanning trees. In particular, for the uniform spanning tree model the
tree/forest dichotomy according to the dimension of the lattice was established by Pemantle
[10]. Also, for the Euclidean minimal weight spanning tree/forest model Alexander [1] showed
that the two dimensional structure of the random graph is that of a tree and Newman and
Stein [9] through a study of the fractal dimension of the incipient cluster in the Bernoulli bond
percolation problem suggest that the random graph is a forest in suitably high dimensions.

Lately there has been an interest in studying these random spanning trees where the edges
have a preferred direction of propogation. These studies have been motivated by studies of
Alpine drainage patterns (see e.g., Leopold and Langbein [7], Scheidegger [12], Howard [6]).
In a survey of such models, Rodriguez-Iturbe and Rinaldo [11] have explored (non-rigorously)
power law structures and other physical phenomenon, while Nandi and Manna [8] obtained
relations between these ‘river networks’ and scale-free networks.

Gangopadhyay, Roy and Sarkar [5] studied a random graph motivated by Scheidegger river
networks. They considered the d-dimensional lattice Z¢ where each vertex is ‘open’ or ‘closed’
with probability p or 1 — p respectively. The open vertices representing the water sources.
An open vertex v was connected by an edge to the closest open vertex w such that the dth

co-ordinates of v and w satisfy w(d) = v(d) — 1. In case of non-uniqueness of such a vertex



w, any one of the closest open vertices was chosen with equal probability and independent
of the other random mechanisms. They established that for d = 2 and 3, the random graph
constructed above is a tree, while for d > 4, the graph is a forest (i.e. infinitely many trees).
Ferrari, Landim and Thorisson [3] have obtained a similar dichotomy for a continuous version
of this model which they termed Poisson trees. In this model, the vertices are Poisson points
in R? and, given a Poisson point u, it is connected to another Poisson point v by an edge if (i)
the first (d — 1) co-ordinates of v lie in a (d — 1) dimensional ball of a fixed radius r centred
at the first (d — 1) co-ordinates of u and (ii) if v is the first such point from u in the direction
specified by the dth co-ordinate.

Mathematically these models are also attractive by their obvious connection to the Brownian
web as described by Fontes, Isopi, Newman and Ravishankar [4]. In particular, Ferrari, Fontes
and Wu [2] have shown that, when properly rescaled, Poisson trees converge to the Brownian
web. Téth and Werner [14] considered coalescing oriented random walks on Z?2, oriented so as
to allow steps only upwards or rightwards. Wilson’s method of ‘rooted at infinity’ associates
to this Markov chain a wired random spanning tree on Z2. Téth and Werner also obtained an
invariance principle for the Markov chain they studied.

Motivated by the above, we consider a general class of such models. Here a source of water is
connected by an edge to the nearest (see Figure 1) source lying downstream in a 45 degree light
cone generating from the source. Like above we choose uniformly in case of non-uniqueness.
The random graph obtained by this construction is the object of study in this paper. We
establish that for d = 2 and 3, all the tributaries connect to form a single delta, while for d > 4,
there are infinitely many delta, each with its own distinct set of tributaries. Further we also
show that there are no bi-infinite paths in this oriented random graph.

In the next subsection we define the model precisely, state our main results and compare it

with the existing results in the literature.
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Figure 1: In the 45 degree light cone generated at the open point u each level is examined for
an open point and a connection is made. If there are more than one choice at a certain level
then the choice is made uniformly. As illustrated above the connection could be made to the

open point that is not the closest in the conventional graph distance on Z¢.



1.1 Main Results

Before we describe the model we shall fix some notation which describe special regions in Z<.
For u = (uy,...,uq) € Z¢ and k > 1 let my(u) = (u1, ..., ug—1,uq — k).

Also, for k, h > 1 define the regions

Hwk)={veZ:vg=ug—kand |[|[v —mp(0)||r, <k},

A(u,h) ={v:v € H(u,k) for some 1 <k < h}, A(u) =U;2;A(u,h) and

B(u,h) ={v:v € H(u,k) and ||[v — mg(u)||r, = k for some 1 <k < h} .

We set H(u,0) = A(u,0) = 0.
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Figure 2: The region A(u,3). The seven vertices at the bottom constitute H(u,3) while the

six vertices on the two linear ‘boundary’ segments containing u constitute B(u, 3)

We equip Q = {0, 1}Zd with the o-algebra F generated by finite-dimensional cylinder sets

and a product probability measure P, defined through its marginals as
Piw:wu)=1}=1-Pfw:wlu)=0}=pforueczand 0 <p < 1. (1)

On another probability space (=, S, 1) we accomodate the collection {Uyy : v € A(u),u € Z4}
of i.i.d. uniform (0,1) random variables. The random graph, defined on the product space

(QxE,F x8,P:= P, x pn), is given by the vertex set
V=V, &) ={uez%: wu) =1} for (w,&) € A xE,
and the (almost surely unique) edge set
&= {< u,v >:u,v € V, and for some h > 1,v € A(u,h),
A b =1) NV =0 and Uyy < Uy for all w € Afu,h) NV . 2)

The graph G = (V,€) is the object of our study here. The construction of the edge-set
ensures that, almost surely, there is exactly one edge going ‘down’ and, as such, each connected
component of the graph is a tree.

Our first result discusses the structure of the graph and the second result discusses the

structure of each connected component of the graph.



Theorem 1. For 0 < p < 1 we have, almost surely
(i) for d = 2,3, the graph G is almost surely connected and consists of a connected tree

(ii) for d > 4 the graph G is almost surely disconnected and consists of infinitely components

each of which is a tree.

While the model guarantees that no river source terminates in the downward direction, this

is not the case in the upward direction. This is our next result.
Theorem 2. For d > 2, the graph G contains no bi-infinite path almost surely.

Our specific choice of ‘right-angled’ cones is not important for the results. Thus if, for some
1 < a < oo wehad Ay(u,h) = U"_ H,(u, k) where Hy(u, k) = {v € Z9: vy = uqg—k, and ||v —
mg(u)||r, < ak} then also our results hold. In the case a = oo then this corresponds to the
model considered in [5]. The reuslts would also generalise to the model considered in [3].

Using the notation as in (2), we chose the “nearest” vertex at level h uniformly among all
open vertices available at that level to connect to the vertex u. One could relax the latter
and choose among all open vertices available at level h in any random fashion. If the random
fashion is symmetric in nature then our results will still hold.

For proving Theorem 1 we first observe that the river flowing down from any open point
u is a random walk on Z¢. The walk jumps downward only in the d-th coordinate and also
conditional on this jump the new position in the first d—1 coordinates are given by a symmetric
distribution. Then the broad idea of estabilishing the results for the case d = 2,3 is that we
show that two random walks starting from two arbitrary open points u and v meet in finite
time almost surely. The random walks are dependent and as oppposed to the model considered
in [5] they also carry information,(which we call history), as they traverse downwards in Z¢.
The second fact makes the problem harder to work with. Consequently, we construct a suitable
Markov chain which carries the “history set” along with it and then find a suitable Lyaponov
function to establish that the Foster’s criterion for recurrence (See Lemma 2.2). We also benefit
from the observation that this “history set” is always a triangle. The precise definitions and
the complete proof of Theorem 1 (i), is presented in Section 2.

For proving Theorem 1 (ii) one shows that two random walks starting from two open points
u and v which are far away do not ever meet. Once the starting points are far away one is able
to couple these dependent random walks with a system of independent random walks. The
coupling has to be done carefully because of the “history set” information in the two walks. To
finish the proof one needs estimates regarding intersections of two independent random walks
and these may be of intrinsic interest (See Lemma 3.2 and Lemma 3.3).The details are worked
out in Section 3.

The proof of Theorem 2 requires a delicate use of the Burton—Keane argument regarding

the embedding of trees in an Euclidean space. This is carried out in Section 4.



2 Dimensions 2 and 3

In this section we prove Theorem 1(i). We present the proof for d = 2 and later outline the
modifications required to prove the theorem for d = 3. To begin with we have a collection
{Uuv : v € A(u,h),h > 1,u € Z4} of i.i.d. uniform (0, 1) random variables.

Consider two distinct vertices u := (u1, u2) and v := (vy,v2) where
u, v are such that |u; —vi| > 1 and vo = ugy — 1; (3)

This ensures that u & A(v,h), v &€ A(u,h) for any h > 1. We will show that given u and v
open, they are contained in the same component of G with probability 1.

This suffices to prove the theorem, because if two open vertices u and v do not satisfy the
condition (3) then, almost surely, we may get open vertices wy, ..., wy such that each of the
pairs wj and wiiq as well as the pairs u and wq, and v and wy, satisfy the condition (3). This
ensures that all the above vertices, and hence both u and v belong to the same component of
G.

To prove our contention we construct the process dynamically from the two vertices u and
v as given in (3). The construction will guarantee that the process obtained is equivalent in
law to the marginal distributions of the ‘trunk’ of the trees as seen from u and v in G. Without

loss of generality we take
u:= (0,0) and v := (lp, —1). (4)

Note that all the processes we construct in this section are independent of those constructed

in Section 1.1.

Figure 3: The construction of the process from u and v.

Before we embark on the formal details of the construction we present the main ideas. From
the points u and v we look at the region A(u)UA(v). On this region we label the vertices open

or closed independently and find the vertices u; and v; to which u and v connect (respectively)



according to the mechanism of constructing edges given in Section 1.1. Having found u; and
v1 we do the same process again for these vertices. However now we have to remember that we
are carrying a history, i.e., there is a region, given by the shaded triangle in Figure 3, whose
configuration we know. In case the vertical distance between u; and vy is much larger than the
horizontal distance or the history set is non-empty we move the vertex on the top (see Figures

4 and 5), otherwise we move both the vertices simultaneously (see Figure 6).
u
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Figure 4: The movement of the vertices : case non-empty history (the lightly shaded region),

only the top vertex moves, the darker shaded region in (b) is the new history.
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Figure 5: The movement of the vertices : case empty history, ratio of height to length is large.

Only the top vertex moves.

Figure 6: The movement of the vertices : case empty history, ratio of height to length is small.

Both the vertices move.

Note that in this construction, the history will always be a triangular region. Also, at every
move during the construction of the process we will keep a track of the vertical height, the
horizontal length and the history. This triplet will form a Markov process whose recurrence

properties will be used to establish Theorem 1(i).



For the formal construction of the process we take
H() = 1, LO = |l0‘ and Vb = @

Now let wyy € {0, 1}AWYUANM | Tet by = inf{h : wy (W) = 1 for some w € A(u, h)} and
hy = inf{h : wyv(W) = 1 for some w € A(v,h)}. Note that under the product measure PP as
defined earlier via the marginals (1) on {0, 1}*WYAM) the quantities h, and h are finite for
P-almost all wyv.

Let u; = (u1(1),u1(2)) € H(u, hy) be such that wyv(u1) = 1 and Uy, < Uyw for all
w € H(u, hy) with wyv(w) = 1. Similarly let vi := (v1(1),v1(2)) € H(v,hy) be such that
wauv(vi) = 1 and Uyy, < Uy for all w € H(v,hy) with wyv(w) = 1. Further define,
Hy = |u1(2) —v1(2)], L1 = |ui(1) —v1(1)] and Vi = (A(vy) NA(u, hy)) U (A(ar) NA(V, hy)).

Having obtained uy := (ug(1),ug(2)), vi := (vg(1),vx(2)) and Hy, Ly and Vi we consider

the following cases
(i) if Vi # 0 or if Vi = 0 and Hy /Ly > Cj for a constant Cy to be specified later in (15) and

(a) if ug(2) > vg(2) (see Figure 4 for Vi # () and Figure 5 for Vi, = () then we set

Vgl 1= Vi
and consider w € {0, 1}V Let

w(w) if we A(ug) \ Vi,
wukvvk (W) = .

Wap_y v (W) if we VN A(uy)
and let hy, := inf{h : wy, v, (W) = 1 for some w € A(ug,h)}. Again under the
product measure P on A(uy) such a hy, is finite almost surely.
Now let ugy1 := (ugs1(1), ur41(2)) be such that wy, v, (uki1) =1 and Uy, u,,, <
Uy, w for all w € H(ug, hy,) with wy, v, (W) = 1.
We take
Hit1 = [ur+1(2) = vk1(2)], L1 = Jur41(1) — v (1)] and
Vi1 = (A(Vis1) O A(ag, b, ) U (A(uggr) 0 V2));
(before we proceed further we note that either A(vigy1) N A(ug) or A(ugyr) N Vi is
empty — the set which is non-empty is necessarily a triangle)

(b) if ug(2) < vg(2) then we set
Ug+1 = Ug

and consider w € {0, 1}AVe)\Ve | Let

w(w) if we A(vg) \ Vi,

Wag,vy (W) =
oo Way v (W) if W€ Vi N A(vi)



and let hy, := inf{h : wy, v, (W) = 1 for some w € A(vg,h)}. Again under the
product measure P on A(vy) such a hy, is finite almost surely.

Now let viy1 = (vp41(1),vk41(2)) be such that wy, v, (Vky1) = 1 and Uy, v, ., <
Uy, w for all w € H(vy, hy, ) with wy, v, (W) = 1. We take

Hpp1 = |up1(2) — vp41(2)], Lit1 = ugs1(1) — v (1)] and

Vit = (A(ugs1) N A(VEs hyy ) U (A(Vit1) N V)

(again, note that either A(ugi1) N A(vy) or A(Vigs1) N Vi is empty — the set which

is non-empty is necessarily a triangle);

(ii) if Vi = 0, and Hy/Lj, < Co (See Figure 6) then we take wy, v, € {0, 1} W)VAVE) - Tet
ha, = inf{h : wy, v, (W) = 1 for some w € A(uy,h)} and hy, = inf{h : wy, v, (W) =
1 for some w € A(vg,h)}. Again under the product measure P the quantities hy, and

h,, are finite for P-almost all wy, v, -

Let upy1 = (upq1(1), ugp41(2)) be such that wy, v, (ux1) = 1 and Uy, u,; < Uy,,w for
all w € H(uy, hy,) with wy, v, (W) = 1.
Similarly let vii1 := (vk41(1),vr41(2)) be such that wy, v, (Vit1) = 1 and Uy, v,,, <

Uy, w for all w € H(vy, hy,) with wy, v, (W) = 1.

We take

Hip1 = |ug41(2) — vk 1(2)]s L1 = |ug1(1) — vgg1(1)] and

Vier = (Avgs1) 0 Ak b)) U (Mg 1) 0 AV Ay, ).

(again, note that either A(vi41) N A(ug, hy,,) or A(ugy1) N A(VE, by, ) is empty — the set

which is non-empty is necessarily a triangle).

We will now briefly sketch the connection between the above construction and the model
as described in Section 1.1. For this with a slight abuse of notation we take wy, v, to
be the sample point wy, v, restricted to the set A(ug,hy,) U A(Vg, by, ). Also let w; €

{0, 1}Z2\U20:0(A(“’“h“k)UA(‘”“’h"k)), where up = u and vg = v. Now define w € Q as

() = Wagve (W) if w e A(ug, hy, ) U A(Vg, by, ) for some k
wi(w) otherwise.

Thus for every sample path from u and v obtained by our construction we obtain a realisation
of our graph with u and v open. Conversely if w € () gives a realisation of our graph with u
and v open then we label vertices u; and v; as vertices such that < u;_1,u; > is an edge in
the realisation with hy, := u;(2) — w;41 > 0, and hy, := v;(2) — v;+1(2) > 0 is an edge in the
realisation with v;(2) < v;_1(2). Now the restriction of w on U2, (A(u;, hy,) U A(v;, hy,)) will

correspond to the concatenation of the wy, v, we obtained through the construction.

Lemma 2.1. The process {(Hy, Ly, Vi) : k > 0} is a Markov process with state space S =
(NU{0}) x (NU{0}) x {A(w, h)),w € Z* h > 0}.
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Figure 7: The geometry of the history region.

Proof: If up, = u and v = v are as in Figure 7 (a) or (b) (i.e. ug(2) > vi(2)) then we

make the following observations about the history region Vj.

Observations:

(i) Vi is either empty or a triangle (i.e. the shaded region in the figure),

(ii) all vertices in the triangle Vi, except possibly on the base of the triangle, are closed under

wuk Vi
(iii) the base of the triangle V3 must be on the horizontal line containing the vertex v,

(iv) one of the sides of the triangle V}, must lie on the boundary B(u, Hy) of A(u, Hy), while

the other side does not lie on B(u, Hy) unless u and v coincide,
(v) the side which does not lie on B(u, H) is determined by the location of vj_1,
(vi) if ug(2) = vi(2) then Vi, =0,
(vii) the vertex ugy; may lie on the base of the triangle, but not anywhere else in the triangle.

While observations (ii) — (vi) are self-evident, the reason for (i) above is that if the history
region has two or more triangles, then there must necessarily be a fourth vertex w besides the
vertices under consideration, u, v and vi_; which initiated the second triangle. This vertex w
must either be a vertex u; for some j < k —1 or a vertex v; for some j < k — 2. In the former
case, the history region due to w must lie above u; and in the latter case it must lie above
Vi—1. In either case it cannot have any non-empty intersection with the region A(u).

In Figure 7 (a) where the vertex v does not lie on the base of the shaded triangle, however
it lies on the horizontal line containing the base, there may be open vertices on the base of the
triangle. If that be the case, the vertex ugy; may lie anywhere in the triangle subtended by
the sides emanating from the vertex u and the horizontal line; otherwise it may lie anywhere

in the region A(u).



In Figure 7 (b) where the vertex v lies on the base of the shaded triangle, the vertex ugq
may lie anywhere in the triangle subtended by the sides emanating from the vertex u and the
horizontal line.

Finally having obtained ugyq, if Vi # 0 or if Vi = () and Hy/Ly > Cy then we take
Vi41 = Vi; otherwise we obtain viy1 by considering the region A(v) and remembering that in
obtaining ug; we may have already specified the configuration of a part of the region in A(v).

The new history region Vj1 is now determined by the vertices ug, vi, ugy1 and vig.

This justifies our claim that {(Hg, Lk, Vi) : kK > 0} is a Markov process. O

We will now show that
P{(Hg, Li, Vi) = (0,0,0) : for some k > 0} = 1. (5)

For this we change the Markov process slightly. We define a new Markov process with
state space S which has the same transition probabilities as {(Hg, Lk, Vi) : k > 0} except that

instead of (0,0, () being an absorbing state, we introduce a transition
P{(0,0,0) — (0,1,0)} = 1.

We will now show using Lyapunov’s method that this modified Markov chain is recurrent.
This will imply that P{(Hg, Lk, Vi) = (0,0,0) : for some k > 0} = 1. With a slight abuse of
notation we let the modified Markov chain be denoted by {(Hy, Ly, Vi) : k > 0}.

Define a function ¢g : Ry — Ry by :

g(z) = log(1 + ). (6)
Some properties of g :

@) =

9@) = o <O

@) = oo

gP(z) = ﬁ < 0 for all z > 0.

Thus, using Taylor’s expansion and above formulae for derivatives, we have two inequalities:
for x,z9 € Ry

ole) = alon) < T -
and
(x—mx) (z—x0)? | (z—ux0)®
g(l') _g(-TO) < (1 +~TO) - 2(1 +.1‘0)2 3(1 —|—J}0)3
- m 6(1 + x0)%(z — x0) — 3(1 + z0)(z — z0)® + (. — 20)3|. (8)

10



Now, define f : S — Ry by,
f(h,1, V) =h*+1% (9)

Also, we define v : S — Ry by
ulh, V) = g(f (1, V)) + (V) = log[1+ @+ 1] + (V) (10)
where |V| denotes the cardinality of V.

Lemma 2.2. For all but finitely many (h,1,V) € S, we have
E(w(Hns1, Lot Vaee1) | (Hos Ly Va) = (0, 1Y) ) < u(h, 1, V). (11)

Proof : Before we embark on the proof we observe that using the inequality (7) and the

expression (9), we have that
E |:U(HH+17 Ln+17 Vn+1) - U(h, l7 V)|(Hn7 Lna Vn) = (hu l7 V)]

= E[g(f(Hus1: Lust, Varr) = 9(F (b V) (Hoy Lo Va) = (b V)]
+E |Vn+1| - |V‘|(HH7LTL7VH) = (h7lv V)
- E [log(l +HA L) —log(1+ b+ 1Y|(Ho, L, Vi) = (B, V)]

FHE|Viia| = [VI[(Hn, L, Vo) = (B, 1, V)
<
T 14+ht4
AE| Vaia| = VI[(Hn, Ln, Vo) = (B, 1, V)]

E[Hy oy + Ly = 06 +09)|(Ho, L, Va) = (0,1 V)]

(12)

Let ag = 0 and for £k > 1 let by = 2k + 1 and a; = Zle b;. We define two integer valued

random variables 7" and D whose distributions are given by:

P(T=k = (1-p)®™1(1—(1-p))fork>1 (13)

1

For i = 1,2, let T;, D; be i.i.d. copies of T, D. Let

B = E(D;— Dy)?
By = E(T) —T»)?

Let Cy > 0 be small enough so that
36(1 4 C5) (61 + C3B2) — 486, < 0 (15)

We shall consider three cases for establishing (11)
Case 1: V is non-empty.

We will prove the following inequalities:

11



E[Hiyy = h(Hay Lo, Vi) = (01, V)]

e 3 <Ch, (16)
(hLV):V#£0,h>1 h
E[L4 41— U(Hy, Ln, Vi) = (h,1,V))]
i 3 <G (17)
(hL,V):V#£0,1>1 ||
and
E(IV] = Vil (Hs L, Vi) = (0 LV)] = Co = Cyexp(=Ci(h + 1) /2) (18)

where C1, Ca,C5 and Cy are positive constants. Putting the inequalities (16), (17) and (18) in
(12), for all (h,I,V) € § with V non-empty, we have

E |:U(Hn+17 Ln+17 Vn+1) - U(h, l7 V)|(Hn7 Lnu Vn) = (hu l7 V)

3 3
_ Gk + Gl

i~ Ca+ Caexp(=Ca(h + [1)/2) < 0

for all (h,l) such that h + |I| sufficiently large. Therefore, outside a finite number of choices
of (h,l), we have the above inequality. Now, for these finite choices for (h,l), there are only
finitely many possible choices of V' which is non-empty. This takes care of the case when the
history is non-empty.

Now, we prove (16), (17) and (18). Define the random variables

Th1 = max(up(2) — unt1(2), va(2) — vn41(2)) (19)

and

Dpy1 = (va(1) = Viy1(1)) = (un(1) = wp (1)) (20)
It is easy to see that the conditional distribution of H, 1 given (Hy, Ly, V) = (h,1, V) is same
as that of |T),+1 — hl.

Note that, for any given non-empty set V', as noted in observations (iv), at least one diagonal
line will be unexplored, and consequently 7,41 is dominated by a geometric random variable
G with parameter p. Further, given T;,11 = j, the value of |D,, 1| is at most 2. Thus, for any
k>1

E(TY, ) <E(G*) < 0o and E(DE, ) < 0.

n

Therefore, we have

E[H}yy = 0 (Hos Lo Va) = (0, 1V)]
- E [(Tn+1 Ryt h4]
< ARPE(Tyn41) + 6K E(T2, ) + 4hE(T2, ) + E(Th, 1)
< KW

for a suitable choice of C}.

12



Similarly, we have that the conditional distribution of L, 1 given (H,, L,,V,) = (h,1,V)

is same as that of |D,1 — [|. Therefore, we have,

E L1 = U1(Hny Ln, Va) = (B, 1,V)

E[(Dn+1 T 14]

APE( Dpt1]) + 6lL*E(| Dygr [*) + AIE( Dyt [*) + E(| Dnga|)
AIPE(G) + 6|I|*E(G?) + 4[l[E(G?) + E(G*)

l13C;.

INIA TN

For the inequality (18), we require the following observations:
o If 7,11 < hthen V41 C V.

o If h <Tphi1 <(h+]l])/2 then V11 = 0.

o 16 Ty > (h o+ [1])/2 then [Viar| < (Tuer — (h+ J1)/2)2.

Further, when 7,11 < h, we have

P(|V] = [Vay1| > 1) > min{p(1 — p),p/2} =: a(p).

This is seen in the following way. We look at the case when 7,11 = 1 and connect to the point
which will always be unexplored. In that case, |V| — |V;,11] > 1. Note that if both points on
the line 7,11 = 1 were available, this probability is at least p(1 — p). If both points were not
available, then there are two possible cases, i.e., the history point on the top line is open or
the history point on the top line is closed. In the first case, the probability is p/2 while in the
second case the probability is p.

Thus, we have
E[ V] = [Vaal [(Hos L, Vi) = (b, L,V)
= E[[IV] = Vasr] WTus1 < W)I(H, L, Vo) = (V)]
E|[IV] = [Vasa] 1k < Tosr < (b + [1)/2)|(Hos L, Vi) = (B, V)|

FE[[IV] = Vst 11 Trs > b+ 1)/2)|(Hos Ly Vi) = (s V)

> E[[IVI= Vot LTousa < WI(Has L, Va) = (1,1,V)
[ Vot | 1T = (b + [U)/2)|(Ho L, Vi) = (B, L, V)]

> a(p) — E[(Tupr = (h+ 1)/2°UTopr > (h+111)/2)]

> alp) BT 1T > (h+ [1)/2)]

> a(p) — E[GA(G = (h+ l1)/2)]

> a(p) - Cyexp(~Ci(h+ [I)/2)

13



where C3 and C}y are positive constants. This completes the proof in the case when history is
non-null.

Case 2: Vz@,‘Th‘iCo

For this case, we use the inequality (12) with |V| = 0. We will show that, for all h large

enough,
E |:H2+1 - h‘4‘(Hn? an Vn) = (h‘v l’ (D)] = _C5h3 + O(h‘Z)a (21)
E[Lh = 1)(Ho, Lo, Va) = (1,1,0)] < Cob?, (22)
E[IVasal (Hns Lns Va) = (0, L0)] < Crexp(~Cah) (23)

where C5, Cg, C7 and Cy are positive constants.
Using the above estimates (21), (22) and (23) in (12) with |V| = 0, we have,

E[U(Hn+luLn+1u Vn+1) - u(hal7®)|(HnuLn7Vn) = (h,l,@)

—C5h3 + Csh?

S T + C7 exp(—Cgh) < 0 for all h large enough.

Now, we prove the estimates (21), (22) and (23). It is easy to see that the conditional
distribution of H,1 given (Hy, L, V;) = (h,1,0) is same as that of |T},11 — h| where T}, 41 is

as defined in (19). Therefore, we have
4 4 —
E[HnJrl —h ‘(HnaLmVn) - (h?lv(b)
- E[(Tn+1 AT h4]
= —Ah3E(Ty41) + 6h°E(T2, ) — 4hE(T2 1) + E(T) 1)
= —h3C5+ O(h?)
where C5 = 4E(Tn+1) > 0.
Again, we have that the conditional distribution of L1 given (Hy, L,,V,) = (h,1,0) is
same as that of |D,,41 — [|. Therefore, we have,
E[Li 1 — U1(Hn, L, V) = (.1, 0)]
— E[(Dpa -0t =1
APE(Dp41) + 61*E(D2 ) + AIE(D? ) + E(D;h )
61LPE(| Dy ) + AUE( Doy ) + E(| D)
6h%E(|Dys1[%)/C2 + 4HE(| Dy [2)/Co + E(| D)
Ceh?

IN N

IN

for suitable choice of Cg > 0.
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Finally, to prove (23), we observe that if T,,11 < (|I| + h)/2 then V41 = 0. If T,,41 >

(JI| +h)/2 then |V, 41| < (Thy1 — (|I] + h)/2)%. Therefore, we have

Vit (s Ly Vi) = (1, 0)]

E
E[(T1 — (b + 11)/2)°1Ts1 > (h+11)/2)
E
E

IN

201 (Tr1 > (h+ [11)/2)]

T2 1(Toi1 = 1/2)]
C7 exp(—Csgh)

IN

IN

IN

for suitable choices of positive constants C7 and Cg.
Case 3V = ®7|}ll_| < Cp. Using (8), we have,
U(Hn—i—b Ln+17 Vn+1) - U(h, l7 0)

= 1+ rt+ 1% [6(1 + Rt 11 [(Hfiﬂ +Lpy)— (b + l4)}
2
—3(1+ Kt +1%) {(Hgﬂ LI (ht 4 14)]

3
#tt 2 - 00 ]|+ Wl

Taking conditional expectation and denoting, (H, + L3, ;) — (h* +1*) by R,, we have,

E(U(Hn+17Ln+17Vn+1) - U(h,l,@) ‘ (HnaLnu Vn) - (h7l7®))
1

S Oratem

=31+ h* +IME(R2 | (Hp, Ly, Vi) = (R, 1,0))

[6(1 + 1+ 2B (R, | (Hp, Lo, V) = (h,1,0))

+E(R) | (Hn, Ln, Vo) = (h,1,0))

+E(|Vn+1| | (HnaLnyvn) = (h,l,@))

We want to show that: for all [ large enough,

E(Ry | (Hn, Ln, Vi) = (B, 1,0)) < 6|12[81 + C2]
E(RZ | (Hyn, Ly, Vi) = (h,1,0)) > 161]°6,
E(R}, | (Hn, Ly, Vo) = (h,1,0)) < Cioll]?

E(Vasil | (Hn, Ln, Vi) = (h,1,0)) < Cryexp(—Chall])

where 31, 85 are as defined earlier and Cy, C'1g, C'11 and Co are positive constants.

15
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Using the above inequalities in (24), and the definition of Cj, we have,

E[u(Hnt1, Lt Vas1) = 6o, 0)|(Has L, Vi) = (k, 1,0)
<t
T (T+Rt 413

—48(1+ B+ 118, + Caolt|’] + Cry exp(~Chall])
< 0 for all |I| large enough.

[36(1 + R I2(IR(B + C25)

Proof of (25) and (26): Let us assume without loss of generality that v, (1) = u,(1) 41
and v,(2) = un(2) + h. Let T = vp(2) — vp11(2), Dy = vn(1) = vpy1(1) and T, =
Un(2) — uny1(2), Dfy 1 = un(1) — upy1(1). Using this notation, we have

R, = [h + (T;L)Jrl - T#+1)]4 — h + (l + (D};H - Dg+1))4 —
= 4h¥( m1 — Do) + 6R%( ntl — #+1)2+4h( ntl — #H)S
+(Th1 — ff+1)4 +41( nt1 — Dpip) + 61 ( 1l — DZ+1)2

+4l(Dy 4y — Z+1)3 + (Dpi1 — Z+1)4- (29)

Now, it is easy to observe that if both T, | < (|| + h)/2 and T}Y, | < (|I| — h)/2, both of
them will behave independently and the distribution on that set is same as that of T". Further,
the tail probabilities of the height distribution T decays exponentially. Thus,

E(T'1,_w-n) = O(exp(—[I| — |n])) ~ for all j > 1.
2

Hence we have for all j > 1,
E((Ty1 = Tia)’ | (Hu, Ln, Vo) = (1,1,0)) = E((T2 = T1)’) + O(exp(—|1]))
where 17, T, are i.i.d. copies of T" and similarly we have
E((Dyy1 = Dya)’ | (Hn, Ln, Vi) = (h,1,0)) = E((D2 — D1)?) + O(exp(—[i]))

where and Dy, D are i.i.d copies of D.

Now, to conclude (25), we just need the observation that all odd moments of the terms
Ty — Ty and Dy — Dy are 0. Thus in the conditional expectation of (29), we see that the
terms involving h3 and I? do not contribute, the coefficient of /2 in the second term contributes
6E(D; — D2)?, the coefficient of h? contributes 6E (T} — T»)? and all other terms have smaller
powers of h and [. From the fact that h/|l] < Cy and our choice of Cj given by (15), we
conclude the result.

To show (26), studying R2, we note that there are only three terms which are important,
(a) coefficient of 1%, (b) coefficient of h% and (c) coefficient of h3I3. All other terms, are of
type hilY have i + j < 6 and, since h/|l| < Cj, these terms are of order smaller than [8. The

coefficient of 16 is 16E((D1 — D2)2) = 1603, the coefficient of hS is 16E((T1 — T2)2) > 0 while
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the coefficient of 313 is 16E((T1 —T3)(D1 — D3)) = 16E((Ty — T2)E(D1 — D |T1,T5)) = 0. Thus
(26) holds.
Proof of (27): In the expansion of R3, all the terms are of type h'l7 with i+ j < 9. Thus,
using the fact that h/|l] < Cp, and all terms have finite expectation, we conclude the result.
Proof of (28) : Finally, the history set V,, 11 is empty if T}, ; < (|[| +h)/2 and T}, | <
(]I = h)/2. Otherwise, the history is bounded by (T}, ; — (|I| + h)/2)21T;;+1>(\l\+h)/2 + TV —
(1] — h)/2)21T::+1>(|l|,h)/2. Again, since the tails probabilities decay exponentially, the above

expectations decay exponentially with |I].

This completes the proof of Lemma 2.2 and we obtain that
E(w(Hn 1, Lot Vi) | (s Ly Va) = (0, 1,V) ) < u(h,1,V)

holds outside | > Iy, h < hg and |V| < k for some constants [y, hg and k.
By Foster’s criteria (see Asmussen (1987), Proposition 5.3 of Chapter I) we have that the

Markov chain is recurrent. Therefore, we have
P[(Hn, Ly, Vi) = (0,0,0) for some n > 1|(Ho, Lo, Vo) = (h,l,v)] =1

for any (h,l,v) € S.

For d = 3 we need to consider the ‘width’, i.e. the displacement in the third dimension.
Thus we have now a process (Hy, Ly, W,,V,),n > 0 where H,, is the displacement in the
direction of propogation of the tree (i.e. the third coordinate), and L,, and W, are the lateral
displacements in the first and the second coordinates respectively. Now the history region V,,

would be a tetrahedron. Instead of (10) we now consider the Lyapunov function
u(hsb,w, V) = g(f (1w, V)) + (IV]) = log |1+ (1* 4+ b + w)] + (V)

where

f(h,Lw, V) =1*+h* +w?

and g(x) = log(1+ ) is as in (6). This yields the required recurrence of the state (0,0, 0, ) for
the Markov process (Hy,, Ly, Wy, V,,) thereby completing the proof the first part of Theorem 1.

3 d>4

For notational simplicity we present the proof only for d = 4. We first claim that on Z* the
graph G admits two distinct trees with positive probability, i.e.,

P{G is disconnected} > 0. (30)

We start with two distinct open vertices and follow the mechanism described below to

generate the trees emanating from these vertices. Given two vertices u and v, we say u > v if
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u(4) > v(4) or if u(4) = v(4), and u is larger than v in the lexicographic order. Starting with

two distinct open vertices, u and v with u > v we set
Tuv(0) = (ug, vo, Vo) where ug = u,vg = v, and V) = 0.

Let R(u) € Z* be the unique open vertex such that (u,R(u)) € G. We set u; =
max{R(u),v} and v; = min{R(u), v} where the maximum and minimum is over vectors and

henceforth understood to be with respect to the ordering . We define,
TU,V(l) = (a1, vy, V1)
where

Vi = (A(v)NA(u,u4) — R(u)(4))) U (Vo NA(uy)).
A(v) N A(u, u(4) — R(u)(4))

The set V7 is exactly the history set in this case.
Having defined, {Tyv(k) : K = 0,1,...,n} for n > 1, we define Ty, v(n + 1) in the same
manner. Let R(u,) € Z* be the unique open vertex such that (u,, R(u,)) € G. Define

u,+1 = max{R(u,),v,}, vp+1 = min{R(u, ), v, } and
Tu,v(n + 1) = (un+17 Vn+1, Vn+1)

where

Vn+1 = (A(Vn) N A(un7un(4) - R(un)(4))) U (Vn N A(unJrl))'

The process {Tuv(k) : k > 0} tracks the the position of trees after the k'"' step of the
algorithm defined above along with the history carried at each stage. Clearly, if ui = vi for
some k > 1, the trees emanating from u and v meet while the event that the trees emanating
from u and v never meet corresponds to the event that {uy # v : k > 1}.

A formal construction of the above process is achieved in the following manner. We start
with an independent collection of i.i.d. random variables, {W"(z), Wy¥(z) : z € A(w),w € Z*},
defined on some probability space (£, F,P), with each of these random variables being uniformly
distributed on [0,1]. Starting with two open vertices u and v, set up = max(u,v),vg =

min(u,v) and Vy = (. For w € Q, we define ky, = ky,(w) as

ky, == min{k : W' (z) < p for some z € H(uyp, k)}
and

Ny, :={z € H(ug, ky,) : W} (z) < p}.

We pick
R(ug) € Ny, such that W5 (R(ug)) = min{W,"(z) : z € Ny, }.
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Define, as earlier,
u; = max(R(up), vo), vi = min(R(up), vo)
and
Vi= (A(Vo) N A(UO, ]{}UO)) U (‘/0 N A(ul)) = (A(Vo) N A(LIO, kuo))-
Further, for z € Vi, define
Wi (z) = Wy (z).
Having defined {(uy, vk, Vi, {WE(z) : z € Vi}) : 1 <k < n}, we define w11, Vii1, Vi1,
(Wit (z) : 2 € Vi y1} as follows: for w € Q, we define ky, = ky, (w) as
ku, = min{k : Wp;(z) < p for some z € V,, N H(uy, k)
or Wi'"(z) < p for some z € H(u,, k) \ V,,}

and

Ny, =1z € H(uy, ky,) : Wg(z) <pifze V, N H(uy,, k)
or Win(z) <pif z € H(uy, k) \ V,}.
We pick
R(uy,) € Ny, such that Wy (R(uy,)) = min{W;'"(z) : z € Ny, }.
Finally, define
u,+1 = max(R(uy,), vy), Vpr1 = min(R(uy,), vy)

and

Vg1 = (A(vn) NA(up, ky,)) U (Vi N A(uy)).

For z € V1, define
Wi () = Wi(z) if zeV,NA(uy)
Wit(z)  if A(vy) N A(uy, by, ).

This construction shows that the {(ug, vi, Vi, {WE(z) : z € Vi.}) : k > 0} is a Markov chain
starting at (ug, vo, 0, ). A formal proof that this Markov chain describes the joint distribution

of the trees emanating from the vertices u and v can be given in the same manner as in Lemma

2.1.
For z € Z*, define
2], = [2(1)] + [2(2)] + |2(3)]
where z(i) is the i co-ordinate of z. Fix n > 1, 0 < € < 1/3 and two open vertices u, v and

consider the trees emanating from u and v. Define the event,
up, Avpfor 1 <k<n*—1,Vu =0,
An,e = An,e(“O)VO) = n2(1- < Hun4 - Vn4||1 < n2(+e)
0 <upya(4) — v,a(4) < log(n?)

9

for which we show that the following Lemma holds:
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Lemma 3.1. For 0 < € < 1/3 there exist constants C1,3 > 0 and ng > 1 such that, for all
n 2 no,
) inf IP’(AWE | (wo,vo, Vo) = (u,v, (Z))) >1-—Cin ",
n' e <[lu—v];<n'te,
0<u(4)—v(4)<logn
First we prove the result using the Lemma 3.1. First, for fixed 0 < € < 1/3, we choose ng
from the above lemma. Now, fix any n > ng and u such that n!=¢ < [Jul|; < n't€,0 <u(4) <
logn. With positive probability, the vertices 0 and u are both open. On the event that both
the vertices 0 and u are both open, we consider the trees emanating from u and v = 0. We
want to show that P{uy # vj for £ > 1} > 0.
Let 70 = 0 and for i > 1, let 7 := n* + (n2)4 4 - .- + (n¥ )4 For i > 1, define the event

uy, # vy, for iy <k <7,V =0,
B; = n? (179 < |fuy, = vy, [, < 0?05,
and 0 < u,,(4) — v, (4) < logn?

Then, we have

P{for all k > 1,ug # vk} = lim P{for 1<k<mu, # vk}

> limsupP{for 1 <k < 7,u; # vg, and for 1 <1 <4, V;, =0,

1—00
n2l(176) <||u, — V7'1H1 < n21(1+6) and 0 < uy,(4) — vy, (4) < log n2l}

= limsup ]P’(ﬂ%lel)

1—00
= limsup [[P(B; | N\Z} B;)P(By). (31)
71— 00 1=2

For [ > 2, By is a event which involves the random variables (ug, vy, Vi) for &k = 71 +
1,...,7. Using the Markov property, we have that P(B; | ﬂ;_:llBj) dependsonly on (ur,_,,vr_,, Vo ).
Furthermore, on the set ﬂg-_:llBj, we note that n2 179 < |ju,_, — Vol < n2 7104 o <

u, ,(4) —v;_,(4) <log n? ™" and V:,_, = 0. Therefore we have that, for > 2,

P(B; | N\ B;))

2 -1 lnf -1 ]P)(Bl | (uTl,17VTl,17 VTlfl) = (217227®))
n2 (175)§||z1722||1§n2 (1+e)7
0<z1(4)—z2(4)<logn
= 1 inf 1 ]P)(AnQZ—l € ‘ (uo,Vo,Vb) = (Z1>Z27®))
n2 (175)§||z1722||1§n2 (1+5)’ )
0<z1(4)—z2(4)<logn
-1
> 1-Cn 27 (32)

and since n1~¢ < [lul|; < n'*¢,0 < u(4) < logn.

P(B1) = P(Ane | (10, v0, Vo) = (1,0,0)) >1— Cin~" (33)
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Therefore, from (31), (32) and (33), we have,

P{G is disconnected} > ]P’{u 0 are both open} x lim H 1 _ Cln*Ql 15) 0.
1—00

=1
This completes the proof of the claim.
We will work towards the proof of Lemma 3.1. Towards that, we introduce an independent
version of the above process. In the same probability space, starting with two vertices u and

@

v, and the same set of uniformly distributed random variables, define u;’ = max{ug, vy} and

v(()I) = min{ug, vo}. For w € Q, we define kffg = kffg (w) as

Q)
k(I()I) = min{k : W1uo (z) < p for some z € H(ug)v k)}
)

and
M ) ug
Nu(I) ={z € H(uy ,k:ug)) W0 (z) < p}.
0
We pick

u®
ROy e N(()I) such that W2 (RW (D)) = min{ W (z): 2 NDL.
Uy

Now, define ugl) = maX{R (ué ),VO } and vgl) = min{R(I)(ug)),v(()I)}.
Having defined, {(uk , (I)) 11 <k <n}, we set,

k’(()l) = min{k : W1u" (2) < p for some z € H(ui, k)}
and

N = {z € H(ul) k()) Wi (z) < p}.

n

We pick
Q) Q)
ROD) e N such that W (RO (uD)) = min{ W (z) : z € NU}

and define ufBrl = max{R" (u (I)) vl } and V(J)rl = min{ RV (u (I)) vgl)}.

The independent version tracks the two trees, emanating from the vertices u and v, with
the condition that the trees do not depend on the information (history) carried. The only
constraint is that while growing the tree from a vertex, it waits for the tree from the other
vertex to catch up, before taking the next step. Note that if the history set is empty, then both
constructions match exactly.

We define an event similar to A, . but in terms of {(uk ,V](C)) 1 <k <n'} Fixn>1,
0 < e < 1/3 and two open vertices u,v € Z and define the event,

[l — v H1>log( D for 1<k <nt—1,
Bp(ul’ vl = o<u,§)() D(4) < log(n?) for 1 < k < n?,
n2(-9 < ”u IH < p2(1+e),

We will show that the following lemma holds:
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Lemma 3.2. For 0 < € < 1/3 there exist constants Ca,y > 0 and ny > 1 such that, for all
n > ng,
inf P(Bne(u,v)) > 1—Con 7.
n!=e<uv; <nl*, (Bre(w.v)) 2 ?
0<u(4)—v(4)<logn

First we prove Lemma 3.1, assuming Lemma 3.2.

Proof of Lemma 3.1: Given 0 < € < 1/3, fix ng > 1 from Lemma 3.2. Now fix n > ng and
u,v € Z* such that n' ¢ < |lu — v||; < n!™€ and 0 < u(4) — v(4) < logn. Now note that both
the events A, ((u,v) and By, ¢(u, V) are defined on the same probability space.

We claim that A, (u,v) 2 By, ¢(u,v). To prove this, we show that, on the set B,, (u, v), we
have that {(ug, vy, Vi) = (ug),vg), @) : 1 < k < n*}. This follows easily from the observation
that if V;, = 0, for some k > 0, then the two constructions, given before, match exactly.
That is, if (ug, v, Vi) = (u,(gl),v,g),(b) for k < 4,4 > 0, we have, R(u;) = R(I)(ugl)). Thus,
we have u;11 = ugi)l and v, = vg)l. Furthermore, on the event B, (u,Vv), we have that
|wis1 — vit1ll; > log(n?) and 0 < w;41(4) — vip1(4) < logn® From the definition of the
history set, the separation of u and v implies that V;.1 = (). Therefore the claim follows by an

induction argument. Thus, we have
P(Ape (a0, vo, Vo) = (u,v,0)) = P(Bp.e(u,v)) =1 - Con™".

Hence, Lemma 3.1 follows by choosing C7y = Cs and 8 = 7. U
Now define for & > 0, S,EI) = uy, — vi. Then, the event B,  can be restated in terms of SIEI).

Indeed, define s = u — v where u > v and

ISP, > log(n?) for 1 <k <n*—1,
Che(s) =2 0< S,(CI)(ZL) <log(n?) for 1 < k < n*,
n2(—e) < HS7(ZI4)||1 < n2Q+e)

Lemma 3.2 now can be restated as

Lemma 3.3. For 0 < € < 1/3 there exist constants Ca,y > 0 and ng > 1 such that, for all
n 2z no,
inf P(Cphe(s)) >1—Con™7.
”1_€§||S||1§n1+€» ( n,e( )) = 2
0<s(4)<logn

In order to study the event C), ((s), we have to look at the steps taken by u,(cl) for each k > 1.
Let X}, = R(I)(ug)) — u,(CI) for kK > 0. The construction clearly shows that each {Xj : k > 1} is
a sequence of i.i.d. random variables.

The distribution of X}, can be easily found. Let ap = 0, and for ¢ > 1, a; = |A(0,%)| and
b; = |H(0,i)|. Define a random variable 7" on {1,2,...}, given by

P(T =1i)=(1-p)" (1 - (1-p™). (34)
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Now, define D on Z3 as follows:

P(D=2|T=i)=

S_li for (z,—i) € H(0,i) (35)

otherwise.

Note T and D are higher dimensional equivalents of 7" and D in (19) and (20). It is easy to
see that Xy and (D, —T) are identical in distribution. Let {(D;, —T;) : i > 1} be independent
copies of (D,—T'). Then, {S,(CI) : k > 0} can be represented as follows : set S(gl) = s and for
k>,
S0 2 SO+ (Dy, ~Ty) if S 4 (Dy, —T}) = 0
g —(S,(Clzl + (D, —Tk)) otherwise.

Note that, from the definition of the order relation, S @ (4 ) |S had 1( ) —T| > 0 for each k > 1.
Now, we define a random walk version of the above process in the following way: given s > 0
and the collection {(D;, —T;) : ¢ > 1} of i.i.d. steps, define : S(()RW) =s and for £ > 1,

S = (s(1).s(2 (Z Dy 1SV (4) - Ty ).

The random walk S ,(CRW) executes a three dimensional random walk in its first three co-ordinates,
starting at (s(1),s(2),s(3)) with step size distributed as D on Z*. The fourth co-ordinate
follows the fourth co-ordinate of the process SIEI).

Note that, we have constructed both the processes using the same steps {(D;, —1;) : i > 1}
and on the same probability space. Therefore, it is clear that the fourth co-ordinate of both
the processes are the same, i.e., S,(CI) (4) = SIERW) (4) for k > 1. We will show that the first three

co-ordinates of both the the processes have the same norm. In other words,
Lemma 3.4. For k>1 and o;,3; >0 for 1 <i <k,

P{ISE, = i, ST (4) = B, for 1 <i < k)

= P{J15;", = s, 5, (4) = B for 1 <i < k}.

We postpone the proof of Lemma 3.4 for the time being. We define a random walk version
of the event Cy, ((s). Forn >1and 0 < € < 1/3 and s > 0, define

1SS, > log(n?) for 1 < k < nt —1,
Dpe(s) =< 0< ST™ (1) < log(n?) for 1 < k < nf,
n20-9 < | SEW||, < 20+,

In view of Lemma 3.4, it is enough to prove the following lemma:

Lemma 3.5. For 0 < € < 1/3 there exist constants Ca,y > 0 and ny > 1 such that, for all
n Z no,
inf P(D,..(s)) >1—Cyn™".
n1_€§||s||1§”1+67 ( n,e( )) = 2
0<s(4)<logn
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We first prove Lemma 3.5 and then return to proof of Lemma 3.4.

Proof of Lemma 3.5: For z € Z3, define ||z|| = |2(1)| + |2(2)| + |2(3)], the usual L' norm in
73, Define, A; = {z € Z3 : ||z|| < k}. Let st = (s(1),s(2),s(3)) be the first three co-ordinates
of the starting point s. Let ry represent the random walk part (first three co-ordinates) of
S,(CRW), ie.,r,=sb + Zle D;. Now note that

Cc
(Dnc(s))" € Bne U o UG U Hy

where
B, U {lrell < 1080}
k=
Fre:= {Hrn4H > n2(1+€)} = {rn4 ¢ An2(1+6)}>
Ghe = [rpal < n?(- 6)} = {rn4 € An2(1—6)}>
and

CJ{ 4) > log(n )}

Note that the events E, , Fj,  and G, depend on the random walk part while H,, . de-

pends on the fourth co-ordinate of S](CRW)

. Also note that Z?Zl Dj is an aperiodic, isotropic,
symmetric random walk whose steps are i.i.d. with each step having the same distribution as D
where Var(D) = o1, for some o > 0 and Y, 4s|z||*P(D = z) < co. The events F, . and G,
are exactly as in Lemma 3.3 of Gangopadhyay, Roy and Sarkar (2004). Hence, we conclude

that there exist constants C3,Cy > 0 and a > 0 such that for all n sufficiently large,

sup P(ane) = sup P(Fn,e) <C3n™ ¢
nl—egllslll§n1+e’ s(l)EAn1+€ \An1+€
0<s(4)<logn
and
sup P(Gp,e) = sup P(Gp,e) < Can™.
n175§||5||1§n1+e’ S(l)eAnH’f \An1+€
0<s(4)<logn

The probability of the event F,, . can be computed in the same fashion as in Lemma 3.3 of
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Gangopadhyay, Roy and Sarkar (2004). Indeed, we have,

P(Ene) = IP’(HrkH < 2logn for some k =1,2,...,n% — 1)

M»

= P D; e (— )+A210gn) for some k =1,2,. n4—1)

Il
—

7

M»

IN
=

D; e ( M 4+ Aglogp) for some k > 1)

Il
—

7

IN

P

(
(
( U {iDi:zfor somekZl})

zE— S(1)+A2 log n =1

k
< CO5(2logn)? sup IF’{Z D; = z for some k > 1} (36)
ZG—S(1)+A2 logn =1

for some suitable positive constant Cj.
From Proposition P26.1 of Spitzer [1964] (pg. 308),

lim |z |IP’{Z D; =z for some i > 1} = (4ra*)"! > 0. (37)
|z|—o0 e

For sV € (A, 040 \ A,a-0) and z € —s(V) + Agjog,,, we must have that ||z| > n'~¢/2 for
all n sufficiently large. Thus, for all n sufficiently large, we have, using (37) and (36),

1—¢)

P(En,e) < C5(2log n)306n—(1—e) < C7n_(T

where C5, Cg and C'; are suitably chosen positive constants.
Finally, for the event H,, let E} = {SIERW) (4) > log(nZ)}. Then,

7'L4

H,.=E U E.nl] B,
k=2

and we have

P(Hne) =P(E1) + Y P(Ey 2} Ef) < P(E) + ) P(Ey | MjZLER).
k=2 =2

On the set ﬂ?;llEg, we have 0 < S(RW)( 4) < log(n?) and S ( ) = \S(RW (4) — Tg| > log(n?)
implies that T}, > log(n?). Hence, P(E}, | ﬂk 1EC) < P(Ty > log(n?)). Similarly, P(E;) <
P(Ty > log(n?)). Thus, we get

]P’(Hn,e) < n4IP>(T > log(n2)) < n4(1 — p)(QIOg(”))4 < Cgexp(—Cylogn)

for some positive constants Cg, C9 > 0. This completes the proof of the lemma 3.5. O

Finally, we are left with the proof of Lemma 3.4.
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Proof of Lemma 3.4: We define an intermediate process on Z* x {—1,1} in the following
way. Given s > 0 and the steps {(D;, =T}) : i > 1}, define (Sy, Fy) = (s, 1) and for k > 1,

(Sk—l + (Fp—1Dy, —=T}), Fk—l) if Sp_1+ (Fx_1Dg,—Tx) = 0

Sk, Fi,) =
( k k) _<S](€121 + (Fk71Dk,—Tk)aFk71> otherwise.

We first claim that for k£ > 1,

S = F, (S‘é” + g DZ-) = F, (S(l) + ZZ;DZ)

where z1) is the first three co-ordinates of z. Indeed, the claim is obvious for k = 1. Assume
that it is true for k¥ = 1,2,...,n. Then, S(l) ( S Yo 1D> If F,, = 1, then, S(l) =
1)-1-2? | Di. Hence, if S, +(F,Dyy1, —Tny1) = 0, we have Fy, 11 = F, = 1 and S( )1 — sy

FuDpi1 =S + 30 Di+ Doy = S + S D, = Foyy (5*(1 + Y14 D). Otherwise, we
have Fo1 = —F, = —1and 5, = (8 + FuDpir ) = = (8 + S0 i) = Foa (S5 +
Z”+1D> If F, = —1, then, S = —8{ — 27 D;. Hence, if S + (FuDpy1,~Tps1) =
0, we have F,py = F, = —1 and ), = SV + F,D,.; = =S =" D, = D,y =
—S’él) — St Dy = Fo (5’01) + 3yl DZ). Otherwise, we have F,, 11 = —F,, = 1 and 57(11-21 =
- (Sr(zl) +FnDn+1) = —<—S(()1) - Dz‘—Dn+1) = S(()l) +3 Dy = Fopy ( 1)+Zn+1 D; )

Therefore, we have that for k > 1, ||S]|, = [sM+3F, Di|| = HS/,S,RW)H1 since Fj, € {—1,1}.
Further, from the definition, we have SIEI) (4) = Si(4) = S,(CRW) (4) for each k > 1.

Now we claim that, for & > 1,

(P :i=0,1,... k} and {S; : i =0,1,... k} (38)
are identical in distribution. Note that, from the definition of S](CI)
k>0,

and Sy, we can write, for

SIEI+)1 = f(SIEI)7 Djs1,Ti) and Sp1 = f(Sk, FeDps1, T) (39)

where f : Z* x 73 x N — Z* is a suitably defined function. The exact form of f is unimportant,
the only observation that is crucial is that we can use the same f for both the cases.

To show (38), we note that it trivially holds for k¥ = 1. Furthermore, from (39) we have
that {SZ-(I) :i > 1} is a Markov chain starting at s and {(S;, F}) : 4 > 1} is also a Markov chain
starting at (s, 1).

Assume that (38) holds. Using the fact that Dy, is symmetric and the Markov property,
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we have that

P{S;i=2;:i=0,1,...,k+1}
= P{S;=2;:i=0,1,...,k+1,F, =1}
+P{S;=2;:i=0,1,....k+1,F, =—1}
= P{Si=2:i=0,1,...,k Fy = 1}P(f (2, Dis1, Tk) = Zpt1)
+P{S;i=12;:i=0,1,...,k F, = —1}P(f (24, —Dy11, Th) = Zi41)
= P{Si=2:i=0,1,...,k Fy = 1}P(f (2, Dis1, Tk) = Zpt1)
+P{Si =2z :i=0,1,...,k F = —1}P(f (2, Ds1,Th) = Z441)
= P{Si=2;:i=0,1,...,k}P(f(zk, Dis1, Tk) = Zr41)
= P{S" =z :i=0,1,... . E}P(f(zk D1 Th) = zr41)
= PV =z:i=01,... k+1}.

This establishes (38) and completes the proof of Lemma 3.4. O

Hence we have shown that
P{G is disconnected} > 0
and by ergodicity this implies that
P{G is disconnected} = 1.

A similar argument along with the ergodicity of the random graph, may further be used to
establish that for any k£ > 1

P{G has at least k trees} = 1.

Consequently, we have that

]P’{ ﬂ{g has at least k trees }} =1
k>1
and thus
P{G has infinitely many trees} = 1.

4 Geometry of the graph G

We now show that the tree(s) are not bi-infinite almost surely. For this argument, we consider,
d = 2. Similar arguments, with minor modifications go through for any dimensions.

For t € Z, define the set of all open points on the line L; := {(u,t) : —00 < u < oo} by
N¢. In other words, N; :={y € V:y = (y1,t)}. Fix x € Ny and n > 0, set B,(x) := {y €
V : h"(y) = x}, where h"(y) is the (unique) n'" generation off-spring of the vertex y. Thus,

B, (x) stands for the set of the n'® generation ancestors of the vertex x.
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Now consider the set of vertices in N; which have n'" order ancestors, i.e., Mt(n) ={x¢€
Ny : B, (x) # 0}. Clearly, Mt(n) C Mt(m) for n > m and so Ry := lim,,_.oo Mt(n) = ﬂnzoMt(n) is
well defined. Clearly, this is the set of vertices in Ny which have bi-infinite paths. Our aim is
to show that P(R; = () = 1 for all t € Z. Since {R; : t € Z} is stationary, it suffices to show
that P(Ry = @) = 1.
We claim, for any 1 < k < oo,
P(|Ro| = k) = 0. (40)

Indeed, if P(|Ry| = k) > 0 for some 1 < k < 0o, we must have, for some —oco < 1 < 3 <

... < xp < oo such that,
IPJ(RO = {(1‘1,0), ('TZaO)a ceey (ajkv 0)}) > 0.
Clearly, by stationarity again, for any ¢ € Z,

P(Ry = {(z1 +t,0), (x2 +t,0),..., (z +£,0)})
= P(Ro = {(21,0), (22,0),..., (24,0)}) > 0. (41)

However, using (41)

P(|Ro| = k) = > P(Ry = E) = oc.
E={(z1,0),(x2,0),...,(z,0)}

This is obviously not possible, proving (40) .
Thus, we have that
P(|Rol = 0) + P(|Ro| = 00) = 1.

Assume that P(|Ry| = 0) < 1, so that P(|Ry| = o) > 0.

Now, call a vertex x € R; a branching point if there exist distinct points x; and xo such
that x1,x € Bi(z) and B, (x1) # 0, By(x2) # () for all n > 1, i.e, x has at least two distinct
infinite branches of ancestors.

We first show that, if P(|Rg| = o0) > 0,

P(Origin is a branching point) > 0. (42)
Since P(|Ry| = o0) > 0, we may fix two vertices x = (z1,0) and y = (y1,0) such that
P(x,y € Rg) > 0.

Suppose that 21 < y; and set M = y; —x1 and x3; = (0, M) and yp;s = (M, M). By translation

invariance of the model, we must have,
P(xa,ym € Ru) = P(x,y € Ro) > 0.

Thus the event E; := {B,(xnm) # 0,Bn(ym) # 0 for all n > 1} has positive probability.
Further this event depends only on sites {u := (u,u2) : ug > M}.
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Now, consider the event Ey := {origin is open and all sites other than the origin in
A(xpr, M) U A(ynr, M) is closed}. Clearly, the event Eo depends only on a finite subset
{u = (up,u2) : 0 <wug < M —1,|us| <2M} and P(E3) > 0. Since E; and Es depend on

disjoint sets of vertices, we have,
P(Origin is a branching point) > P(E; N Ey) = P(E;)P(E2) > 0.

Now, we define C; as the set of all vertices with their second co-ordinates strictly larger
than ¢, each vertex having infinite ancestry and its immediate off-spring having the second co-
ordinate at most ¢, i.e., C; = {y = (y1,u) € V:u > t,B,(y) # 0 for n > 1, and h(y) = (z1,v),
with v < t}. Since every open vertex has a unique off-spring, for each y € C;, the edge joining

y and h(y) intersects the line L; at a single point only, say (I,(t),t). We define, for all n > 1,
Ci(n) :={y € C; : 0 < I(t) < n} and 1¢(n) = |Cy(n)|.
We show that E(r:(n)) < oo and consequently r(n) is finite almost surely. First, note that
Ci(n) =Ui_{y € Cy : j — 1 < I (t) < j}.

Since the sets on the right hand side of above equality are disjoint, we have
n .
ri(n) = Z ng )
j=1

where ng) =NHyeCi:j—1<1I,t) <j} for 1 <j<n. By the translation invariance of the
model, it is clear that the marginal distribution of ng ), are the same for 1 < 5 < n. Thus, it is
enough to show that E(rt(l)) < 00.

Now, we observe that {y € Cy : 0 < I,(t) < 1} C Uy :={y = (y1,u) € V :u > t,h(y) =
(x1,v),v <t,0 < I,(t) < 1}. The second set represents the vertices whose second co-ordinates
are strictly larger than ¢, for each such vertex its immediate off-spring having a second co-
ordinate at most ¢ and the edge connecting the vertex and its off-spring intersecting the line
L; at some point between 0 and 1. Note that we have relaxed the condition of having infinite
ancestry of the vertices above.

Set a; =14+ 2¢, fort =1,2,... and s; = 22:1 aj. Here, a; is the number of vertices on
the line L;4; which can possibly be included in the set Uy. Now, if s;41 > |Uy| > s;, then some
vertex x whose second co-ordinate is at least (¢ + ¢ + 1) will connect to some vertex y whose
second co-ordinate is at most ¢t. Thus, the probability of such an event is dominated by the
probability of the event that the vertices in the cone A(y) up to the level x are closed. Since

there are at least i> — 1 many vertices in this region, we have
21

P(siy1 > |Us| > si) < (1—p)’

Thus, E(|U]) < oc.
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Now, consider Cy(n) and divide it into two parts, C(gl)(n) and C(()Q) (n) where C(gl)(n) =
{y € Co(n) : y = (y1,1)} and CéQ)(n) ={y € Co(n) : y = (y1,u),u > 1}. We divide the set
C’(()Q) (n) into two further subsets. It is clear that for each y € CéZ) (n), the edge joining y and
h(y) intersects both the lines Ly and Li. Let us denote by (I(y;1),1)(= I,(t + 1)) the point
of intersection of the edge (y,h(y)) with L;. Define,

CP(n;1) = {y € CP(n) : 0 < I(y;1) < n}
and
C?(n:2) = {y € CP(n) : I(y; 1) > n or I(y;1) < 0}.

Thus, by definition of C(()Q) (n;1), we have 052) (n;1) C Cq(n). Further, for any vertex x, h(x)
can lie at an angle at most 7 from the vertical line passing through x, so we see that any vertex
of C’(()Q) (n) which intersects Lo at (I;(y),0) with 1 < I;(y) < n — 1, must intersect L; at some
point (I(y;1),1) with 0 < I(y;1) < n. Therefore, we must have that,

C?(n;2) C {y € Co: 0 < 1,(0) < 1} J{y € Co:n— 1 < I,(0) < n}.

Thus, we get,
O )] < o+, (43)

Now, consider the set C(()l)(n) \ {(-=1,1),(n,1)} and partition it into two sets, one of
which contains only branching points and the other does not contain any branching point,
ie., CPm)\ {(=1,1),(n, 1)} = P (n; 1) U C{V (n;2), where

Cél)(n; 1) = {y € Cél)(n) \ {(-1,1),(n,1)} : y is a not branching point}

and
C(gl)(n; 2) = {y € C(gl)(n) \ {(—=1,1),(n,1)} : y is a branching point}.

Now, it is clear that for each y € C’(()l)(n; 1), there exists a unique ancestor which further

has infinite ancestry. Therefore, we can define,
Dy ={z:h(z) € C’(()l)(n; 1) and By (z) # 0 for n > 1}.

For y € C(gl)(n; 2), being a branching point, there exists at least two distinct vertices, both of

which has infinite ancestry. Thus, we may define,
Dy ={2z1,25 : h(z1),h(z2) € C(gl)(n; 2) and B(z1) # 0, By (z2) # 0, for n > 1}.

Since every vertex has a unique off-spring, we must have, D1 N Dy = (). Further, by definition
of C1(n), we have, D1 U Dy C Cy(n). Also, it is clear that (D1 U D2) N 052) (n;1) = 0 as the

off-spring of any vertex in D; and D5 lie on the line L; while the off-spring of any vertex in
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C(()Q) (n;1) lie on L, for u < 0. Thus, we have,

Cr(n)] = |G (5 1) + |GV (3 1)) = 2+ 2(1 G (m52)] - 2)
= [P )| + 65 (m;2)] + 165" (m; )] + 1G5 (n:2)]
+Hed (m;2)] - 6 — 157 (n:2)]
> [Co(n)] + 105 (05 2)] — 6 —r§) + 7§ (44)

where we have used the inequality (43) in the last step.
But, we have from stationarity, E(|C1(n))| = E(|Co(n)|) for all n > 1. Thus, for n suffi-

ciently large, from (42) we have

0 = E(Cy(n) — Co(n))
> E(ICiV (n;2)]) — 6 — 2E(r")
= nP(Origin is a branching point) — 6 — QE(T(()U)
> 0.

This contradiction establishes Theorem 2.
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