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1 Introduction

In the mathematical theory of quantum computation and quantum information [6] states of a

quantum system described by a complex Hilbert space H are viewed as information resources

which can be exploited to perform numerical computations or communicate messages by appli-

cations of quantum gates and making measurements. However, in such a process the states can

get corrupted by external noise. To overcome the effects of noise one looks for a nice subspace

C ⊂ H with the property that states with support in C can be recovered by a recovery or de-

coding operation even though they get corrupted by noise, provided, the extent of corruption

is limited. This can be expressed in the following pictorial form :

quantum      computer

 or

Channel

decoder

input state ρ

supp ρ ⊂ C

noise

output state ρ̂
ρ

Figure 1: Encoding, transmission and decoding

It is useful to recall that supp ρ ⊂ C means that ρ restricted to C⊥ is 0. The aim of the

theory of quantum error correcting codes is to construct such a subspace C of reasonably large

dimension and a decoding operation so that the picture above holds for a given model of noise.

We assume that H is finite dimensional and the noise or corrupting operators come from a

‘small’ linear subspace N of the algbera B(H) of all operators on H.

Given N we assume that any input state ρ produces a corrupted output state ρ̂ of the form

ρ̂ =

∑
j NjρN

†
j

Tr ρ
∑

j N
†
jNj

, Nj ∈ N (1.1)

where the summations are finite. Repeated use of the same input state may result in different

corrupt outputs, i.e., the operators Nj from N in (1.1) may change with the repetition.

To recover the original state from the corrupted output we employ a recovery or decoding

operation of the form:

R(ρ̂) =
∑

i

Riρ̂R
†
i (1.2)

where R = (R1, R2, . . .) is a finite sequence of operators on H satisfying the condition
∑
i
R†

iRi =

I.
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Thus the goal is to construct a reasonably ‘large’ subspace C ⊂ H and design a recovery

operation R satisfying the requirement

R(ρ̂) = ρ if supp ρ ⊂ C (1.3)

for all ρ̂ of the form (1.1). Then the pair (C,R) is called a quantum N -correcting code. If a

subspace C admits a recovery operation R so that (C,R) is a quantum N -correcting code we

then say that C, or equivalently, the orthogonal projection P on C is a quantum N -correcting

code. The dimension of C or trP is called the size of the code.

The Knill-Laflamme theorem [5] gives a necessary and sufficient condition for a subspace C

to be a quantum N -correcting code. In the next section we shall present a proof of this theorem

which, at the same time, yields an explicit decoding operation that can be implemented by a

reflection in the tensor product of H with a natural ancillary Hilbert space arising from N .

In section 3 we introduce the notion of a quantum stabilizer code in the sense of Gottesman

[4], [1] using the language of Weyl operators associated with a finite abelian group. This

describes the space of noise operators which can be detected or corrected by the stabilizer code

and also provides an explicit formula for the decoding operation.

In the last section we apply the results of section 3 to a standard model of noise and conclude

with an explicit example of a single error correcting code in a 5-fold product. This yields a

family of perfectly entangled 5-partite states [8].

2 The Knill-Laflamme Theorem

Let H and N ⊂ B(H) be as in section 1, C ⊂ H a subspace and let R be a transformation of

states (i.e., density operators) in H defined by

R(ρ) =
∑

i

RjρR
†
j for any state ρ,

R1, R2, . . . being a finite sequence of operators in H satisfying the relation
∑
j
R†

jRj = I.

Proposition 2.1 The pair (C,R) is a quantum N -correcting code if and only if there exist

linear maps λj : N → C satisfying

RjN |ψ〉 = λj(N)|ψ〉 ∀ ψ ∈ C,N ∈ N , j. (2.1)

Proof First we prove necessity. Equations (1.1)-(1.3) imply that for any pure state ρ =

|ψ〉〈ψ| with ψ in C and any N in N

R

(
N |ψ〉〈ψ|N †

〈ψ|N †N |ψ〉

)
= |ψ〉〈ψ|.

Indeed, we get this by choosing the finite sequence {Nj} to consist of one element N in N .

Thus ∑

j

RjN |ψ〉〈ψ|N †R†
j = 〈ψ|N †N |ψ〉 |ψ〉〈ψ| ∀ ψ ∈ C,N ∈ N .
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Fix ψ in C, N in N and choose any unit vector ϕ ⊥ ψ. Taking expectations on both sides with

respect to the state |ϕ〉〈ϕ| we have

∑

i

|〈ϕ|RjN |ψ〉|2 = 0 ∀ ψ ∈ C,N ∈ N , ϕ ⊥ ψ.

This is possible only if RjN |ψ〉 is a scalar multiple of |ψ〉 for every ψ in C, N ∈ N and j. Since

RjN is an operator, equation (2.1) holds for some linear map λj : N → C, completing the

proof of necessity.

To prove sufficiency consider a state ρ with support in C and a finite sequence {Ni} of

operators in N . By (2.1) and the fact that ρ is of the form
∑
i
pr|ψr〉〈ψr| for some ψr’s in C,

pr ≥ 0,
∑
r
pr = 1 we have

∑

j

Rj

(
∑

i

NiρN
†
i

)
R†

j =
∑

i,j,r

|λj(Ni)|
2 pr|ψr〉〈ψr|

= c ρ

for some positive scalar c. Taking trace on both sides and using the relation
∑
j
R†

jRj = I we

have c = Tr ρ
∑
i
N †

i Ni. This completes the proof. 2

Proposition 2.2 Let (C,R) be a quantum N -correcting code. If P is the orthogonal

projection on C then

PN †
1N2P = λ(N †

1N2)P ∀ N1,N2 ∈ N (2.2)

where λ(N †
1N2) is a scalar depending on the operator N †

1N2.

Proof For any two vectors u, v in H and R as in Proposition 2.1 we have from the same

proposition

〈u|PN †
1N2P |v〉 = 〈u|PN †

1 (
∑

j

R†
jRj)N2P |v〉

=
∑

j

λj(N1)λj(N2)〈Pu|Pv〉.

Since the left hand side depends only on the operator N †
1N2 it follows that there exists a scalar

λ(N †
1N2) satisfying (2.2). 2

Theorem 2.3(Knill-Laflamme [5]) Let C ⊂ H, N ⊂ B(H) be subspaces of H and N respec-

tively. Then C is a quantum N -correcting code if and only if the orthogonal projection P on C

satisfies the relation (2.2).

Proof The only if part is the same as Proposition 2.2. To prove the if part assume (2.2)

and observe that the map (N1, N2) → λ(N †
1N2) is a nonnegative definite sesquilinear form on

N ×N . Denote by N0 ⊂ N the subspace
{
N |N ∈ N , λ(N †N) = 0

}
. Then the quotient vector

space Ñ = N/N0 becomes a Hilbert space with the scalar product 〈[N1]|[N2]〉 = λ(N †
1N2)
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between the equivalence classes [Ni] = Ni + N0, i = 1, 2. Now choose and fix elements [Nj],

1 ≤ j ≤ k which constitute an orthonormal basis for Ñ . In particular, we have λ(N †
i Nj) = δij ,

i, j ∈ {1, 2, . . . , k}. We have

NiPN
†
i NjPN

†
j = δijNiPN

†
i , i, j ∈ {1, 2, . . . , k}.

If we write Pi = NiPN
†
i it follows that P1, P2, . . . , Pk are mutually orthogonal projections.

Define Q = I −
k∑

i=1
Pi and the operators

Rj =

{
PN †

j if 1 ≤ j ≤ k,

Q if j = k + 1.
(2.3)

Then
k+1∑
j=1

R†
jRj = I and for any ψ in C we have

QN |ψ〉 =


I −

k∑

j=1

NjPN
†
j


NP |ψ〉

=


N −

k∑

j=1

〈[Nj ]|[N ]〉Nj


P |ψ〉

= MP |ψ〉

where M is an element of N0. Hence

‖QN |ψ〉‖2 = 〈ψ|PM †MP |ψ〉

= λ(M †M)‖ψ‖2

= 0.

Thus for any N ∈ N , ψ ∈ C we have

k+1∑

j=1

RjN |ψ〉〈ψ|N †R†
j =

k∑

j=1

RjN |ψ〉〈ψ|N †R†
j

=

k∑

j=1

PN †
jNP |ψ〉〈ψ|PN

†
jNjP

=




k∑

j=1

|〈[Nj ]|[N ]〉|2


 |ψ〉〈ψ|

which, at once, implies that the decoding operation

R(ρ) =

k+1∑

j=1

RjρR
†
j ∀ state ρ (2.4)
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makes the pair (C,R) a quantum N -correcting code. 2

We shall now adopt the notations of Theorem 2.3 and its proof and construct a quantum

gate, i.e., a unitary operator in the tensor product H⊗
(
Ñ ⊕ C

)
which will recover any state

with support in C by pushing the effect of any noise from N into the ancillary Hilbert space

Ñ ⊕ C. To this end we consider the orthonormal basis {[N1], [N2], . . . , [Nk], 1} for the enlarged

Hilbert space Ñ ⊕ C of dimension k + 1 and express any operator Z in H ⊗
(
Ñ ⊕ C

)
as a

matrix

Z = ((Zij)) , i, j ∈ {1, 2, . . . , k + 1}

of operators in H with respect to this basis. We now introduce the operator U in H⊗
(
Ñ ⊕ C

)

U = ((Uij)) , i, j ∈ {1, 2, . . . , k + 1} (2.5)

where

Uij =

{
NjPN

†
i if i, j ∈ {1, 2, . . . , k} and i+ j 6= k + 2,

Q if i, j ∈ {1, 2, . . . , k} and i+ j = k + 2
(2.6)

and

Ui k+1 = U †
k+1i =





Q if i = 1,

Nk+2−iPN
†
i if 2 ≤ i ≤ k,

N1PN
†
1 if i = k + 1.

(2.7)

Then we have

Proposition 2.4 The operator U defined by equations (2.5)-(2.7) in H⊗
(
Ñ ⊕ C

)
is self-

adjoint and unitary. In particular, U2 = I.

Proof The selfadjointness of U follows from its very definition and the fact that U2 = I

follows from matrix multiplication using the orthonormality of the elements [Ni], 1 ≤ j ≤ k in

Ñ and the definition of Q. 2

Proposition 2.5 Let I ∈ N and let the orthonormal basis {[N1], [N2], . . . , [Nk], 1} in Ñ ⊕C

be such that N1 = I. Define |Ω〉 = [I]. Then the unitary operator U in Proposition 2.4 satisfies

the following relations :

U |ψ〉|Ω〉 = ((Uij))




|ψ〉

0

0
...

0

0




=




P |ψ〉

PN †
2 |ψ〉
...

PN †
k |ψ〉

Q|ψ〉




∀ |ψ〉 ∈ H

and

UN |ψ〉|Ω〉 = |ψ〉|ΩN 〉 ∀ |ψ〉 ∈ C

where

|ΩN 〉 =
[
λ(N), λ(N †

2N), . . . , λ(N †
kN), 0

]T
.
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In particular, the decoding operator R given by (2.3) and (2.4) satisfies the relation

R(ρ) = Tr2 U (ρ⊗ |Ω〉〈Ω|)U † for any state ρ in H.

Proof This is immediate from the definition of U and the fact that N1 = I. Note that

λ(N) = λ(I†N) and Q |ψ〉 = 0 when |ψ〉 ∈ C. 2

Remark The implementation of decoding by the unitary operator U in the tensor product

of H and the ancillary Hilbert space Ñ ⊕C is neatly expressed in the pictorial form of quantum

circuits as follows : for any |ψ〉 ∈ C

Noise

Channel|ψ〉

N

N |ψ〉
|ψ〉

|Ω〉

|Ω〉

U

|ΩN 〉

The first wire indicates H, the second indicates the ancillary Hilbert space Ñ ⊕ C, the two

parallel wires their tensor product, the input is |ψ〉|Ω〉 and the final output after passage

through the channel and the application of the quantum gate U is |ψ〉|ΩN 〉 provided |ψ〉 is

from the N -correcting quantum code C.

In view of this result we emphasize the importance of finding a convenient orthonormal

basis of the Hilbert space Ñ derived from the noise space N and the quantum N -correcting

code C in the Knill-Laflamme theorem.

3 Classical error correcting codes in the quantum language and

their quantization

Let A be a finite set, usually called an alphabet in classical information theory. Any element

of A may also be called a letter. An element x of A is transmitted through a noisy channel

and the output y may differ from x. We may view A as an additive abelian group with null

element 0 and say that y = x+ (y− x) where a noise element n = y− x has been added to the

input. Suppose the noise element n comes from a subset N ⊂ A with the cardinality of N being

‘small’ compared to the cardinality of A. Let C ⊂ A be a subset such that C ∩ (C +N) = ∅.

If an element c ∈ C is transmitted through the channel then the output belongs to c+N and
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therefore does not belong to C. In other words, if only letters from C are communicated through

the channel one can say that a noise element from N has been added to the input whenever

the output lies outside C. We say that C is an N -detecting code. Thus C is an N -detecting

code if

(C − C) ∩N = ∅. (3.1)

Suppose C = {c1, c2, . . . , ck} and for any i 6= j the subsets ci +N and cj +N are disjoint. If

elements from C alone are used as inputs for the channel then the output belongs to ci +N if

and only if the input letter is ci. Thus, from the output, we can decode the correct input if the

only noise is addition of letters from N to any input from C. We say that C is an N -correcting

classical code. Thus C is an N -correcting classical code if

(C − C) ∩ (N −N) = {0}. (3.2)

In particular, if C is an M -detecting code and N satisfies the relation N −N ⊂M ∪ {0} then

C is an N -correcting code.

Now consider the Hilbert space H = L2(A) with respect to the counting measure on A.

Then equation (3.1) can be expressed as

1C 1C+n = 0 ∀ n ∈ N, (3.3)

1B denoting the indicator of B ⊂ A, where as (3.2) can be expressed as

1C+n1
1C+n2

= 0 if n1, n2 ∈ N,n1 6= n2. (3.4)

If a → Ua is the regular representation of A and P (C) denotes the projection operator of

multiplication by 1C then (3.3) can be expressed as

P (C)UnP (C) =

{
0 ∀ n ∈ N,

P (C) if n = 0
(3.5)

where as (3.4) can be expressed as

P (C)U †
n1
Un2

P (C) =

{
0 if n1, n2 ∈ N,n1 6= n2,

P (C) if n1 = n2.

Let now N denote the linear span of {Un|n ∈ N} in B(H). If C is a classical N -correcting code

then P (C) is an N -correcting quantum code, thanks to the Knill-Laflamme theorem.

Following (3.5) we now introduce a definition. If H is a Hilbert space and N ⊂ B(H) is a

linear subspace we say that a projection P is a quantum N -detecting code if

PNP = λ(N)P ∀ N ∈ N

for some linear function λ : N → C satisfying λ(N †) = λ(N) whenever N and N † belong to

N . Without loss of generality we may assume that I ∈ N and N is closed under the adjoint
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operation. If E ⊂ B(H) is a subspace such that E†E ⊂ N and P is a quantum N -detecting

code then P is a quantum E-correcting code.

In order to ‘quantize’ the classical picture of error correcting codes described above we

enlarge the regular representation a → Ua of A to the projective Weyl representation for

A×A. This would enable us to tackle both translation and phase errors of quantum noise. To

this end we choose and fix a symmetric nondegenerate bicharacter for A, i.e., a function 〈x, y〉,

x, y ∈ A satisfying the following:

(1) |〈x, y〉| = 1, 〈x, y〉 = 〈y, x〉 ∀ x, y ∈ A,

(2) 〈x, y1 + y2〉 = 〈x, y1〉 〈x, y2〉 ∀ x, y1, y2 ∈ A,

(3) 〈x, y〉 = 1 ∀ y ∈ A if and only if x = 0.

Such a bicharacter always exists. For any a in A denote by |a〉 the indicator function 1{a} of

the singleton {a}. Then {|a〉, a ∈ A} is a canonical orthonormal basis for H. It is important to

distinguish the scalar product 〈a|b〉 (in Dirac notation) and the symmetric bicharacter 〈a, b〉.

Now we introduce the unitary operators Ua, Va determined uniquely by the relations

Ua|x〉 = |x+ a〉,

Va|x〉 = 〈a, x〉 |x〉

for all x in A. Then we have the relations

UaUb = Ua+b, VaVb = Va+b, VbUa = 〈a, b〉UaVb

for all a, b in A. These constitute the Weyl commutation relations for the group A. Introduce

the Weyl operators

W (a, b) = UaVb, (a, b) ∈ A×A.

Then

W (a, b)W (a′, b′) = 〈b, a′〉W (a+ a′, b+ b′),

W (a, b)W (x, y)W (a, b)† = 〈b, x〉〈a, y〉W (x, y)

for all a, a′, b, b′, x, y in A. We shall view B(H) as a Hilbert space with the scalar product

〈X|Y 〉 = trX†Y between any two elements X,Y in B(H). Since

tr W (x, y) =

{
0 if (x, y) 6= (0, 0)

#A otherwise

it follows that {(#A)−1/2W (x, y), (x, y) ∈ A × A} is an orthonormal basis for B(H) and any

element X in B(H) admits a Fourier expansion

X = (#A)−1
∑

x,y∈A

〈W (x, y)|X〉W (x, y).
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In particular (x, y) →W (x, y) is a projective and irreducible unitary representation for A×A.

If A,B are two finite abelian groups with nondegenerate symmetric bicharacters 〈., .〉A,

〈., .〉B respectively then for the cartesian product A×B the definition

〈(a1, b1), (a2, b2)〉 = 〈a1, a2〉A〈b1, b2〉B ∀ a1, a2 ∈ A, b1, b2 ∈ B

determines a nondegenerate symmetric bicharacter and

W ((a1, b1), (a2, b2)) = W (a1, a2) ⊗W (b1, b2), (ai, bi) ∈ A×B, i = 1, 2,

determines the Weyl operators for A×B where L2(A×B) is naturally identified with L2(A)⊗

L2(B). We shall use all these basic properties of the Weyl operators in the quantization of

classical error correcting codes.

In section 2 we have seen that N -correcting quantum codes are described by projections

obeying the Knill-Laflamme property (2.2). Projections can be viewed as averages of group

representations. For a given projection of this kind we can describe the errors that it can

correct in the role of a quantum code. Keeping this intuitive approach in view we introduce

the notion of a Gottesman subgroup of A × A. A subgroup S ⊂ A × A is called a Gottesman

subgroup if for any (a, b), (a′, b′) in S one has 〈a, b′〉 = 〈b, a′〉. For such a subgroup the Weyl

operators W (a, b) and W (a′, b′) commute. Since we can simultaneously diagonalise the family

{W (a, b), (a, b) ∈ S} we can express these operators as

W (a, b) = diag (λ1(a, b), λ2(a, b), . . .) , (a, b) ∈ S

in an orthonormal basis and therefore

λ1(a, b)λ1(a
′, b′) = 〈b, a′〉λ1(a+ a′, b+ b′) ∀ (a, b), (a′, b′) ∈ S.

Hence the map (a, b) → λ1(a, b)W (a, b) is a unitary representation of the subgroup S. We

summarise this property in a convenient form.

Proposition 3.1 Let S ⊂ A × A be a Gottesman subgroup. Then there exists a scalar

valued function ϕ on S of modulus unity such that for any character χ of the subgroup S the

map

(a, b) → ϕ(a, b)χ(a, b)W (a, b), (a, b) ∈ S

is a unitary representation of S.

Proof. Immediate. 2

Given a Gottesman subgroup S and a character χ of S we define the projection

PS({χ}) =
1

#S

∑

(a,b)∈S

ϕ(a, b)χ(a, b)W (a, b) (3.6)

where ϕ is as in Proposition 3.1. Let Ŝ denote the dual group of all characters of S. Then the

Schur orthogonality relations for characters implies that {PS({χ}), χ ∈ Ŝ} is a resolution of
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the identity in H into orthogonal projections. For any F ⊂ Ŝ define the projection

PS(F ) =
∑

χ∈F

PS({χ}). (3.7)

We shall now describe a noise space N ⊂ B(H) for which PS(F ) is a quantum N -detecting

code. To this end we define a homomorphism γ : A×A→ Ŝ by putting

γ(x, y)(a, b) = 〈a, y〉〈b, x〉 ∀ (a, b) ∈ S. (3.8)

Proposition 3.2 For any χ1, χ2 ∈ Ŝ and (x, y) ∈ A×A the following holds :

PS({χ1})W (x, y)PS({χ2}) =





0 if γ(x, y) 6= χ1χ2,

(χ2ϕ)(x, y)PS({χ2}) if (x, y) ∈ S,

W (x, y)PS({χ2}) otherwise.

Proof This is straightforward algebra using (3.6), (3.8) and the orthogonality relations for

characters. 2

Theorem 3.3 (V. Arvind, P. Kurur and K. R. Parthasarathy [2]) Let F ⊂ Ŝ. Then

PS(F )W (x, y)PS(F ) =





0 if (x, y) 6∈ γ−1(FF ),

χϕ(x, y)PS(F ) if (x, y) ∈ S and χ(x, y)

is independent of χ for χ ∈ F,

W (x, y)PS(F ∩ Fγ(x, y)) otherwise.

Proof This is immediate from the expansion of the left hand side and Proposition 3.2. 2

Remark Let N denote the linear span of

{
W (x, y)| (x, y) 6∈ γ−1(FF ) or (x, y) ∈ S and χ(x, y) is independent of χ ∈ F

}
.

where γ is the homorphism from A×A into Ŝ defined by (3.8). Then it follows from Theorem

3.3 that PS(F ) is a quantum N -detecting code.

Corollary 3.4 (Gottesman [4], Calderbank et al [3]) Let

N = linear span
{
W (x, y)| (x, y) ∈ (S⊥)′ ∪ S

}

where S⊥ = γ−1({1}), prime ′ denotes complement and 1 denotes the trivial character. Then

PS({1}) is a quantum N -detecting code. If E ⊂ A×A satisfies the relation

E − E ⊂ (S⊥)′ ∪ S

and

E = linear span {W (x, y)|(x, y) ∈ E}
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then PS({1}) is a quantum E-correcting code.

Proof. In Theorem 3.3 choose F = {1} the singleton consisting of the trivial character.

Then γ−1(FF ) = S⊥. If (x, y) ∈ (S⊥)′ then PS({1})W (x, y)PS({1}) = 0. If (x, y) ∈ S we have

PS({1})W (x, y)PS({1}) = ϕ(x, y)PS({1}). Thus PS({1}) is a quantum N -detecting code. If

(x1, y1), (x2, y2) are in E then W (x1, y1)
† W (x2, y2) is a scalar multiple of W (x2 − x1, y2 − y1)

and (x2 − x1, y2 − y1) ∈ E − E ⊂ (S⊥)′ ∪ S. Thus PS({1})W (x1, y1)
†W (x2, y2)P

S({1}) is

a scalar multiple of PS({1}). Hence by the Knill-Laflamme theorem PS({1}) is a quantum

N -correcting code. 2

Proposition 3.5 Let S ⊂ A × A be a Gottesman subgroup and let C be a cross section

for the canonical homomorphism from A×A onto A×A/S⊥ so that C meets each coset of S⊥

exactly in one point. Define E = S + C. Then E − E ⊂ (S⊥)′ ∪ S.

Conversely, if F ⊂ A×A satisfies the condition F −F ⊂ (S⊥)′ ∪S then there exists a cross

section C as above such that F ⊂ S + C.

Proof If (x, y) ∈ E − E then

(x, y) = (a, b) + (x1, y1) − (a′, b′) − (x2, y2)

where (a, b), (a′, b′) ∈ S whereas (xi, yi) ∈ C for i = 1, 2. If (x1, y1) = (x2, y2) then (x, y) ∈ S.

If (x1, y1) 6= (x2, y2) then (x, y) ∈ S + (x1 − x2, y1 − y2) and by the definition of γ, S⊥ and C,

γ(x1, y1) 6= γ(x2, y2). Thus (x, y) 6∈ S⊥. This proves the first part.

To prove the second part, first assume that (0, 0) ∈ F. Then F = F − (0, 0) ⊂ (S⊥)′ ∪ S.

Write F = (F ∩ S)∪G where G ⊂ (S⊥)′. Choose and fix a coset decomposition of A×A with

respect to S⊥ :

A×A = S⊥ ∪ S⊥ + (x1, y1) ∪ . . . ∪ S
⊥ + (xm, ym).

Then

G =
m
∪

j=1
G ∩

(
S⊥ + (xj , yj)

)
.

Let G∩
(
S⊥ + (xj, yj)

)
6= ∅. Consider two points in this set of the form (a, b)+(xj , yj), (a

′, b′)+

(xj , yj) where (a, b), (a′, b′) ∈ S⊥. Then their difference (a−a′, b− b′) ∈ S⊥ and (S⊥)′∪S. Thus

(a − a′, b − b′) ∈ S. If we fix a point (a0, b0) + (xj, yj) in G ∩
(
S⊥ + (xj , yj)

)
then any other

point in it is of the form

(a, b) + (xj , yj) = (a0, b0) + (a− a0, b− b0) + (xj , yj)

∈ S + (a0, b0) + (xj , yj)

= S + (x′j , y
′
j)

where

S⊥ + (x′j , y
′
j) = S⊥ + (xj , yj).

Thus G can be expressed as

G =
m
∪

j=1
G ∩ (S + (x′j, y

′
j))
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where

A×A =
m
∪

j=0

(
S⊥ + (x′j , y

′
j)
)

is another S⊥-coset decomposition of A×A with (x′0, y
′
0) = (0, 0). Choose (x′j , y

′
j) = (xj , yj) if

G ∩
(
S⊥ + (xj , yj)

)
= ∅. Clearly,

F ⊂ S +
{
(x′j , y

′
j), 0 ≤ j ≤ m

}
.

If (0, 0) 6∈ F then a translate F1 of F contains (0, 0) with F1 satisfying the required properties.

Then F ⊂ S + C1 for a different cross section C1. 2

Codes of the form PS({1}) in Corollary 3.4 are called quantum stabilizer codes since vectors

in such a code are fixed by the operators in the representation (a, b) → ϕ(a, b)W (a, b) of the

Gottesman group S. Corollary 3.4 describes a set of errors which such codes can detect or

correct. In this context it is useful to construct an orthonormal basis for the ancillary Hilbert

space in the decoding operation of Proposition 2.5 applied to a quantum stabilizer code.

Theorem 3.6 Let S, S⊥ and PS({1}) be as in Corollary 3.4. Suppose (0, 0) ∈ C ⊂ A×A

is a subset such that

A×A = ∪
(x,y)∈C

(
S⊥ + (x, y)

)

is an S⊥-coset partition of A×A and

N = linear span {W (a+ x, b+ y), (a, b) ∈ S, (x, y) ∈ C} .

Then I ∈ N , PS({1}) is a quantum N -correcting code and the set {[W (x, y)], (x, y) ∈ C}∪{1}

is an orthonormal basis for the ancillary Hilbert space Ñ ⊕ C in Proposition 2.5.

Proof Only the last part remains to be proved. To this end let (x, y) ∈ C, (a, b) ∈ S. We

claim that [W (x+ a, y + b) − αW (x, y)] = 0 for some scalar α of modulus unity. Indeed,

PS({1}){W (x + a, y + b) − αW (x, y)}†{W (x+ a, y + b) − αW (x, y)}PS({1})

= PS({1})
(
2I − αW (x+ a, y + b)†W (x, y) − αW (x, y)†W (x+ a, y + b)

)
PS({1})

(3.9)

But W (x+a, y+b)†W (x, y) = λW (a, b)† for some scalar λ of modulus unity where the operator

ϕ(a, b)W (a, b) with ϕ(a, b) as in (3.6) fixes every vector in the range of PS({1}). Thus right

hand side of (3.9) is equal to {2−αλϕ(a, b)−αλϕ(a, b)}PS({1}). Choosing α = λϕ(a, b) proves

the claim. Now, if (x, y), (x′, y′) are two distinct elements of C and (a, b), (a′, b′) are in S then

(x+ a, y + b) − (x′ + a′, y′ + b′) 6∈ S⊥ and therefore, as in the proof of Corollary 3.4,

PS({1})W (x + a, y + b)†W (x′ + a′, y′ + b′)PS({1}) = 0.

This completes the proof. 2
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4 The standard model of noise

Let H be a finite dimensional Hilbert space and H⊗n

be its n-fold tensor product. For any

integer 1 ≤ t ≤ n let Nt ⊂ B(H⊗n

) be the subspace spanned by all operators of the form

X1 ⊗X2 ⊗ · · · ⊗Xn where the Xj’s are operators in H and # {i|Xi 6= I, 1 ≤ i ≤ n} ≤ t. Any

element of Nt is said to have weight not exceeding t. Thus elements of Nt\Nt−1 are said to have

weight equal to t. A quantum Nt-correcting code is called a t-error correcting code of length n.

A projection P in H⊗n

is called a quantum code of minimum distance ≥ d if

PNP = λ(N)P ∀ N ∈ Nd−1

where λ(N) denotes a scalar depending on N. If, in addition, for some N in Nd, PNP is not

a scalar multiple of P we say that the quantum code P has minimum distance d. A projection

P in H⊗n

of minimum distance d with trP = k is called an (n, k, d) quantum code where k is

called its size. The very definition raises some natural and difficult optimality problems of a

combinatorial character. For given n, k what is the maximum possible value of d for which an

(n, k, d) quantum code exists? For given values of n, d what is the maximum possible value of

k? For given values of k, d what is the minimum possible value for n?

If X,Y are operators in H⊗n

with weight ≤ t then it is clear that X†Y has weight ≤ 2t.

Nt is also closed under the adjoint operation and I ∈ Nt. In particular any (n, k, d) quantum

code is also a ⌊d−1
2 ⌋-error correcting code.

We may identify H with L2(A) where A is a fixed finite additive abelian group with null

element 0 and cardinality equal to the dimension of H. Then H⊗n

can be identified with

L2(An). Choose and fix a unitary orthogonal basis of Weyl operators {W (x, y), (x, y) ∈ A×A}

for the Hilbert space B(H) and construct the product Weyl operator basis {W (x,y), (x,y) ∈

An × An} for B(H⊗n

) so that W (x,y) = W (x1, y1) ⊗ W (x2, y2) ⊗ . . . ⊗ W (xn, yn) where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) with xi, yi ∈ A for each i. From the discussions in the

beginning of Section 3 it is clear that the set

{W (x,y)|# {i : (xi, yi) 6= (0, 0), 1 ≤ i ≤ n} ≤ t}

is an orthogonal basis for the subspace Nt in B(H). In view of this property we say that an

element (x,y) in An × An has weight t if #{i : (xi, yi) 6= (0, 0), 1 ≤ i ≤ n} = t. Then we have

the following :

Proposition 4.1 A projection P in H⊗n

is a quantum code of minimum distance d if and

only if

PW (x,y)P = λ(x,y)P

for all (x,y) in An ×An with weight < d. In such a case P is a ⌊d−1
2 ⌋-error correcting quantum

code.

We say that a subset E ⊂ An × An has minimum Hamming distance ≥ d if for any two

distinct points (x,y), (x′,y′) in E the weight of (x − x′,y − y′) is not less than d. With
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this definition we have the following fundamental theorem by combining Proposition 4.1 and

Corollary 3.4.

Theorem 4.2 Let S be a Gottesman subgroup of An ×An and let S⊥ be the kernel of the

homomorphism γ : An ×An → Ŝ defined by (3.8). Then the quantum stabilizer code PS({1})

defined by (3.6) has minimum distance ≥ d if the set S⊥\S ⊂ An×An has minimum Hamming

distance ≥ d.

Proof Immediate. 2

Remark Recall that tr PS({1}) = (#A)n/#S is the size and n is the length of the code

in Theorem 4.2. If the minimum Hamming distance of S⊥\S is d then PS({1}) is a (n, k, d)

quantum code with k = (#A)n/#S.

There is a considerable amount of recent literature on the search for Gottesman subgroups

S ⊂ An × An for which every element in S⊥\S has weight ≥ d. Examples of such S can be

constructed when A is the additive group of a finite field and the theory of classical error

correcting codes is put to use. See for example [3], [9]. Such a discussion is beyond the scope

of the present exposition. We conclude with an example of a single error correcting code of

minimum distance 3 which exhibits an interesting entanglement property. To this end consider

an automorphism τ of the abelian group A. Define

S0 = {(x, τ(x) + τ−1(x)), x ∈ A}

and assume that τ preserves the symmetric bicharacter 〈., .〉 on A×A. Let

W̃ (x) = 〈x, τ(x)〉W (x, τ(x) + τ−1(x)).

Then the map x→ W̃ (x) is a representation of A. Suppose h is a homomorphism from A into

another abelian group satisfying h(x) = h(τ(x))∀x ∈ A. Then S = {(x, τ(x) + τ−1(x))|x ∈

A,h(x) = 0} is a Gottesman subgroup. By Corollary 3.4 the projection

PS =
∑

x:h(x)=0

〈x, τ(x)〉,W
(
x, τ(x) + τ−1(x)

)

is a quantum stabilizer code satisfying

PSW (x, y)PS =

{
0 if γ(x, y) 6= 1,

〈x, τ(x)〉PS if (x, y) ∈ S

where γ is defined by (3.8). If E = S + C where C is a cross section for the canonical

homomorphism A×A→ A×A/S⊥ then PS is an N -correcting quantum code where N is the

linear span of {W (x, y)|(x, y) ∈ E}.

Now we choose A = B5 where B is an additive abelian group, τ(b) = σ2(b),b ∈ A where

σ(b) = σ(b0, b1, b2, b3, b4) = (b1, b2, b3, b4, b0) is the backward cyclic permutation in B5 and

h(b) = b0 + b1 + b2 + b3 + b4. Then

S =
{
(x,y)|y = τ(x) + τ−1(x), h(x) = 0

}
⊂ B5 ×B5
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and

S⊥ =
{

(x,y)| h
(
y − σ2(x) − σ−2(x)

)
= 0
}

=

{
(x,y)

∣∣∣∣∣
y0 = z + x2 + x3, y1 = z + x3 + x4, y2 = z + x0 + x4

y3 = z + x0 + x1, y4 = z + x1 + x2 for some z ∈ B

}
.

A simple analysis using the cyclic permutation symmetry of the construction shows that every

element in S⊥\S has weight 3. In other words PS is a single error correcting code. When

B = Z2 = {0, 1} this example was arrived at by Laflamme by a computer search. PS is a

(5,#B, 3) quantum code for any B. It is an interesting fact that for any H, a (4, 2, 3) quantum

code does not exist. More generally, for any H a (4k, 2, 2k + 1) quantum code does not exist.

In other words in any H⊗4k

it is not possible to have a k error correcting quantum code of size

2.

Going back to the projection PS defined as above in H⊗5

with H = L2(B) consider a pure

state |ψ〉〈ψ| with PS |ψ〉 = |ψ〉. Let H⊗5

= H1 ⊗ H2 where H1 = H⊗2

, H2 = H⊗3

where H

denotes any one of the five copies of H in H⊗5

. Then

TrH2
|ψ〉〈ψ| = (#B)−2I in H1.

In other words any pure state in the range of PS is maximally entangled in every factorization

of H⊗5

into H1⊗H2. It should be interesting to investigate subspaces of H⊗n

where every state

exhibits such a perfect entanglement. See [8].
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