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Abstract. In this paper we discuss characterization of a class of discrete distributions by

properties of conditional variance. These properties include relationship between variance
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1. Introduction

In studying the lifetime of a device or organism, the concepts of remaining life based on the

current age is effectively used in reliability and survival analysis to infer properties of the

underlying life distribution. In this context characterizations of life distributions based on the

properties of various functions of remaining life such as its mean, median, percentiles variance

etc have been extensively studied in literature. Of these, the role of variance residual life in

determining the life distribution has been discussed for continuous models by various authors

like Gupta (1987), Gupta et al. (1987), Hitha and Nair (1989), Gupta and Kirmani (2000,2004)

and El- Arishi (2005). It remains an open problem to find similar characterizations for discrete

distributions. Accordingly in this paper we discuss the general conditions under which discrete

distributions can be characterized by the properties of conditional variance and specialize our

results for some well known families of distributions.
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2 CHARACTERIZATION OF DISCRETE DISTRIBUTIONS

2. Characterizations

Let X be a discrete random variable defined on the set of non-negative integers with distribution

function F (x) and probability mass function f(x). The failure rate k(x) and reversed failure

rate λ(x) of X are

k(x) = f(x)/R(x) and λ(x) = f(x)/F (x)

where R(x) = P (X ≥ x). Defining B to be the class of real valued functions of x we denote

the conditional expectations of h(x) ∈ B, satisfying E(h2(X)) < ∞, as

m(x) = E(h(X)|X > x), r(x) = E(h(X)|X ≤ x)

and the mean and variance by

µ = E(h(X), σ2 = V (h(X))).

With these notations, Nair and Sudheesh (2008) established that probability mass function of

X has the form

f(x + 1)/f(x) = σg(x)/(σg(x + 1) − µ + h(x + 1)) (2.1)

with σg(0) = µ − h(0), for some g(x) ∈ B if and only if

r(x) = µ − σg(x)λ(x) (2.2)

or equivalently

m(x) = µ + σg(x)k(x)/(1 − k(x)). (2.3)

For many of the discrete distributions neither of the functions r, m, λ and k have simple

tractable forms and hence (2.2) and (2.3) are simple relationships that could be used for identi-

fying the appropriate model through the form of g(x) function which is unique for a particular

distribution, given a choice of h(x). Our first result is an identity connecting the conditional

covariance of h(x) and any c(x) ∈ B with the above quantities. In the sequel we use ∆ as the

usual forward difference operator.

Theorem 1. Let c(x) and h(x) be functions in B satisfying

(i) ∆c(x) 6= 0
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(ii) E(|∆c(X)|g(X)), E(c(X)h(X)), E(h2(X)) are all < ∞.

Then X has distribution (2.1) for some g(x) ∈ B if and only if for all x = 0, 1, 2, ...

Cov(c(X), h(X)|X > x) = σE(∆c(X).g(X)|X > x) + (µ − m(x))(a(x) − c(x + 1)) (2.4)

where a(x) = E(c(X)|X > x).

Proof: First, we note that

E(c(X)(h(X) − µ)|X > x) = [R(x + 1)]−1

∞∑

k=x+1

c(k)(h(k) − µ)f(k)

= [R(x + 1)]−1

∞∑

t=1

c(x + t)
[ ∞∑

k=x+t

(h(k) − µ)f(k) −

∞∑

k=x+t+1

(h(k) − µ)f(k)
]

= [R(x + 1)]−1
[ ∞∑

t=x+1

∆c(t)
∞∑

k=t+1

(h(k) − µ)f(k)
]
+ c(x + 1)(m(x) − µ)

= [R(x + 1)]−1
[ ∞∑

t=x+1

∆c(t)

t∑

k=0

(µ − h(k))f(k)
]
+ c(x + 1)(m(x) − µ), (2.5)

since E(h(X) − µ) =
∑

∞

k=0(h(k) − µ)f(k) = 0.

Now, suppose that (2.1) is true. Then from (2.2)

σf(x)g(x) =

x∑

k=0

(µ − h(k))f(k)

and substituting this in (2.5)

E(c(X)(h(X) − µ)|X > x) = [R(x + 1)]−1σ

∞∑

t=x+1

∆c(t).g(t)f(t)

+c(x + 1)(m(x) − µ)

= σE(∆c(X).g(X)|X > x) + c(x + 1)(m(x) − µ), (2.6)

or

E(c(X)h(X)|X > x) = σE(∆c(X).g(X)|X > x) + c(x + 1)(m(x) − µ) + µa(x),

which leads to (2.4).
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Conversely, if we assume (2.4) by retracing the above steps we have (2.5). Using (2.5) and

(2.6), the following equation results.

∞∑

t=x+1

∆c(t)

t∑

k=0

(µ − h(k))f(k) = σ

∞∑

t=x+1

∆c(t)g(t)f(t)

Changing x to x − 1 in the last equation and subtracting

x∑

k=0

(µ − h(k))f(k) = σg(x)f(x), (2.7)

since by assumption ∆c(x) 6= 0. However, (2.7) is the same as (2.2) and hence (2.1) holds.

Remark 1. Since c(x) is an arbitrary function in B, we can set c(x) = h(x) in (2.4) so that

V (h(X)|X > x) = σE(∆h(X).g(X)|X > x) + (µ − m(x)) + (m(x) − h(x + 1)) (2.8)

for all x,characterizes the distribution specified in (2.1). When h(X) = X, we have the identity

for the variance residual life in terms of the mean life function

m1(x) = E(X|X > x)

given as

V (X|X > x) = σE(g(X)|X > x) + (µ − m1(x)) + (m1(x) − x − 1)) (2.9)

with µ = E(X) and g(x) arising from (2.2) or (2.3), that characterizes

f(x + 1)/f(x) = σg(x)/(σg(x + 1) − µ + h(x + 1)), x = 0, 1, 2...

We give several examples at the end of this section of simple forms (2.9) that is specified to

standard discrete distributions.

Remark 2. In terms of the failure rate k(x) of X, we can rewrite (2.8) as

V (h(X)|X > x) = σE(∆h(X).g(X)|X > x) + (h(x + 1) − µ)σg(x)k(x)(1 − k(x))−1

−σ2g2(x)k2(x)(1 − k(x))−2

as the identity connecting the conditional variance and failure rate for all distributions of the

form (2.1).
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We now examine how the above characteristic properties assume forms when specialized to

some well known families of distributions.

Theorem 2. The distribution of X belongs to the modified power series family with

f(x) = a(x)(u(θ))x/A(θ), x = 0, 1, 2, ... (2.10)

a(x) > 0, u(θ) and A(θ) are positive, finite and differentiable, if and only if

V (X|X > x) =
u(θ)

u′(θ)

∂m1(x)

∂θ
(2.11)

Proof: From Nair and Sudheesh (2008), for the family (2.10)

g(x) = −
µ

σ

A(θ)

A′(θ)

1

f(x)

∂F (x))

∂θ
= −

u(θ)

u′(θ)

1

σf(x)

∂F (x)

∂θ
.

Hence when h(x) = x

σE(∆X.g(X)|X > x) =
u(θ)

u′(θ)R(x + 1)

∞∑

t=x+1

(t − (t + 1))
∂F (t)

∂θ

=
u(θ)

u
′
(θ)R(x + 1)

∂

∂θ
[(x + 1)F (x + 1) +

∞∑

t=x+2

tf(t)]

=
u(θ)

u
′
(θ)R(x + 1)

∂

∂θ
[(x + 1)(F (x + 1) − f(x + 1)) +

∞∑

t=x+1

tf(t)]

=
u(θ)

u′(θ)R(x + 1)

∂

∂θ
[m1(x)R(x + 1) + (x + 1)F (x)]. (2.12)

Now,
∂

∂θ
[m1(x)R(x + 1) + (x + 1)F (x)] = R(x + 1)

∂m1(x)

∂θ
+ m1(x)

∂R(x + 1)

∂θ

+(x + 1)
∂F (x)

∂θ

= R(x + 1)
∂m1(x)

∂θ
+ ((x + 1) − m1(x))

∂F (x)

∂θ
. (2.13)

Using (2.13) in (2.12) and noting the expression for g(x) above,

σE(g(X)|X > x) =
u(θ)

u′(θ)

∂m1(x)

∂θ
+ (m1(x) − µ)(m1(x) − x − 1).

The final form of V (X|X > x) as stated in the Theorem is recovered from (2.9). The converse

part is obtained by retracing the above steps to arrive at g(x) and hence f(x).
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Remark 3. The results for the generalized power series family is obtained by setting u(θ) = θ.

Theorem 3. X belongs to the Ord family of distributions defined by

f(x + 1) − f(x)

f(x)
=

−(x + d)

a0 + a1x + a2x2
(2.14)

if and only if

V (X|X > x) = E((b0 + b1X + b2X
2)|X > x) + (µ − m1(x))(m1(x) − x − 1)

where

b0 = µ +
a0 − a1 + a2

1 − 2a2

, b1 =
a1 − 1

1 − 2a2

, b2 =
a2

1 − 2a2

.

Proof: Writing (2.14) in the form

f(x + 1)

f(x)
=

(a0 − d) + (a1 − 1)x + a2x
2

a0 + a1x + a2x2
=

σg(x)

σg(x + 1) − µ + (x + 1)
,

g(x) must be a quadratic of the form b0 + b1x + b2x
2. Substituting into the last equation and

equating like coefficients, the value of b0, b1 and b2 are obtained as in the Theorem. The rest

of the proof is evident from Remark 2.1.

As a particular case of the Ord family, we have the Katz family which is important in many

applications in its own right.

Theorem 4. X belongs to Katz family

f(x + 1)

f(x)
=

α + βx

1 + x
,

if and only if

V (X|X > x) = (1 − β)−1(α + βm1(x)) + (µ − m1(x))(m1(x) − x − 1).

The last result is a straight forward application of

σg(x) = (1 − β)−1(α + βx)

for the Katz family, in (2.9).

We now illustrate our results for some specific distributions belonging to the above families.
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Example 1. For the binomial distribution with parameters n and p, σg(x) = p(n − x) and

hence

V (X|X > x) = m1(x)) + (x + µ − m1(x)) − µx

and also

V (X|X > x) = np(1 − p) + (x + 1)(1 − p)(x + 1 − p(n + 1))k(x + 1) − (x + 1)2k2(x + 1).

Example 2. In the Poisson case

f(x) = e−λλx/x!,

σg(x) = λ. Thus from (2.9)

V (X|X > x) = m1(x))(µ − m1(x)) − µx

= λ + (x + 1)(x + 1 − λ)k(x + 1) − (x + 1)2k2(x + 1).

Remark 4. The expressions for the binomial and Poisson distributions are identical with those

of El-Arishi (2005) obtained using a different approach. Equation (2.9) subsumes El-Arishi

formulas as special cases.

Example 3. The negative binomial distribution

f(x) =

(
n + x − 1

n − 1

)
pn(1 − p)x, x = 0, 1, 2...

as a member of Ord family provides σg(x) = p−1(1 − p)(x + n) giving

V (X|X > x) = m1(x))(2µ − m1(x) + x + 1) − µx

= p−1µ + p−1(2(x + 1) − µ)k(x + 1) − (x + 1)2k2(x + 1).

In particular for the geometric law

m1(x) = µ + x + 1

V (X|X > x) = V (X)

and further in terms of the mean function

V (X|X > x) = (m1(x) − x)(m1(x) − x − 1).
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The geometric distribution, Waring distribution specified by

f(x) =
(a − b)(b)x

(a)x+1

, (b)x = b(b − 1)...(b − x + 1)

and the negative hypergeometric with

f(x) =

(
−1

x

)(
−a

n − x

)/(
−1 − a

n

)
, x = 0, 1, 2...

share a common characteristic property

V (X|X > x) = C(m1(x) − x)(m1(x) − x − 1).

where C = 1(< 1;> 1) for the geometric(negative hypergeometric; Waring).

Notice further that in this case, the variance residual life function is quadratic function of the

mean residual life. More examples from modified power series family can be constructed using

g(x) values given in Nair and Sudheesh (2008).
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