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1. Introduction

The evolution of modern scientific thought is strewn with several examples expressing

the following sentiment: in any effort to accomplish a task there can be a certain limit to

the efficiency of its performance. In the present context we bring to attention three such

famous examples which are based on the combination of a deep conceptual approach and

simple mathematical arguments. Finally, we shall focus on one of them, namely, limits
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to the efficiency of estimating an unknown parameter involved in a family of states of a

finite level quantum system.

Our first example is the celebrated uncertainty principle of Heisenberg [8] in quantum

mechanics. For an interesting historical account of this great discovery in the philosophy

of science we refer the reader to the essay by Jagdish Mehra in [13]. If q and p denote the

position and momentum operators of a quantum mechanical particle executing motion on

the real line R they obey the commutation relation qp−pq = iℏ where ℏ = h/2π, h being

the Planck’s constant, and this implies the following inequality. If ψ is the absolutely

square integrable wave function describing the state of the system and Var(X|ψ) denotes

the variance of the observable in the state ψ then

Var(q|ψ)Var(p|ψ) > ℏ
2/4. (1.1)

In particular, if the variance of p in the state ψ is σ2 then

Var(q|ψ) > ℏ
2/4σ2.

In other words, this sets a limit to the accuracy with which the position q can be measured

in the state ψ. Such limits to accuracy hold for any ‘conjugate pair’ of observables in

quantum theory.

Our second example is the famous Cramér-Rao inequality [4], [18] in the theory of

estimation of statistical parameters. For an amusing and insightful account of the route

by which this fundamental discovery was made and how it came to be recognized in the

history of statistical science we refer to [19]. Suppose {p(ω, θ)} is a parametric family of

probability density functions with respect to a σ-finite measure in a Borel space (Ω,F),

θ being a real parameter varying in an open interval (a, b). Assume that the function

I(θ) =

∫

Ω

(
∂

∂θ
log p(ω, θ)

)2

p(ω, θ)µ(dω) (1.2)

is well-defined for all θ in (a, b). On the basis of a sample point ω obtained from experi-

ment evaluate a function T (ω) as an estimate of the parameter θ. The function T (·) on

Ω is called an unbiased estimator of θ if
∫

Ω

T (ω)p(ω, θ)µ(dω) = θ ∀ θ ∈ (a, b)

and, in such a case, its variance, denoted by V (T |θ) is defined by

V (T |θ) =

∫
(T (ω) − θ)2 p(ω, θ)µ(dω).

Indeed, V (T |θ) is a measure of the error involved in estimating θ by T (ω). The Cramér-

Rao inequality in its simplest form says that

V (T |θ) > I(θ)−1 (1.3)
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where I(θ) is given by (1.2) and called the ‘Fisher information’ at θ. Thus (1.3) sets a limit

to the accuracy of estimating the unknown parameter θ from experimental observation.

It is a remarkable fact that a special case of (1.3) implies the Heisenberg uncertainty

principle (1.1) and much more in emphasizing the profundity of Fisher information.

Indeed, let ψ ∈ L2(R) be a wave function so that ‖ψ‖ = 1. By changing ψ to a new

wave function eiαxψ(x), α ∈ R, if necessary, we may assume, without loss of generality

that the momentum operator p satisfies the condition 〈ψ|p|ψ〉 = 0 and 〈ψ|q|ψ〉 = m, a

real scalar. By Born’s interpretation f = |ψ|2 is the probability density function of the

position observable q in the state ψ. Introducing the parametric family {f(x−θ), θ ∈ R}

of probability densities we see that its Fisher information I(θ) is given by

I(θ) =

∫

R

(
f ′(x− θ)

f(x− θ)

)2

f(x− θ) dx

= 4

∫

R

(
Re

ψ′

ψ
(x)

)2

|ψ(x)|2 dx (1.4)

and therefore independent of θ. By Cramér-Rao inequality we have

Var(q|ψ) =

∫
(x−m)2 f(x) dx

>
1

I(m)
. (1.5)

On the other hand

Var(p|ψ) =

∫

R

x2 |(Fψ)(x)|2 dx

where F is the unitary Fourier transform in L2(R). Thus by (1.4) we have

Var(p|ψ) = 〈ψ|F †q2F |ψ〉

= ‖pψ‖2

= ℏ
2

∫
|ψ′(x)|

2
dx

= ℏ
2

∫ ∣∣∣∣
ψ′

ψ
(x)

∣∣∣∣
2

|ψ(x)|2 dx

> ℏ
2

∫ ∣∣∣∣
(

Re
ψ′

ψ

)
(x)

∣∣∣∣
2

|ψ(x)|2 dx

=
ℏ2

4
I(m) (1.6)

which together with (1.5) implies (1.1). The more powerful inequality (1.6) and its

natural generalization for covariance matrices in L2(Rn) are known together as Stam’s

uncertainty principle. For more information along these lines and a rich survey of in-

formation inequalities we refer to the paper [5] by A. Dembo, T. M. Cover and J. A.

Thomas.
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Our last illustrious example is of a different genre but again connected with the notion

of information. It is Shannon’s noisy coding theorem [20] which sets a limit to the ability

of communication through an information channel in the presence of noise. Again we

present the simplest version of this strikingly beautiful result in order to highlight the

philosophical aspect and refer to [17] for more general versions. Consider an information

channel whose input and output alphabets are same and equal to the binary alphabet

{0, 1} which is also a field of two elements with the operations of addition and multi-

plication modulo 2. If an input letter x from this alphabet is transmitted through the

channel assume that the output letter is x or x + 1 with probability 1 − p or p so that

the probability of error due to noise in transmission is p. Such a channel is said to be

binary and symmetric. Assume that the transmission of a sequence x1, x2, . . . , xn of n

letters through this binary symmetric channel yields the output sequence y1, y2, . . . , yn

where y1−x1, y2−x2, . . . , yn−xn are independently and identically distributed Bernoulli

random variables, each assuming the values 0 and 1 with probability q = 1 − p and p

respectively. Such a channel is called a memoryless binary symmetric channel.

Denote the alphabet by F2. By a code of size m, length n and error probability not

exceeding ε, where 0 < ε < 1, we mean m pairs (uj, Ej), 1 6 j 6 m, uj ∈ Fn
2 , Ej ⊂ Fn

2 ,

E1, E2, . . . , Em are pairwise disjoint, satisfying the inequalities

P (output sequence ∈ Ej | input sequence = uj) > 1 − ε ∀ j.

Denote by N(n, p, ε) the maximum possible size for codes of length n with error proba-

bility not exceeding ε. Then

lim
n→∞

1

n
log2 N(n, p, ε) = 1 + p log2 p+ q log2 q ∀ 0 < ε < 1, 0 < p < 1/2. (1.7)

If we write H(p) = −p log2 p− q log2 q and call it the Shannon entropy of the Bernoulli

random variable with probability of success (error) p then (1.7) has the interpretation

that for large n, among the 2n possible input sequences of length n roughly 2n(1−H(p))

sequences could be transmitted with error probability < ε and not more. For this

reason the expression on the right hand side of (1.7) is called the Shannon capacity of

the binary symmetric channel with error probability p. A corresponding generalization

for memoryless and stationary quantum channels describing their ‘capacity’ to transmit

classical alphabetic messages exists. For a leisurely and self-contained exposition of

such coding theorems see [17]. The notion of entropy that arises in the brief discussion

above can be introduced for a large class of density functions and this, in turn, leads to

some remarkable connections with Fisher information and many powerful information

theoretic inequalities. Once again we refer to the very rich survey article [5].

All the three examples described above have been generalized in several ways, connec-

tions between them and relations with other branches of science and engineering have



K. R. Parthasarathy 5

emerged and an enormous amount of literature has grown around them. The last exam-

ple has given birth to the subject of quantum information theory and coding theorems

for quantum channels [14], [17]. The present essay is devoted to the second example but

in the context of parametric families of states of finite level quantum systems. Starting

from the books of Helström [9], Holevo [10], and Hayashi [7] there is quite some literature

on the Cramér Rao bounds for quantum systems. By confining ourselves to finite level

systems we avoid the technical difficulties of dealing with unbounded operators and their

varying domains but we gain conceptual and algebraic clarity.

In Section 2 we give a brief account of the quantum probability of finite level quantum

systems in a complex finite dimensional Hilbert space including the notions of events,

observables, states, generalized measurements and composite systems in the language of

tensor products of Hilbert spaces. Heisenberg’s uncertainty principle and an entropic un-

certainty principle are briefly described. The notions of parametric families of states and

unbiased estimators of parametric functions along with their variances and covariances

are introduced.

Section 3 contains the key notions, namely, Fisher maps, the Fisher information form

and the Cramér-Rao-Bhattacharya (CRB) tensor with respect to a parametric family of

states of a finite level quantum system. The Cramér-Rao-Bhattacharya (CRB) bound is

finally expressed in terms of the CRB tensor and the Fisher information form. Several

illustrative examples are given.

In the last section we show how, by using a dilation theorem of Naimark, one can

obtain a CRB bound for the covariance matrix of unbiased estimators of parametric

functions based on generalized measurements.

2. Preliminaries in the quantum probability and statistics of finite

level systems

A finite level quantum system is described by ‘states’ in a finite dimensional complex

Hilbert space. We choose and fix such a Hilbert space H with scalar product 〈u|v〉 which

is linear in the variable v and antilinear in u. A typical example obtains when H is the

n-dimensional complex vector space Cn of column vectors and its dual is the space of all

row vectors. In this case the scalar product is expressed as

〈u|v〉 =
n∑

i=1

āibi

where

u =




a1

a2

...

an



, v =




b1
b2
...

bn



, ai, bi ∈ C ∀ i.
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Elements of H are called ket vectors, a typical element in H being denoted by |v〉 whereas

any element in the dual of H is called a bra vector and a typical bra vector is denoted

by 〈u|. The linear functional 〈u| evaluated at a ket vector |v〉 is the scalar product 〈u|v〉.

If A is an operator in H it is customary to write

〈u|Av〉 = 〈u|A|v〉.

The adjoint of A is denoted by A† so that

〈u|A|v〉 = 〈A†u|v〉 = 〈u|Av〉.

In such a notation |u〉〈v| denotes the operator satisfying

(|u〉〈v|) |w〉 = 〈v|w〉|u〉 ∀ |u〉, |v〉, |w〉 in H.

The trace of an operator A in H is denoted by TrA. In particularTr |u〉〈v| = 〈v|u〉. Note

that |u〉〈v| is a rank one operator when |u〉 6= 0, |v〉 6= 0, and

(|u1〉〈v1|) (|u2〉〈v2|) · · · (|uk〉〈vk|) = c|u1〉〈vk|

where c = 〈v1|u2〉〈v2|u3〉 · · · 〈vk−1|uk〉.

Denote by B(H), P(H), O(H), S(H) respectively the ∗- algebra of all operators on

H with its usual (strong) topology, the orthomodular lattice of all orthogonal projection

operators on H, the real linear space of all hermitian operators in H and the compact

convex set of all nonnegative definite operators of unit trace. We have P(H) ⊂ O(H) ⊂

B(H) and S(H) ⊂ O(H) ⊂ B(H). If A,B ∈ O(H) we say that A 6 B if B − A is

nonnegative definite. Then O(H) is a partially ordered real linear space. A nonnegative

definite hermitian operator is simply called a positive operator.

The zero and identity operators are denoted respectively by O amd I. Often, I is

denoted by 1. For any scalar λ the operator λI is also denoted by λ. Thus, for A ∈ B(H),

λ ∈ C, A − λ stands for the operator A − λI. For any E ∈ P(H), 0 6 E 6 1 and

(1−E) ∈ P(H). By a projection we shall always mean an orthogonal projection operator

i.e., an element of P(H). If E1, E2 ∈ P(H) and E1 6 E2 then (E2 −E1) ∈ P(H). When

a quantum system is described by H we say that the elements of P(H) are the events

concerning the system, 0 is the null event and 1 is the certain event. If E1, E2 ∈ P(H)

and E1 6 E2 we say that the event E1 implies the event E2. If E ∈ P(H) then 1 − E is

the event ‘not E’. If E1, E2 ∈ P(H) their maximum E1 ∨E2 and minimum E1 ∧E2 are

respectively interpreted as ‘E1 orE2’ and ‘E1 andE2’. If E1E2 = 0 then E1∨E2 = E1+E2.

If E1 and E2 commute then E1 ∧E2 = E1E2. The first basic difference between classical

probability and quantum probability theory arises from the fact that for three events Ei

in P(H), i = 1, 2, 3 one may not have E1 ∧ (E2 ∨E3) = (E1 ∧E2)∨ (E1 ∧E3). Whenever

the Ei’s commute with each other the operations ∧ and ∨ distribute with each other.
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Any hermitian opearator X in H is called a real-valued or simply an observable about

the system described by H. Thus O(H) is the real linear space of all real-valued ob-

servables. If X, Y ∈ O(H) and XY = Y X then XY is also an element of O(H). If

X ∈ O(H) and σ(X) denotes the set of all its eigenvalues then, by the spectral theorem,

X admits a unique spectral resolution or representation

X =
∑

λ∈σ(X)

λEλ (2.1)

where σ(X) ⊂ R is a finite set of cardinality not exceeding the dimension of H, 0 6= Eλ ∈

P(H) ∀ λ ∈ σ(X) and
∑

λ∈σ(X)

Eλ = I, (2.2)

EλEλ′ = δλλ′Eλ ∀ λ, λ′ ∈ σ(X). (2.3)

This, at once, suggests the interpretation that the eigenprojection Eλ associated with

the eigenvalue λ in (2.1) is the event that the observable X takes the value λ and σ(X)

is the set of all values that X can take. If ϕ : σ(X) → R or C is a real or complex-valued

function then

ϕ(X) =
∑

λ∈σ(X)

ϕ(λ)Eλ (2.4)

is the real or complex-valued observable which is the function ϕ of X.

Any element ρ ∈ S(H) is called a state of the quantum system described by X. Such

a state ρ is also called a density operator. Clearly, ρ itself becomes an observable. If

E ∈ P(H) is an event and ρ is a state then Tr ρE is a quantity in the unit interval [0, 1]

called the probability of the event E in the state ρ. If E1, E2 are two events satisfying the

relation E1E2 = 0 then E1 + E2 is also an event and Tr ρ(E1 + E2) = Tr ρE1 + Tr ρE2.

However, for two events, E1, E2 it is not necessary that Tr ρ(E1 ∨E2) 6 Tr ρE1 +Tr ρE2.

In short, subadditivity property for probability need not hold good. But this property

is retained whenever E1 and E2 commute with each other.

If ρ is a state and X is an element of O(H) with spectral resolution (2.1) then Tr ρEλ

is the probability that X takes the value λ in the state ρ whenever λ ∈ σ(X). Thus the

expectation of X in the state ρ is given by
∑

λ∈σ(X)

λ Tr ρEλ = Tr ρ
∑

λ∈σ(X)

λEλ = Tr ρX.

More generally, the expectation of ϕ(X) defined by (2.4) is given by Tr ρϕ(X). In par-

ticular, the variance of X in the state ρ, denoted by Var(X|ρ) is given by

Var(X|ρ) = Tr ρX2 − (Tr ρX)2

= Tr ρ(X −m)2
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wherem = Tr ρX is the expectation or mean ofX in the state ρ. This shows, in particular,

that Var(X|ρ) vanishes if and only if the restriction of X to the range of ρ is a scalar

multiple of the identity.

The spectral theorem implies that the extreme points of the convex set S(H) are one

dimensional projections of the form |ψ〉〈ψ| where |ψ〉 is a unit vector in H. Here, the

projection remains unaltered if |ψ〉 is replaced by c|ψ〉 where c is a scalar of modulus

unity. Extreme points of S(H) are called pure states and a pure state is a one dimensional

projection which, in turn, is determined by a unit vector in H modulo a scalar of modulus

unity. By abuse of language any determining unit vector itself is called a pure state. Thus

whenever we say that a unit vector |ψ〉 is a pure state we mean the density operator

|ψ〉〈ψ|. By spectral theorem any state ρ can be expressed as
∑
j

pj|ψj〉〈ψj| where p1, p2, . . .

is a finite probability distribution and {|ψj〉, j = 1, 2, . . .} is an orthonormal set of vectors

in H. If {|ψj〉} is any set of unit vectors and pj , j = 1, 2, . . . is a probability distribution

then
∑
j

pj|ψj〉〈ψj| is a state. If |ψ〉 is a pure state and X is a real-valued observable then

its variance Var(X||ψ〉) in the pure state |ψ〉 is zero if and only if |ψ〉 is an eigenvector for

X. Thus, even in a pure state |ψ〉, an observable need not have a degenerate distribution.

This is a significant departure from classical probability.

Hereafter, unless otherwise explicitly mentioned, we shall mean by an observable a

real-valued observable. Let X, Y be two observables, ρ a state and let m = Tr ρX,

m′ = Tr ρY their respective means. Put X̃ = X − m, Ỹ = Y − m′ and consider the

nonnegative function

f(z) = Tr ρ(X̃ + zỸ )†(X̃ + zỸ ), z ∈ C.

Then the inequality

inf
z∈C

f(z) > 0

implies (see [6], [16])

Var(X|ρ)Var(Y |ρ) >

{
Tr ρ

1

2i
(X̃Ỹ − Ỹ X̃)

}2

+

{
Tr ρ

1

2
(X̃Ỹ − Ỹ X̃)

}2

(2.5)

and thus puts a lower bound on the product of the variances of X and Y in a state ρ.

The quantum probability of finite level systems we have described here has a natural

generalization when H is an infinite dimensional Hilbert space. When H = L2(R), X = q,

Y = p are the well-known position and momentum operators satisfying the Heisenberg

commutation relations qp− pq = iℏ the inequality (2.5) yields the special form

Var(q
∣∣|ψ〉)Var(p

∣∣|ψ〉) >
ℏ

2

4
∀ |ψ〉 ∈ D

where D is a dense domain in H where unbounded operators like qp, pq etc. are well-

defined. Thus (2.5) is at the heart of the Heisenberg’s principle of uncertainty.
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Now we introduce a notion which is more general than that of an observable. Indeed, it

plays an important role in the quantum version of Shannon’s coding theorems of classical

information theory.

Definition 2.1. A generalized measurement L of a finite level quantum system with

Hilbert space H is a pair (S, L) where S is a finite set and L : S → B(H) is a map

satisfying the condition: ∑

s∈S

L(s)†L(s) = I. (2.6)

Such a generalized measurement L = (S, L) has the following interpretation. If the

system is in the state ρ and the measurement L is performed then the ‘value’ s ∈ S is

obtained with probability TrL(s)ρL(s)† and the system ‘collapses’ to a new state

L(s)ρL(s)†

TrL(s)ρL(s)†
. (2.7)

If, for example, the system is initially in the state ρ, a generalized measurement L1 =

(S1, L1) is performed and followed by another generalized measurement L2 = (S2, L2)

then the probability of obtaining the value s1 ∈ S1 is TrL1(s1)ρL1(s1)
† and the con-

ditional probability of getting the value s2 ∈ S2 from L2 given the value s1 from L1

is

TrL2(s2)

{
L1(s1)ρL1(s1)

†

TrL1(s1)ρL1(s1)†

}
L2(s2)

†.

Thus the probability of obtaining the value (s1, s2) from L1 followed by L2 is equal to

p(s1, s2) = TrL2(s2)L1(s1)ρL1(s1)
†L2(s2)

†

and the final collapsed state is

L2(s2)L1(s1)ρL1(s1)
†L2(s2)

†

p(s1, s2)
.

More generally, if the measurements Li = (Si, Li), i = 1, 2, . . . , m are performed in suc-

cession on a quantum system with initial state ρ then the probability

p(s1, s2, . . . , sm) of getting the sequence s1, s2, . . . , sm of values sj ∈ Sj ∀ j is given by

p(s1, s2, . . . , sm) = TrLm(sm)Lm−1(sm−1) · · ·L1(s1)ρL1(s1)
†L2(s2)

† · · ·Lm(sm)†

and the final collapsed state is

1

p(s1, s2, . . . , sm)
Lm(sm)Lm−1(sm−1) . . . L1(s1)ρL1(s1)

†L2(s2)
† . . . Lm(sm)†.

This at once suggests the product rule for measurements Li = (Si, Li) i = 1, 2 as L =

(S1 × S2, L̃) where

L̃(s1, s2) = L2(s2)L1(s1), s1 ∈ S1, s2 ∈ S2.

The measurement L stands for the measurement L1 followed by the measurement L2.
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If L = (S, L) is a measurement with S ⊂ R or C then its expectation in the state ρ is

given by ∑

s∈S

sTrL(s)ρL(s)† =
∑

s∈S

sTr ρL(s)†L(s).

If S ⊂ R its variance Var(L|ρ) in the state ρ is given by

∑

s∈S

s2 Tr ρL(s)†L(s) −

(
∑

s∈s

sTr ρL(s)†L(s)

)2

.

When L(s) is a projection for every s ∈ S then (S, L) is called a projective or von

Neumann measurement. If, in addition, S ⊂ R then the hermitian operator
∑
s∈S

s L(s)

is an observable and our notion of generalized measurement reduces to measuring an

observable. It may be of some interest to formulate and obtain an uncertainty principle

for a pair of two real-valued measurements.

For a measurement with values in an abstract set S it is natural to replace the notion

of variance by its entropy in a state ρ. Thus we consider the quantity

H(L|ρ) = −
∑

s∈S

p(s) log2 p(s) (2.8)

where

p(s) = Tr ρL(s)† L(s)

and call it the entropy of the measurement L = (S, L) in the state ρ. With this definition

one has the following entropic uncertainty principle.

Theorem 2.2 ([11], [12]). Let L = (S, L), M = (T,M) be two generalized measure-

ments of a finite level quantum system in a Hilbert space H. Let L(s)†L(s) = X(s),

M(t)†M(t) = Y (t), s ∈ S, t ∈ T. Then for any state ρ the following holds:

H(L|ρ) +H(M|ρ) > −2 log2 max
s,t

∣∣∣∣X(s)1/2Y (t)1/2
∣∣∣∣. (2.9)

Remark It is important to note that the right hand side in the inequality (2.9) is

independent of ρ.

If Xi, 1 6 i 6 k are k observables, ρ is a state in H and Tr ρXi = mi define the scalar

νij =
1

2
Tr ρ {(Xi −mi)(Xj −mj) + (Xj −mj)(Xi −mi)} . (2.10)

Then the real symmetric matrix ((νij)) of order k is called the covariance matrix of the

observables X1, X2, . . . , Xk in the state ρ and denoted by Cov
(
X1, X2, . . . , Xk

∣∣ρ
)
. It is a

positive semidefinite matrix and it is important to note the symmetrization in i, j in the

right hand side of (2.10). Without such a symmetrization νij could be a complex scalar.

Till now we talked about a single quantum system. Suppose we have a composite quan-

tum system made out of several simple systems A1, A2, . . . , Ak with respective Hilbert
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spaces HA1
,HA2

, . . . ,HAk
. Then the Hilbert space of the joint system A1A2 . . . Ak is the

tensor product

HA1...Ak
= HA1

⊗HA2
⊗ · · · ⊗ HAk

.

This is the quantum probabilistic analogue of cartesian product of sample spaces in

classical probability. It is clear that

dim HA1...Ak
=

k∏

i=1

dim HAi
,

dim indicating dimension. If ρi is a state in HAi
∀ i then ρ1 ⊗ · · · ⊗ ρk is a state of

the composite system A1A2 . . . Ak called the product state. If ρ is a state in HA1...Ak

and we take its relative trace over HAi1
,HAi2

, . . . ,HAi
ℓ

then we get the marginal state

of the system Ar1
, Ar2

. . . , Arm
where {1, 2, . . . , k} is the disjoint union {i1, i2, . . . , iℓ} ∪

{r1, r2, . . . , rm} with ℓ + m = k. In this context of composite quantum systems there

arises a new distinguishing feature of the subject with a remarkable role in physics as

well as information theory. It is the existence of a very rich class of states in HA1A2...Ak

which do not belong to the convex hull of all product states. Such states are called

entangled states and they constitute a rich resource in quantum communication [14].

Till now we restricted ourselves to quantum probability. Now we describe a few basic

concepts in quantum statistics dealing with a parametric family of quantum states of a

finite level system. Let Γ be a parameter space and let {ρ(θ), θ ∈ Γ} be a parametric

family of states in a Hilbert space H. Suppose X is an observable, i.e., an element of

O(H) and

Tr ρ(θ)X = f(θ), θ ∈ Γ, (2.11)

where f is a real-valued function on Γ. then we say that the observable X is an unbiased

estimator of the parametric function f on Γ.

When the parametric family {ρ(θ), θ ∈ Γ} is fixed we write

Var(X|θ) = Var(X|ρ(θ)) (2.12)

If X1, X2, . . . , Xm are m observables we write

Cov(X1, . . . , Xm|θ) = Cov(X1, . . . , Xm|ρ(θ)). (2.13)

A real-valued function f on Γ is said to be estimable with respect to {ρ(θ), θ ∈ Γ} if

there exists an observable X ∈ O(H) such that

Tr ρ(θ)X = f(θ) ∀ θ ∈ Γ.

Denote by E(Γ) the real linear space of all such estimable functions. An observable X

is said to be balanced with respect to the family {ρ(θ), θ ∈ Γ} if Tr ρ(θ)X = 0 ∀ θ ∈ Γ.
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Denote by N the real linear space of all such balanced observables. For any f ∈ E(Γ),

an unbiased estimator X of f write

νf (θ) = inf {Var(X + Z|θ), Z ∈ N} .

It is natural to look for good lower bounds for the function νf(θ). We shall examine

this problem in the next section and study some examples. If fj , 1 6 j 6 m are

estimable parametric functions we shall also look for matrix lower bounds for the positive

semidefinite matrices Cov(X1, . . . , Xm|θ) as each Xi varies over all unbiased estimators

of fi for each i = 1, 2, . . . , m.

For a more detailed introduction to quantum probability theory we refer to [15], [16].

For an initiation to estimation theory and testing hypotheses in quantum statistics we

refer to [7], [9], [10], References [7], [10], [14], [17] contain applications of the theory of

generalized measurements.

3. The Fisher information form and the Cramér-Rao-Bhattacharya

tensor

We consider a fixed parametric family {ρ(θ), θ ∈ Γ} of states of a finite level quantum

system in a Hilbert space H with parameter space Γ. As mentioned in the preceding

section denote by E(Γ) and N respectively the real linear spaces of estimable functions

and balanced observables. Recall that for any two unbiased estimators X and Y of an

element f ∈ E(Γ), the observable X − Y is an element of N .

Definition 3.1. A map F : Γ → B(H) is called a Fisher map for the family {ρ(θ), θ ∈ Γ}

of states in H if the following two conditions hold:

(i) Tr ρ(θ)F (θ) = 0 ∀ θ ∈ Γ,

(ii) Tr ρ(θ)
{
F (θ)†X +XF (θ)

}
= 0 ∀ θ ∈ Γ, X ∈ N .

Denote by F the real linear space of all Fisher maps with respect to {ρ(θ), θ ∈ Γ} and

by A(Γ) the algebra of all real-valued functions on Γ. If a ∈ A(Γ) and F ∈ F then aF

defined by (aF )(θ) = a(θ)F (θ) is also in F . In other words F is an A(Γ)-module. For

any two Fisher maps F,G in F define

I(F,G)(θ) = Tr ρ(θ)
1

2

(
F (θ)†G(θ) +G(θ)†F (θ)

)

= Re Tr ρ(θ)F (θ)†G(θ).
(3.1)
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Then I is called the Fisher information form associated with {ρ(θ), θ ∈ Γ}. It may be

noted that, for all F, F1, F2, G ∈ F and a ∈ A(Γ), the following hold:

I(F,G) = I(G,F ),

I(aF,G) = a I(F,G),

I(F1 + F2, G) = I(F1, G) + I(F2, G),

I(F, F ) > 0.

In particular, for any Fi, 1 6 i 6 n in F the matrix

In(F1, F2, . . . , Fn|θ) = ((I(Fi, Fj)(θ))) , θ ∈ Γ, i, j ∈ {1, 2, . . . , n} (3.2)

is positive semidefinite. It is called the information matrix at θ corresponding to the

elements Fi, 1 6 i 6 n in F .

If f ∈ E(Γ), F ∈ F define

λ(f, F )(θ) = Tr ρ(θ)
1

2

(
F (θ)†X +XF (θ)

)
, θ ∈ Γ (3.3)

where X is any unbiased estimator of f. Note that, in view of property (ii) in Definition

3.1 the right hand side of (3.3) is independent of the choice of the unbiased estimator of

f. Clearly, λ(f, F ) is real linear in the variable f when F is fixed and A(Γ)-linear in the

variable F when f is fixed. Thus λ(·, ·) can be viewed as an element of E(Γ)⊗F . We call

λ(·, ·) the Cramér-Rao-Bhattacharya tensor or simply the CRB-tensor associated with

{ρ(θ), θ ∈ Γ}.

Let fi ∈ E(Γ), Xi an unbiased estimator of fi for each 1 6 i 6 m and let Fj , 1 6 j 6 n

be Fisher maps with respect to {ρ(θ), θ ∈ Γ}. Define the m×m matrix

Λmn(θ) = ((λij(θ))), 1 6 i 6 m, 1 6 j 6 n, θ ∈ Γ (3.4)

λij(θ) = λ(fi, Fj)(θ) θ ∈ Γ, (3.5)

λ being the CRB-tensor. We now introduce the family of positive semidefinite sesquilin-

ear forms indexed by θ ∈ Γ in the vector space B(H) by

Bθ(X, Y ) = TrX† ρ(θ)Y, X, Y ∈ B(H). (3.6)

By property (i) in Definition 3.1, equations (3.3) and (3.5) we have

λij(θ) = Tr ρ(θ)
1

2

{
Fj(θ)

†(Xi − fi(θ)) + (Xi − fi(θ))Fj(θ)
}

= ReBθ

(
Xi − fi(θ), Fj(θ)

†
)
.

Multiplying both sides by the real scalars aibj and adding over 1 6 i 6 m, 1 6 i 6 n,

we obtain

a′Λmn(θ)b = Re Bθ

(
m∑

i=1

ai(Xi − fi(θ)),
n∑

j=1

bjFj(θ)
†

)
(3.7)
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where Λmn and Bθ are given by (3.4), (3.5) and (3.6) and a,b are respectively column

vectors of length m,n with prime ′ indicating transpose. Now an application of the

Cauchy-Schwarz inequality to the right hand side of (3.7) implies

(a′Λmn(θ)b)
2

6 Bθ

(
n∑

i=1

ai(Xi − fi(θ)),
m∑

i=1

ai(Xi − fi(θ))

)

×Bθ

(
n∑

j=1

bjFj(θ)
†,

n∑

j=1

bjFj(θ)
†

)

= {a′Cov (X1, X2, . . . , Xm|θ)a} {b
′In (F1, F2, . . . , Fn|θ)b} .

Dividing both sides of this inequality by b′In (F1, F2, . . . , Fn|θ)b, fixing a and maxi-

mizing the left hand side over all b satisfying In (F1, F2, . . . , Fn|θ)b 6= 0 we obtain the

matrix inequality:

Λmn(θ)I−
n (F1, F2, . . . , Fn|θ)Λmn(θ)′ 6 Cov(X1, X2, . . .Xm|θ),

I−
n denoting the generalized inverse of In(F1, F2, . . . , Fn|θ). In other words we have proved

the following theorem

Theorem 3.1 (Quantum Cramér-Rao-Bhattacharya (CRB) inequality). Let

{ρ(θ), θ ∈ Γ} be a parametric family of states of a finite level quantum system in a

Hilbert space H, fi, 1 6 i 6 m estimable functions on Γ, Xi an unbiased estimator of fi

for each i and let Fj , 1 6 j 6 n be Fisher maps with respect to {ρ(θ), θ ∈ Γ}. Then the

following matrix inequality holds:

Cov (X1, X2, . . . , Xm|θ) > Λmn(θ)I−
n (F1, F2, . . . , Fn|θ) Λmn(θ)′ ∀ θ ∈ Γ

where Λmn(θ) is the m× n matrix defined by (3.3)-(3.5) and I−
n (F1, F2, . . . , Fn|θ) is the

generalized inverse of the Fisher information matrix In(F1, F2, . . . , Fn|θ) associated with

F1, F2, . . . , Fn.

Proof. Immediate.

Corollary 3.1. Let Xi, 1 6 i 6 m, Fj, 1 6 j 6 n be as in Theorem 3.1. Then

Λmn(θ)I−
n (F1, F2, . . . , Fn|θ)Λmn(θ)′

> Λmn−1(θ)I
−
n−1(F1, F2, . . . , Fn−1|θ)Λmn−1(θ)

′, θ ∈ Γ

for n > 2.
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Proof. This is immediate from the fact that both the sides of the inequality above are

arrived at by taking supremum over certain sets in Rn, the set for the left hand side

being larger than the set for the right hand side.

We call the right hand side of the inequality in Theorem 3.1 the CRB lower bound.

Remark 1 Theorem 3.1 and Corollary 3.1 imply the possibility of improving the

CRB lower bound by searching for a larger class of A(Γ)-linearly independent Fisher

maps for a parametric family of states.

Remark 2 The CRB lower bound in Theorem 3.1 has some natural invariance

properties. If fi, 1 6 i 6 m are fixed and Xi, Fi(θ), ρ(θ) are changed respectively to

UXiU
†, UFi(θ)U

†, Uρ(θ)U † by a fixed unitary operator U in H then the CRB lower

bound in Theorem 3.1 remains the same.

If the Fisher maps Fj are replaced by

Gj(θ) =

n∑

r=1

αjr(θ)Fr(θ), 1 6 j 6 n (3.8)

where the matrix A(θ) = ((αrs(θ))) is invertible for all θ then

Λmn(θ)I−
n (F1, . . . , Fn|θ)Λmn(θ)′ = Λ̃mn(θ)I−

n (G1, . . . , Gn|θ)Λ̃mn(θ)′,

the tilde over Λmn on the right hand side indicating that Gi’s are used in place of Fi’s.

In other words the CRB bound is invariant under A(Γ)-linear invertible transformations

of the form (3.8).

Example 3.1 Let Γ = (a, b), H = Cn and let

ρ(θ) = diag (p1(θ), p2(θ), . . . , pn(θ)) , θ ∈ Γ

be states in Cn with respect to the standard orthonormal basis, diag denoting diagonal

matrix. An estimable function f on Γ has the form

f(θ) =
n∑

i=1

ai pi(θ)

where ai are real scalars. An unbiased estimator X for f is

X = diag(a1, a2, . . . , an).

Note that pi(θ) > 0 and
∑
i

pi(θ) = 1 ∀ θ ∈ Γ. Assume that pi(θ) are differentiable in θ

and pi(θ) > 0 ∀ i, θ. Then

F (θ) = diag

(
p′1(θ)

p1(θ)
,
p′2(θ)

p2(θ)
, . . . ,

p′n(θ)

pn(θ)

)
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yields a Fisher map with

I(F, F )(θ) =
n∑

i=1

p′i(θ)
2

pi(θ)

and

λ(f, F ) =
n∑

i=1

ai p
′
i(θ) = f ′(θ).

Theorem 3.1 for the single observable X and single Fisher map yields

Var (Y |θ) >

(
n∑

i=1

ai p
′
i(θ)

)2

n∑
i=1

p′
i
(θ)2

pi(θ)

∀ θ ∈ (a, b)

and any unbiased estimator Y of f. This is the Cramér-Rao inequality for finite sample

spaces in classical mathematical statistics.

Example 3.2(Quantum version of Barankin’s example [1], [21]). Let ρ(θ) be an invert-

ible density operator for every θ in Γ. For any γ ∈ Γ define

Fγ(θ) = ρ(γ)ρ(θ)−1 − 1.

Then Fγ is a Fisher map and for any estimable function f ∈ E(Γ) we have

λ(f, Fγ)(θ) = f(γ) − f(θ).

The Fisher information form I satisfies

I(Fγ1
, Fγ2

)(θ) = ReTr ρ(γ1)ρ(θ)
−1ρ(γ2) − 1

If X is an unbiased estimate of f ∈ E(Γ) one obtains as a special case the CRB bound

Var(X|θ) > (f(γ1) − f(θ), f(γ2) − f(θ), . . . , f(γn) − f(θ))

I−
n (γ1, γ2, . . . , γn, θ) (f(γ1) − f(θ), . . . , f(γn) − f(θ))′

where I−
n (γ1, γ2, . . . , γnθ) is the generalized inverse of the information matrix

((
Re Tr ρ(γi)ρ(θ)

−1ρ(γj) − 1
))

for any γ1, γ2, . . . , γn ∈ Γ.

Example 3.3(Quantum Bhattacharya bound [2]). Let Γ ⊆ R
d be a connected open

set and let ρ(θ), θ ∈ Γ be a family of invertible states such that the correspondence

θ → ρ(θ) is Cm-smooth. then every estimable function f is also Cm-smooth. For any

linear differential operator D on Γ with Cm-coefficients satisfying D 1 = 0 define

FD(θ) = (Dρ)(θ)ρ(θ)−1
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where D is applied to every matrix entry of ρ(·) on the right hand side in some fixed

orthonormal basis. Then FD is a Fisher map and the CRB tensor λ satisfies

λ(f, FD)(θ) = (Df)(θ) ∀ f ∈ E(Γ).

If D1, D2 are two linear differential operators in Γ with Cm-coefficients annihilating the

constant function 1 the Fisher information satisfies

I(FD1
, FD2

)(θ) = Re Tr (D1ρ)(θ) ρ(θ)−1(D2ρ)(θ), θ ∈ Γ.

If X is an unbiased estimate of f and Di, 1 6 i 6 n are Cm-differential operators on Γ

then the CRB inequality has the form

Var(X|θ) > (D1f, . . . , Dnf)(θ)I−
n (D1, D2, . . . , Dn|θ)(D1f, . . . , Dnf)(θ)′

where I−
n (D1, D2, . . . , Dn|θ) is the generalized inverse of the positive semidefinite matrix

((
Re Tr (Diρ)(θ)ρ(θ)−1(Djρ)(θ)

))
, i, j ∈ {1, 2, . . . , n}.

Example 3.4 Example 3.2 leads us to the following natural abstraction. Suppose Γ

is a d-dimensional Cm-manifold and θ → ρ(θ) is a Cm-smooth parametrization of states

in H as θ varies in Γ. If L is a smooth vector field on Γ then

FL(θ) = (Lρ)(θ)ρ(θ)−1, θ ∈ Γ

is a Cm-smooth Fisher map with respect to {ρ(θ), θ ∈ Γ} under the assumption that

ρ(θ)−1 exists for every θ. Cm-smooth Fisher maps constitute a Cm(Γ)-module and E(Γ) ⊂

Cm(Γ). The CRB tensor λ and the Fisher information form I satisfy the relations

λ(f, FL)(θ) = (Lf)(θ)

I(FL, FM)(θ) = Re Tr (Lρ)(θ)ρ(θ)−1(Mρ)(θ)

for any two vector fields L,M. As a special case of the CRB inequality we have for any

unbiased estimator X of f ∈ E(Γ),

Var(X|θ) >
(Lf)(θ)2

Tr ρ(θ)−1(Lρ)(θ)2
, θ ∈ Γ

for any Cm-smooth vector field L.

As a special case of the example above, consider a connected Lie group Γ with Lie

algebra G. Let

ρ(g) = Ug ρ0 U
†
g , g ∈ Γ

where ρ0 is a fixed invertible state. Any element L of G is looked upon as a left invari-

ant vector field on Γ. let Uexp t L = exp t π(L), t ∈ R, L ∈ G where L → π(L) is a

representation of G in H. Then the CRB inequality yields

Var(X|g) >
((Lf)(g))2

Tr ρ−1
0 [π(L), ρ0]

2 ∀ L ∈ G (3.9)
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whereX is an unbiased estimator of f. If Li, 1 6 i 6 d is a basis for G and the nonnegative

definite matrix Id is defined by

Id =
((

Re Tr ρ−1
0 [π(Li), ρ0] [π(Lj), ρ0]

))
, i, j ∈ {1, 2, . . . , d}

then a maximization over all elements L in G on the right hand side of (3.9) yields

Var(X|g) > (L1 f, L2 f, . . . , Ldf)(g)I−
d (L1f, L2f, . . . , Ldf)(g)′,

I−
d being the generalized inverse of Id.

Example 3.5(adapted from [3]). We now consider an example in which the different

states ρ(θ) may fail to have an inverse, indeed, their ranges need not be the same. Let

Γ ⊆ R
d be an open domain and let ρ(θ), θ ∈ Γ obey the set of linear partial differential

equations of the form

∂ρ

∂θj

=
1

2

(
Lj(θ) ρ(θ) + ρ(θ)Lj(θ)†

)
, 1 6 j 6 d (3.10)

where the operators Lj(θ) ∈ B(H). Taking trace on both sides we see that

Re Tr ρ(θ)Lj(θ) = 0, 1 6 j 6 d, θ ∈ Γ.

If Im Tr ρ(θ)Lj(θ) = mj(θ) we can replace in (3.10) Lj(θ) by Lj(θ) − imj(θ) without

altering the differential equations. Hence we may assume, without loss of generality, that

in (3.10)

Tr ρ(θ)Lj(θ) = 0, 1 6 j 6 d, θ ∈ Γ. (3.11)

We then say that the states ρ(θ) which obey (3.10) and (3.11) constitute a Liapunov

family.

A special case of such a Liapunov family of states is obtained when d = 1 and

ρ(θ) = p(θ)e
1

2
θL ρ0 e

1

2
θL†

, θ ∈ R

where L is a fixed operator in H, ρ0 is a fixed state and

p(θ) =
{

Tr ρ0 e
1

2
θL†

e
1

2
θL
}−1

.

Then

ρ′(θ) =
1

2

{(
p′(θ)

p(θ)
+ L

)
ρ(θ) + ρ(θ)

(
p′(θ)

p(θ)
+ L

)†
}
.

If ρ0 = |ψ0〉〈ψ0| is a pure state then every ρ(θ) is a pure state. Thus rank ρ(θ) = 1 ∀ θ ∈ R

and we have a situation where {ρ(θ)} admits a ‘score operator function’ with a classical

part p′/p and a quantum part L.
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Going back to the Liapunov family satisfying (3.10) and (3.11) we observe that each

of the maps θ → Lj(θ), 1 6 j 6 d is a Fisher map. Indeed, if X is a balanced observable

we have

0 =
∂

∂θj

(Tr ρ(θ)X)

=
1

2
Tr
(
Lj(θ)ρ(θ)X + ρ(θ)Lj(θ)†X

)

=
1

2
Tr ρ(θ)

(
Lj(θ)

†X +XLj(θ)
)
.

For any estimable function f

λ(f, Lj)(θ) =
∂f

∂θj

and the Fisher information form I satisfies

I(Li, Lj)(θ) = Re Tr ρ(θ)Li(θ)†Lj(θ).

If we write

Id(θ) = ((I(Li, Lj)(θ))) , i, j ∈ {1, 2, . . . , d}

then the CRB inequality assumes the form

Var(X|θ) > (∇f)(θ)I−
d (θ)(∇f)(θ)′

for any unbiased estimator X of f, ∇f being the gradient vector
(

∂f
∂θ
, ∂f

∂θ2

, . . . , ∂f
∂θd

)
.

In the special case d = 1 introduced in the course of the discussion above the CRB

bound assumes the form

Var(X|θ) >
(f ′(θ))2

Tr ρ(θ)
(

p′(θ)
p(θ)

+ L
)† (

p′(θ)
p(θ)

+ L
) .

If ρ(θ), σ(θ), θ ∈ Γ are Liapunov families of states in Hilbert spaces H, K respectively

with coefficients Lj(θ), Mj(θ) in the respective differential equations corresponding to

(3.10) then the tensor product states ρ(θ) ⊗ σ(θ), θ ∈ Γ constitute again a Liapunov

family with the coefficients Lj(θ)⊗1+1⊗Mj(θ), 1 6 j 6 d in the differential equations

corresponding to (3.10) and its Fisher information form satisfies

I (Li ⊗ 1 + 1 ⊗Mi, Lj ⊗ 1 + 1 ⊗Mj) (θ)

= I(Li, Lj)(θ) + I(Mi,Mj)(θ).

Eexample 3.6 Our last example is the case when ρ(θ) is a mixture of the form

ρ(θ) =

N∑

r=1

pr(θ) ρr(θ)



20 On the philosophy of Cramér-Rao-Bhattacharya Inequalities in Quantum Statistics

where {pr(θ), 1 6 r 6 N} is a family of probability distributions on the finite set

{1, 2, . . . , N} indexed by θ ∈ Γ and for each fixed r, {ρr(θ), θ ∈ Γ} is a Liapunov family

of states obeying the differential equations

∂ρr

∂θj
=

1

2

{
Lrj(θ) ρr(θ) + ρr(θ)Lrj(θ)†

}
, 1 6 j 6 d, θ ∈ Γ

and the conditions

Tr ρr(θ)Lrj(θ) = 0 ∀ θ ∈ Γ.

Let now fi, 1 6 i 6 m be estimable functions with respect to {ρ(θ), θ ∈ Γ} and let Xi

be any unbiased estimator of fi for each i. Differentiating with respect to θj the identity

Tr ρ(θ)(Xi − fi(θ)) = 0

we get

∂fi

∂θj
=

N∑

r=1

pr(θ) Re TrMrj(θ)ρr(θ)(Xi − fi(θ)) (3.12)

where

Mrj(θ) = pr(θ)−1∂pr

∂θj
+ Lrj(θ). (3.13)

Multiplying both sides of (3.12) by real scalars aibj and adding over i and j we get

a′

((
∂fi

∂θj

))
b =

N∑

r=1

pr(θ) Tr

(
d∑

j=1

bjMrj(θ)

)
ρr(θ)

(
m∑

i=1

ai(Xi − fi(θ))

)
.

Applying Cauchy-Schwarz inequality to each trace scalar product on the right hand side

followed by the same inequality to the scalar product with respect to the probability

distribution p1(θ), p2(θ), . . . , pN(θ) we obtain

(
a′

((
∂fi

∂θj

))
b

)2

6

{
N∑

r=1

pr(θ) Tr

(
d∑

j=1

bjMrj(θ)

)

ρr(θ)

(
d∑

j=1

bjMrj(θ)

)†



 a′ Cov(X1, . . . , Xm|θ) a (3.14)

Let

Ψr(θ) =
((

Re Tr ρr(θ)Mri(θ)†Mrj(θ)
))
, i, j ∈ {1, 2, . . . , d},

Ψ(θ) =
N∑

r=1

pr(θ)Ψr(θ).

Then the validity of (3.14) for all ai, bj , 1 6 i 6 m, 1 6 j 6 d implies

Cov(X1, X2, . . . , Xm|θ) >

((
∂fi

∂θj

))
Ψ−(θ)

((
∂fi

∂θj

))′

,

the super index - in Ψ indicating its generalized inverse.



K. R. Parthasarathy 21

4. Estimators based on generalized measurements

As in Section 3 we consider a parametric family {ρ(θ), θ ∈ Γ} of states of a finite level

quantum system in a Hilbert space H and a real-valued parametric function f on Γ. In

order to estimate f we now look at a generalized measurement L = (S, L) as described

in Definition 2.1. Choose a real-valued function ϕ on S and if the outcome of L is s

then evaluate ϕ(s) and treat it as an estimate of f(θ). We say that (L, ϕ) is an unbiased

estimator of f if

∑

s∈S

ϕ(s) Tr ρ(θ)L(s)†L(s) = f(θ) ∀ θ ∈ Γ. (4.1)

Indeed, it may be recalled from Section 2 that Tr ρ(θ)L(s)†L(s) is the probability of the

outcome s if the unknown parameter is θ. Then the variance of (L, ϕ) is given by

Var(L, ϕ|θ) =
∑

s∈S

ϕ(s)2 Tr ρ(θ)L(s)†L(s) − f(θ)2. (4.2)

If we write

X =
∑

s∈S

ϕ(s)L(s)†L(s) (4.3)

Then X is an observable and (4.1) shows that X is an unbiased estimator of f when-

ever (L, ϕ) is an unbiased estimator of f. However, Var(X|θ) need not be the same as

Var(L, ϕ|θ).

In (4.1) put T (s) = L(s)†L(s), s ∈ S. Then T (s) > 0 and by Definition 2.1,
∑
s∈S

T (s) =

I. In other words {T (s), s ∈ S} is a positive operator-valued distribution on S with

total operator mass I. By a well-known theorem of Naimark [10], [16] one can imbed the

Hilbert space H isometrically in a larger Hilbert space Ĥ = H⊗K with dim K <∞ and

construct mutually orthogonal projection operators on Ĥ with the block operator form

E(s) =

[
T (s) M(s)

M(s)† N(s)

]
, s ∈ S (4.4)

satisfying the following:

(i)
∑
s∈S

E(s) = I,

(ii)

{
E(s)

[
u

0

]
, s ∈ S, u ∈ H

}
spans Ĥ.

Such a dilation of T (·) in H to E(·) in Ĥ is unique upto a natural unitary isomorphism.
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Now we go back to the unbiased estimator (L, ϕ) of f described in (4.1). Put

ρ̂(θ) =

[
ρ(θ) 0

0 0

]
,

X̂ =
∑

s∈S

ϕ(s) E(s).

Then {ρ̂(θ), θ ∈ Γ} is a parametric family of states in Ĥ, X̂ is an observable in Ĥ and

equations (4.1) and (4.4) imply that Tr ρ̂(θ)X̂ = f(θ). Furthermore

Var(X̂|θ) = Tr ρ̂(θ)(X̂ − f(θ))2

=
∑

s∈S

ϕ(s)2 Tr ρ(θ)T (s) − f(θ)2

= Var(L, ϕ|θ).

Thus X̂ is an unbiased estimator of f with respect to {ρ̂(θ), θ ∈ Γ} with the same

variance as the unbiased estimator (L, ϕ) based on generalized measurement for the

original family of states.

If F is a Fisher map for {ρ(θ), θ ∈ Γ} then F̂ defined by

F̂ (θ) =

[
F (θ) 0

0 0

]
, θ ∈ Γ

is a Fisher map for {ρ̂(θ), θ ∈ Γ} in Ĥ. If Î is the Fisher information form for {ρ̂(θ), θ ∈ Γ}

we have

Î(F̂1, F̂2)(θ) = I(F1, F2)(θ).

Thus from Theorem 3.1 we conclude the following theorem.

Theorem 4.1. Let {ρ(θ), θ ∈ Γ} be a parametric family of states of a finite level quantum

system in a Hilbert space H and let (L, ϕ) be any unbiased estimator of a real-valued

parametric function f based on a generalized measurement L and a real scalar function

ϕ on the set of values of the measurement. Suppose Fj , 1 6 j 6 n are Fisher maps for

{ρ(θ), θ ∈ Γ}. Then

Var ((L, ϕ)|θ) > (λ(f, F1), λ(f, F2), . . . , λ(f, Fn))

I−
n (λ(f, F1), λ(f, F2), . . . , λ(f, Fn))′ (θ)

where λ is the CRB tensor and I−
n is the generalized inverse of the information matrix

In = ((I(Fi, Fj) )) , i, j ∈ {1, 2, . . . , n}.

Proof. Immediate.
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We shall briefly consider the case of estimating many parametric functions fi(θ), 1 6

i 6 m. In order to estimate them it appears that several generalized measurements are

to be made. Such measurements have to be made in succession. As directed in Section

2 we may treat them all as a single compound generalized measurement L = (L, S). Let

(L, ϕi) be an unbiased estimator of fi for each i. Thus the measurement L is carried out

and if the outcome is s ∈ S then ϕi(s) is the estimate of fi(θ). The probability for the

outcome s is Tr ρ(θ)L(s)†L(s). Thus the covariance matrix of the different estimators is

given by

Cov (L, ϕ1, ϕ2, . . . , ϕm|θ)

=

((
Tr ρ(θ)

∑

s∈S

ϕi(s)ϕj(s)L(s)†L(s) − fi(θ)fj(θ)

))
,

i.j ∈ {1, 2, . . . , m}. (4.5)

As in the discussion preceding Theorem 4.1 we can construct the Naimark dilation

{E(s), s ∈ S} for the positive operator-valued distribution {L(s)†L(s), s ∈ S} in an

enlarged Hilbert space and view the covariance matrix (4.5) as

Cov
(
X̂1, X̂2, . . . , X̂m|θ

)

for the observables X̂i,=
∑
s

ϕi(s)E(s) with respect to the states ρ̂(θ). This at once leads

us to the CRB matrix inequality

Cov (L, ϕ1, ϕ2, . . . , ϕm|θ) > ((λ(fi, Fj)))
((
I−

n (Fp, Fq)
))

((λ(fi, Fj)))
′ (θ), 1 6 i 6 m; j, p, q ∈ {1, 2, . . . , n}.

for any set {Fj , 1 6 j 6 n} of Fisher maps, λ being the CRB tensor, ((In(Fi, Fj)))

the Fisher information matrix with respect to {Fj, 1 6 j 6 n} and the super index -

denoting generalized inverse.
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