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ESTIMATION OF PARAMETERS OF PARTIALLY SINUSOIDAL

FREQUENCY MODEL

SWAGATA NANDI1 AND DEBASIS KUNDU2

Abstract. In this paper, we propose a modification of the multiple sinusoidal model

such that periodic data observed with the presence of a trend component can be an-

alyzed. In particular, we work with a linear trend model. But it can be developed

similarly for the polynomial trend and the frequency model also. We consider the prob-

lem of estimation of frequency and amplitude parameters observed with a linear trend

and a stationary linear process. We apply the usual least squares method to the dif-

ferenced data. It has been proved that the proposed estimators are strongly consistent

and asymptotically normally distributed. Extensive simulations have been reported to

justify the suitability of the model and the proposed method. One real dataset, the

monthly airline passenger data, has been analyzed using the model.

1. Introduction

The sinusoidal frequency model embedded in noise is an extensively important model

because of its wide applicability in many areas of science and engineering. For around last

forty years, researchers have approached the model from different point of view mainly

motivated by real life problems. It has been observed in many applications that the data

exhibit the presence of a trend component as well as a combination of some periodic

components. The problem of analyzing such datasets leads to our present work. In this

paper, we consider the following model to capture the periodic phenomenon observed

with a linear trend;

y(t) = a + bt +

p∑

k=1

[Ak cos(ωkt) + Bk sin(ωkt)] + x(t), t = 1, . . . , n + 1. (1)
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Here y(t) is the response variable and we observe {y(t), t = 1, . . . , n + 1}. Here a

and b are unknown real numbers and parameters of the linear trend component. The

parameters of the sinusoidal frequency component are noted as follows; Ak, Bk ∈ R are

unknown amplitudes, ωk ∈ (0, π) are the unknown frequencies. The number of sinusoidal

components present is p and it is assumed to be known in advance. We have taken the

initial sample size as n + 1 instead of the usual convention as n. The reason behind this

assumption will be clear in section 2. The sequence of error random variables {x(t)}

satisfies the following assumption;

Assumption 1. The sequence of random variables {x(t)} has the following linear struc-

ture

x(t) =

∞∑

k=−∞
α(k)e(t − k), (2)

where {e(t)} is a sequence of independent and identically distributed (i.i.d.) random

variables with mean zero and finite variance σ2. The arbitrary real valued sequence

{α(k)} is absolutely summable, that is, it satisfies the following condition:

∞∑

k=−∞
|α(k)| < ∞. (3)

In model (1), if b is zero, it is nothing but the usual multiple sinusoidal model (Hannan

[2]); Walker [7]). A more general model than model (1) could include a polynomial of

degree q, where 2 < q << n instead of the linear part a+ bt. The proposed method (will

be discussed in section 2) is also applicable for such a general model, although the analysis

and notation become very messy. So the above model belongs to the class of partially

nonlinear models. The problem, we address here, is motivated by some real data, where

it is evident that a number of periodic components superimposed with a trend (linear)

component is present. With the aim of analyzing such datasets, we propose model (1)

in this article.
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Recently, partially nonlinear models were proposed by Li and Nie [5]. They studied

general nonlinear models under the assumption of i.i.d. errors and proposed a weighted

least squares approach applied to the differenced data. In Li and Nie [6], the approach is

based on profile nonlinear likelihood and linear approximation with local linear regres-

sion. We observe that model (1) does not satisfy all the regularity conditions required

in Li and Nie [5] and therefore their results can not be directly applied here.

The rest of the paper is organized as follows. We discuss about the estimation method

in section 2. The asymptotic properties are provided in section 3. In section 4, we present

the simulation results. For illustrative purposes, one real data set has been analyzed in

section 5 and we conclude the paper in section 6. All the proofs are provided in the

Appendix.

2. Estimating the Unknown Parameters

In this section, we discuss about the estimation procedure of the unknown parameters.

We basically consider the usual least squares estimation method applied to the differenced

observations. For simplicity, at this point we assume that p = 1, i.e. only one frequency

is present and we write the model as

y(t) = a + bt + A cos(ωt) + B sin(ωt) + x(t), t = 1, . . . , n + 1. (4)

We work with the first difference series, y(t + 1) − y(t) = z(t), say for t = 1, . . . n;

z(t) = y(t + 1) − y(t)

= b + A[cos(ωt + ω) − cos(ωt)] + B[sin(ωt + ω) − sin(ωt)] + x(t + 1) − x(t)

= b − 2A sin
(
ωt +

ω

2

)
sin
(ω

2

)
+ 2B cos

(
ωt +

ω

2

)
sin
(ω

2

)
+ xd(t)

= b − A sin(ω) sin(ωt) − 2A sin2

(ω

2

)
cos(ωt) + B sin(ω) cos(ωt)

−2B sin2

(ω

2

)
sin(ωt) + xd(t). (5)
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Here xd(t) = x(t + 1) − x(t) is the first difference of {x(t)} and satisfies Assumption 1,

because

xd(t) = x(t + 1) − x(t) =

∞∑

k=−∞
α(k)e(t + 1 − k) −

∞∑

k=−∞
α(k)e(t − k)

=
∞∑

k=−∞
(α(k + 1) − α(k)) e(t − k) =

∞∑

k=−∞
β(k)e(t − k),

where {α(k + 1) − α(k)} = {β(k)}. Then
∞∑

k=−∞
|β(k)| < ∞ and {β(k)} is absolutely

summable as {α(k)} is. The unknown a, being a constant in the original model (1) is

not going to contribute in the differenced series. As we work with the differenced series

z(t) instead of the original observations y(t)’s, we start with n + 1 observations instead

of n.

In matrix notation, equation (5) is written as;

Z = b1 + X(ω)D(ω)η + E, (6)

where Z = (z(1), z(2), . . . , z(n))T , 1 = (1, 1, . . . , 1)T , E = (xd(1), . . . , xd(n))T , η =

(A, B)T and

X(ω) =




cos(ω) sin(ω)
...

...

cos(nω) sin(nω)


 , D(ω) =



−2 sin2(ω

2
) sin(ω)

− sin(ω) −2 sin2(ω
2
)


 .

In equation (5), we take average over t and then for large n, it is approximated as

1

n

n∑

t=1

z(t) = b + O(n−1).

Thus for large n, we can estimate b as b̂ =
1

n

n∑

t=1

z(t), which is a consistent estimator of

b. Now, plugging b̂ in (6), we denote

Z∗ = Z − b̂1 = X(ω)D(ω)η + E. (7)

Then the LSEs of η and ω minimizes the residual sum of squares

Q(η, ω) = ETE = (Z∗ −X(ω)D(ω)η)T (Z∗ −X(ω)D(ω)η). (8)
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So for a given ω, the LSE of η, as a function of ω is

η̂(ω) =
[
D(ω)TX(ω)TX(ω)D(ω)

]−1

D(ω)TX(ω)TZ∗. (9)

Now using (9) in (8), we have

R(ω) = Q(η̂(ω), ω)

= Z∗T
(
I− X(ω)D(ω)

[
D(ω)TX(ω)TX(ω)D(ω)

]−1

D(ω)TX(ω)T
)

Z∗

= Z∗T (I −PXD(ω))Z∗, (say). (10)

The matrix PXD(ω) as a function of ω, is the projection matrix of X(ω)D(ω) and hence

is idempotent and symmetric. Therefore, R(ω) takes the form given in equation (10).

The LSE of ω, ω̂ is obtained by maximizing Z∗T
PXD(ω)Z∗ and then plugging in ω̂ into

(9), η is estimated as η̂(ω̂).

Remark 1. We note that for efficient estimation of the sinusoidal frequency parameters,

the maximization of Z∗T
PXD(ω)Z∗ works, which is based on the mean corrected first

differenced series. This is due to the reason that the rate of convergence of b̂ is o(n−1).

Remark 2. In Introduction, we have mentioned that the proposed method can be ex-

tended in the general model when the linear trend part is replaced by a higher degree

polynomial of unknown coefficients. Suppose we consider a model of p degree polynomial

superimposed with a single sinusoid. Then to define z∗(t), one is required to difference

the observed data p times. In such a scenario, ω can be obtained by maximizing a similar

criterion function as R(ω), defined in (10). Then the entries of D(ω) matrix will be more

complicated functions of ω.

3. Asymptotic Properties

In this section, we discuss about the theoretical properties of the LSEs of A, B and ω.

We denote θ = (A, B, ω) = (η, ω) and let θ0 be the true value of θ and θ̂ be the LSE of
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θ0. In the following, we state the consistency property of θ̂; the proof is provided in the

appendix.

Theorem 3.1. Let the true parameter vector θ0 = (A0, B0, ω0) be an interior point

of the parameter space (−∞,∞) × (−∞,∞) × (0, π) and A02

+ B02

> 0. If the error

random variables x(t) satisfy Assumption 1, then θ̂ is a strongly consistent estimator of

θ0.

Now we compute the asymptotic joint distribution of the LSE θ̂ of θ0. We use Q′(θ)

and Q′′(θ) to denote respectively the 1×3 vector of first derivatives and the 3×3 matrix

of second derivatives of Q(θ), defined in (8). Expanding Q′(θ̂) around the true parameter

value θ0, in a Taylor series, we obtain

Q′(θ̂) − Q′(θ0) = (θ̂ − θ0)Q′′(θ̄), (11)

where θ̄ is a point on the line joining the points θ̂ and θ0. Suppose DA is a 3×3 diagonal

matrix DA = diag{n−1/2, n−1/2, n−3/2}. The diagonal entries of DA correspond to the

rates of convergence of the LSEs of A, B and ω. Since Q′(θ̂) = 0, (11) can be written as

(θ̂ − θ0)DA
−1 = −

[
Q′(θ0)DA

] [
DAQ′′(θ̄)DA

]−1
, (12)

as
[
DAQ′′(θ̄)DA

]
is an invertible matrix a.e. for large n. Using Theorem 1, it follows that

θ̂ converges a.e. to θ0 and so θ̄ −→ θ0 a.e. Since each element of Q′′(θ) is a continuous

function of θ, we have

lim
n→∞

[DAQ′′(θ̄)DA] = lim
n→∞

[DAQ′′(θ0)DA] = Σ(θ0) (say). (13)
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The 1 × 3 random vector
[
Q′(θ0)DA

]
is




2√
n

∑n
t=1

xd(t)
[
2 sin2(ω0

2
) cos(ω0t) + sin(ω0) sin(ω0t)

]

2√
n

∑n
t=1

xd(t)
[
2 sin2(ω0

2
) sin(ω0t) − sin(ω0) cos(ω0t)

]

2

n
3

2

∑n
t=1

txd(t)
[
−2A0 sin2(ω0

2
) + B0 sin(ω0) sin(ω0t)+

A0 sin(ω0) cos(ω0t) + 2B0 sin2(ω0

2
) cos(ω0t)

]




,

where xd(t) = x(t + 1)− x(t) =
∞∑

k=−∞
β(k)e(t− k), β(k) = α(k + 1)− α(k) as defined in

section 2. Using a central limit theorem (see Fuller[1], page 251) for stochastic processes,

it follows that;

Q′(θ0)DA
d

−→ N3(0,G(θ0)),

as n → ∞. It can be shown that

Σ(θ0) = 2(1 − cos(ω0))




1 0 B0/2

0 1 −A0/2

B0/2 −A0/2 1

3
(A02

+ B02
)


 ,

and then the matrix G(θ0) takes the following form;

G(θ0) = 2σ2cβ(ω0)Σ(θ0)

with

cβ(ω) =

∣∣∣∣∣

∞∑

k=−∞
β(k)e−iωk

∣∣∣∣∣

2

. (14)

Therefore,

(θ̂ − θ0)DA
−1 d

−→ N3(0, Σ(θ0)
−1

G(θ0)Σ(θ0)
−1

), (15)

where

Σ(θ0)
−1

G(θ0)Σ(θ0)
−1

= 2σ2cβ(ω0)Σ(θ0)
−1

=
σ2cβ(ω0)

(1 − cos(ω0))(A02 + B02)



A02

+ 4B02
−3A0B0 −6B0

−3A0B0 4A02
+ B02

6A0

−6B0 6A0 12


 .
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Remark 3. We note that cβ(.) as a function of ω is related to the spectral density

function of the stationary linear process xd(t) =

∞∑

k=−∞
β(k)e(t−k). We write the spectrum

of {xd(t)} as fxd
(ω), then

σ2

2π
cβ(ω) = fxd

(ω).

Remark 4. We would like to compare the asymptotic variances of the LSEs of unknown

parameters of sinusoidal model observed in presence of a linear trend (model (4)) and

the asymptotic variances of LSEs of the same model when observed without any trend

component (i.e. a = b = 0 in model (4)). In the former case it is θ̂ considered in this

paper and we denote θ̂
∗

in the later case. Then Var(θ̂) =
cβ(ω0)

2(1 − cos(ω0))cα(ω0)
Var(θ̂

∗
),

asymptotically, where cα(ω) is the same function of ω defined in (14), using {α(k)}

instead of {β(k)}.

4. Multiple Sinusoids

In this section, we first provide the least squares method of estimation for the unknown

parameters of the model (1) and then provide the asymptotic properties of the LSEs.

Without loss of generality, we assume that

A0

1

2
+ B0

1

2
> A0

2

2
+ B0

2

2
> · · · > A0

p
2
+ B0

p
2

> 0. (16)

The method is basically the one discussed in section 2 applied sequentially. We take the

first difference and define z(t) = y(t + 1) − y(t). Following the same techniques as the

single component model (4), the matrix equation (6) takes the form

Z = b1 + Xp(ω)Dp(ω)ψ + E. (17)

The first difference vector Z, 1 and the error vector E are same as defined in section 2;

ω = (ω1, . . . , ωp), ψ = (η1, . . . ,ηp)
T , ηj = (Aj, Bj)

T and Xp(ω) and Dp(ω) take the
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following form;

Xp(ω) =
[
X(ω1) X(ω2) · · · X(ωp)

]
, Dp(ω) =




D(ω1) 0 · · · 0

0 D(ω2) · · · 0
...

...
...

...

0 0 · · · D(ωp)




.

The matrices X(ωj) and D(ωj) are same as those of X(ω) and D(ω), defined in section

2, replacing ω by ωj. We note that (17) can also be written as

Z = b1 +

p∑

j=1

X(ωj)D(ωj)ηj + E. (18)

We estimate b as before and obtain Z∗ = Z− b̂1. Then the LSEs of ω and η are obtained

by minimizing the residual sum of squares;

U(η,ω) =

(
Z∗ −

p∑

j=1

X(ωj)D(ωj)ηj

)T (
Z∗ −

p∑

j=1

X(ωj)D(ωj)ηj

)
. (19)

Let ψ0 and ω0 be the true values of ψ and ω respectively and ψ̂ and ω̂ denote the LSEs

of ψ0 and ω0 respectively. Then for a given ω, ψ̂ can be directly written from (17) as

ψ̂(ω) =
[
Dp(ω)TXp(ω)TXp(ω)Dp(ω)

]−1

Dp(ω)TXp(ω)TZ∗. (20)

Using the fact that X(ωj) and X(ωk), k 6= j, are orthogonal matrices, we have

1

n
D(ωj)

TX(ωj)
TX(ωk)D(ωk) = 0 for large n. Therefore, (20) reduces to

ψ̂(ω) =



η̂1(ω1)

...

η̂p(ωp)


 =




[
D(ω1)

TX(ω1)
TX(ω1)D(ω1)

]−1

D(ω1)
TX(ω1)

TZ∗

...[
D(ωp)

TX(ωp)
TX(ωp)D(ωp)

]−1

D(ωp)
TX(ωp)

TZ∗


 , (21)

which is the same as deduced in (9), using ηj and ωj instead of η and ω respectively.

Now plugging in ψ̂(ω) in (19), the residual sum of squares can be written as

S(ω) = U(η̂(ω), ω) =

[
Z∗ −

p∑

j=1

PXD(ωj) Z∗

]T [
Z∗ −

p∑

j=1

PXD(ωj) Z∗

]

= Z∗T
Z∗ −

p∑

j=1

Z∗T
PXD(ωj)Z

∗,

where PXD(ω) has been defined in section 2. Then LSE of ω1, ω2, . . . and ωp are computed

by maximizing Z∗T
PXD(ωj)Z

∗ sequentially.
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Now we discuss the theoretical properties of the LSEs of the unknown parameters ψ

and ω. We write ξ = (θ1, . . . , θp). θj = (Aj, Bj , ωj). The least squares estimators

of the parameters are obtained by minimizing the objective function, U(ξ) = U(η,ω),

defined in (19). Let ξ̂ and ξ0 denote the least squares estimator and the true value of

ξ. The consistency of ξ̂ follows as did the consistency of θ̂ in section 3, considering the

parameter vector ξ. We state the asymptotic distribution of ξ̂. The proof involves use of

multiple Taylor series expansion and routine calculations along the same line provided

in section 3.

We define a diagonal matrix DAp of order 3p corresponding to the rates of convergences

of ξ̂;

DAp =




DA 0 · · · 0

0 DA · · · 0
...

...
...

...

0 0 · · · DA




,

where DA is defined in section 3. Then under Assumption 1 and condition (16), as

n → ∞

(ξ̂ − ξ0)Dp
−1 d

−→ N3p

(
0,Γ(ξ0)

−1

H(ξ0)Γ(ξ0)
−1
)

. (22)

The 3p × 3p matrices Γ(ξ0) and H(ξ0) take the following forms;

Γ(ξ) =




Σ(θ1) 0 · · · 0

0 Σ(θ2) · · · 0
...

...
...

...

0 0 · · · Σ(θp)




, H(ξ) =




cβ(ω1)Σ(θ1) 0 · · · 0

0 cβ(ω2)Σ(θ2) · · · 0
...

...
...

...

0 0 · · · cβ(ωp)Σ(θp)




.

The matrix Σ(.) and cβ(.) as functions of ω have been defined in previous section. Then

(22) reduces to

(θ̂k − θ
0

k)DA
−1 d

−→ N3

(
0, 2σ2cβ(ω0

j )Σ(θ0

k)
−1
)

,

and θ̂k and θ̂j, j 6= k are asymptotically independently distributed.
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5. Numerical Experiment

In this section, we present the numerical experiment results based on simulation in-

volving synthesized data vector. We consider model (1) with p = 1 (Model 1) and p = 2

(Model 2). Data are generated using the following true parameter values:

Model 1: a = 3.0, b = .8, A1 = 1, B1 = 1, ω1 = 2.5.

Model 2: a = 3.0, b = .8, A1 = 2, B1 = 2, ω1 = .5, A2 = 1, B2 = 1,

ω2 = 2.5.

The sequence of noise random variables {x(t)} is an moving average process of order one

such that

x(t) = ǫ(t − 1) + .75 ǫ(t), ǫ(t) ∼ N (0, σ2).

The parameter values in case of Model 2 are selected according to condition (16). We

have reported the results for different values of the error variance σ2 = .5, 1.0, 1.5

and 2.0 and two sample sizes n = 50 and 100. To begin with, we have generated a

sample of size (n + 1) with a predefined set of model parameters as mentioned above.

As we are mainly interested in estimating the parameters of the periodic component, we

remove the trend part a + bt by considering the mean-corrected first order differenced

series Z∗, as described in section 2. Then we estimate the non-linear parameter (ω1 in

case of Model 1) by minimizing R(ω), defined in (10) or by maximizing Z∗TPXD(ω)Z∗

with respect to ω. Once we have the estimate of the non-linear parameter ω, the linear

parameters A and B are estimated according to (9). In section 3, we have developed

the joint asymptotic distribution of the LSEs of the unknown parameters of the periodic

component, which can be used to obtain approximate confidence bounds of the LSE of

each parameter. Therefore, we use (15) to obtain approximate confidence bounds of each

parameter. In case of Model 2, we have to use the sequential estimation technique as

described in section 4. As A2

1
+ B2

1
> A2

2
+ B2

2
, we first estimate ω1 exactly in the same



12 SWAGATA NANDI
1

AND DEBASIS KUNDU
2

way as described in case of Model 1. Then we remove the effect of the first component

from the mean corrected first order differenced observations and again we apply the same

procedure step by step on the remaining quantity to estimate the LSEs of the second

component. We replicate the complete procedure for 1000 times in case of both Model 1

and Model 2 and in each case we estimate the average estimate (AVEST) and the mean

squared error (MSE). Now we would like to compute the confidence intervals for different

parameter estimators and then it is required to estimate σ2 as well as cβ(ω). Although,

we can not estimate them separately, it is possible to estimate σ2cβ(ω), which is actually

needed to estimate the confidence intervals. It can be shown that

σ2cβ(ω) = E


 1

n

∣∣∣∣∣

n∑

t=1

xd(t)e
−iωt

∣∣∣∣∣

2

 ,

that is, the expected value of the periodogram function (defined in section 6) of xd(t),

the error random variables present in z∗(t), at the respective frequency. For numerical

calculations, we use the method of averaging the periodogram of the estimated noise over

a window (−L, L). We have reported results with L = 10 . Now we estimate the 95%

coverage probability (COVP) by calculating the proportion covering the true parameter

value in case of each parameter estimate and the average length of the confidence intervals

(AVLEN) for each parameter estimator over these 1000 replications. We also report the

asymptotic variance (ASYMV) and the expected length of interval (EXPLEN) at 95%

nominal level to compare the MSE and AVLEN for each parameter estimators of the

experiment considered here .

We observe that average estimates are quite good. This is reflected in the fact that

the average biases are small in absolute value. The MSEs are reasonably small and quite

close to the asymptotic variances. According to the asymptotic distributions of LSEs,

the non-linear parameters ω’s have faster rate of convergence than the linear parameters,

which is clearly observed in simulation results. Following it, the MSEs are in decreasing

order of (A, B), ω. Similar findings are found in average lengths of confidence intervals.
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Table 1. The average estimates, mean squared errors, asymptotic vari-

ances, average and expected lengths of the confidence intervals and cover-

age probabilities of the LSEs of parameters of Model 1 when the sample

size n + 1 = 51.

σ2 ↓ AVEST MSE ASYMV AVLEN EXPLEN COV

.5

A .993687 2.23006e-2 1.49600e-2 .544393 .479460 .923

B .995867 1.80843e-2 1.49600e-2 .542833 .479460 .946

ω 2.500097 1.86690e-5 1.38040e-5 1.65696e-2 1.45642e-2 .936

1.0

A .989012 4.46874e-2 2.99201e-2 .768153 .678059 .921

B .990792 3.62924e-2 2.99201e-2 .765307 .678059 .945

ω 2.500134 3.77115e-5 2.76079e-5 2.34353e-2 2.05970e-2 .934

1.5

A .984408 6.71821e-2 4.48801e-2 .938760 .830449 .918

B .985632 5.46430e-2 4.48801e-2 .934788 .830449 .944

ω 2.500175 5.71561e-5 4.14119e-5 2.87032e-2 2.52260e-2 .932

2.0

A .979827 8.97619e-2 5.98402e-2 1.081784 .958920 .918

B .980374 7.32059e-2 5.98402e-2 1.076914 .958920 .943

ω 2.500205 7.70549e-5 5.52159e-5 3.31425e-2 2.91285e-2 .931

The average length is close to the expected length of the interval in case of each parameter

estimators. Moreover, the biases, MSEs and average lengths of intervals increase as the

error variance increases and they decrease as the sample size increases for all parameter

estimates. The coverage probabilities are quite close to the nominal level in case of Model

1. In case of Model 2, when the sample size is 51, the coverage probabilities of LSEs,

specifically for linear parameters in some occasions, are not that good. However, this is

not observed if the sample size increases to 101. Therefore, the numerical experiment

conducted here, suggests that the asymptotic results can be used in small and moderate

size samples.

6. Data Analysis

In this section, we present the analysis of a classical real data. The data represent the

monthly international airline passengers during January 1953 to December 1960 and are

collected from the Time Series Data Library of Hyndman[3]. The data is plotted in Figure
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Table 2. The average estimates, mean squared errors, asymptotic vari-

ances, average and expected lengths of the confidence intervals and cover-

age probabilities of the LSEs of parameters of Model 1 when the sample

size n + 1 = 101.

σ2 ↓ AVEST MSE ASYMV AVLEN EXPLEN COV

0.5

A .997993 9.78627e-3 7.55408e-3 .364015 .340704 .928

B .997368 8.61015e-3 7.55408e-3 .364095 0.340704 .940

ω 2.500019 2.13123e-6 1.77726e-6 5.59446e-3 5.22590e-3 .936

1.0

A .996272 1.96033e-2 1.51082e-2 .514085 .481828 .928

B .994929 1.72620e-2 1.51082e-2 .514281 .481828 .941

ω 2.500020 4.28425e-6 3.55451e-6 7.91345e-3 7.39054e-3 .936

1.5

A .994496 2.94643e-2 2.26622e-2 .628811 .590116 .926

B .992572 2.59580e-2 2.26622e-2 .629101 .590116 .941

ω 2.500028 6.46187e-6 5.33177e-6 9.69365e-3 9.05153e-3 .936

2.0

A .992694 3.93894e-2 3.02163e-2 .725188 .681408 .925

B .990215 3.47182e-2 3.02163e-2 .725569 .681408 .941

ω 2.500034 8.67335e-6 7.10902e-6 1.11949e-2 1.04518e-2 .935

Table 3. The average estimates, mean squared errors, asymptotic vari-

ances, average and expected lengths of the confidence intervals and cover-

age probabilities of the LSEs of parameters of Model 2 when the sample

size n + 1 = 51 and the error variance σ2 = 0.5 & 1.0.

σ2 ↓ AVEST MSE ASYMV AVLEN EXPLEN COV

0.5

A1 1.017310 2.20221e-2 1.49600e-2 .536868 .479460 .913

B1 .978581 1.90324e-2 1.49600e-2 .548365 .479460 .945

ω1 2.499309 1.87460e-5 1.38040e-5 1.64852e-2 1.45642e-2 .932

A2 1.993197 .171865 .185048 1.94738 1.68627 .971

B2 1.964031 .183684 .185048 1.96977 1.68627 .970

ω2 .499926 4.75845e-5 4.26869e-5 2.98993e-2 2.56114e-2 .958

1.0

A1 1.012461 4.37051e-2 2.99201e-2 .757671 .678059 .913

B1 .973674 3.78916e-2 2.99201e-2 .772731 .678059 .944

ω1 2.499351 3.73501e-5 2.76079e-5 2.33127e-2 2.05970e-2 .932

A2 1.975675 .340850 .370095 2.736113 2.384749 .970

B2 1.942525 .367370 .370095 2.775661 2.384749 .968

ω2 .499966 9.46144e-5 8.53737e-5 4.21998e-2 3.62200e-2 .957
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Table 4. The average estimates, mean squared errors, asymptotic vari-

ances, average and expected lengths of the confidence intervals and cover-

age probabilities of the LSEs of parameters of Model 2 when the sample

size n + 1 = 51 and the error variance σ2 = 1.5 & 2.0.

σ2 ↓ AVEST MSE ASYMV AVLEN EXPLEN COV

1.5

A1 1.007751 6.55065e-2 4.48801e-2 .926239 .830449 .911

B1 .968628 5.68631e-2 4.48801e-2 .943545 .830449 .944

ω1 2.499388 5.633889e-5 4.14119e-5 2.85530e-2 2.52260e-2 .932

A2 1.957266 .509014 .555143 3.335896 2.920709 .971

B2 1.922550 .549989 .555143 3.389328 2.920709 .967

ω2 .500018 1.41471e-4 1.28061e-4 5.15889e-2 4.43602e-2 .957

2.0

A1 1.002998 8.74218e-2 5.98402e-2 1.067751 .958920 .910

B1 .963560 7.59975e-2 5.98401e-2 1.086628 .958920 .942

ω1 2.499417 7.57711e-5 5.52159e-5 3.29702e-2 2.91285e-2 .932

A2 1.938177 .678415 .740190 3.839300 3.372545 .970

B2 1.902366 .735248 .740190 3.904061 3.372545 .965

ω2 .500091 1.90176e-4 1.70747e-4 5.94594e-2 5.12228e-2 .957

Table 5. The average estimates, mean squared errors, asymptotic vari-

ances, average and expected lengths of the confidence intervals and cover-

age probabilities of the LSEs of parameters of Model 2 when the sample

size n + 1 = 101 and the error variance σ2 = 0.5 & 1.0.

σ2 ↓ AVEST MSE ASYMV AVLEN EXPLEN COV

0.5

A1 1.008961 9.77201e-3 7.55408e-3 .362109 .340704 .922

B1 .991908 8.759064e-3 7.554083e-3 .365729 .340704 .941

ω1 2.499879 2.11115e-6 1.77726e-6 5.57687e-3 5.22590e-3 .940

A2 1.991753 7.71350e-2 9.34398e-2 1.156615 1.198263 .948

B2 1.993350 8.08795e-2 9.34398e-2 1.157121 1.198263 .945

ω2 .500009 4.98537e-6 5.49592e-6 8.88821e-3 9.18981e-3 .943

1.0

A1 1.00721 1.94695e-2 1.51082e-2 .511389 .481828 .923

B1 .989493 1.75315e-2 1.51082e-2 .516527 .481828 .940

ω1 2.499879 4.22751e-6 3.55451e-6 7.88806e-3 7.39054e-3 .938

A2 1.981957 .154165 .186880 1.631052 1.694600 .947

B2 1.987423 .161701 .186880 1.631096 1.694600 .944

ω2 .500029 9.98189e-6 1.09918e-5 1.25544e-2 1.29963e-2 .943
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Table 6. The average estimates, mean squared errors, asymptotic vari-

ances, average and expected lengths of the confidence intervals and cover-

age probabilities of the LSEs of parameters of Model 2 when the sample

size n + 1 = 101 and the error variance σ2 = 1.5 & 2.0.

σ2 ↓ AVEST MSE ASYMV AVLEN EXPLEN COV

1.5

A1 1.005392 2.92124e-2 2.26622e-2 .625545 .590116 .921

B1 .987164 2.63547e-2 2.26622e-2 .631792 .590116 .942

ω1 2.499884 6.37116e-6 5.33177e-6 9.66238e-3 9.05153e-3 .936

A2 1.972361 .231457 .280320 1.99293 2.075452 .946

B2 1.981038 .242808 .280320 1.992312 2.07545 .942

ω2 .500047 1.50249e-5 1.64878e-5 1.53623e-2 1.59172e-2 .942

2.0

A1 1.003557 3.90002e-2 3.02163e-2 .721470 .681408 .920

B1 .984851 3.52095e-2 3.02163e-2 .728625 .681408 .940

ω1 2.499895 8.53656e-6 7.10903e-6 1.11588e-2 1.04518e-2 .935

A2 1.962656 .309024 .373759 2.29668 2.39653 .945

B2 1.974593 .324063 .373760 2.29491 2.39653 .939

ω2 .500065 2.01116e-5 2.19837e-5 1.77249e-2 1.83796e-2 .941

1. We notice that the variance is not constant. In the aim of stabilizing the variance,

we apply the log transform to the data which is plotted in Figure 2. Now we observe

that the variance is approximately constant and a prominent linear trend is present with

several periodic components. Our aim is to estimate the periodic components. So we take

z∗(t), the mean corrected first difference series of the log transform data. We present

it in Figure 3. Now to estimate the frequency components, or more specifically, the

frequency parameters ω0

k and the linear parameters A0

k and B0

k, first we need to initialize

the frequencies. So we plot the periodogram function of z∗(t), t = 1, . . . n over a fine

grid of (0, π) in Figure 4 to estimate the number of frequencies present and their initial

estimates. The periodogram function is defined by

I(ω) =
1

n

∣∣∣∣∣

n∑

t=1

z∗(t)e−iωt

∣∣∣∣∣

2

.

The periodogram function is asymptotically equal to Z∗T
PXD(ω)Z∗. There are six peaks

corresponding to six dominating frequencies in the periodogram plot and we obtain the

initial estimates of ω1, ω2 . . . one by one using the sequential procedure. Once the six
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periodic components corresponding to six visible peaks are removed, we again study

the periodogram of the remaining series and there is still another significant frequency

present. So finally we have estimated p̂ as seven and plugging in the estimated param-

eters, we extracted the deterministic periodic signal. This fitted series is presented in

Figure 5 along with the mean corrected log difference data. They match quite well.
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Figure 5. The fitted values (green) along with the log difference data (red).

7. Conclusions

In this paper we have introduced a new model - the multiple frequency model observed

with a linear trend and second-order stationary errors. We have mentioned that a similar

method can be developed in case of a polynomial trend instead of a linear trend. We aim

to estimate the unknown parameters involved in the periodic components and are not

interested in estimating the trend part. We have used the usual least squares method

to estimate the parameters of interest. We have shown that the proposed estimators of

the frequency and the amplitude parameters are strongly consistent. The asymptotic

distribution has come out as multivariate normal under the assumption that the error

random variables satisfy the condition of a stationary linear process. We have conducted

extensive simulations based on synthesized data to check whether the asymptotic results

can be used for finite moderate size samples. A real dataset has been analyzed using the

model and outcome is quite satisfactory.
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Appendix

In the appendix, we provide the proof of the consistency result stated in Theorem 3.1.

The following two lemmas are required to prove Theorem 3.1.

Lemma 1. Let Sδ,M =
{
θ; θ = (A, B, ω), |θ− θ0| ≥ 3δ, |A| ≤ M, |B| ≤ M

}
. If for any

δ > 0 and for some M < ∞, lim inf
n→∞

inf
θ∈Sδ,M

1

n

[
Q(θ) − Q(θ0)

]
> 0 a.s., then θ̂ is a

strongly consistent estimator of θ0.

Lemma 2. Let {x(t)} be stationary sequence which satisfy Assumption 1, then

lim
n→∞

sup
ω

∣∣∣∣∣
1

n

n∑

t=1

x(t)eiωt

∣∣∣∣∣ = 0 a.s.

Lemma 3. Let {x(t)} be the same as in Lemma 2, then as n → ∞,

sup
ω

∣∣∣∣∣h(ω)
1

n

n∑

t=1

x(t)eiωt

∣∣∣∣∣→ 0 a.s.

where h(ω) = α sin(ω) or 2α sin2

(ω

2

)
with α = A or B.

Proof of Theorem 3.1: We note that using (5) and notation θ = (A, B, ω), Q(θ)

defined in equation (8), can be written as

Q(θ) =

n∑

t=1

[z∗(t) − c1(θ) sin(ωt) − c2(θ) cos(ωt)]2,
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where z∗(t) = z(t) − b̂, c1(θ) = −A sin(ω) − 2B sin2

(ω

2

)
and c2(θ) = B sin(ω) −

2A sin2

(ω

2

)
and b̂ is defined in section 2.

Now we write θ̂ as θ̂n to emphasize that θ̂ depends on n. If θ̂n is not a consistent

estimator of θ, then there exists a subsequence {nk} of {n} such that θ̂nk
does not

converge to θ.

Case I: Suppose |Ânk
| + |B̂nk

| is not bounded, then at least |Ânk
| or |B̂nk

| tends to ∞.

This implies that
1

nk
Q(θ̂nk

) → ∞. Since
1

nk
Q(θ0) < ∞,

1

nk
[Q(θ̂nk

)−Q(θ0)] → ∞. But

as θ̂nk
is the LSE of θ0, Q(θ̂nk

) − Q(θ0) < 0. This leads to a contradiction.

Case II: Suppose |Ânk
| + |B̂nk

| is bounded. Then if θ̂nk
is not a consistent estimator

of θ0, then for some δ > 0 and an 0 < M < ∞, there exists a set Sδ,M (as defined in

Lemma 1) such that θ̂nk
∈ Sδ,M . Now we write

1

n
[Q(θ) − Q(θ0)] =

1

n

n∑

t=1

[z∗(t) − c1(θ) sin(ωt) − c2(θ) cos(ωt)]2

= f(θ) + g(θ) (say),

where

f(θ) =
1

n

n∑

t=1

[
c1(θ

0) sin(ω0t) − c1(θ) sin(ωt) + c2(θ
0) cos(ω0t) − c2(θ) cos(ωt)

]2
,

g(θ) =
2

n

n∑

t=1

xd(t)
[
c1(θ

0) sin(ω0t) − c1(θ) sin(ωt) + c2(θ
0) cos(ω0t) − c2(θ) cos(ωt)

]
.

Note that xd(t) = x(t+1)−x(t) =

∞∑

k=−∞
β(k)e(t− k) where {β(k)} = {α(k +1)−α(k)}

are absolutely summable. Using Lemma 3, it follows that

lim
n→∞

sup
θ∈Sδ,M

g(θ) = 0 a.s. (23)
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Now we define the following sets

Sδ,M,1 =
{
θ : θ = (A, B, ω), |A − A0| ≥ δ, |A| ≤ M, |B| ≤ M

}
,

Sδ,M,2 =
{
θ : θ = (A, B, ω), |B − B0| ≥ δ, |A| ≤ M, |B| ≤ M

}
,

Sδ,M,3 =
{
θ : θ = (A, B, ω), |ω − ω0| ≥ δ, |A| ≤ M, |B| ≤ M

}
.

Then Sδ,M ⊂ (Sδ,M,1 ∪ Sδ,M,2 ∪ Sδ,M,3) = S (say). Hence,

lim inf
θ∈Sδ,M

1

n

[
Q(θ) − Q(θ0)

]
≥ lim inf

θ∈S

1

n

[
Q(θ) − Q(θ0)

]
. (24)

Now we have to show

lim inf
θ∈Sδ,M,j

1

n

[
Q(θ) − Q(θ0)

]
> 0 a.s. (25)

for j = 1, . . . 3 and then (24) leads to lim inf
θ∈Sδ,M

1

n

[
Q(θ) − Q(θ0)

]
> 0 a.s. Therefore,

using (23), the lemma is proved provided we show (25) for j = 1, . . . , 3. For j = 1,
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lim inf
θ∈Sδ,M,1

1

n
[Q(θ) − Q(θ0)] = lim inf

θ∈Sδ,M,1

f(θ)

= lim inf
|A−A0|>δ

1

n

n∑

t=1

[
c1(θ

0) sin(ω0t) − c1(θ) sin(ωt) + c2(θ
0) cos(ω0t) − c2(θ) cos(ωt)

]2

= lim inf
|A−A0|>δ

1

n

n∑

t=1

[
−

{
A0 sin(ω0) + 2B0 sin2(

ω0

2
)

}
sin(ω0t)

−
{
A sin(ω) + 2B sin2

(ω

2

)}
sin(ωt) +

{
B0 sin(ω0) − 2A0 sin2

(
ω0

2

)}
cos(ω0t)

−

{
B0 sin(ω) − 2A sin2

(
ω0

2

)}
cos(ωt)

]2

= lim
n→∞

inf
|A−A0|>δ

1

n

n∑

t=1

[
(A − A0)

{
sin(ω0) sin(ω0t) + 2 sin2

(
ω0

2

)
cos(ω0t)

}]2

= lim
n→∞

inf
|A−A0|>δ

(A − A0)2
1

n

n∑

t=1

{
sin(ω0) sin(ω0t) + 2 sin2

(
ω0

2

)
cos(ω0t)

}2

≥ δ2 lim
n→∞

1

n

n∑

t=1

[
sin2(ω0) sin2(ω0t) + 4 sin4

(
ω0

2

)
cos2(ω0t)

]

=
δ2

2

[
sin2(ω0) + 4 sin4

(
ω0

2

)]
= δ2(1 − cos(ω0)) > 0 a.s. ∀ ω0 ∈ (0, π).

For other j, proceeding along the same line, we show (25) and that proves the theorem.
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