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Abstract We give elementary proofs of the fact that the Loewner matrices
[

f(pi)−f(pj)

pi−pj

]

corresponding to the function f(t) = tr on (0,∞) are positive semidefinite, condition-

ally negative definite, and conditionally positive definite, for r in [0, 1], [1, 2], and [2, 3],

respectively. We show that in contrast to the interval (0,∞) the Loewner matrices cor-

responding to an operator convex function on (−1, 1) need not be conditionally negative

definite.
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1 Introduction

This is a sequel to our paper [7] and it deals with two issues. Let p1, . . . , pn be distinct

positive numbers, and for r > 0 let Lr be the n × n matrix

Lr =

[
pr

i − pr
j

pi − pj

]
. (1.1)

Here [aij ] stands for the matrix whose (i, j) entry is aij , and it is understood that when

i = j the quotient in (1.1) means the limiting value rpr−1
i . We call Lr a Loewner matrix

associated with the function f(t) = tr.

Since Loewner’s seminal paper [10] in 1934 it has been known that when 0 < r ≦ 1

the matrices Lr are positive semidefinite (p.s.d. for short). The proof most often given

follows Loewner’s arguments. First one proves that a function f from any interval I into

R is operator monotone (see [3, Chapter 5] for definitions) if and only if the associated

Loewner matrices

Lf =

[
f(pi) − f(pj)

pi − pj

]
(1.2)

are p.s.d. for all choices of points p1, . . . , pn in I. Then one proves that the function

f(t) = tr on (0,∞) is operator monotone. This latter statement is a consequence of

another theorem of Loewner: f is operator monotone on I if and only if it has an

analytic continuation that maps the upper half plane into itself. A direct and ingenious

proof of the operator monotonicity of f(t) = tr for 0 < r ≦ 1 was also given by Pedersen

[11].

A different approach was adopted by Bhatia and Parthasarathy [6]. If there exists a

nonsingular matrix X such that B = X∗AX, then B is said to be congruent to A. In [6]

the authors showed that the matrix Lr is congruent to a matrix of the form

[
sinh r(xi − xj)

sinh (xi − xj)

]
. (1.3)

If 0 < r ≦ 1 this matrix is positive definite since the function sinh(rx)/ sinh x is positive

definite. Since congruence preserves the p.s.d. property it follows that for 0 < r ≦ 1 the

matrix Lr is p.s.d.

In our paper [7] we began with the well-known representation

tr =

∫
∞

0

t

λ + t
dµ(λ), 0 < r < 1, (1.4)
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where dµ(λ) =
sin rπ

π
λr−1 dλ. Then we observed that a rather simple argument shows

that the Loewner matrices associated with the function

hλ(t) =
t

λ + t
, λ > 0 (1.5)

on (0,∞) are p.s.d. It follows that the matrices Lr for 0 < r ≦ 1 are p.s.d.

We used a similar argument to show that when 1 ≦ r ≦ 2, the matrices Lr are

conditionally negative definite (c.n.d.), and when 2 ≦ r ≦ 3, they are conditionally

positive definite (c.p.d.). (The definitions are given in Section 2.)

In the first part of this paper we derive these properties of the matrices Lr by com-

pletely elementary arguments. We use just two well-known facts: the Cauchy matrix

C =

[
1

pi + pj

]
(1.6)

is p.s.d. for any n positive numbers p1, . . . , pn; and the Hadamard (entrywise) product

of two p.s.d. matrices is also p.s.d. Our argument consists of combining these two facts

with induction and is reminiscent of Pedersen’s argument mentioned earlier.

The second part of the paper is concerned with a slightly different issue. From results

known earlier and from our work in [7] we know that if f is a function from (0,∞) into

itself, then the Loewner matrices Lf are

(i) p.s.d. if f is operator monotone,

(ii) c.n.d if f is operator convex,

(iii) c.p.d. if f(t) = tg(t) for an operator convex function g.

What happens if f is a real valued function on any open interval I? The statements

(i) and (iii) remain true: the first is included in Loewner’s original theorem, and the

third was proved by R. Horn [8]. However (ii) does not remain true in this case. Our

elementary argument is helpful in proving these statements too.

2 The matrices Lr

Let Hn be the subspace of Cn consisting of all x = (x1, . . . , xn) for which
n∑

i=1

xi = 0. An

n×n Hermitian matrix A is said to be c.p.d. if 〈x, Ax〉 ≧ 0 for all x ∈ Hn, and it is said

to be c.n.d. if −A is c.p.d. Every p.s.d. matrix is obviously c.p.d. We denote by E the

matrix with all entries equal to one. Then Ex = 0 for all x ∈ Hn. So E is both c.p.d.

and c.n.d.
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We consider the matrices Lr defined in (1.1) when r is in one of the intervals

[0, 1], [1, 2], and [2, 3], and show that these matrices are, respectively, p.s.d., c.n.d., and

c.p.d.

To show that Lr is p.s.d. for all r in [0, 1] it is enough to prove this for all dyadic

rationals r = (2k + 1)/2m, m = 1, 2, . . . , and 0 ≦ k ≦ 2m−1 − 1. Replacing p by p1/2m

,

we see that for such an r, the matrix Lr is of the form

Lr =

[
p2k+1

i − p2k+1
j

p2m

i − p2m

j

]
. (2.1)

For brevity, for any two positive integers k, m let

L(k; m) =

[
pk

i − pk
j

pm
i − pm

j

]
.

We wish to show that all matrices

L(2k + 1; 2m), m = 1, 2, . . . , 0 ≦ k ≦ 2m−1 − 1

are p.s.d. We prove this by induction on m. When m = 1, we have to consider only the

case k = 0. In this case

L(2k + 1; 2m) = L(1; 2) =

[
1

pi + pj

]
.

This is a Cauchy matrix and is p.s.d. To see what happens in the induction step it is

instructive to consider the cases m = 2 and m = 3. When m = 2 we have two matrices

L(1; 4) and L(3; 4) that are claimed to be p.s.d. The first

L(1; 4) =

[
1

p2
i + p2

j

]
◦

[
pi + pj

p2
i − p2

j

]
=

[
1

p2
i + p2

j

]
◦

[
1

pi + pj

]

is the Hadamard product of two Cauchy matrices and is p.s.d. One also sees that

L(3; 4) =

[
pi − pj

p2
i − p2

j

]
+

[
pipj

p2
i + p2

j

]
◦

[
pi − pj

p2
i − p2

j

]

=

[
1

pi + pj

]
+

[
pipj

(pi + pj)(p2
i + p2

j )

]
.

The first matrix on the right hand side is again a Cauchy matrix, and the second is of the

form DXD where D = diag (p1, . . . , pn) and X is the Hadamard product of two Cauchy
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matrices. Hence L(3; 4) is also p.s.d. When m = 3, we have to consider four matrices

corresponding to k = 0, 1, 2, 3. The first two are

L(1; 8) =

[
1

p4
i + p4

j

]
◦

[
pi − pj

p4
i − p4

j

]

L(3; 8) =

[
1

p4
i + p4

j

]
◦

[
p3

i − p3
j

p4
i − p4

j

]
.

The first factor of each is a Cauchy matrix, and the second has been shown to be p.s.d.

while considering the case m = 2. So these products are p.s.d. The remaining two

matrices are

L(5; 8) =

[
pi − pj

p4
i − p4

j

]
+

[
pipj

p4
i + p4

j

]
◦

[
p3

i − p3
j

p4
i − p4

j

]
,

and

L(7; 8) =

[
p3

i − p3
j

p4
i − p4

j

]
+

[
p3

i p
3
j

p4
i + p4

j

]
◦

[
pi − pj

p4
i − p4

j

]
.

Both these are p.s.d. by the arguments given earlier.

Now assume that our claim has been proved for the indices 1, 2, . . . , m−1. The matrix

L(2k + 1; 2m) can be factored as

L(2k + 1; 2m) =

[
1

p2m−1

i + p2m−1

j

]
◦

[
p2k+1

i − p2k+1
j

p2m−1

i − p2m−1

j

]
. (2.2)

The first factor is a Cauchy matrix and is p.s.d. If 0 ≦ k ≦ 2m−2 − 1, then the second

factor is p.s.d. by the induction hypothesis. Hence the matrix (2.2) is p.s.d. If 2m−2 ≦

k ≦ 2m−1 − 1, we use the identity

a2k+1 − b2k+1

a2m − b2m =
a2k+1−2m−1

− b2k+1−2m−1

a2m−1 − b2m−1

+
a2k+1−2m−1

b2k+1−2m−1

a2m−1 + b2m−1

a2m
−(2k+1) − b2m

−(2k+1)

a2m−1 − b2m−1
,

to express L(2k + 1; 2m) as a sum of matrices each of which is p.s.d. by the induction

hypothesis.

We have shown that the matrix Lr is p.s.d. for 0 ≦ r ≦ 1. Now we show that this

matrix is c.n.d. for 1 ≦ r ≦ 2. For this it is enough to show that for m = 1, 2, . . . , and

0 ≦ k ≦ 2m−1 − 1, the matrix

L(2m + 2k + 1; 2m)
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is c.n.d. Let us begin with the case m = 1 and k = 0. Using the identity

a3 − b3

a2 − b2
= a + b − ab

a − b

a2 − b2

we see that

L(3; 2) = DE + ED − DL(1; 2)D,

where D = diag (p1, . . . , pn). Hence for x ∈ Hn

〈x, L(3; 2)x〉 = −〈x, DL(1; 2)Dx〉 ≦ 0,

and the matrix L(3; 2) is c.n.d.

This idea is the basis for the general case. Using the identity

a2m+(2k+1) − b2m+(2k+1)

a2m − b2m = a2k+1 + b2k+1

− a2k+1b2k+1 a2m
−(2k+1) − b2m

−(2k+1)

a2m − b2m ,

for 0 ≦ k ≦ 2m−1 − 1, we obtain

L(2m + 2k + 1; 2m) = D2k+1E + ED2k+1 − D2k+1L(2m − (2k + 1); 2m)D2k+1. (2.3)

The matrix D2k+1E + ED2k+1 is c.n.d. and the matrix

L(2m − (2k + 1); 2m) = L1−(2k+1)/2m

is p.s.d. Hence the matrix in (2.3) is c.n.d. This shows that the matrix Lr is c.n.d. for

1 ≦ r ≦ 2.

Finally, we come to the case 2 ≦ r ≦ 3. To show that Lr is c.p.d. for all such r we

do so for m = 1, 2, . . . , and for k satisfying 0 ≦ k ≦ 2m−1 − 1. Using the identity

a2m+1+(2k+1) − b2m+1+(2k+1)

a2m − b2m = a2m+2k+1 + b2m+2k+1

+ a2m

b2m a2k+1 − b2k+1

a2m − b2m ,

we obtain

L(2m+1 + 2k + 1; 2m) = D2m+2k+1E + ED2m+2k+1 + D2m

L(2k + 1; 2m)D2m

. (2.4)
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We leave it to the reader to check that the sum of the first two terms in (2.4) is a c.p.d.

matrix and the third term is a p.s.d matrix. As before, this shows that Lr is c.p.d. for

2 ≦ r ≦ 3.

In addition to the matrices Lr the matrices

Kr =

[
pr

i + pr
j

pi + pj

]
(2.5)

too have been of interest. It was shown by Kwong [9] that for 0 ≦ r ≦ 1 these matrices

are p.s.d. Different proofs of this fact have been given in [6] and [4], and in [5] it was

shown that these matrices are not just p.s.d., they are infinitely divisible. (A matrix [aij ]

with nonnegative entries is called infinitely divisible if for each α > 0 the matrix
[
aα

ij

]

is p.s.d.) In [7] we showed that for 1 ≦ r ≦ 3 the matrices Kr are c.n.d. Thus in this

respect the behaviour of the matrices Lr and Kr is different in the range 2 ≦ r ≦ 3. The

methods of this paper can be used to derive these results and may provide some further

understanding.

We will use a theorem of Bapat [1] saying that if [aij ] is a c.n.d. with positive entries,

then the matrix

[
1

aij

]
is infinitely divisible. We use the notation

K(l; m) =

[
pl

i + pl
j

pm
i + pm

j

]
(2.6)

where it is understood that p1, . . . , pn are given positive numbers and l, m are nonnegative

integers.

Using the identity

am+2 + bm+2

am+1 + bm+1
= a + b − ab

am + bm

am+1 + bm+1
,

one sees that

K(m + 2; m + 1) = DE + ED − DK(m; m + 1)D, (2.7)

where D = diag(p1, . . . , pn). So, if we know that K(m; m + 1) is p.s.d. then from the

identity (2.7) we can conclude that K(m + 2; m + 1) is c.n.d. Hence by Bapat’s theorem

K(m + 1; m + 2) is infinitely divisible.

The matrix K(0; 1) = 2C, where C is the Cauchy matrix. Thus K(0; 1) is infinitely

divisible and p.s.d. Applying the reasoning in the preceding paragraph we see recursively
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that all matrices K(m; m+1) are infinitely divisible. This, in turn, implies that for l < m

the matrix

K(l; m) = K(l; l + 1) ◦ K(l + 1; l + 2) ◦ · · · ◦ K(m − 1; m),

being a Hadamard product of infinitely divisible matrices, is infinitely divisible. So, if r

is a rational number in (0, 1) the matrix Kr is infinitely divisible, and taking limits we

see that this is so for all r in [0, 1].

Next, we have the identities

am+l + bm+l

am + bm
= al + bl − albl am−l + bm−l

am + bm
,

a2m+l + b2m+l

am + bm
= am+l + bm+l − ambm al + bl

am + bm
.

Using these we obtain

K(m + l; m) = DlE + EDl − DlK(m − l; m)Dl, (2.8)

K(2m + l; m) = Dm+lE + EDm+l − DmK(l; m)Dm. (2.9)

For l < m we know that the matrices K(l; m) and K(m− l; m) are p.s.d. It follows from

(2.8) and (2.9) that the matrices K(m+ l; m) and K(2m+ l; m) are c.n.d. This, in turn,

implies that Kr is c.n.d. for 1 ≦ r ≦ 3.

3 Operator convex functions on (−1, 1)

Let I = (−1, 1). In this section we consider operator convex functions on I. The best

known examples of such functions are

gλ(t) :=
t2

1 − λt
, |λ| ≦ 1. (3.1)

See [3, p. 134] or [2].

Theorem 3.1. Let gλ be the function in (3.1). Then for −1 < λ < 0 the Loewner

matrices Lgλ
are c.n.d., and for 0 < λ < 1 they are c.p.d.
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Proof. Let x1, . . . , xn be any points in I. Then

Lgλ
(x1, · · · , xn) =

[
x2

i /(1 − λxi) − x2
j/(1 − λxj)

xi − xj

]
. (3.2)

We have

1

a − b

(
a2

1 − λa
−

b2

1 − λb

)
=

1

a − b

a2 − b2 − λab(a − b)

(1 − λa)(1 − λb)

=
a + b − λab

(1 − λa)(1 − λb)

=
−1/λ {(1 − λa)(1 − λb) − 1}

(1 − λa)(1 − λb)

= −
1

λ
+

1/λ

(1 − λa)(1 − λb)
.

Thus the matrix (3.2) can be expressed as

Lgλ
(x1, . . . , xn) = −

1

λ
E +

1

λ
DλEDλ, (3.3)

where Dλ is the diagonal matrix with entries 1/(1 − λxi) on its diagonal. If x ∈ Hn,

then Ex = 0. The matrix DλEDλ is p.s.d. So it follows from (3.3) that Lgλ
is c.p.d. if

λ > 0 and c.n.d. if λ < 0. �

Remark. By a theorem of Bendat and Sherman [2], [3, Theorem V. 4.6] every

operator convex function f on I has a representation

f(t) = a + bt +

∫ 1

−1

t2

1 − λt
dµ(λ), (3.4)

where µ is a probability measure on [−1, 1]. Thus the functions gλ(t) are especially

important in the theory.

The next theorem is known; see Theorem 10 in [8]. The proof given here is different,

and in the spirit of our discussion.

Theorem 3.2. Let hλ(t) = tgλ(t) where gλ is the function in (3.1). Then every

Loewner matrix Lhλ
is c.p.d.
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Proof. Simple algebraic manipulations show that

1

a − b

(
a3

1 − λa
−

b3

1 − λb

)
=

(a + b)2 − ab − λab(a + b)

(1 − λa)(1 − λb)

= −
a + b

λ
−

1

λ2
+

1/λ2

(1 − λa)(1 − λb)
.

Using this one can see that

Lhλ
(x1, . . . , xn) = −

1

λ
(DE + ED) −

1

λ2
E +

1

λ2
DλEDλ, (3.5)

where D = diag(x1, . . . , xn) and Dλ = diag (1/(1 − λx1), . . . , 1/(1 − λxn)) . If x is any

element of Hn, then Ex = 0, and 〈x, (DE + ED)x〉 = 0. The matrix DλEDλ is p.s.d. It

follows that the matrix Lhλ
in (3.5) is c.p.d. �

From (3.4) it follows that if f(t) = tg(t) where g is operator convex on I, then f has

a representation

f(t) = at + bt2 +

∫ 1

−1

t3

1 − λt
dµ(λ). (3.6)

We have shown that for every such f the matrices Lf are c.p.d., a fact proved by Horn

[8] using completely different arguments.
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