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Abstract

We consider the problem of estimation of the parameters of the Marshall-Olkin Bivariate

Weibull distribution in the presence of random censoring. Since the maximum likelihood

estimators of the parameters can not be expressed in a closed form, we suggest an EM

algorithm to compute the same. Extensive simulations are done to conclude that the

estimators perform efficiently under random censoring.
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1 Introduction

Many a times the life/failure data of interest is bivariate in nature. Any study on twins or on

failure data recorded twice on the same system naturally leads to bivariate data. For example,

Houggard, Harvald and Holm (1992) studied data on lifelength of Danish twins and Lin, Sun

and Ying (1999) considered a data on patients of colon cancer where the paired data consists

of the time from treatment to recurrence of the cancer and the time from treatment to death.

Paired data could consist of blindness in the left/right eye, failure time of the left/right kidney

or age at death of parent/child in a genetic study. However, one or both components of the
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paired data could be subject to random censoring. It could arise because a parent and/or the

child might be alive till the end of the study and hence the failure time would be censored.

Weibull distribution is often used to model reliability/survival data. When one looks at

bivariate data it is natural to look at extensions of Weibull distribution to fit such data.

One such distribution is the Marshall-Olkin Bivariate Weibull (MOBW) distribution. It is

a generalisation of the Marshall-Olkin Bivariate Exponential (MOBE) distribution which was

introduced by Marshall and Olkin (1967). The motivation behind MOBE was the common

failure of components induced from Poisson shocks. Under MOBW the arrival of shocks is

governed by non homogeneous Poisson processes, each having power law intensity. MOBW is a

bivariate distribution which, like MOBE, has the absolutely continuous part and a singular part,

that is, the pair of random variables can be equal with positive probability. This distribution

fits a bivariate data set very well if it has unimodal marginal density function or has non

constant hazard function. Besides, it is often used to fit paired data in survival studies where

there is a possibility of simultaneous occurrence of both the events.

Meintanis (2007) considered soccer data from UEFA Champions League for the years 2004-

05 and 2005-06. Let X1 denote the time (in minutes) of the first kick goal (penalty kick,

foul kick, or other kick) scored by any team, and X2 denote the time of the first goal of any

type scored by the home team. The data consists of all three cases X1 < X2, X1 = X2, and

X1 > X2. Kundu and Dey (2009) showed that MOBW fits to the data. Meintanis (2007) also

studied the white blood cells (WBC) counts of 60 patients. Let X1 be the WBC count of a

patient before an operation, and X2 be the corresponding WBC at a specific time during or

after the operation. WBC count varies significantly during or after treatment as compared to

pre operation value. One could fit MOBW to this data.

Lu (1989,1992) considered Bayes estimators of the parameters of Weibull distribution.

Gupta and Kundu (2003) studied how to discriminate between Weibull and Generalised Ex-

ponential distributions. Hanagal (2005,2006) studied Bivariate Weibull regression model for

uncensored and censored data. Kundu and Dey (2009) studied an EM algorithm for comput-

ing the maximum likelihood estimators (M.L.E.’s) of the parameters of the bivariate Weibull

distribution in case of complete data, that is, data on all pairs of variables are available.

We study the M.L.E.’s of the parameters of Weibull distribution under random censoring. In

section 2, we state expressions for the joint density and survival function of MOBW distribution

for completeness and study the likelihood function of data coming from MOBW distribution

when it is subjected to random right censoring. In section 3, we suggest the use of an EM
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(conditional) algorithm for finding the M.L.E.’s of the parameters. In section 4, we carry out a

simulation study to see the performance of the proposed estimators. In section 5, we re-study

the soccer data analysed by Meintanis (2007) under random censoring. In the final section we

summarize our results and indicate directions for future work. The details of the likelihood

function and the Fisher information matrix are given in Appendices A and B, respectively.

2 Marshall-Olkin Bivariate Weibull Distribution

Consider a Weibull distribution (WE(α, θ)) with shape parameter α > 0 and scale parameter

θ > 0. The density function f, distribution function F and survival function S, are given by,

fWE(x;α, θ) = αθxα−1e−θxα

, SWE(x;α, θ) = 1 − FWE(x;α, θ) = e−θxα

, x > 0.

Suppose U0, U1, U2, respectively, are independent WE(α, λ0),WE(α, λ1),WE(α, λ2), random

variables. Let X1 = min(U0, U1) and X2 = min(U0, U2). Then (X1,X2) has MOBW distri-

bution with parameters α, λ0, λ1, λ2 and is expressed as MOBW(α, λ0, λ1, λ2). It should be

noted that the three random variables U0, U1, U2 have the common shape parameter. This

ensures that the marginal distributions of X1 and X2 are WE(α, λ0 +λ1) and WE(α, λ0 +λ2),

respectively. Further, the distribution of T = min(X1,X2) is WE(α, λ0 +λ1 +λ2). The ageing

properties of the Weibull distribution are characterised by the shape parameter, α < (=, >) 1,

respectively, indicating decreasing (constant and increasing failure) rate. The three random

variables U0, U1, U2 which denote lifetimes under three Weibull shock processes would have

failure rates all increasing, decreasing or constant. When α = 1, it reduces to MOBE dis-

tribution and is expressed as MOBE(λ0, λ1, λ2). We use λ = λ0 + λ1 + λ2 throughout the

manuscript.

The joint survival function of (X1,X2) is given as follows, where z = max(x, y),

S(x, y) =





SWE(x;α, λ1)SWE(y;α, λ0 + λ2) if x < y

SWE(x;α, λ0 + λ1)SWE(y;α, λ2) if x > y

SWE(x;α, λ) if x = y.
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The joint density function of (X1,X2) is given as

f(x, y) =





fWE(x;α, λ1)fWE(y;α, λ0 + λ2) if x < y

fWE(x;α, λ0 + λ1)fWE(y;α, λ2) if x > y

λ0
λ

fWE(x;α, λ) if x = y.

Following two expressions are required for writing the likelihood function.

∫
∞

y

f(x, u)du =





fWE(x;α, λ1)SWE(y;α, λ0 + λ2) if x < y

fWE(x;α, λ0 + λ1)[SWE(y;α, λ2) − SWE(x;α, λ2)] if x > y

fWE(x;α, λ1)SWE(x;α, λ0 + λ2) if x = y,

∫
∞

x

f(u, y)du =





fWE(y;α, λ0 + λ2)[SWE(x;α, λ1) − SWE(y;α, λ1)] if x < y

SWE(x;α, λ0 + λ1)fWE(y;α, λ2) if x > y

fWE(x;α, λ2)SWE(x;α, λ0 + λ1) if x = y.

The pair (X1,X2) is subject to random censoring by an independent pair of random variables

(Z1, Z2). We observe

T1 = min(X1, Z1) and δ1 = I(X1 < Z1),

T2 = min(X2, Z2) and δ2 = I(X2 < Z2),

where I(A) denotes the indicator function of set A.

The likelihood function, based on observed pairs (t1i, δ1i; t2i, δ2i), i = 1, 2, . . . , n is given by

L = L(α, λ0, λ1, λ2, t1i, δ1i; t2i, δ2i, i = 1, 2, . . . , n)

=

n∏

i=1

[f(t1i, t2i]
δ1iδ2i

[∫
∞

t2i

f(t1i, y)dy

]δ1i(1−δ2i)

×

[∫
∞

t1i

f(x, t2i)dx

](1−δ1i)δ2i

[S(t1i, t2i]
(1−δ1i)(1−δ2i).

Note that, when δ1 = δ2 = 1, both failure times are observed and the contribution to the

likelihood is f(t1, t2). When δ1 = 1 − δ2 = 1, the first component fails at t1 and the second

component is censored (lives beyond t2) and the contribution to the likelihood is
∫
∞

t2
f(t1, y)dy.

Similarly, when 1 − δ1 = δ2 = 1, the first component is censored and the second component
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fails and the contribution to the likelihood is
∫
∞

t1
f(x, t2)dx. Finally, when 1− δ1 = 1− δ2 = 1,

both failure times are censored and the contribution to the likelihood is S(t1, t2).

Let I0, I1, I2, denote the following sets

I0 = {i|t1i = t2i = ti}, I1 = {i|t1i < t2i}, I2 = {i|t1i > t2i}.

Let n0, n1, n2, respectively, denote the number of elements in the sets I0, I1, I2.

Then the likelihood function can be written as

L =
∏

i∈I0

L0(t1i, δ1i; t2i, δ2i)
∏

i∈I1

L1(t1i, δ1i; t2i, δ2i)
∏

i∈I2

L2(t1i, δ1i; t2i, δ2i),

where Lk(t1i, δ1i; t2i, δ2i) ≡ Lk(α, λ0, λ1, λ2, t1i, δ1i; t2i, δ2i) is the contribution from Ik to the

likelihood function, k = 0, 1, 2 and they are given in Appendix A explicitly. Define

n11 = number of pairs for which δ1 = δ2 = 1,

n10 = number of pairs for which δ1 = 1 − δ2 = 1,

n01 = number of pairs for which 1 − δ1 = δ2 = 1,

n00 = number of pairs for which 1 − δ1 = 1 − δ2 = 1,

then

n = n11 + n10 + n01 + n00,

n0 = n0
11 + n0

10 + n0
01 + n0

00,

n1 = n1
11 + n1

10 + n1
01 + n1

00,

n2 = n2
11 + n2

10 + n2
01 + n2

00,

where nk
ij denotes the number of individuals in Ik with δ1 = i, δ2 = j, i, j = 0, 1, k = 0, 1, 2;

nij =

2∑

k=0

nk
ij.

3 EM Algorithm under Random Censoring

The problem of finding M.L.E.’s of the unknown parameters of MOBW has been studied earlier,

when there is no censoring. Bemis, Bain and Higgins (1972) showed that when α = 1, that is,

underlying distribution is MOBE, the M.L.E.’s do not exist if one of ni = 0. If each one of

n0, n1, n2 > 0, then the M.L.E.’s of λ0, λ1, λ2 exist and can be obtained by solving three non
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linear equations. Kundu and Dey (2009) showed that M.L.E.’s of MOBW distribution exist

when n0, n1, n2 > 0. Maximising the likelihood with respect to α, λ0, λ1, λ2 is a non linear

optimisation problem. They have looked at the pseudo likelihood with information on ordering

of U0, U1, U2 missing. They used the EM (conditional) algorithm to compute the M.L.E.’s

. To the best of our knowledge, nobody has considered maximum likelihood estimation of

parameters of a bivariate distribution under random censoring.

Under random censoring, on the set I0, all the four parameters are identifiable. On the set

I1, we can identify α, λ0 + λ1, λ2, whereas on the set I2, we can identify α, λ1, λ0 + λ2.

Let γ denote the parameter vector (α, λ0, λ1, λ2)
T . It is easy to see that

P (U1 < U0 < U2) =
λ0λ1

(λ0 + λ2)λ
, P (U1 < U2 < U0) =

λ1λ2

(λ0 + λ2)λ
,

P (U2 < U0 < U1) =
λ0λ2

(λ0 + λ1)λ
, P (U2 < U1 < U0) =

λ1λ2

(λ0 + λ1)λ
.

Then

µ1(γ) = P (U1 < U0 < U2|X1 < X2) =
λ0

λ0 + λ2
,

µ2(γ) = P (U1 < U2 < U0|X1 < X2) =
λ2

λ0 + λ2
,

ν1(γ) = P (U2 < U0 < U1|X1 > X2) =
λ0

λ0 + λ1
,

ν2(γ) = P (U2 < U1 < U0|X1 > X2) =
λ1

λ0 + λ1
.

In order to identify all parameters uniquely, we write the ‘E’ step of the algorithm as

follows. We form a pseudo likelihood by replacing the log-likelihood contribution of the observed

(T1, δ1, T2, δ2) by its expected value.

The log-likelihood function of the ‘pseudo data’ has three parts corresponding to contribu-

tions from the sets I0, I1, I2.

The contribution to the pseudo log-likelihood from I0 is

∑

i∈I0

{
δ1iδ2i[log λ0 + log α + (α − 1) log ti − λtαi ]

+δ1i(1 − δ2i)[log λ1 + log α + (α − 1) log ti − λtαi ]

+ (1 − δ1i)δ2i[log λ2 + log α + (α − 1) log ti − λtαi ] + (1 − δ1i)(1 − δ2i)[−λtαi ]
}
.

The contribution to the pseudo log-likelihood from I1 is

∑

i∈I1

{
δ1iδ2i

(
µ1[log λ0 + log λ1 + 2 log α + (α − 1) log t1i + (α − 1) log t2i −
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λ1t
α
1i − (λ0 + λ2)t

α
2i] + µ2[log λ1 + log λ2 + 2 log α + (α − 1) log t1i +

(α − 1) log t2i − λ1t
α
1i − (λ0 + λ2)t

α
2i]

)

+ δ1i(1 − δ2i)
(
log λ1 + log α + (α − 1) log t1i − λ1t

α
1i − (λ0 + λ2)t

α
2i

)

+ (1 − δ1i)δ2i

(
µ1[log λ0 + log α + (α − 1) log t2i − (λ0 + λ2)t

α
2i +

log{e−λ1tα1i − e−λ1tα2i}] + µ2[log λ2 + log α + (α − 1) log t2i −

(λ0 + λ2)t
α
2i + log{e−λ1tα1i − e−λ1tα2i}]

)

+ (1 − δ1i)(1 − δ2i)[−λ1t
α
1i − (λ0 + λ2)t

α
2i]

}
.

Finally, the contribution to the pseudo log-likelihood from I2 is

∑

i∈I2

{
δ1iδ2i

(
ν1[log λ0 + log λ2 + 2 log α + (α − 1) log t1i + (α − 1) log t2i −

(λ0 + λ1)t
α
1i − λ2t

α
2i] + ν2[log λ1 + log λ2 + 2 log α + (α − 1) log t1i +

(α − 1) log t2i − (λ0 + λ1)t
α
1i − λ2t

α
2i]

)

+ (1 − δ1i)δ2i

(
log λ2 + log α + (α − 1) log t2i − (λ0 + λ1)t

α
1i − λ2t

α
2i

)

+ δ1i(1 − δ2i)
(
ν1[log λ0 + log α + (α − 1) log t1i − (λ0 + λ1)t

α
1i +

log{e−λ2tα2i − e−λ2tα1i}] + ν2[log λ1 + log α + (α − 1) log t1i −

(λ0 + λ1)t
α
1i + log{e−λ2tα2i − e−λ2tα1i}]

)

+ (1 − δ1i)(1 − δ2i)[−(λ0 + λ1)t
α
1i − λ2t

α
2i]

}
.

Let

N0 = n0
11 + µ1(n

1
11 + n1

01) + ν1(n
2
11 + n2

10),

N1 = n0
10 + n1

11 + n1
10 + ν2(n

2
11 + n2

10),

N2 = n0
01 + µ2(n

1
11 + n1

01) + n2
11 + n2

01,

N3 = n + n1
11 + n2

11 − n00. (1)

Hence, the pseudo log-likelihood is given by

N0 log λ0 + N1 log λ1 + N2 log λ2 + N3 log α

+(α − 1)
∑

i∈I0

[δ1iδ2i + (1 − δ1i)δ2i + δ1i(1 − δ2i)] log ti − λ
∑

i∈I0

tαi

+(α − 1)
∑

i∈I1

[δ1i log t1i + δ2i log t2i] + (α − 1)
∑

i∈I2

[δ1i log t1i + δ2i log t2i]
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−λ1

∑

i∈I1

[δ1iδ2i + δ1i(1 − δ2i) + (1 − δ1i)(1 − δ2i)]t
α
1i − (λ0 + λ2)

∑

i∈I1

tα2i

−(λ0 + λ1)
∑

i∈I2

tα1i − λ2

∑

i∈I2

[δ1iδ2i + (1 − δ1i)δ2i + (1 − δ1i)(1 − δ2i)]t
α
2i

+
∑

i∈I1

(1 − δ1i)δ2i log(exp(−λ1t
α
1i) − exp(−λ1t

α
2i))

+
∑

i∈I2

δ1i(1 − δ2i) log(exp(−λ2t
α
2i) − exp(−λ2t

α
1i)). (2)

The ‘M’ step involves in maximising the pseudo log-likelihood w.r.t. α, λ0, λ1, and λ2.

Let
∂ log L

∂α
= g1,

∂ log L

∂λ0
= g2,

∂ log L

∂λ1
= g3,

∂ log L

∂λ2
= g4,

where gi, i = 1, . . . , 4, defined in Appendix B, are first order derivatives of the pseudo log-

likelihood function.

Then, the M.L. equations are given by

gi = 0, i = 1, . . . , 4.

For fixed α, the maximum w.r.t. λ0 of the pseudo log-likelihood function can be obtained

from the M.L. equation of λ0 directly, whereas the M.L. equations of α, λ1 and λ2 are interre-

lated and can not be solved explicitly. In order to maximize the pseudo log-likelihood function

w.r.t. α, λ1 and λ2, we use a method suggested in Kundu and Gupta (2006). We will solve

three fixed point type equations iteratively.

gα(α, λ0, λ1, λ2) = α, (3)

gλ1(α, λ1) = λ1, (4)

gλ2(α, λ2) = λ2, (5)

where,

gα(α, λ0, λ1, λ2) =
N3

h1(α, λ0, λ1, λ2)
,

gλ1(α, λ1) =
N1

h2(α, λ1)
, gλ2(α, λ2) =

N2

h3(α, λ2)
,

where Ni, i = 1, 2, 3, are defined in equations (1) and h1(α, λ0, λ1, λ2), h2(α, λ1), and h3(α, λ2)

are given in Appendix B.

Hence, in order to solve fixed point equations (3)-(5), we start with an initial guess of the

parameter vector γ(0) = (α(0), λ
(0)
0 , λ

(0)
1 , λ

(0)
2 )T . Suppose at the ith step the estimates of the
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parameters α, λ0, λ1, and λ2 are α(i), λ
(i)
0 , λ

(i)
1 , and λ

(i)
2 , respectively. Then the (i + 1)th step of

the EM algorithm is obtained as follows

1. Compute µ1, µ2, ν1, ν2 using α(i), λ
(i)
0 , λ

(i)
1 , λ

(i)
2 .

2. For fixed λ
(i)
0 , λ

(i)
1 , λ

(i)
2 , find α(i+1) by solving the fixed point equation gα(α, λ

(i)
0 , λ

(i)
1 ,

λ
(i)
2 ) = α using the initial estimate as α(i).

3. Given α(i+1), compute λ
(i+1)
0 = N0




∑

i∈I0

tα
(i+1)

i +
∑

i∈I1

tα
(i+1)

2i +
∑

i∈I2

tα
(i+1)

1i



−1

.

4. For fixed α(i+1), starting with λ
(i)
1 , find λ

(i+1)
1 by solving gλ1(α

(i+1), λ1) = λ1 iteratively.

5. Find λ
(i+1)
2 , by solving gλ2(α

(i+1), λ2) = λ2 for fixed α(i+1), similarly as step 4.

6. Repeat steps 1-5 using α(i+1), λ
(i+1)
0 , λ

(i+1)
1 , λ

(i+1)
2 .

This version of the EM algorithm is called ECM (expectation-conditional maximization) al-

gorithm. Steps 1-5 describe one iteration of the algorithm and individual steps 2, 4, and 5

corresponds to fixed point iterations of α, λ1, and λ2 respectively. A stopping criterion is

indicated in the next section.

4 Numerical Experiments

In this section, we present results of numerical experiments to see how the proposed EM

algorithm performs for different sample sizes and different parameter values when a certain

percentage of data is randomly censored. For conducting the experiment, we assume that

the pair of censoring random variables (Z1, Z2) is distributed as MOBW with the same shape

parameter α as the original pair (X1,X2) and different scale parameters, say, λ∗

0, λ∗

1, and λ∗

2.

If (X1,X2) ∼ MOBW(α, λ0, λ1, λ2) and (Z1, Z2) ∼ MOBW(α, λ∗

0, λ
∗

1, λ
∗

2),

P (X1 > Z1) =
λ∗

0 + λ∗

1

λ0 + λ1 + λ∗

0 + λ∗

1

, and P (X2 > Z2) =
λ∗

0 + λ∗

2

λ0 + λ2 + λ∗

0 + λ∗

2

.

Since both pairs (X1,X2) and (Z1, Z2) have the same shape parameter, this ensures that the

percentage of censoring does not depend on α. The two probabilities are equal if λ1 = λ2 and

λ∗

1 = λ∗

2.

We replicate the experiment 5000 times. In Appendix B, we have provided the observed

Fisher information matrix and we have used it for interval estimation. This matrix has been

derived using the procedure given by Louis (1982).
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Table 1: Average estimates, mean squared errors, coverage probabilities and average lengths

of the confidence interval when α = .25

Sample Size → N = 50 N = 100

Parameter Censoring AVEST AVLEN AVEST AVLEN

(MSE) (COVP) (MSE) (COVP)

α

9%
.256187 8.50074e-2 .253493 5.87637e-2

(5.25098e-4) (.9386) (2.37826e-4) (.9364)

20%
.251962 8.60392e-2 .254354 5.98616e-2

(1.13729e-3) (.9014) (2.67290e-4) (.9114)

λ0

9%
1.040218 .747532 1.040594 .528609

(6.07387e-2) (.8840) (3.01952e-2) (.8874)

20%
.954804 .746050 .989496 .545141

(5.88477e-2) (.8740) (2.42145e-2) (.9132)

λ1

9%
1.126363 .907930 1.118709 .638749

(8.44284e-2) (.9218) (4.78498e-2) (.8962)

20%
1.126483 .939340 1.153017 .681842

(8.79527e-2) (.9316) (5.60403e-2) (.8922)

λ2

9%
1.113779 .899759 1.105677 .633200

(7.70360e-2) (.9290) (4.23663e-2) (.9174)

20%
1.130571 .940163 1.150479 .680465

(9.18659e-2) (.9326) (5.49980e-2) (.8964)

We have carried out the experiment for various choices of four parameters and the sample

size. However, only a few cases are reported for illustration. The average estimate, mean

squared error, average length of confidence intervals and coverage probability at 95% nominal

level are reported in Tables 1-2 for the case with fixed λ0 = λ1 = λ2 = 1.0 and varying shape

parameter α =0.25, 1.0 and sample size n = 50, 100. We have used (λ∗

0, λ
∗

1, λ
∗

2) = (.1, .1, .1) and

(.25, .25, .25), that is, the parameters of the censoring variables are also equal. In case of λ∗

0 =

λ∗

1 = λ∗

2 = .1, 9% data are censored, whereas 20% data are censored when λ∗

0 = λ∗

1 = λ∗

2 = .25.

In order to implement the proposed EM algorithm, we have used the initial estimates of α, λ0,

λ1 and λ2 as .5, .5, .5, and .5 in each case. We observe that the change of initial estimates gives

similar results. To solve any fixed point type equation in steps 2, 4 or 5, we stop the iteration

if |θi
k − θi

k−1| < 10−6, where θi
k stands for the kth fixed point iteration of α, λ1 or λ2 in overall

10



Table 2: Average estimates, mean squared errors, coverage probabilities and average lengths

of the confidence interval when α = 1.0

Sample Size → N = 50 N = 100

Parameter Censoring AVEST AVLEN AVEST AVLEN

(MSE) (COVP) (MSE) (COVP)

α

9%
1.024758 .339463 1.013977 .235242

(8.40164e-3) (.9386) (3.80584e-3) (.9364)

20%
1.017553 .346425 1.017394 .240189

(9.10435e-3) (.9098) (4.28030e-3) (.9120)

λ0

9%
1.040250 .747102 1.040692 .528677

(6.08027e-2) (.8836) (3.02421e-2) (.8872)

20%
.962852 .751932 .989177 .545180

(4.98865e-2) (.8826) (2.42485e-2) (.9132)

λ1

9%
1.126531 .907647 1.11869 .638820

(8.43788e-2) (.9220) (4.78454e-2) (.8962)

20%
1.137626 .947190 1.153074 .682229

(7.93969e-2) (.9402) (5.62133e-2) (.8918)

λ2

9%
1.113871 .899494 1.105683 .633325

(7.71294e-2) (.9286) (4.23678e-2) (.9174)

20%
1.141197 .948062 1.150473 .680898

(8.37064e-2) (.9408) (5.48781e-2) (.8970)

ith iteration. The algorithm stops if

|α(i+1) − α(i)| + |λ
(i+1)
0 − λ

(i)
0 | + |λ

(i+1)
1 − λ

(i)
1 | + |λ

(i+1)
2 − λ

(i)
2 | ≤ 10−5.

Some of the salient features of the numerical experiments based on Tables 1-2 are given below.

(i) We observe that the average estimators of all the four parameters α, λ0, λ1, λ2 are very

close to the true values for both choices of the shape parameter α. The estimators have a

positive bias in almost all cases. However, the estimator for λ0 has a negative bias in case of

20% censoring. The results are similar for sample sizes 50 and 100.

(ii) The mean square error of the estimators decreases with increase in sample size. The

value of α and the amount of censoring makes no visible change in its numerical value.

(iii) When n = 100 the average lengths of confidence intervals are smaller and the coverage

probabilities are slightly higher compared to the case when n = 50.
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Figure 2: Average Lengths of Confidence

intervals of M.L.E. of α.

Similarly when the amount of censoring increases the average length of confidence intervals

increases and coverage probability decreases. The coverage probabilities of confidence intervals

for all parameters are not influenced by values of α.

(iv) It should be noted that the case α = 1.0 refers to MOBE distribution.
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Figure 3: Average Estimators: λ1 = λ2 = α = 1.0 and λ2 = .25, .5, .75, 1.0

Some of the observations have been presented graphically in Figures 1 and 2.

A few other results of the numerical experiments are given in Figures 3-5. In all the cases

reported the values of α = λ1 = λ2 = 1.0 and that of λ0 varies from .25, .5, .75, and 1.0.
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The censoring distribution is MOBW (1.0, .25, .25, .25). Note that the percentage of censoring

changes with change in values of λ0. Hence the different values of λ0 indicate different levels of

censoring. Rsults for sample sizes n = 25, 50, 100 are reported. The results are similar to the

ones discussed above for Tables 1-2.
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Figure 4: Root MSE and Average Length of confidence Intervals of α and λ0.
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Figure 5: Root MSE and Average Length of confidence Intervals of α and λ0.

5 Data Analysis

In this section, we have analyzed the soccer data for the years 2004-05 and 2005-06, considered

in Meintanis (2007). Kundu and Dey (2009) showed that MOBW distribution fits well to this
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Table 3: The points estimates and confidence interval for football data .

10% Censoring 5% Censoring

Parameter Point Est. Conf. Int. Point Est. Conf. Int.

λ0 2.532 (1.377, 3.686) 2.643 (1.532, 3.753)

λ1 1.178 (.421, 1.935) 1.299 (.508, 2.089)

λ2 3.227 (1.583, 4.871) 2.986 (1.540, 4.432)

α 1.707 (1.348, 2.066) 1.709 (1.371, 2.047)

data. We have introduced censoring artificially and then estimated the parameters. This brings

out the effect of censoring on the estimates of the parameters.

The data (X1,X2) contain 37 data points. We assume that the pair (X1,X2) has MOBW(α, λ0, λ1, λ2).

The pair of censoring random variables (Z1, Z2) has

MOBW(α̃, λ∗

0, λ
∗

1, λ
∗

2). In order to ensure that P (X1 > Z1) = P (X2 > Z2) = .1, we take

(λ∗

0, λ
∗

1, λ
∗

2) = (.2, .23, .41) and α̃, λ̃0, λ̃1, λ̃2 are the estimates of α, λ0, λ1, λ2, obtained by Kundu

and Dey (2009). Similarly (λ∗

0, λ
∗

1, λ
∗

2) = (.1, .12, .19) ensures that P (X1 > Z1) = P (X2 > Z2) =

.05. We have used the proposed EM algorithm to estimate the unknown parameters and the

initial estimates used for α, λ0, λ1, λ2, respectively, were 1.67, 2.7, 1.2 and 2.7 in both the cases.

The point estimates and the confidence intervals for 10 % and 5 % censoring are reported in

Table 3. Higher censoring is not considered because the sample size is just 37.

6 Summary and Future Work

In this paper we have considered the M.L.E.’s of the four parameters of MOBW distribution

when both components of the bivariate variable are subject to random censoring. Since the

estimators can not be expressed in a closed form, we suggest the use of expectation-conditional

maximization algorithm. We have clearly written the steps involved in the iteration procedure.

The simulations were carried out for several choices of the parameters but only a few cases

were reported for illustration. The results indicate that the EM algorithm performs very well

for sample sizes 25, 50 and 100 and also for various levels of random censoring that we have

studied (9% and 20%).

Our program, has been run to include even higher censoring. As stated in section 2, the

data is classified into 12 classes - 4 each in I0, I1, I2. The number of members in each is given by

nk
ij, i, j = 0, 1, k = 0, 1, 2. In case of high censoring nk

11, k = 0, 1, 2 takes very small values and
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other nk
ij ’s take relatively large values. In such cases, the algorithm does not work efficiently.

The asymptotic confidence intervals give accurate results even for moderate sample sizes

and hence can be used for testing purposes. For example, one can test whether the underlying

bivariate distribution is MOBE or not, that is α = 1 or not.

The case α = 1 corresponds to MOBE. Hence the proposed algorithm can also be used to

estimate the three parameters of MOBE when pairs of random variables are subject to random

censoring.

The above procedures can also be extended to other bivariate distributions subjected to ran-

dom censoring. Work for Bivariate Generalized Exponential and other bivariate distributions,

commonly studied in survival analysis, are in process and will be reported elsewhere.

Appendix A - Details of likelihood function

The contribution to the likelihood on the set I0 is

∏

i∈I0

L0(t1i, δ1i; t2i, δ2i)

=
∏

i∈I0

[
λ0

λ
fWE(ti;α, λ)]δ1iδ2i [fWE(ti;α, λ1)SWE(ti;α, λ0 + λ2)]

δ1i(1−δ2i)

[fWE(ti;α, λ2)SWE(ti;α, λ0 + λ1)]
(1−δ1i)δ2i [SWE(ti;α, λ)](1−δ1i)(1−δ2i).

And the contribution to the likelihood on the set I1 is

∏

i∈I1

L1(t1i, δ1i; t2i, δ2i)

=
∏

i∈I1

[fWE(t1i;α, λ1)fWE(t2i;α, λ0 + λ2)]
δ1iδ2i [fWE(t1i;α, λ1)

SWE(t2i;α, λ0 + λ2)]
δ1i(1−δ2i)[fWE(t2i;α, λ0 + λ2)[SWE(t1i;α, λ1)

−SWE(t2i;α, λ1)]
(1−δ1i)δ2i [SWE(t1i;α, λ1)SWE(t2i;α, λ0 + λ2)]

(1−δ1i)(1−δ2i).

Finally, the contribution to the likelihood on the set I2 is

∏

i∈I2

L2(t1i, δ1i; t2i, δ2i)

=
∏

i∈I2

[fWE(t1i;α, λ0 + λ1)fWE(t2i;α, λ2)]
δ1iδ2i

[fWE(t1i;α, λ0 + λ1)[SWE(t2i;α, λ2) − SWE(t1i, α, λ2)]
δ1i(1−δ2i)
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[SWE(t1i;α, λ0 + λ1)fWE(t2i;α, λ2)]
(1−δ1i)δ2i

[SWE(t1i;α, λ0 + λ1)SWE(t2i;α, λ2)]
(1−δ1i)(1−δ2i).

Appendix B - Observed Fisher Information Matrix of M.L.E.’s

In this section, the observed Fisher information matrix is provided. We follow the procedure

described in Louis (1982), which is used when the EM algorithm is applied to obtain the

M.L.E.’s in case of incomplete data problem. The observed Fisher information matrix is used

for computation of asymptotic confidence intervals in numerical experiment in section 4. We

denote g = (g1, g2, g3, g4)
T as the gradient vector and H = ((Hij)) as the Hessian matrix of

the pseudo log-likelihood function defined in (2). Then using N0, N1 and N2, the elements of

vector g are as follows;

g1 =
1

α
N3 + h1(α, λ0, λ1, λ2), g2 =

1

λ0
N0 −




∑

i∈I0

tαi +
∑

i∈I1

tα2i +
∑

i∈I2

tα1i


,

g3 =
1

λ1
N1 − h2(α, λ1), g4 =

1

λ2
N2 − h3(α, λ2),

h1(α, λ0, λ1, λ2) =




∑

i∈I0

(δi1 + δi2 − δ1iδ2i) log ti +
∑

i∈I1∪I2

(δ1i log t1i + δ2i log t2i)




−λ0




∑

i∈I0

tαi log ti +
∑

i∈I1

tα2i log t2i +
∑

i∈I2

tα1i log t1i




−λ1




∑

i∈I0

tαi log ti +
∑

i∈I1

(1 − δ2i + δ1iδ2i)t
α
1i log t1i +

∑

i∈I2

tα1i log t1i




−λ2




∑

i∈I0

tαi log ti +
∑

i∈I1

tα2i log t2i +
∑

i∈I2

(1 − δ1i + δ1iδ2i)t
α
2i log t2i




+
∑

i∈I1

(1 − δ1i)δ2i
λ1(t

α
2ie

−λ1tα2i log t2i − tα1ie
−λ1tα1i log t1i)

e−λ1tα1i − e−λ1tα2i

+
∑

i∈I2

δ1i(1 − δ2i)
λ2(t

α
1ie

−λ2tα1i log t1i − tα2ie
−λ2tα2i log t2i)

e−λ2tα2i − e−λ2tα1i

,

h2(α, λ1) =




∑

i∈I0

tαi +
∑

i∈I1

(1 − δ2i + δ1iδ2i)t
α
1i +

∑

i∈I2

tα1i




+
∑

i∈I1

(1 − δ1i)δ2i
tα2ie

−λ1tα2i − tα1ie
−λ1tα1i

e−λ1tα1i − e−λ1tα2i

,
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h3(α, λ2) =




∑

i∈I0

tαi +
∑

i∈I1

tα2i +
∑

i∈I2

(1 − δ1i + δ1iδ2i)t
α
2i




+
∑

i∈I2

δ1i(1 − δ2i)
tα1ie

−λ2tα1i − tα2ie
−λ2tα2i

e−λ2tα2i − e−λ2tα1i

.

The Hessian matrix H is symmetric, so Hij = Hji, i > j and in the following, the elements are

given.

H11 = −
1

α2
N3 − λ0




∑

i∈I0

tαi (log ti)
2 +

∑

i∈I1

tα2i(log t2i)
2 +

∑

i∈I2

tα1i(log t1i)
2




−λ1




∑

i∈I0

tαi (log ti)
2 +

∑

i∈I1

(1 − δ2i + δ1iδ2i)t
α
1i(log t1i)

2 +
∑

i∈I2

tα1i(log t1i)
2




−λ2




∑

i∈I0

tαi (log ti)
2 +

∑

i∈I1

tα2i(log t2i)
2 +

∑

i∈I2

(1 − δ1i + δ1iδ2i)t
α
2i(log t2i)

2




+
∑

i∈I1

(1 − δ1i)δ2iλ1

[
λ1e

−λ1tα1i(tα1i log t1i)
2 − e−λ1tα1itα1i(log t1i)

2 − λ1e
−λ1tα2i(tα2i log t2i)

2

+e−λ1tα2itα2i(log t2i)
2 − λ1(e

−λ1tα2itα2i log t2i − e−λ1tα1itα1i log t1i)
2
]
/
(
e−λ1tα1i − e−λ1tα2i

)2

+
∑

i∈I2

δ1i(1 − δ2i)λ2

[
λ2e

−λ2tα2i(tα2i log t2i)
2 − e−λ2tα2itα2i(log t2i)

2 − λ2e
−λ2tα1i(tα1i log t1i)

2

+e−λ2tα1itα1i(log t1i)
2 − λ2(e

−λ2tα1itα1i log t1i − e−λ2tα2itα2i log t2i)
2
]
/
(
e−λ2tα2i − e−λ2tα1i

)2
,

H12 = −




∑

i∈I0

tαi log ti +
∑

i∈I1

tα2i log t2i +
∑

i∈I2

tα1i log t1i


 ,

H13 = −




∑

i∈I0

tαi log ti +
∑

i∈I1

(1 − δ2i + δ1iδ2i)t
α
1i log t1i +

∑

i∈I2

tα1i log t1i


 +

∑

i∈I1

(1 − δ1i)δi2 ×

[
λ1t

2α
1i e−λ1tα1i log t1i − tα1ie

−λ1tα1i log t1i − λ1t
2α
2i e−λ1tα2i log t2i + tα2ie

−λ1tα2i log t2i

e−λ1tα1i − e−λ1tα2i

−
λ1(t

α
2ie

−λ1tα2i − tα1ie
−λ1tα1i)(tα2ie

−λ1tα2i log t2i − tα1ie
−λ1tα1i log t1i)

(e−λ1tα1i − e−λ1tα2i)2

]
,

H14 = −




∑

i∈I0

tαi log ti +
∑

i∈I1

tα2i log t2i +
∑

i∈I2

(1 − δ1i + δ1iδ2i)t
α
2i log t2i


 +

∑

i∈I2

δ1i(1 − δi2) ×

[
λ2t

2α
2i e−λ2tα2i log t2i − tα2ie

−λ2tα2i log t2i − λ2t
2α
1i e−λ2tα1i log t1i + tα1ie

−λ2tα1i log t1i

e−λ2tα2i − e−λ2tα1i

17



−
λ2(t

α
1ie

−λ2tα1i − tα2ie
−λ2tα2i)(tα1ie

−λ2tα1i log t1i − tα2ie
−λ2tα2i log t2i)

(e−λ2tα2i − e−λ2tα1i)2

]
,

H22 = −
1

λ2
0

N0, H23 = H24 = 0,

H33 = −
1

λ2
1

N1 +
∑

i∈I1

(1 − δ1i)δ2i

[
(t2α

1i e−λ1tα1i − t2α
2i e−λ1tα2i)

(e−λ1tα1i − e−λ1tα2i)
−

(tα2ie
−λ1tα2i − tα1ie

−λ1tα1i)2

(e−λ1tα1i − e−λ1tα2i)2

]
,

H34 = 0,

H44 = −
1

λ2
2

N2 +
∑

i∈I2

δ1i(1 − δ2i)

[
(t2α

2i e−λ2tα2i − t2α
1i e−λ2tα1i)

(e−λ2tα2i − e−λ2tα1i)
−

(tα1ie
−λ2tα1i − tα2ie

−λ2tα2i)2

(e−λ2tα2i − e−λ2tα1i)2

]
.

The observed Fisher information matrix is given by H − ggT .
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