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Abstract

We consider a signal process X taking values in a complete, separable metric space E.

X is assumed to be a Markov process charachterized via the martingale problem for an

operator A. In the context of the finitely additive white noise theory of filtering, we show

that the optimal filter Γt(y) is the unique solution of the analogue of the Zakai equation

for every y, not necessarily continuous. This is done by first proving uniqueness of solution

to a (perturbed) measure valued evolution equation associated with A. An additional

assumption of uniqueness of the local martingale problem for A is imposed.

AMS 2000 subject classification: Primary 60G35 Secondary 60J35, 60G44

Key words and phrases: Zakai equation, Markov process, Martingale problem, Evolution equation

1



1 Introduction

The white noise approach to filtering theory was developed extensively by Kallianpur and

Karandikar during the 1980s. A comprehensive account of the theory can be found in their

book [10]. (See also [9].) In their set-up, the signal process X was assumed to be a Markov

process, defined on some (countably additive) probability space (Ω,F , P ), and taking values

in a complete separable metric space E while the additive noise was modelled as a white

noise which exists only on a finitely additive probability space.

Uniqueness of solution of the analogue of the Zakai equation in this context was proved

in [8] and [11]. The unique solution is indeed the (unnormalized) optimal filter. However,

in this equation the class of test functions was D(L), the domain of the strong generator of

the Markov process X .

In [2] and [3], the question of uniqueness was proved via a different approach. Following

on the results of [6], a sufficient condition for invariant measures for the Markov process X

was proved in terms of an operator A which charachterizes X via martingale problems. To

be precise, it was assumed that X is the unique solution of the martingale problem for A.

This result in turn was used to prove uniqueness of solution for the following (probability)

measure valued evolution equation for A.

∫
fdµt =

∫
fdµ0 +

∫ t

0

(∫
Afdµs

)
ds ∀ f ∈ D(A). (1.1)

The above is the weak version of the Kolmogorov’s forward equation for A. Later a per-

turbed evolution equation was considered. For a non-negative function λ on E uniqueness

of solution to the (positive) measure valued equation

∫
fdρt =

∫
fdρ0 +

∫ t

0

(∫
(Af − λf)dρs

)
ds ∀ f ∈ D(A) (1.2)

was proved. The class of test functions in equations (1.1), (1.2) is D(A) -the domain of the

operator A for which the martingale problem is assumed to be well posed. D(A) can be

much smaller than the domain of the strong generator of the Markov Process X . In the

white noise theory of filtering, the Zakai equation is similar to (1.2) where the perturbation

λ appears in terms of the observation function h.

In the above mentioned approach it was assumed throughout that D(A) ⊂ Cb(E), the

space of real valued bounded continuous functions on E and that for every f ∈ D(A), Af is

continuous. The function λ was also assumed to be continuous. In [2] the results were proved

under the additional assumption that Af and λ are bounded functions and were extended to

the case of unbounded functions in [3]. The corresponding results on uniqueness of solution

to the Zakai equation were proved under the assumptions, respectively, of boundedness

and continuity of the observation function h and later extended to a general continuous h

satisfying the energy condition.

In both these articles the characterization of the optimal filter as unique solution of the

Zakai equation was proved for all continuous observation paths y.
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Subsequently, the results on invariant measures and evolution equations in [2] and [3]

were extended to allow discontinuous, and unbounded, Af in [4], [5]. These in turn were

used to prove uniqueness results for the Zakai equation in the classical non-linear filtering

theory in a fairly general set-up ([4], [1]). However, in this set-up, the results on uniqueness

of solution to the unperturbed equation (1.1) sufficed as they were applied to the operator

B which characterized the signal-observation pair (X,Y ) in terms of martingale problems.

In this article, with a view to applications in the white noise theory of filtering we

consider the perturbed evolution equation (1.2) when λ is not only unbounded but also

discontinuous. We can no longer use conditioning arguments as in [2] or [3] to prove

uniqueness (on a bigger state space) of the martingale problem for the perturbed operator

A − λ. We circumvent this problem by using a suitable change of measure. However, this

necessitates an extra assumption on the operator A, viz., that the local martingale problem

for A is well-posed.

The relevant terminology of martingale problems and the main definitions are given in

the next section and the uniqueness of the perturbed evolution equation is proved there.

In the last section, this is applied to get uniqueness of solution to the Zakai equation in the

context of the white noise theory of filtering.

2 Perturbed Evolution Equation

Throughout this article (E, d) denotes a complete, separable metric space, Cb(E), the space

of real valued bounded continuous functions on E, C(E), the space of real valued continuous

functions on E, M(E), the class of all real valued Borel measurable functions on E, B(E)

the Borel σ-field on E, P(E) the space of probability measures on E and M+(E) the space

of positive finite measures on E.

A denotes an operator with domain D(A) ⊂ Cb(E) and with range contained inM(E). 1

will denote the constant function taking value 1 while 1F will denote the indicator function

of the set F . For C ⊂ M(E), we define the bp-closure of C to be the smallest subset of

M(E) containing C which is closed under bounded pointwise convergence of sequences of

functions.

Recall that an operator A is said to satisfy the maximum principle if for f ∈ D(A),

x0 ∈ E is such that f(x0) = supy∈E f(y) then Af(x0) ≤ 0.

Let us impose the following conditions on an operator A.

Hypothesis 2.1 D(A) ⊂ Cb(E) is an algebra, 1 ∈ D(A), A1 = 0 and D(A) separates

points in E.

Hypothesis 2.2 A : D(A) →M(E) is an operator satisfying the maximum principle.

Hypothesis 2.3 There exists a complete separable metric space U , an operator Â : D(A) →

C(E × U) and a transition function η from (E,B(E)) into (U,B(U)) such that

(Af)(x) =

∫

U

Âf(x, u)η(x, du). (2.3)
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Hypothesis 2.4 There exists Φ̂ ∈ C(E × U) such that for all f ∈ D(A), there exists

Cf <∞ satisfying

|Âf(x, u)| ≤ Cf Φ̂(x, u) ∀(x, u) ∈ E × U, (2.4)

Φ(x) =

∫

U

Φ̂(x, u)η(x, du) <∞ ∀x ∈ E. (2.5)

Note that the above hypotheses imply that

|Af(x)| ≤ CfΦ(x) ∀x ∈ E. (2.6)

Hypothesis 2.5 There exists a countable set {fn : n ≥ 1} ⊂ D(A) such that

bp-closure({(fn,Φ
−1Afn)} : n ≥ 1) ⊃ {(f,Φ−1Af : f ∈ D(A)}.

To emphasize the role of Φ, we will say that (A,Φ) satisfy Hypotheses 2.1 - 2.5.

Definition 2.1 : An E valued process (Xt)0≤t<T defined on some probability space

(Ω,F , P ) is said to be a solution to the martingale problem for (A, µ) with respect to

a filtration {Ft : 0 ≤ t < T } if

(i) X is {Ft} - progressively measurable,

(ii) L(X0) = µ,

(iii) E
∫ T

0
|Af(Xs)|ds <∞ : ∀f ∈ D(A)

and

(iv) for every f ∈ D(A), Mf
t = f(Xt) −

∫ t

0 Af(Xs)ds is a {Ft} - martingale.

Here and in the sequel, L(Z) denotes the law of a random variable Z.

We state a result on uniqueness of solution to evolution equation from [4]. The following

additional assumption on A, the function Φ and µ ∈ P(E) is needed here.

Hypothesis 2.6 If (Xt)0≤t<T and (Yt)0≤t<T are solutions to the martingale problem for

(A, µ) (defined possibly on different probability spaces) such that E
∫ T

0
Φ(Xs)ds < ∞ and

E
∫ T

0 Φ(Ys)ds < ∞, then the finite dimensional distributions of the two processes are the

same.

We say that {νt : 0 ≤ t ≤ T } ⊂ M+(E) is a measurable family if for all Borel sets B in E,

t 7→ νt(B) is Borel measurable.

Theorem 2.1 Suppose (A,Φ) satisfies Hypotheses 2.1 – 2.5. Suppose {µt : 0 ≤ t ≤ T } ⊂

P(E) is a measurable family satisfying

∫ T

0

∫

E

Φ(x)µt(dx)dt <∞ (2.7)

and

〈f, µt〉 = 〈f, µ0〉 +

∫ t

0

〈Af, µs〉ds, t ≤ T, f ∈ D(A). (2.8)

Then there exists a progressively measurable solution (Xt)t<T to the martingale problem for

(A, µ0), with

L(Xt) = µt ∀t < T.

In particular, if (A,Φ, µ0) also satisfies Hypothesis 2.6 then (2.8) admits a unique solution.
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In order to deal with the unbounded operators and their pertubations, we introduce the

notion of local martingale problem.

Definition 2.2 : An E valued process (Xt)0≤t<T defined on some probability space

(Ω,F , P ) is said to be a solution to the local martingale problem for (A, µ) with respect to

a filtration {Ft : 0 ≤ t < T } if

(i) X is {Ft} - progressively measurable,

(ii) L(X0) = µ,

(iii)
∫ t

0
|Af(Xs)|ds <∞ : a.s. ∀f ∈ D(A) ∀t < T

and

(iv) for all f ∈ D(A), Mf
t = f(Xt) −

∫ t

0
Af(Xs)ds is a {Ft} local martingale.

We introduce another assumption on (A,Φ, µ0)

Hypothesis 2.7 If (Xt)0≤t<T and (Yt)0≤t<T are solutions to the local martingale problem

for (A, µ0) (defined possibly on different probability spaces) such that
∫ T

0 Φ(Xs)ds <∞ a.s.

and
∫ T

0
Φ(Ys)ds < ∞ a.s. , then the finite dimensional distributions of the two solutions

are the same.

The following is the main result of this section and gives sufficient conditions for uniqueness

of solution to the perturbed evolution equation (2.10) to hold.

Theorem 2.2 Suppose (A,Φ) satisfies Hypotheses 2.1 – 2.5 and 2.7. Let µ0 ∈ P(E) and

suppose that the martingale problem for (A, µ0) admits a progressively measurable solution

(X∗
t )t<T with

E

[∫ T

0

Φ(X∗
t )dt

]
<∞. (2.9)

Let λ : E −→ [0,∞) be a measurable function. Then the equation

〈f, ρt〉 = 〈f, µ0〉 +

∫ t

0

〈Af − λf, ρs〉ds t ≤ T, : f ∈ D(A) (2.10)

admits a unique solution in the class of measurable families {ρt : 0 ≤ t ≤ T } ⊂ M+(E)

such that ∫ T

0

∫

E

Φ(x)ρt(dx)dt <∞. (2.11)

Proof: We first show that there exists a solution to (2.10). Indeed, it is easy to see

that {ρt : 0 ≤ t ≤ T } defined by

ρt(B) = E
[
1B(X∗

t ) exp{−

∫ t

0

λ(X∗
s )ds}

]
B ∈ B(E) (2.12)

is a measurable family, satisfies (2.11) and is a solution to (2.10).

The proof of the uniqueness is divided in several steps.

Step 1: To convert the pertubed evolution equation into evolution equation for a suitable

operator:

Let U, η, Φ̂,Φ, {fn : n ≥ 1} be such that Hypotheses 2.3 – 2.5 are satisfied. We need to
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add a point ∆ that is not in E. So take ∆ 6∈ E and let E∆ = E ∪ {∆}. Define a metric d′

on E∆ by

d′(∆,∆) = 0,

d′(x,∆) = d′(∆, x) = 1 ∀ x ∈ E

d′(x, y) = d(x, y) ∧ 1 ∀ x, y ∈ E.

Extend the functions {fn, n ≥ 1} and λ to E∆ by defining

fn(∆) = 0, n ≥ 1, and λ(∆) = 0.

Define operators A∆ and B∆ as follows. Let

D(A∆) = {f ∈ Cb(E
∆) : f |E ∈ D(A)}

and for f ∈ D(A∆)

A∆f(x) = Af(x) ∀x ∈ E

A∆f(∆) = 0.

Let D(B∆) = D(A∆) and for f ∈ D(B∆) and x ∈ E∆

B∆f(x) = A∆f(x) − λ(x)(f(x) − f(∆)).

It is easy to see that A∆ (and Φ) satisfies Hypotheses 2.1 – 2.4 with Φ, Φ̂ extended to E∆

by setting Φ(∆) = 1 and Φ̂(∆, u) = 1 and η(∆, F ) = 1F (∆). Taking f0 = 1, we can verify

that Hypothesis 2.5 is also satisfied with {fn : n ≥ 0}.

As for B∆, Hypothesis 2.1 can be verified directly from the definition of B∆. Hypothesis

2.2 can be verified easily since λ(x) ≥ 0 ∀x. For Hypotheses 2.3 and 2.4, we consider the

auxillary space U1 = U × [0,∞). For x ∈ E, f ∈ D(A∆) and u1 = (u, t) ∈ U1 define

Â1f(x, u1) = Âf(x, u) − t(f(x) − f(∆)),

Φ̂1(x, u1) = Φ̂(x, u) + 2t, Φ1(x) = Φ(x) + 2λ(x),

Â1f(∆, u1) = 0, and Φ̂1f(∆, u1) = 1.

Further let η1(x, F ×G) = η(x, F )1G(λ(x)) where F,G are Borel subsets of U and [0,∞)

respectively and x ∈ E∆. Now we can see that for f ∈ D(B∆)

B∆f(x) =

∫

U1

Â1f(x, u1)η1(x, du1).

It follows that with U1, η1,Φ1, Φ̂1, {fn : n ≥ 0} as given above (B∆,Φ1) satisfy Hypothesess

2.3 – 2.5.

Let {ρt} be a solution to (2.10) satisfying the integrability condition (2.11). Taking

f = 1, and since A1 = 0 we see that

ρt(E) = µ0(E) −

∫ t

0

〈λ, ρs〉ds. (2.13)
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Since µ0(E) = 1, ρt is a sub-probability measure. Hence it follows that µt defined by

µt(F ) = ρt(F ∩E) + 1F (∆)(1 − ρt(E)) for F ∈ B(E∆) (2.14)

belongs to P(E∆). Note that for g ∈ Cb(E
∆) such that g(∆) = 0 we have

∫ t

0

〈g, µs〉ds =

∫ t

0

〈g, ρs〉ds.

Now

〈g, µt〉 = 〈g, µ0〉 +

∫ t

0

〈B∆g, µs〉ds ∀ g ∈ D(B∆).

We can verify this from (2.10) first for g such that g(∆) = 0 and then use (2.13), (2.14),

the fact that µt ∈ P(E∆) and that B∆1 = 0. Further, we also have

∫ T

0

∫

E

Φ1(x)µt(dx)dt =

∫ T

0

∫

E

(Φ(x) + λ(x)) ρt(dx)dt <∞

by (2.11) and (2.13). This completes the first step.

Now invoking Theorem 2.1 it follows that the martingale problem for (B∆, µ0) admits a

progressively measurable solution (Xt)t<T defined on some probability space (Ω̃, F̃ , P̃ ) and

which satisfies L(Xt) = µt for t < T . Note that this implies E eP

[∫ T

0 Φ1(Xs)ds
]
<∞.

The idea behind the rest of the proof is as follows. We can verify that

Ut = 1E(Xt) exp

{∫ t

0

λ(Xs)ds

}

is a local martingale and integration by parts can be used to verify that for f ∈ D(A)

(
f(Xt) −

∫ t

0

(Af)(Xs)ds

)
Ut

is also a local martingale. Thus if we can construct a probability measure Q̃ such that

dQ̃

dP̃
= Uτn

on Fτn

for a suitable sequence of stopping times τn increasing to T , we can conclude that under

Q̃, (Xt) is a solution of the local martingale problem for A. Then law of (Xt) is uniquely

determined in view of Hypothesis 2.7. From here we can conclude that law of (Xt) under P̃

is also uniquely determined. To achieve this, we will first construct a copy Z of the process

X (i.e. Z and X having the same finite dimensional distributions) on a suitable probability

space on which we can use a variant of Kolmogorov consistency theorem and thus construct

Q̃ as outlined above.

Step 2: Construction of Z on a suitable space:

Let {fk : k ≥ 0} ⊂ D(A∆) be the countable subset constructed in step 1 above such that

hypothesis 2.5 is valid for A∆. Without loss of generality, assume that f1(x) = 1E(x). Let

ak = ‖gk‖. and let J : E∆ → Ê :=
∏∞

k=0[−ak, ak] be defined by

J (x) = (f0(x), f1(x), ..., fk(x), ....)
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A generic element of Ê will be denoted by ζ and (ζ0, ζ1, . . . , ζk, . . .) will denote its compo-

nents. Since {fk : k ≥ 0} separate points in E∆ it follows that J is one-to-one. Hence

J −1 is well-defined on J (E∆). We extend J−1 to Ê, (and with an abuse of notation we

continue to call the extension by J −1) by setting J−1 = ∆ on the complement of J (E∆).

Further, let

f̂k = fk ◦ J−1, λ̂ = λ ◦ J −1, Φ̂1 = Φ1 ◦ J
−1,

gk = A∆fk, hk = B∆fk = gk − λ,

ĝk = gk ◦ J −1, ĥk = hk ◦ J −1 = ĝk − λ̂.

In view of of (2.6) we have for k ≥ 0

|ĝk(ζ)| ≤ CkΦ̂1(ζ), |ĥk(ζ)| ≤ CkΦ̂1(ζ) ∀ζ ∈ Ê (2.15)

for suitable constants Ck.

Let

Xt(ω̃) = J (Xt(ω̃)) for ω̃ ∈ Ω̃.

Since

fk(Xt) −

∫ t

0

B∆fk(Xs)ds

is a martingale, it is easy to see that each component of Xt admits an r.c.l.l. modification

and thus X itself admits an r.c.l.l. modification, denoted by X̃ . Let F̃t = σ{X̃s : s ≤ t}).

Before proceeding, let us also note that

Mk
t = f̂k(X̃t) −

∫ t

0

ĥk(X̃s)ds (2.16)

is a (F̃t)-martingale ON (Ω̃, F̃ , P̃ ).

Let X̃ be defined by

X̃s(ω̃) = J −1(X̃s(ω̃)), for ω̃ ∈ Ω̃.

It follows that X̃ is a version of X and so for each t, L(X̃t) = µt.

For 0 ≤ s < T and ζ ∈ Ê, let

K(s, ζ) =
T

T − s

(
1 + Φ̂1(ζ)

)
.

For 0 ≤ t < T , 0 ≤ u <∞, define processes (αt), (τu) on Ω̃ by

αt(ω̃) =

∫ t

0

K(s, X̃s(ω̃))ds,

τu(ω̃) = inf {t : αt(ω̃) ≥ u} .

Then it can be seen that (αt) is a (F̃t) adapted, strictly increasing process and limit of

αt(ω̃) as t tends to T is ∞. Further, for each u < ∞, τu is a (F̃t) stop time with τu < T .

Also

ταt
= t, and ατu

= u for 0 ≤ t < T, 0 ≤ u <∞.

8



Considering (τu) as a random time change, define Yu = X̃τu
and G̃u = F̃τu

. It then follows

that (Yu), (τu) are (G̃u) adapted, and that

τu(ω̃) =

∫ u

0

1

K(τv(ω̃),Yv(ω̃))
dv, (2.17)

αt(ω̃) = inf {u : τu(ω̃) ≥ t} (2.18)

and hence αt is a (G̃v) stop time. Also, X̃t = Yαt
.

The optional sampling theorem and (2.16) now give us that

Nk
u = Mk

τu

= f̂k(X̃τu
) −

∫ τu

0

ĥk(X̃s)ds

= f̂k(Yu) −

∫ u

0

1

K(τv,Yv)
ĥk(Yv)dv

(2.19)

is a local martingale. Using that 1
K(s,ζ) ĥk ≤ Ck (see (2.15)), it follows that

(Nk
u , G̃u) is a P̃ martingale. (2.20)

Let D = D([0,∞), [0, T )× Ê) equipped with the Skorokhod topology (see [7]). We will

denote a generic element of D by (γ, θ) with γ denoting the [0, T ) valued function and θ

denoting the Ê valued function. Let ψu and Yu be defined by

ψu(γ, θ) = γ(u) and Yu(γ, θ) = θ(u).

Consider the mapping Λ : Ω̃ → D given by

Λ(ω̃)(u) = (τu(ω̃),Yu(ω̃)).

For u ≥ 0, let Hu be the σ field on D generated by {γ(r),Y(r) : r ≤ u} and P = P̃ ◦ [Λ]−1.

Then by definition

P ◦ (ψ,Y)−1 = P̃ ◦ (τ,Y)−1.

Thus in view of (2.17) we have

ψu(γ, θ) =

∫ u

0

1

K(ψv(γ, θ),Yv(γ, θ))
dv P − a.s.

For 0 ≤ t < T let

βt(γ, θ) = inf {u : ψu(γ, θ) ≥ t}

and let

Zt(γ, θ) = Yβt(γ,θ)(γ, θ)

Zt(γ, θ) = J −1 ◦ Zt(γ, θ).

It then follows that βt is a (Hu) stop time and the joint distribution of
{
ψu,Yu, βt,Zt, Zt : 0 ≤ u <∞, 0 ≤ t < T

}
under P
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is the same as the point distribution of

{
τu,Yu, αt, X̃t, X̃t : 0 ≤ u <∞, 0 ≤ t < T

}
under P̃ .

In particular, (Zt) is a solution of the (B∆, µ0) martingale problem with L(Zt) = µt for all

t,

βt(γ, θ) =

∫ t

0

K(s,Zt(γ, θ))ds a.s. P

and

ψu(γ, θ) = inf {t ≥ 0 : βt(γ, θ) ≥ u} a.s. P.

Also, using (2.19) – (2.20) it follows that

Rk
u = f̂k(Yu) −

∫ u

0

1

K(ψv,Yv)
ĥk(Yv)dv

is a P martingale for every k ≥ 0.

Step 3: Construction of the Probability measure Q.

Recall that f1(x) = 1E(x) and h1(x) = −λ(x) and that λ(∆) = 0. Writing F = J (E), we

have f̂1 = 1F and ĥ1 = −λ̂ = ĥ1f̂1. Thus we have

1F (Yu) +

∫ u

0

1

K(ψv,Yv)
λ̂(Yu)dv (2.21)

is a martingale. Using integration by parts, it follows that

Lu = 1F (Yu) exp

{∫ u

0

1

K(ψv,Yv)
λ̂(Yu)dv

}
(2.22)

is a martingale.

Now we can construct a probability measure Q on D such that for any set B ∈ Hu

Q(B) =

∫

B

1F (Yu) exp

{∫ u

0

1

K(ψv,Yv)
λ̂(Yu)dv

}
dP. (2.23)

Indeed, equation (2.23) can be used to define Qm on Hm for every integer m ≥ 1 and then

we can use a version of Kolmogorov’s consistency theorem (see [12, Theorem V.4.1]) to

construct Q.

For any u, t noting that u∧βt is bounded stop time (w.r.t. (Hu)), it follows from (2.23)

that for any set B ∈ Hu∧βt

Q(B) =

∫

B

1F (Yu∧βt
) exp

{∫ u∧βt

0

1

K(ψv,Yv)
λ̂(Yv)

}
dP. (2.24)

As a consequence, we get

P(B ∩ {Yu∧βt
∈ F})

=

∫

B

1F (Yu∧βt
) exp

{
−

∫ u∧βt

0

1

K(ψv,Yv)
λ̂(Yv)dv

}
dQ.

(2.25)
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This completes the construction of Q.

Step 4: Uniqueness of solution of the evolution equation.

Let Kt = Hβt
. Using the fact that that Rk

u and Lu are (Hu) martingales under P, ĝk =

ĥk + λ̂ and the fact that ĥk = ĥk1F , one can check using integration by parts formula that

(Sk
uLu,Hu) is a P martingale where

Sk
u = f̂k(Yu) −

∫ u

0

1

K(ψv,Yv)
ĝk(Yv)dv (2.26)

and hence it follows that (Sk
u,Hu) is a Q martingale. Recalling that Zt = Yβt

, Yu∧βt
=

Zτu∧t, it follows that

W k
t := Sk

βt
= f̂k(Zt) −

∫ t

0

ĝk(Zs)ds (2.27)

is a (Kt) local martingale under Q. Recalling the definition of f̂k, ĝk and that of Zt, it

follows that

W k
t = fk(Zt) −

∫ t

0

(Afk)(Zs)ds.

Since (W k
t ) is a local martingale for every k, in view of Hypothesis 2.5, it follows that

under Q, (Zt) is a solution to the local martingale problem for (A, µ0). It is easy to verify

that
∫ T

0
Φ(Zs)ds < ∞ a.s.Q. Thus the finite dimensional distributions of the process

(Zt) under Q are the same as those of the process (Xt), in view of hypothesis 2.7 and the

assumptions in the Theorem.

Also, Kt∧τu
= Hu∧βt

. Thus (2.25) can be recast as follows. For any set B ∈ Kt∧τu

P (B ∩ {Zτu∧t ∈ F}) =

∫

B

1F (Zτu∧t) exp

{
−

∫ τu∧t

0

λ̂(Zs)ds

}
dQ. (2.28)

Hence, for B ⊆ E, B ∈ B(E), taking B = {Zτu∧t ∈ J (B)} it follows that

P ({Zτu∧t ∈ J (B)}) =

∫
1J (B)(Zτu∧t) exp

{
−

∫ τu∧t

0

λ̂(Zs)ds

}
dQ. (2.29)

Taking limit as u→ ∞ (via the sequence of positive integers) it follows that

P ({Zt ∈ J (B)}) =

∫
1J (B)(Zt) exp

{
−

∫ t

0

λ̂(Zs)ds

}
dQ. (2.30)

From the definition of Z, it now follows that

P (Zt ∈ B) =

∫
1B(Zt) exp

{
−

∫ t

0

λ(Zs)ds

}
dQ. (2.31)

We have seen that µt(B) = P(Zt ∈ B) and also that the finite dimensional distributions

of the process (Zt) under Q are the same as those of the process X∗ - the solution to the

(A, µ0) martingale problem. Hence it follows that any solution {µt} to (2.10) satisfying

(2.11) is given by (2.12). This completes the proof.
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3 Zakai equation in White noise theory of filtering

In filtering theory, the process of interest or the signal process X is unobservable. In

the following, we will assume that X is a (possibly time inhomogeneous) Markov process

charachterized via a martingale problem for (At) where At, 0 ≤ t ≤ T are operators with

common domain D. This is equivalent to saying that the state-time process (t,Xt) is

a (time homogeneous) Markov process charachterized via the martingale problem for A

where D(A) consists of finite linear combinations of functions of the form f(x)ξ(t) for

f ∈ D, ξ ∈ C1
b ([0,∞)). Then for g(t, x) =

∑k
i=1 fi(x)ξi(t) ∈ D(A), Ag is defined by

Ag(t, x) =

k∑

i=1

[
fi(x)

∂

∂t
ξi(t) + ξi(t)Atfi(x)

]
. (3.32)

We assume that A (and D(A)) satisfy the conditions of Theorem 2.2 with a suitable function

Φ and that the signal process satisfies

E

∫ T

0

Φ(s,Xs)ds <∞. (3.33)

We will work with the white noise model of filtering proposed by Kallianpur and

Karandikar and which we describe below. We just introduce the notations and terminology

relevant for our purpose. For a more complete overview see [9] and [10].

Let H be a separable Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let (nt)

be a H valued white noise process. Such a process does not exist on a countably additive

probability space but can be constructed on a finitely additive probability space. We assume

that (nt) is independent of the signal process X .

Let T <∞ and H = L2([0, T ],H), the space of H valued square integrable functions on

[0, T ], i.e.

H =

{
f : [0, T ] → H

∣∣
∫ T

0

‖fs‖
2ds <∞

}
.

Then H is also a Hilbert space.

The observation process (yt) is modelled as

yt = ht(Xt) + nt, 0 ≤ t ≤ T (3.34)

where the observation function h : [0, T ]× E → H satisfies the finite energy condition

E

∫ T

0

‖hs(Xs)‖
2ds <∞. (3.35)

Note that the white noise process (nt) belongs to H and hence so does (yt). The main aim

of filtering theory is to estimate Xt based on observations {ys : 0 ≤ s ≤ t}.

The conditional distribution Ft(y) of Xt given {ys : 0 ≤ s ≤ t} defined by

Ft(y)(B) = E [IB(Xt)|ys : 0 ≤ s ≤ t] for all Borel sets B ⊂ E

12



is the optimal filter. The following result gives an alternative expression for Ft and is from

[10]. Also see [9].

Let

λy(s, x) = 1
2‖hs(x)‖

2 − 〈hs(x), ys〉,

Γt(y)(B) = E

[
IB(Xt) exp

{
−

∫ t

0

λy(s,Xs)ds

}]
.

Then

Ft(y)(B) =
Γt(y)(B)

Γt(y)(E)
for all Borel sets B ⊂ E.

Γt(y) is called the unnormalised conditional distribution of Xt given the observations upto

time t.

It can be shown (see [10]) that Γt(y) satisfies the following equation.

〈f, µt〉 = 〈f, µ0〉 +

∫ t

0

〈Asf − λy(s, ·)f, µs〉ds 0 ≤ t ≤ T, f ∈ D. (3.36)

Equation (3.36) is the analogue of the Zakai equation in the white noise theory of filtering.

Since

−

∫ t

0

λy(s,Xs)ds ≤
1
2

∫ t

0

‖ys‖
2ds

using (3.33) it follows that ∫ T

0

〈Φ(t, ·),Γt(y)〉dt <∞. (3.37)

For y ∈ H fixed, let us define a measure Γ̃t on [0, T ] × E by (for Borel sets C ⊆ [0, T ],

D ⊆ E)

Γ̃t(C ×D) = 1C(t) exp

{
− 1

2

∫ t

0

‖ys‖
2ds

}
Γt(y)(D).

Also, let λ̃y(s, x) = 1
2‖ys‖

2 + λy(s, x). Note that

λ̃y(s, x) ≥ 0 ∀(s, x) ∈ [0, T ]× E.

It can be easily seen that {Γ̃t} is a solution of

〈g, ρt〉 = 〈g, ρ0〉 +

∫ t

0

〈Ag − λ̃yg, ρs〉ds 0 ≤ t ≤ T, g ∈ D(A). (3.38)

and satisfies ∫ T

0

〈Φ(t, ·), Γ̃t(y)〉dt <∞. (3.39)

Indeed, if {µt : 0 ≤ t ≤ T } is a solution to (3.36) satisfying

∫ T

0

〈Φ(t, ·), µt〉dt <∞. (3.40)

then it can be seen that {µ̃t : 0 ≤ t ≤ T } defined by

µ̃t(C ×D) = 1C(t) exp

{
− 1

2

∫ t

0

‖ys‖
2ds

}
µt(D)
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for Borel sets C ⊆ [0, T ], D ⊆ E is a solution to (3.38) and satisfies

∫ T

0

〈Φ(t, ·), µ̃t〉dt <∞. (3.41)

This observation and Theorem 2.2 yield the following characterization of Γt(y).

Theorem 3.3 Suppose that the signal process X is the unique solution of the martingale

problem for (At) and that the operator A defined by (3.32) satisfies the conditions of The-

orem 2.2. Suppose h : [0, T ] × E → H satisfies the finite energy condition (3.35). Then

for all y ∈ H the unnormalised conditional distribution Γt(y) is the unique solution of the

Zakai equation (3.36) in the class of solutions {µt} satisfying (3.40).
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