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AN EM ALGORITHM FOR ESTIMATION OF PARAMETERS OF

BIVARIATE GENERALISED EXPONENTIAL DISTRIBUTION UNDER

RANDOM LEFT CENSORING

ISHA DEWAN AND SWAGATA NANDI

Abstract. We consider the four parameter bivariate generalised exponential distribution pro-

posed by Kundu and Gupta (2009) and propose an EM algorithm to find the maximum likeli-

hood estimators of the four parameters under random left censoring. A numerical experiment

is carried out to discuss the properties of the estimators obtained iteratively.

1. Introduction

Gupta and Kundu (1999) introduced the Generalised Exponential (GE) distribution and

studied its probabilistic properties. It is very useful in studying skewed lifetime data and hence

provides an alternative to gamma or Weibull distributions. For a recent review, see Gupta and

Kundu (2007). This distribution is naturally suitable for modelling left censored data.

Left censored data arises often in medical studies. For example, in the study of epidemics,

such as AIDS, the time of onset of infection is typically unknown. What is known is the time

at which the patient reports to the doctor. Hence the time from infection to the development

of the disease is left censored. Jaqmin-Gadda and Thiebaut (2000) considered the classical

mixed effects linear model for the analysis of progression of markers in HIV-infected patients

where longitudinal studies of viral load are complicated by left censoring of the measures due

to a lower quantification limit. Coburn, Mcbride and Ziller (2001) carried out a study on

patterns of health insurance for rural and urban children and observed that a high proportion

of rural children were left censored as they had entered the study without insurance. Bagger

(2005) considered an econometric model where the data consisted of comprehensive matched

employer employee panel data with detailed information on wages, tenure, experience and a

range of other covariates. The data were left censored since some job durations are incomplete

at the beginning of the job spells and are observed,
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Mitra and Kundu (2007) obtained the maximum likelihood estimators (M.L.E.’s) of the

shape and scale parameters of GE distribution under random left censoring. In order to get

the M.L.E. of the scale parameter one needs to solve a non linear equation iteratively. After

getting the M.L.E. of the scale parameter one can obtain the M.L.E. of the shape parameter

in a closed form.

Sarhan and Balakrishnan (2007) defined a new bivariate distribution using the GE distribu-

tion. But the marginals are not GE. Kundu and Gupta (2009) introduced a four parameter

bivariate generalised exponential (BVGE) distribution with marginals that are GE. They sug-

gested the use of EM algorithm to derive the M.L.E.s of the four parameters. They also

provided the observed and the expected Fisher information matrices for the BVGE setup.

We study the M.L.E.s of the parameters of BVGE distribution under random left censoring.

In section 2 we restate the joint distribution function and joint density of BVGE distribu-

tion and also write the likelihood function under random left censoring. We discuss the EM

(conditional) algorithm in section 3 for finding the M.L.E.’s of the parameters iteratively. The

findings of the numerical experiments are reported in section 4. One real data set is analysed in

section 5 and we conclude in section 6. Details of the likelihood functions are given in Appendix

A and the observed Fisher information matrix is in Appendix B.

2. Bivariate Generalised Exponential Distribution

Consider a generalised exponential distribution (GE(α, λ)) with shape parameter λ > 0 and

scale parameter α > 0 with the density function and the distribution function, respectively,

given by,

fGE(x;α, λ) = λαe−αx(1 − e−αx)λ−1, FGE(x;α, λ) = (1 − e−αx)λ, x > 0. (1)

Note that the distribution function of GE random variable is λth power of the distribution

function of an exponential random variable with scale parameter α. If λ ≤ 1, then the density

function of GE random variable is strictly decreasing and for λ > 1, it is a unimodal skewed

density function.

Suppose U1, U2, U3, respectively, are independent GE(α1, λ), GE(α2, λ), GE(α3, λ), random

variables where α1, α2, α3, λ > 0. Let X1 = max(U1, U3) and X2 = max(U2, U3). Then (X1,X2)

has BVGE distribution with shape parameters α1, α2, α3 and scale parameter λ and is expressed

as BVGE(α1, α2, α3, λ). Let α13 = α1 + α3, α23 = α2 + α3 and α123 = α1 + α2 + α3.
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Then, joint distribution function of (X1,X2) is given as follows, where z = min(x, y),

F (x, y) = FGE(x;α1, λ)FGE(y;α2, λ)FGE(z;α3, λ)

=





FGE(x;α13, λ)FGE(y;α2, λ) if x < y

FGE(x;α1, λ)FGE(y;α23, λ) if x > y

FGE(x;α123, λ) if x = y.

(2)

Then, joint density function of (X1,X2) is given as

f(x, y) =





fGE(x;α13, λ)fGE(y;α2, λ) if x < y

fGE(x;α1, λ)fGE(y;α23, λ) if x > y

α3

α123
fGE(x;α123, λ) if x = y.

(3)

The marginals of X1,X2 have GE(α13, λ) and GE(α23, λ), respectively.

Suppose the pair (X1,X2) is subject to random left censoring by an independent pair of

random variables (Y1, Y2). We observe (T1, δ1;T2, δ2) where

T1 = max(X1, Y1) and δ1 = I(X1 > Y1),

T2 = max(X2, Y2) and δ2 = I(X2 > Y2). (4)

Therefore, if X1 < Y1, X1 is censored. In order to write down the likelihood, we note that,

when δ1 = δ2 = 1, both failure times are observed and the contribution to the likelihood

is f(t1, t2). When δ1 = 1 − δ2 = 1, first component fails at t1 and the second component is

censored (fails before t2) and the contribution to the likelihood is
∫ t2
0 f(t1, y)dy. Similarly, when

1− δ1 = δ2 = 1, first component is censored (fails before t1) and the second component fails at

t2 and the contribution to the likelihood is
∫ t1
0 f(x, t2)dx. Finally, when 1 − δ1 = 1 − δ2 = 1,

both failure times are censored and the contribution to the likelihood is F (t1, t2). Hence, the

likelihood function, based on (T1i, δ1i;T2i, δ2i), i = 1, 2, . . . , n is given by

L = L(α1, α2, α3, λ; t1i, δ1i, t2i, δ2i; i = 1, 2, . . . , n)

=
n∏

i=1

L(t1i, δ1i; t2i, δ2i)

=

n∏

i=1

[f(t1it2i]
δ1iδ2i [

∫ t2i

0
f(t1i, y)dy]δ1i(1−δ2i)

×[

∫ t1i

0
f(x, t2i)dx](1−δ1i)δ2i [F (t1it2i]

(1−δ1i)(1−δ2i). (5)
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The following quantities are required to express the likelihood explicitly

∫ y

0
f(x, v)dv =





fGE(x;α13, λ)[FGE(y;α2, λ) − FGE(x;α2, λ)] if x < y

fGE(x;α1, λ)FGE(y;α23, λ) if x > y

fGE(t;α1, λ)FGE(t;α23, λ) if x = y = t,

(6)

and

∫ x

0
f(u, y)du =





FGE(x;α13, λ)fGE(y;α2, λ) if x < y

[FGE(x;α1, λ) − FGE(y;α1, λ)]fGE(y;α23, λ) if x > y

FGE(t;α13, λ)fGE(t;α2, λ) if x = y = t.

(7)

Let I0, I1, I2, denote the following sets

I0 = {i|t1i = t2i = ti}, I1 = {i|t1i < t2i}, I2 = {i|t1i > t2i}. (8)

Then the likelihood function can be written as

L =
∏

i∈I0

L(ti, δ1i; ti, δ2i)
∏

i∈I1

L(t1i, δ1i; t2i, δ2i)
∏

i∈I2

L(t1i, δ1i; t2i, δ2i). (9)

Let n0, n1, n2, respectively, denote the number of elements in the sets I0, I1, I2 and nij be the

number of pairs for which (δ1, δ2) = (i, j), i, j = 0, 1. Then,

n =

1∑

i=0

1∑

j=0

nij and nk =

1∑

i=0

1∑

j=0

nk
ij, k = 0, 1, 2,

where nk
ij denotes the number of individuals in Ik with (δ1, δ2) = (i, j), i, j = 0, 1, k = 0, 1, 2.

Using (2)-(7), the contributions to the likelihood on the sets I0, I1 and I2 in terms of the

unknown parameters α1, α2, α3 and λ are provided in Appendix A as equations (14)-(15). The

likelihood function L based on the observed data is the product of these three equations.

3. EM ALGORITHM UNDER RANDOM LEFT CENSORING

As noted by Kundu and Gupta (2009), the M.L.E.’s of the four parameters can not be

expressed in a closed form even in the complete sample (all pairs are observable) case when

the shape parameter λ = 1. The same situation holds in the presence of left censored data.

We propose the use of ECM (Expectation Conditional Maximisation) algorithm for finding the

M.L.E.’s of the unknown parameters. We have earlier observed that X1 and X2 can be expressed

as functions of independent random variables U1, U2 and U3. There is no identifiability issue on
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I0. But on I1, we can identify α13,α2 and λ and on I2, we can identify α23, α1 and λ. In order

to estimate α1, α2 and α3 separately, we consider the ‘expectation’ step of the EM algorithm

as follows.

Let γ denote the parameter vector (α1, α2, α3, λ)T . It is easy to see that

P (U1 < U3 < U2) =
α2α3

α123α13
, P (U3 < U1 < U2) =

α2α1

α123α13
,

P (U2 < U3 < U1) =
α1α3

α123α23
, P (U3 < U2 < U1) =

α1α2

α123α23
.

µ1(γ) = P (U1 < U3 < U2|X1 < X2) =
α3

α13
,

µ2(γ) = P (U3 < U1 < U2|X1 < X2) =
α1

α13
,

ν1(γ) = P (U2 < U3 < U1|X1 > X2) =
α3

α23
,

ν2(γ) = P (U3 < U2 < U1|X1 > X2) =
α2

α23
.

Each of the sets I0, I1, I2 contributes to the log-likelihood function of the ‘pseudo data’ based

on ‘E’ step. In particular, the contribution to the pseudo log-likelihood from I0 is given as

follows;

∑

i∈I0

[
δ1iδ2i

{
log λ + log α3 + (α123 − 1) log(1 − e−λti) − λti

}

+δ1i(1 − δ2i)
{
log λ + log α1 + (α123 − 1) log(1 − e−λti) − λti

}

+(1 − δ1i)δ2i

{
log λ + log α2 + (α123 − 1) log(1 − e−λti) − λti

}

+(1 − δ1i)(1 − δ2i)
{
α123 log(1 − e−λti)

}]
.
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Further, the contribution to the pseudo log-likelihood from I1 is given as follows

∑

i∈I1

[
δ1iδ2i

{
µ1

(
2 log λ + log α2 + log α3 + (α13 − 1) log(1 − e−λt1i)

+(α2 − 1) log(1 − e−λt2i) − λ(t1i + t2i)
)

+ µ2

(
2 log λ + log α1 + log α2

+(α13 − 1) log(1 − e−λt1i) + (α2 − 1) log(1 − e−λt2i) − λ(t1i + t2i)
)}

+δ1i(1 − δ2i)
{

µ1

(
log λ + log α3 + (α13 − 1) log(1 − e−λt1i) − λt1i

+ log[(1 − e−λt2i)α2 − (1 − e−λt1i)α2 ]
)

+ µ2

(
log λ + log α1

+(α13 − 1) log(1 − e−λt1i) − λt1i + log[(1 − e−λt2i)α2 − (1 − e−λt1i)α2 ]
)}

+(1 − δ1i)δ2i

{
log λ + log α2 − λt2i + α13 log(1 − e−λt1i) + (α2 − 1) log(1 − e−λt2i)

}

+(1 − δ1i)(1 − δ2i)
{

α13 log(1 − e−λt1i) + α2 log(1 − e−λt2i)
}]

.

Further, the contribution to the pseudo log-likelihood from I2 is given as follows

∑

i∈I2

[
δ1iδ2i

{
ν1

(
2 log λ + log α1 + log α3 + (α1 − 1) log(1 − e−λt1i)

+(α23 − 1) log(1 − e−λt2i) − λ(t1i + t2i)
)

+ ν2

(
2 log λ + log α1 + log α2

+(α1 − 1) log(1 − e−λt1i) + (α23 − 1) log(1 − e−λt2i) − λ(t1i + t2i)
)}

+δ1i(1 − δ2i)
{

log λ + log α1 − λt1i + (α1 − 1) log(1 − e−λt1i) + α23 log(1 − e−λt2i)
}

+(1 − δ1i)δ2i

{
ν1

(
log λ + log α3 − λt2i + (α23 − 1) log(1 − e−λt2i)

+ log[(1 − e−λt1i)α1 − (1 − e−λt2i)α1 ]
)

+ ν2

(
log λ + log α2 − λt2i

+(α23 − 1) log(1 − e−λt2i) + log[(1 − e−λt1i)α1 − (1 − e−λt2i)α1 ]
)}

+(1 − δ1i)(1 − δ2i)
{

α1 log(1 − e−λt1i) + α23 log(1 − e−λt2i)
}]

.

Let

Nλ = n0
11 + n0

10 + n0
01 + 2n1

11 + n1
10 + n1

01 + 2n2
11 + n2

10 + n2
01,

C1(α1, α3) = n0
10 + µ2(n

1
11 + n1

10) + (n2
11 + n2

10),

C2(α2, α3) = n0
01 + (n1

11 + n1
01) + ν2(n

2
11 + n2

01),

C3(α1, α2, α3) = n0
11 + µ1(n

1
11 + n1

10) + ν1(n
2
11 + n2

01). (10)
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Using equations (10), the pseudo log-likelihood is given by

Nλ log λ + C1(α1, α3) log α1 + C2(α2, α3) log α2 + C3(α1, α2, α3) log α3

+ α1

[∑

i∈I0

log(1 − e−λti) +
∑

i∈I1

log(1 − e−λt1i) +
∑

i∈I2

(1 − δ2i + δ1iδ2i) log(1 − e−λt1i)
]

+ α2

[∑

i∈I0

log(1 − e−λti) +
∑

i∈I1

(1 − δ1i + δ1iδ2i) log(1 − e−λt2i) +
∑

i∈I2

log(1 − e−λt2i)
]

+ α3

[∑

i∈I0

log(1 − e−λti) +
∑

i∈I1

log(1 − e−λt1i) +
∑

i∈I2

log(1 − e−λt2i)
]

− λ
[∑

i∈I0

(δ1i + δ2i − δ1iδ2i)ti +
∑

i∈I1∪I2

(δ1it1i + δ2it2i)
]

−
∑

i∈I0

(δ1i + δ2i − δ1iδ2i) log(1 − e−λti)

−
∑

i∈I1∪I2

[
δ1i log(1 − e−λt1i) + δ2i log(1 − e−λt2i)

]

+
∑

i∈I1

δ1i(1 − δ2i) log
[
(1 − e−λt2i)α2 − (1 − e−λt1i)α2

]

+
∑

i∈I2

(1 − δ1i)δ2i log
[
(1 − e−λt1i)α1 − (1 − e−λt2i)α1

]
. (11)

In order to implement the ‘M’-step of the EM algorithm, one needs to maximise the pseudo

log likelihood equation (11) w.r.t α1, α2, α3, λ. We denote the first derivatives of the pseudo

log-likelihood function as

∂ log L

∂αi
= gi, i = 1, 2, 3, and

∂ log L

∂λ
= g4,

where gi’s are defined in the Appendix B. Then M.L. equations are given by gi = 0, i = 1, . . . , 4.

We observe that there is no explicit solution of any of the M. L. equations as parameters are

interrelated. To maximize the pseudo log-likelihood function we use the method of fixed point

iteration and solve for α1, α2, α3 and λ as fixed points of

gα1
(α1, α3, λ) = α1 gα2

(α2, α3, λ) = α2,

gα3
(α1, α2, α3, λ) = α3, gλ(α1, α2, α3, λ) = λ,
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respectively. Basically, we solve four separate fixed point iterations given by

gα1
(α1, α3, λ) =

C1(α1, α3)

h1(α1, λ)
,

gα2
(α2, α3, λ) =

C2(α2, α3)

h2(α2, λ)

gα3
(α1, α2, α3, λ) =

C3(α1, α2, α3)

h3(λ)
,

gλ(α1, α2, α3, λ) =
Nλ

h4(α1, α2, α3, λ)
, (12)

where Nλ, C1(α1, α3), C2(α2, α3) and C3(α1, α2, α3) are defined in equations (10) and h1(α1, λ),

h2(α2, λ), h3(λ) and h4(α1, α2, α3, λ) are given in the Appendix B. Because of the involvements

of the other parameters in the iterations, these separate iterative procedures are again repeated

for overall maximisation. Kundu and Gupta (2009) used this idea to solve one fixed point

equation which has been extended to solving four such equations simultaneously.

We implement the ‘M’ part of the EM algorithm as follows:

Let α
(0)
1 , α

(0)
2 , α

(0)
3 and λ(0) be the initial estimates of α1, α2, α3 and λ. We write α(i), λ

(i)
0 , λ

(i)
1 ,

and λ
(i)
2 as estimates of α1, α2, α3, and λ at the ith iteration. Given α(i), λ

(i)
0 , λ

(i)
1 , and λ

(i)
2 , the

(i + 1)th step estimates are obtained using the following algorithm.

Algorithm:

(1) Compute µ1, µ2, ν1, ν2 using α(i), λ
(i)
0 , λ

(i)
1 , λ

(i)
2 .

(2) Solve gλ(α1, α2, α3, λ) = λ for λ iteratively starting with α
(i)
1 , α

(i)
2 , α

(i)
3 , and λ(i); let the

estimate be λ
(i+1)
∗ .

(3) Similarly for fixed α
(i)
3 and λ

(i+1)
∗ , solve gα1

(α1, α3, λ) = α1 for α1 and gα2
(α2, α3, λ) =

α2 for α2 starting from α
(i)
1 and α

(i)
2 respectively. Denote the estimates as α

(i+1)
1∗ and

α
(i+1)
2∗ .

(4) For fixed α
(i+1)
1∗ , α

(i+1)
2∗ and λ

(i+1)
∗ , solve gα3

(α1, α2, α3, λ) = α3 for α3 and α
(i)
3 as initial

estimate; let the solution be α
(i+1)
3∗ .

(5) If

|α
(i+1)
1∗ − α

(i)
1 | + |α

(i+1)
2∗ − α

(i)
2 | + |α

(i+1)
3∗ − α

(i)
3 | + |λ

(i+1)
∗ − λ(i)| < ǫ (13)

for a small ǫ > 0, then (α
(i+1)
1∗ , α

(i+1)
2∗ , α

(i+1)
3∗ , λ

(i+1)
∗ ) = (α

(i+1)
1 , α

(i+1)
2 , α

(i+1)
3 , λ(i+1)).

(6) If (13) is not satisfied for a prefixed ǫ, take (α
(i+1)
1∗ , α

(i+1)
2∗ , α

(i+1)
3∗ ,

λ
(i+1)
∗ ) = (α

(i)
1 , α

(i)
2 , α

(i)
3 , λ(i)) and repeat steps 1-5.
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4. Numerical Experiment

In this section, we discuss results of some numerical experiments to observe how the proposed

EM algorithm works in case of finite samples and different set of parameters. We plan our

experiment such that certain percentage of data are randomly left censored. We have performed

experiments for sample sizes n = 50, 75 and 100. In each case, we replicated the process 2500

times. The uncensored data (X1,X2) are first generated as BVGE(α1, α2, α3, λ) and we assume

that the censoring variables Y1, Y2 are jointly distributed as BVGE(α∗

1, α
∗

2, α
∗

3, λ). Note that in

this case

P [X1 > Y1] =
α1 + α3

α1 + α3 + α∗

1 + α∗

3

, P [X2 > Y2] =
α2 + α3

α2 + α3 + α∗

2 + α∗

3

.

We have conducted several experiments by varying one parameter value and keeping fixed,

the other parameters. We are reporting the following two cases.

(1) α1 = α2 = α3 = 1.0 and λ = .25, .5, .75 and 1.0.

(2) α1 = α2 = λ = 1.0 and α3 = .25, .5, .75 and 1.0.

In case of experiment 1, we have used α∗

1 = α∗

2 = α∗

3 = .1 and .18 which implies that, re-

spectively, 9% and 15% data are censored in X1 as well as X2. In each replication, we first

calculated the estimates of the unknown parameters. Then using the observed Fisher informa-

tion matrix given in Appendix B, we calculated the confidence intervals and checked whether

it contains the true value in case of each parameter. Thus we obtained the average estimator

(AVEST), mean squared errors (MSE), average lengths of confidence (AVLEN) intervals and

coverage probabilities (COVP) by calculating the proportion covering the true values. They

are reported in Tables 1 and 2 in case of experiment 1 when λ = .5 and 1.0 respectively and

are presented through Figures 1-3 in case of experiment 2.

Some of the salient features of the numerical experiments for case 1 (λ = .5 and 1.0) are

given below.

(i) We observe that the average estimators of all the four parameters α1, α2, α3 and λ are

very close to the true value for both choices of the shape parameter λ. The estimators for α1

have a positive bias for both cases of censoring and λ = .5 and 1.0. However, the estimators

for α2, α3, λ have a negative bias for all cases . The results are similar for sample sizes 50 and

100.

(ii) The mean square error of the estimators decreases with increase in sample size. The

value of scale parameter λ and the percentage of censoring makes no change in its numerical

value.
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Table 1. Average estimates, mean squared errors, coverage probability and

average length of the confidence interval when λ = .5.

Sample Size → N = 50 N = 100

Para- Censoring AVEST AVLEN AVEST AVLEN

meter (MSE) (COVP) (MSE) (COVP)

α1

9%
1.05717 .93991 1.05906 .66473

(6.228e-2) (.9524) (3.727e-2) (.9348)

15%
1.01860 .93750 1.00954 .65088

(5.923e-2) (.9488) (3.824e-2) (.9460)

α2

9%
.99064 .96248 1.00126 .68412

(6.608e-2) (.8976) (3.788e-2) (.9064)

15%
.94639 .94564 .96258 .67104

(7.777e-2) (.8424) (4.676e-2) (.8988)
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(4.673e-2) (.8952) (2.508e-2) (.9172)
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(5.748e-2) (.8420) (4.447e-2) (.8356)

λ

9%
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(5.105e-3) (.9148) (4.077e-3) (.9392)

15%
.43103 .22900 .43006 .14984

(8.272e-3) (.8340) (8.573e-3) (.8132)
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Figure 1. Experiment 4: Average Estimates of α1, α2 and λ for different values

of α3.

(iii) When n = 100. average length of confidence intervals for the three shape parameters

is considerably lower and the coverage probabilities are slightly higher compared to the case

when n = 50.
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Table 2. Average estimates, mean squared errors, coverage probability and

average length of the confidence interval when λ = 1.0.

Sample Size → N = 50 N = 100

Para- Censoring AVEST AVLEN AVEST AVLEN

meter (MSE) (COVP) (MSE) (COVP)

α1

9%
1.05575 .93971 1.06290 .67149

(6.027e-2) (.9500) (3.658e-2) (.9384)

15%
1.01987 .94084 1.01488 .65672

(5.771e-2) (.9512) (3.591e-2) (.9468)

α2

9%
.98918 .96572 1.00428 .69521

(6.619e-2) (.8948) (3.699e-2) (.9048)

15%
.94516 .92688 .96759 .67572

(7.651e-2) (.8420) (4.642e-2) (.8976)

α3

9%
.93718 .82087 .94822 .58481

(4.698e-2) (.8952) (2.279e-2) (.9152)

15%
.87016 .78999 .86632 .55676

(5.627e-2) (.8444) (4.184e-2) (.8344)

λ

9%
.90957 .47442 .92535 .32379

(2.020e-2) (.9148) (1.478e-2) (.9360)

15%
.86240 .45517 .86454 .30633

(3.222e-2) (.8340) (3.145e-2) (.8140)
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Figure 2. Experiment 4: Root MSE and Average Lengths of Intervals of α1 and α2.

The percentage of censoring has no effect on the average length of confidence intervals and

coverage probability.
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Figure 3. Experiment 4: Root MSE and Average Lengths of Intervals of α3 and λ.

The average length of confidence interval of λ increases with increase in values of λ. The

coverage probabilities of confidence intervals for all parameters are not influenced by values of

λ.

Similar conclusions hold for the experiment 2 and the results have been shown in Figures

1-3.

We have also considered the cases where α2 = α3 = λ = 1.0 are unchanged and varying

α1 = .25, .5, .75 and 1.0. and α1 = α3 = λ = 1.0 are fixed and α2 = .25, .5, .75 and 1.0. The

results are on similar lines and are not being reported separately.

5. Data Analysis

Next we analyse the soccer data for the years 2004-05 and 2005-06 which was studied by

Meintanis (2007). Kundu and Gupta (2009) have fitted BVGE distribution and bivariate

Marshall-Olkin (1967) distribution to this data. They showed that BVGE gives a better fit.

In order to bring out the effect of random left censoring on the M.L.E.’s of the parameters we

introduce censoring artificially and then estimate the four unknown parameters using the EM

algorithm proposed in Section 3.

The data (X1,X2) consists of 37 data points. We assume that the pair (X1,X2) has

BVGE(α̃1, α̃2, α̃3, λ̃). The pair of censoring random variables (Z1, Z2) has BVGE(α∗

1, α
∗

2, α
∗

3, λ̃).

In order to ensure that P (X1 < Z1) = P (X2 < Z2) = .1, we take (α∗

1, α
∗

2, α
∗

3) = (.14, .03, .15)

and α̃1 = 1.445, α̃2 = 0.468, α̃3 = 1.17, and λ̃ = 0.039 are the estimates of α1, α2, α3, λ, ob-

tained by Kundu and Gupta (2009). In a similar way, (α∗

1, α
∗

2, α
∗

3) = (.20, .07, .15) ensures that

P (X1 < Z1) = P (X2 < Z2) = .25. We have used the proposed EM algorithm to estimate

the unknown parameters and the initial estimates used for α1, α2, α3, and λ, respectively, were
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.75, .75, .75 and .5 in both the cases. The point estimates and the corresponding confidence

intervals for 10 % and 25 % censoring are reported in Table 3.

Table 3. The point estimates and confidence interval for football data .

10% Censoring 25% Censoring

Parameter Point Est. Conf. Int. Point Est. Conf. Int.

α1 1.435 (.785, 2.086) 1.565 (.868, 2.262)

α2 .394 (.1415, .646) .613 (.261, .966)

α3 1.094 (.632, 1.557) 1.018 (.569, 1.467)

λ .0369 (.0287, .0451) .0384 (.0300, .0467)

6. Discussion

In this paper we have considered the M.L.E.’s of the three shape parameters and the scale

parameter of BVGE distribution when both components of the bivariate variable are subject to

random left censoring. We use the expectation-conditional maximization algorithm for finding

the M.L.E.’s iteratively. The steps involved in the iteration procedure are clearly stated. The

results of the numerical experiment indicate that the EM algorithm performs very well for

sample sizes 50, 75 and 100 and also for various levels of random censoring that we have

studied. The asymptotic confidence intervals give accurate results even for moderate sample

sizes and hence can be used for testing purposes.

The proposed tools should prove useful in handling left censored data arising in epidemic

models - which are naturally skewed.
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Appendix A: Contributions to the likelihood on the sets I0, I1 and I2

The contribution to the likelihood on the set I0 is

∏

i∈I0

L(ti, δ1i; δ2i)

=
∏

i∈I0

{[
λα3e

−λti(1 − e−λti)α123−1
]δ1iδ2i

[
λα1e

−λti(1 − e−λti)α123−1
]δ1i(1−δ2i)

[
λα2e

−λti(1 − e−λti)α123−1
](1−δ1i)δ2i

[
(1 − e−λti)α123

](1−δ1i)(1−δ2i)
}

.

Similarly, the contribution to the likelihood on the set I1 is

∏

i∈I1

L(t1i, δ1i; t2i, δ2i)

=
∏

i∈I1

{
[λ2α13α2e

−λ(t1i+t2i)(1 − e−λt1i)α13−1(1 − e−λt2i)α2−1]δ1iδ2i

[λα13e
−λt1i(1 − e−λt1i)α13−1

{
(1 − e−λt2i)α2 − (1 − e−λt1i)α2

}
]δ1i(1−δ2i)

[λα2e
−λt2i(1 − e−λt1i)α13(1 − e−λt2i)α2−1](1−δ1i)δ2i

[(1 − e−λt1i)α13(1 − e−λt2i)α2 ](1−δ1i)(1−δ2i)
}
, (14)

and the contribution to the likelihood on the set I2 is

∏

i∈I2

L(t1i, δ1i; t2i, δ2i)

=
∏

i∈I2

{
[λ2α1α23e

−λ(t1i+t2i)(1 − e−λt1i)α1−1(1 − e−λt2i)α23−1]δ1iδ2i

[λα1e
−λt1i(1 − e−λt1i)α1−1(1 − e−λt2i)α23 ]δ1i(1−δ2i)

[λα23e
−λt2i(1 − e−λt2i)α23−1

{
(1 − e−λt1i)α1 − (1 − e−λt2i)α1

}
](1−δ1i)δ2i

[(1 − e−λt1i)α1(1 − e−λt2i)α23 ](1−δ1i)(1−δ2i)
}
. (15)

Appendix B: Observed Fisher Information Matrix of Maximum Likelihood

Estimates

Here we find the observed Fisher information matrix using the procedure described in Louis

(1982) for using the EM algorithm to obtain the M.L.E.’s for incomplete data problem. The ob-

served Fisher information matrix helped us to find asymptotic confidence intervals in numerical

experiment in section 4. Let g = (g1, g2, g3, g4)
T denote the gradient vector and H = ((Hij)),

the Hessian matrix of the pseudo log-likelihood function defined in (11). Then, using C1(α1, α3),
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C2(α2, α3), C3(α1, α2, α3) and Nλ, the elements of vector g are as follows:

g1 =
1

α1
C1(α1, α3) + h1(α1, λ), g2 =

1

α2
C2(α2, α3) + h2(α2, λ),

g3 =
1

α3
C3(α1, α2, α3) + h3(λ), g4 =

1

λ
Nλ − h4(α1, α2, α3, λ).

where

h1(α1, λ) =




∑

i∈I0

log(1 − e−λti) +
∑

i∈I1

log(1 − e−λt1i) +
∑

i∈I2

(1 − δ2i + δ1iδ2i) log(1 − e−λt1i)




+
∑

i∈I2

(1 − δ1i)δ2i

[
(1 − e−λt1i)α1 log(1 − e−λt1i) − (1 − e−λt2i)α1 log(1 − e−λt2i)

(1 − e−λt1i)α1 − (1 − e−λt2i)α1

]
,

h2(α2, λ) =




∑

i∈I0

log(1 − e−λti) +
∑

i∈I1

(1 − δ1i + δ1iδ2i) log(1 − e−λt2i) +
∑

i∈I2

log(1 − e−λt2i)




+
∑

i∈I1

δ1i(1 − δ2i)

[
(1 − e−λt2i)α2 log(1 − e−λt2i) − (1 − e−λt1i)α2 log(1 − e−λt1i)

(1 − e−λt2i)α2 − (1 − e−λt1i)α2

]
,

h3(λ) =




∑

i∈I0

log(1 − e−λti) +
∑

i∈I1

log(1 − e−λt1i) +
∑

i∈I2

log(1 − e−λt2i)


 ,

h4(α1, α2, α3, λ) =
∑

i∈I0

(δ1i + δ2i − δ1iδ2i)ti +
∑

i∈I1∪I2

(δ1it1i + δ2it2i)

− α1




∑

i∈I0

tie
−λti

(1 − e−λti)
+

∑

i∈I1

t1ie
−λt1i

(1 − e−λt1i)
+

∑

i∈I2

(1 − δ2i + δ1iδ2i)
t1ie

−λt1i

(1 − e−λt1i)




− α2




∑

i∈I0

tie
−λti

(1 − e−λti)
+

∑

i∈I1

(1 − δ1i + δ1iδ2i)
t2ie

−λt2i

(1 − e−λt2i)
+

∑

i∈I2

t2ie
−λt2i

(1 − e−λt2i)




− α3




∑

i∈I0

tie
−λti

(1 − e−λti)
+

∑

i∈I1

t1ie
−λt1i

(1 − e−λt1i)
+

∑

i∈I2

t2ie
−λt2i

(1 − e−λt2i)



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+
∑

i∈I0

(δ1i + δ2i − δ1iδ2i)
tie

−λti

(1 − e−λti)

+
∑

i∈I1∪I2

δ1i
t1ie

−λt1i

(1 − e−λt1i)
+

∑

i∈I1∪I2

δ2i
t2ie

−λt2i

(1 − e−λt2i)

− α2

∑

i∈I1

δ1i(1 − δ2i)

[
t2ie

−λt2i(1 − e−λt2i)α2−1 − t1ie
−λt1i(1 − e−λt1i)α2−1

(1 − e−λt2i)α2 − (1 − e−λt1i)α2

]

− α1

∑

i∈I2

δ2i(1 − δ1i)

[
t1ie

−λt1i(1 − e−λt1i)α1−1 − t2ie
−λt2i(1 − e−λt2i)α1−1

(1 − e−λt1i)α1 − (1 − e−λt2i)α1

]
.
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The Hessian matrix H is symmetric, so Hij = Hji, i > j . Its elements are given below.

H11 = −
C1(α1, α3)

α2
1

+
∑

i∈I2

δ2i(1 − δ1i) ×

[
(1 − e−λt1i)α1(log(1 − e−λt1i))2 − (1 − e−λt2i)α1(log(1 − e−λt2i))2

(1 − e−λt1i)α1 − (1 − e−λt2i)α1

−

{
(1 − e−λt1i)α1 log(1 − e−λt1i) − (1 − e−λt2i)α1 log(1 − e−λt2i)

}2

{(1 − e−λt1i)α1 − (1 − e−λt2i)α1}
2

]
,

H12 = H13 = H23 = 0,

H14 =




∑

i∈I0

tie
−λti

(1 − e−λti)
+

∑

i∈I1

t1ie
−λt1i

(1 − e−λt1i)
+

∑

i∈I2

(1 − δ2i + δ1iδ2i)
t1ie

−λt1i

(1 − e−λt1i)




+
∑

i∈I2

δ2i(1 − δ1i)
[ t1ie

−λt1i(1 − e−λt1i)α1−1
(
α1 log(1 − e−λt1i) + 1

)

(1 − e−λt1i)α1 − (1 − e−λt2i)α1

−
t2ie

−λt2i(1 − e−λt2i)α1−1
(
α1 log(1 − e−λt2i) + 1

)

(1 − e−λt1i)α1 − (1 − e−λt2i)α1

−
{(1 − e−λt1i)α1 log(1 − e−λt1i) − (1 − e−λt2i)α1 log(1 − e−λt2i)

(1 − e−λt1i)α1 − (1 − e−λt2i)α1

}2]
,

H22 = −
C2(α2, α3)

α2
2

+
∑

i∈I1

δ1i(1 − δ2i) ×

[
(1 − e−λt2i)α2(log(1 − e−λt2i))2 − (1 − e−λt1i)α2(log(1 − e−λt1i))2

(1 − e−λt2i)α2 − (1 − e−λt1i)α2

−

{
(1 − e−λt2i)α2 log(1 − e−λt2i) − (1 − e−λt1i)α2 log(1 − e−λt1i)

}2

{(1 − e−λt2i)α2 − (1 − e−λt1i)α2}
2

]
,

H24 =




∑

i∈I0

tie
−λti

(1 − e−λti)
+

∑

i∈I1

(1 − δ1i + δ1iδ2i)
t2ie

−λt2i

(1 − e−λt2i)
+

∑

i∈I2

t2ie
−λt2i

(1 − e−λt2i)




+
∑

i∈I1

δ1i(1 − δ2i)
[ t2ie

−λt2i(1 − e−λt2i)α2−1
(
α2 log(1 − e−λt2i) + 1

)

(1 − e−λt2i)α2 − (1 − e−λt1i)α2

−
t1ie

−λt1i(1 − e−λt1i)α2−1
(
α2 log(1 − e−λt1i) + 1

)

(1 − e−λt2i)α2 − (1 − e−λt1i)α2

−
{(1 − e−λt2i)α2 log(1 − e−λt2i) − (1 − e−λt1i)α2 log(1 − e−λt1i)

(1 − e−λt2i)α2 − (1 − e−λt1i)α2

}2]
,

H33 = −
C3(α1, α2, α3)

α2
3

,

H34 =




∑

i∈I0

tie
−λti

(1 − e−λti)
+

∑

i∈I1

t1ie
−λt1i

(1 − e−λt1i)
+

∑

i∈I2

t2ie
−λt2i

(1 − e−λt2i)


 ,

H44 = −
Nλ

λ2
− α1




∑

i∈I0

t2i e
λti

(1 − eλti)2
+

∑

i∈I1

t21ie
λt1i

(1 − eλt1i)2
+

∑

i∈I2

(1 − δ2i + δ1iδ2i)
t21ie

λt1i

(1 − eλt1i)2



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−α2




∑

i∈I0

t2i e
λti

(1 − eλti)2
+

∑

i∈I1

(1 − δ1i + δ1iδ2i)
t22ie

λt2i

(1 − eλt2i)2
+

∑

i∈I2

t22ie
λt2i

(1 − eλt2i)2




−α3




∑

i∈I0

t2i e
λti

(1 − eλti)2
+

∑

i∈I1

t21ie
λt1i

(1 − eλt1i)2
+

∑

i∈I2

t22ie
λt2i

(1 − eλt2i)2




+




∑

i∈I0

((δ1i + δ2i − δ1iδ2i))
t2i e

λti

(1 − eλti)2
+

∑

i∈I1∪I2

δ1it
2
1ie

λt1i

(1 − eλt1i)2
+

∑

i∈I1∪I2

δ2it
2
2ie

λt2i

(1 − eλt2i)2




+
∑

i∈I1

δ1i(1 − δ2i)
[α2(α2 − 1)

{
t22ie

−λt2i(1 − e−λt2i)α2−2 − t21ie
−λt1i(1 − e−λt1i)α2−2

}

(1 − e−λt2i)α2 − (1 − e−λt1i)α2

−α2
2

{(1 − e−λt2i)α2−1t2ie
−λt2i − (1 − e−λt1i)α2−1t1ie

−λt1i

(1 − e−λt2i)α2 − (1 − e−λt1i)α2

}2]
,

+
∑

i∈I2

δ2i(1 − δ1i)
[α1(α1 − 1)

{
t21ie

−λt1i(1 − e−λt1i)α1−2 − t22ie
−λt2i(1 − e−λt2i)α1−2

}

(1 − e−λt1i)α1 − (1 − e−λt2i)α1

−α2
1

{(1 − e−λt1i)α1−1t1ie
−λt1i − (1 − e−λt2i)α1−1t2ie

−λt2i

(1 − e−λt1i)α1 − (1 − e−λt2i)α1

}2]
.

References

[1] Bagger, J. (2005), “Wage growth and turnover in Denmark’, University of Aarhus, Denmark.

[2] Coburn, A. F., McBride, T. and Ziller, E. (2001), “Patterns of Health Insurance Coverage among Rural

and Urban Children”, Working Paper No. 26, Maine Rural Health Research Center, Edmund S. Muskie

School of Public Service, University of Southern Maine, Portland.

[3] Gupta, R. D. and Kundu, D. (1999), “Generalized exponential distributions”, Australian and New Zealand

Journal of Statistics, 41, 173-188.

[4] Gupta, R. D. and Kundu, D. (2007), “Generalized exponential distributions: existing results and some

recent developments”, Journal of Statistical Planning Inference, 137, 3525-3536.
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