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Abstract. Nested orthogonal arrays are useful in obtaining space-filling de-
signs for an experimental set up consisting of two experiments, the expensive
one of higher accuracy to be nested in a larger inexpensive one of lower ac-
curacy. Systematic construction methods of some families of symmetric and
asymmetric nested orthogonal arrays were provided recently in [1]. In this
paper, we provide some more methods of construction of nested orthogonal

arrays.
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1. INTRODUCTION

An (ordinary) orthogonal array, OA(N, k, s1 X 89 X -+ - X S, g), having N rows, k columns,
S1, ..., Sk symbols and strength g (2 < g < k) is an N x k matrix with elements in the
ith column from a set of s; > 2 distinct symbols (1 < ¢ < k), in which all possible
combinations of symbols appear equally often as rows in every N x g subarray.

In an OA(N,k,s1 X -+ X sg, g), if among s1, ..., Sk, there are w; that equal u; (1 <

i < w), where wy, ..., Wy, ft1, ..., [, are positive integers (p; > 2,1 < i < wu,wy; + -+ +
w, = k), then we will use the notation OA(N, k, ui™* x -+ x p g) for OA(N, k,s1 X
- X Sg,g). In particular, if s; = s9 = .-+ = s = s, then the array reduces to a

symmetric orthogonal array, denoted simply by OA(N, k, s, g). Otherwise, the array is
an asymmetric orthogonal array. Orthogonal arrays have been studied extensively and
for a comprehensive account of the theory and applications of such arrays, a reference
may be made to [3].

In recent years, considerable attention has been paid to experimental situations con-

sisting of two experiments, the expensive one of higher accuracy being nested in a larger



and relatively less expensive one of lower accuracy. The higher accuracy experiment can,
for instance, correspond to a smaller physical experiment while the lower accuracy one
can be a larger computer experiment. The modeling and analysis of data from such
nested experiments has been addressed by several authors (see e.g., [4], [6], [7], [8])-
Nested orthogonal arrays are useful in designing such nested experiments.

We now recall the definition of a nested orthogonal array.

Definition. A nested orthogonal array, NOA((N, M), k, (51X Sg X -+ X S, 71 XTg X -+ X
k), g), where r; < s;, with strict inequality for at least one i, 1 <1i <k, and M < N, is
an orthogonal array OA(N, k, s1 X -+ X Sk, g) which contains an OA(M, k,r1 X+ X1k, g)

as a subarray.

Ifsg=s9=---=s,=sandr, =ry=--- =1, =r, then one obtains a symmetric
nested orthogonal array, denoted by NOA((N, M), k, (s,r),g), where M < N and r < s.
Otherwise, the array is an asymmetric nested orthogonal array.

As noted in [1], in the context of asymmetric nested orthogonal arrays, the above
definition does not preclude the possibility of the existence of an asymmetric nested
orthogonal array wherein the smaller orthogonal array is a symmetric orthogonal array;,
nested within a larger asymmetric orthogonal array.

The question of existence of symmetric nested orthogonal arrays has been examined
in detail in [5], where some examples of such arrays can also be found. Methods of con-
struction of several families of symmetric and asymmetric nested orthogonal arrays have
been provided recently in [1]. In this communication, some more methods of construction

of nested orthogonal arrays are provided.

2. PRELIMANIRIES AND NOTATION

We first introduce some notation. For a positive integer m, 1,,, I, and 0,, respec-
tively, denote an m x 1 vector with all elements equal to 1, an identity matrix of order
m and m x 1 null vector. A’ will denote the transpose of a matrix A. For a pair of
matrices £ = (e;;) and F', of orders m x n and u x v, respectively, £ ® F' will denote
their Kronecker (tensor) product, i.e, E® F'is an mu x nv matrix given by (e;; F).

A square matrix H, of order n with entries 41 is called a Hadamard matrix if
H,H] = nl,. A positive integer n is called a Hadamard number if H, exists. H,
trivially exists for n = 1,2 and a necessary condition for the existence of a Hadamard
matrix of order n > 2 is that n = 0 (mod 4). Note that if H,, is a Hadamard matrix,



then we also have H] H,, = nl,. From the definition of a Hadamard matrix, it is seen
easily that a Hadamard matrix remains so if any of its rows or columns is multiplied by
—1. Therefore, without loss of generality, one can write a Hadamard matrix with its first
column consisting of only +1’s. For more details on Hadamard matrices, see e.g., [4].
Finally, an ordinary orthogonal array OA(N, k, sy X -+ X s, ¢g) is called tight if the
number of rows of the array attains the Rao’s lower bound on the number of rows; for
details on Rao’s bounds, see e.g., [3]. In particular, Rao’s bounds for arrays of strength

two and three are given respectively, by

k
N>1+) (si—1),ifg=2 (1)
i=1

k
1=

NZl—i—Z(si—l)—k(s*—l){

=1

(Si_l)_(s*_l)}wifg:3v (2)

1

where s* = max s;.
1<i<k

3. SYMMETRIC NESTED ORTHOGONAL ARRAYS

Barring one family, all the symmetric nested orthogonal arrays constructed in [1] have
both s and r as powers of 2. In practice however, situations arise when both s and r are
not necessarily powers of 2; for example, a popular choice is s = 3,7 = 2. Thus, it is
important to find arrays where both s and r are not powers of 2. To that end, we have

the following result.

Theorem 1. Let s > 3 be an integer. Then there exists a symmetric nested orthogonal
array NOA((s%,8),4,(s,2),3). Furthermore, k = 4 is the mazimum number of columns

that these arrays can accommodate.

Proof. The desired (symmetric) nested orthogonal array can be constructed by consider-
ing the s* x 4 matrix A, whose rows are all possible 4-tuples with elements 0,1,...,s—1

(say) and observing that the 8 x 4 matrix B shown below, is a submatrix of A:

/

00001111
B:00110011
10010101
01010110



It is easy to check that B is a (symmetric) OA(8,4,2,3) and therefore A is an NOA((s%,8),
4,(s,2),3). Clearly, in order that this nested orthogonal array exists, it is necessary that
both the larger and smaller orthogonal arrays exist individually. By (2), in an ordi-
nary orthogonal array OA(8, k,2,3), k < 4 and thus, the assertion about the maximum

number of columns in the nested orthogonal array follows. U

Remark. Taking s = 3 in Theorem 1, one gets an NOA((81,8),4,(3,2),3). It may
be noted that this array cannot be obtained via an application of Lemma 3 in [5]. An
NOA((s°, (s — 1)°,5,(s,s — 1),4) exists for every integer s > 3 ([5]). For s = 3, one
thus obtains an NOA((243,32),5,(3,2),4). Applying Lemma 3 in [5] to this nested
orthogonal array yields an NOA((81,16), 4,(3,2),3). However, in this nested array, the
smaller array has more rows than that in the corresponding array in Theorem 1 above.
Moreover, an application of either Theorem 1 or Theorem 2 in [5] shows that in an
NOA((81,16), k,(3,2),3), k <5 and thus, one has k£ < 5. This upper bound on k is not
attained by the array NOA((81,16),4, (3,2),3).

4. ASYMMETRIC NESTED ORTHOGONAL ARRAYS

4.1. Use of Hadamard matrices.

We make use Hadamard matrices to obtain some families of asymmetric nested orthog-
onal arrays of strength two and three. Let © > 4 be a Hadamard number and H, be a
Hadamard matrix of order u. Write H, as H, = [1, A*]. Let A be a u x (u — 1) matrix
obtained by replacing the —1’s in A* by 0. Then A is a symmetric orthogonal array
OA(u,u — 1,2,2) of strength two with symbols 0 and 1. Let A be a u x (u — 1) matrix
obtained by interchanging the two symbols in A. Let ¢, m be integers where t > 3 and
2 < m < t. Consider the tu x u matrix B given by

A/ A/ A/ A/ A/ A/
0, 1, -+ (m=2)1, (m-11, - (t=2)1, (t-1)1]

Then, it is easy to verify that B is an asymmetric NOA((tu, mu), u, (tx2*"1 mx2¢71),2)
of strength two. The first mu rows of B form an OA(mu,u, m x 2“1 2) while B is an
OA(tu,u,t x 2471 2).

If t and m are both even integers, then B is an NOA((tu, mu), u, (tx2%"1 mx24~1) 3)
of strength three and in such a case, u — 1 is the maximum number of 2-symbol columns

that such an array can accommodate. The assertion about the strength of the array
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being 3 follows from the well known fact that [A” A'] is an OA(2u,u — 1,2,3) and
that about the maximum number of columns follows from the fact that by (2), in an
OA(mu, k,m x 2%),3), k < u — 1. We thus have

Theorem 2. The existence of a Hadamard matriz of order u implies the existence of
an asymmetric NOA((tu, mu),u, (t x 2471 m x 2471) 2). Furthermore, if t and m are
both even integers, then B is an NOA((tu,mu),u, (t x 271, m x 2v71),3) and u — 1 is

the maximum number of 2-symbol columns that such an array can accommodate.

Example 1. To illustrate Theorem 2, first let ¢t = 3,m = 2. Then,

-

0011
A=1010 1
0110 ]
and
o 1 21 ]
I U e U

Clearly, B is an asymmetric nested orthogonal array NOA((12,8),4, (3 x 23,2%), 2).
where the first 8 rows of B form a symmetric OA(8,4,2,2) while all the 12 rows form
an asymmetric OA(12,4,3 x 23, 2).

Next, let t = 6,u = 2 and A as the OA(4, 3, 2, 2) exhibited above. The array B shown
below in transposed form is an NOA((24,8),4, (6 x 23,2%),3):

0011 1100 0011 1100 0011 1100
0101 1010 0101 1010 0101 1010
0110 1001 0110 1001 0110 1001
0000 1111 2222 3333 4444 5555

The first 8 rows of the above array is a tight OA(8,4, 2, 3) while all the 24 rows form an
OA(24,4,6 x 28,3).

We now construct another family of asymmetric nested orthogonal arrays using
Hadamard matrices. As before, let H, be a Hadamard matrix of order u > 4 and
let A and A be the 2-symbol orthogonal arrays OA(u,u — 1,2,2) derived from H, and
described in the beginning of this section.

Let ¢=(0,1,...,u —1)" and define a 2u x (u + 1) matrix B as

c 0, A

B = -
c 1, A
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For 0 <i <u— 1, let a; be the ith row of A and b be the ith row of A. Define the
(u—2) x 1 vectors @ and B as a = (2,3,...,u—1) and B8 = (u,u+1,...,2u—3)" and
let

0y—2 a 1,.,® a6
0,2 B 1,.0bj
1, a 1,,®a)
1, B 1,,0b
C = 21, a 1,,®a;
21,9 B 1,00,
(u—11, 2 a 1, 2®a,_,
(=112 B L,2®b,_ |

We then have the following result.

B
Theorem 3. The matrix D = is an asymmetric nested orthogonal array NOA((2u®—

2u, 2u), u+1, (ux (2u—2) x 24~ ux2%),2). Furthermore, u+1 is the mazimum number

of columns that such an array can accommodate.

Proof. First observe that B as above is an asymmetric orthogonal array, OA(2u,u +
1,u x 2%, 2) of strength two. Furthermore, this array is tight as the lower bound in (1)
is attained. In B, the first column has u symbols, 0,1,..., (u — 1) and the remaining u
columns have two symbols each, 0 and 1. Also, it is easy to see that C'is an asymmetric
orthogonal array OA(2u? — 4u,u + 1,u X (2u —4) x 271 2), where the first column has
u symbols, 0,1,...,(u— 1), the second column has (2u — 4) symbols, 2,3,..., (2u — 3)
and the remaining columns have two symbols each, 0 and 1. It then follows that D is an
asymmetric nested orthogonal array with the stated parameters, where B is the smaller
array, nested within D. The claim of the maximum number of columns being u + 1
follows from the fact that B is a tight array.

OJ

Example 2. Letting u = 4 in Theorem 3, one obtains an asymmetric nested orthogonal



array NOA((24,8), 5, (4 x 6 x 23,4 x 2%),2) displayed below in transposed form:

/

[ 0123 0123 0000 1111 2222 3333 |
0000 1111 2345 2345 2345 2345
0011 1100 0011 0011 1100 1100
0101 1010 0011 1100 0011 1100

| 0110 1001 0011 1100 1100 0011 |

The first 8 rows of the above array constitute an OA(8,5,4 x 2% 2), while all the 24 rows
form an OA(24,5,4 x 6 x 23,2).
Similarly, taking u = 8, one obtains an NOA((112,16),9, (8 x 14 x 27,8 x 28),2).

4.2. Use of resolvable arrays.
We now present some asymmetric nested orthogonal arrays of strength two obtained by
exploiting the resolvability of orthogonal arrays. Let A be an OA(N, k,s1 X -+ X 8p,2),
such that its rows can be partitioned into s; sets of N/s; rows each, say Ay, As, ..., Ay,
and where each A; (1 < i < s;) is an orthogonal array of strength wnity. Such
an orthogonal array is called resolvable. This means that for 1 < i < sy, A; is an
OA(N/s1,k, 81 X -+ X 8, 1) of strength one.

Let t,m, s; < m < t be integers such that s; divides both ¢ and m. Consider the
tN/sy x (k+ 1) matrix B given by

(t—Sl)l Al
(t—81+1)1 A2

(t —.1)1 A,

1




where 0 and 1 are N/s; x 1 vectors of all zeros and all ones, respectively. Then, we have

the following result.

Theorem 4. The array B above is an NOA((tN/s1,mN/s1), k+1,(t X s1 X+ X s, m X
§1 X =+ X Sk>,2).

Proof. From the resolvability of the array A, it is easy to see that B is an OA(tN/sy, k+
1, X s1 X+« X 8, 2). Also, the first mN/s; rows of B form an OA(mN/sy, k + 1, m X
S1 X + o+ X Sk, 2). O

The following example illustrates Theorem 4.
Example 3. Consider a resolvable OA(16, 8,42 x 25, 2), displayed below in transposed

form: .

0321 | 3012 | 0312 | 0132
2103 | 0321 | 0312 | 1023
0011 | 0011 1100 | 1010
1010 | 1010 | 0110 | 1001
0110 | 0110 | 0101 1100
1100 | 0011 1100 | 0101
1001 1001 | 0101 1100
1010 | 0101 | 0110 | 0110

where each set of four rows forms a resolvable set. Thus, s; = 4. Following Theorem
4, we have an NOA((4t,4m),9, (t x 4% x 25, m x 4% x 29),2), where ¢t and m are both
multiples of 4 and 4 < m < t. For example, taking ¢ = 8 and m = 4, one gets an
NOA((32,16),9, (8 x 42 x 26,43 x 26}, 2).

A simple method of obtaining a resolvable orthogonal array is as follows: Let A* =
OA(N,k,s1 X sg X -++ X s, 2) denote an orthogonal array of strength two. Clearly,
N/sy is an integer. Without loss of generality, let the first column of A* have symbols
0,1,...,s1 — 1. Permute the rows of A* such that the first N/s; rows each have 0 in
the first column, the next N/s; rows have 1 in the first column, ..., the last N/s; rows
have the symbol s; — 1 in the first column. Deleting the first column of (the permuted)
A* leaves a resolvable orthogonal array OA(N,k — 1,89 X -+ X s;,2) = A, say, i.e.,
A= [A] Ay --- Al ), where each A;, as before, is an orthogonal array OA(N/si, k —
1,89 X%+ X s, 1) of strength unity. Using Theorem 4 and the resolvable orthogonal array

just constructed, one thus gets the following corollary to Theorem 4.

Corollary. The existence of an orthogonal array OA(N,k,s1 X S3 X -+ X si, 2) implies



the existence of a nested orthogonal array NOA((tN/s1,mN/s1),k, (t X $g X -+ X Sk, m X

Sg X +-+ X 8i),2), where t,m are integers and s; divides both t and m.
The following examples illustrate the above corollary.

Example 4. Consider the (ordinary) asymmetric orthogonal array OA(12,5, 3 x 2%,2),
say A, obtained by Wang and Wu [10]. Following the method described above and
choosing s; = 2, we get a resolvable orthogonal array OA(12,4,3 x 23,2), displayed

below in transposed form:

o O O O
— O O
— O V=
O = = =
— = O N
o O =N
_ O = O
S = = O
_ o O =
S = O =
S O O N
o= =N

Taking m = 2 in Theorem 4, we thus have an NOA(((6t,12),5, (t x 3 x 23,3 x 24),2),
where ¢ > 4 is an even integer. It was shown in [10] that in an OA(12,k + 1,3 x 2% 2),
k < 4. In view of this result, one cannot add more 2-symbol columns in the arrays
NOA((6t,12),5, (t x 3 x 23,3 x 24),2).

For t = 4,6 for example, one obtains an NOA((24,12),5, (4 x 3 x 23,3 x 2%),2) and
an NOA((36,12),5, (6 x 3 x 23,3 x 21),2), respectively.

Example 5. Next, consider an OA(20,9,5 x 28, 2) given in [10]. Following the construc-
tion described above and again choosing s; = 2, one obtains a resolvable orthogonal
array OA(20,8,5 x 27,2), displayed below:

— a4/

00 11 22 33 44 | 00 11 22 33 44
01 01 01 01 01 01 01 01 01 01
01 10 11 01 00 10 01 00 10 11
00 01 10 01 11 11 01 10 10 00
01 00 01 10 11 10 11 01 10 00
01 01 01 01 10 10 10 10 01 10
01 10 00 11 10 | 01 01 11 00 10
00 10 01 11 oO1 11 10 10 00 01

From Theorem 4 therefore, we get an NOA((10t,20),9, (t x 5 x 27,5 x 28),2), where
t > 4 is an even integer. It is known ([10]) that in an OA(20,k+ 1,5 x 2% 2), k < 8 and

hence, no further 2-symbol columns can be added to such nested orthogonal arrays.



With ¢ = 4 for example, one gets an NOA((40,20),9,(5 x 4 x 275 x 28),2) with a

maximum number of columns.

4.3. Arrays by juxtaposition.

A simple but effective method of construction of (ordinary) asymmetric orthogonal ar-
rays, leading to several new asymmetric orthogonal arrays was proposed by Suen [9]. His
method can be described as follows: Let L; = OA(Ny, k4 1,u X s1 X --+ X 8, 2) and
Ly = OA(No, k + 1,0 X 81 X -+ X 8, 2) be two orthogonal arrays of strength two each
such that Ny /u = Ny /v, where the u symbols in the first column of L; are 0,1,...,u—1,
the v symbols in the first column of Ly are u,u+1,...,u+v — 1, and for 1 < i < k,
the s; symbols in the (i 4+ 1)st column of both L; and Ly are 0,1,...,s; — 1. Then, the
array L = [L} Lj]" is an OA(Ny + Na, (u+v) X 81 X -+ X 5, 2).

From the very method of construction, it easily seen that L in fact is a nested orthog-
onal array, NOA((Ny+ Noy, N1),kE+ 1, (w+v) X §p X -+ X Sg,u X §p X -+ X 8g),2). The
orthogonal array L; is nested within the larger orthogonal array L. All the orthogonal
arrays in Table 1 of [9] are thus nested asymmetric orthogonal arrays. For example,
taking L1 = OA(24,15,2 x 6 x 213,2) and Ly, = OA(36,15,3 x 6 x 2!3,2), obtained by
deleting 5 columns from an O A(36,20, 6 x 3 x 2'8,2) and permuting the first two columns,
one gets an NOA((60,24),15, (6 x 5 x 2136 x 2!)2).
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