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Abstract. Nested orthogonal arrays are useful in obtaining space-filling de-

signs for an experimental set up consisting of two experiments, the expensive

one of higher accuracy to be nested in a larger inexpensive one of lower ac-

curacy. Systematic construction methods of some families of symmetric and

asymmetric nested orthogonal arrays were provided recently in [1]. In this

paper, we provide some more methods of construction of nested orthogonal

arrays.
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1. INTRODUCTION

An (ordinary) orthogonal array, OA(N, k, s1×s2×· · ·×sk, g), having N rows, k columns,

s1, . . . , sk symbols and strength g (2 ≤ g < k) is an N × k matrix with elements in the

ith column from a set of si ≥ 2 distinct symbols (1 ≤ i ≤ k), in which all possible

combinations of symbols appear equally often as rows in every N × g subarray.

In an OA(N, k, s1 × · · · × sk, g), if among s1, . . . , sk, there are wi that equal µi (1 ≤
i ≤ u), where w1, . . . , wu, µ1, . . . , µu are positive integers (µi ≥ 2, 1 ≤ i ≤ u,w1 + · · · +

wu = k), then we will use the notation OA(N, k, µw1
1 × · · · × µwu

u , g) for OA(N, k, s1 ×
· · · × sk, g). In particular, if s1 = s2 = · · · = sk = s, then the array reduces to a

symmetric orthogonal array, denoted simply by OA(N, k, s, g). Otherwise, the array is

an asymmetric orthogonal array. Orthogonal arrays have been studied extensively and

for a comprehensive account of the theory and applications of such arrays, a reference

may be made to [3].

In recent years, considerable attention has been paid to experimental situations con-

sisting of two experiments, the expensive one of higher accuracy being nested in a larger
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and relatively less expensive one of lower accuracy. The higher accuracy experiment can,

for instance, correspond to a smaller physical experiment while the lower accuracy one

can be a larger computer experiment. The modeling and analysis of data from such

nested experiments has been addressed by several authors (see e.g., [4], [6], [7], [8]).

Nested orthogonal arrays are useful in designing such nested experiments.

We now recall the definition of a nested orthogonal array.

Definition. A nested orthogonal array, NOA((N,M), k, (s1×s2×· · ·×sk, r1×r2×· · ·×
rk), g), where ri ≤ si, with strict inequality for at least one i, 1 ≤ i ≤ k, and M < N , is

an orthogonal array OA(N, k, s1×· · ·×sk, g) which contains an OA(M,k, r1×· · ·×rk, g)

as a subarray.

If s1 = s2 = · · · = sk = s and r1 = r2 = · · · = rk = r, then one obtains a symmetric

nested orthogonal array, denoted by NOA((N,M), k, (s, r), g), where M < N and r < s.

Otherwise, the array is an asymmetric nested orthogonal array.

As noted in [1], in the context of asymmetric nested orthogonal arrays, the above

definition does not preclude the possibility of the existence of an asymmetric nested

orthogonal array wherein the smaller orthogonal array is a symmetric orthogonal array,

nested within a larger asymmetric orthogonal array.

The question of existence of symmetric nested orthogonal arrays has been examined

in detail in [5], where some examples of such arrays can also be found. Methods of con-

struction of several families of symmetric and asymmetric nested orthogonal arrays have

been provided recently in [1]. In this communication, some more methods of construction

of nested orthogonal arrays are provided.

2. PRELIMANIRIES AND NOTATION

We first introduce some notation. For a positive integer m, 1m, Im and 0m respec-

tively, denote an m × 1 vector with all elements equal to 1, an identity matrix of order

m and m × 1 null vector. A′ will denote the transpose of a matrix A. For a pair of

matrices E = (eij) and F , of orders m × n and u × v, respectively, E ⊗ F will denote

their Kronecker (tensor) product, i.e, E ⊗ F is an mu× nv matrix given by (eijF ).

A square matrix Hn of order n with entries ±1 is called a Hadamard matrix if

HnH
′
n = nIn. A positive integer n is called a Hadamard number if Hn exists. Hn

trivially exists for n = 1, 2 and a necessary condition for the existence of a Hadamard

matrix of order n > 2 is that n ≡ 0 (mod 4). Note that if Hn is a Hadamard matrix,
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then we also have H ′nHn = nIn. From the definition of a Hadamard matrix, it is seen

easily that a Hadamard matrix remains so if any of its rows or columns is multiplied by

−1. Therefore, without loss of generality, one can write a Hadamard matrix with its first

column consisting of only +1’s. For more details on Hadamard matrices, see e.g., [4].

Finally, an ordinary orthogonal array OA(N, k, s1 × · · · × sk, g) is called tight if the

number of rows of the array attains the Rao’s lower bound on the number of rows; for

details on Rao’s bounds, see e.g., [3]. In particular, Rao’s bounds for arrays of strength

two and three are given respectively, by

N ≥ 1 +
k∑

i=1

(si − 1), if g = 2 (1)

N ≥ 1 +
k∑

i=1

(si − 1) + (s∗ − 1)

{
k∑

i=1

(si − 1)− (s∗ − 1)

}
, if g = 3, (2)

where s∗ = max
1≤i≤k

si.

3. SYMMETRIC NESTED ORTHOGONAL ARRAYS

Barring one family, all the symmetric nested orthogonal arrays constructed in [1] have

both s and r as powers of 2. In practice however, situations arise when both s and r are

not necessarily powers of 2; for example, a popular choice is s = 3, r = 2. Thus, it is

important to find arrays where both s and r are not powers of 2. To that end, we have

the following result.

Theorem 1. Let s ≥ 3 be an integer. Then there exists a symmetric nested orthogonal

array NOA((s4, 8), 4, (s, 2), 3). Furthermore, k = 4 is the maximum number of columns

that these arrays can accommodate.

Proof. The desired (symmetric) nested orthogonal array can be constructed by consider-

ing the s4×4 matrix A, whose rows are all possible 4-tuples with elements 0, 1, . . . , s−1

(say) and observing that the 8× 4 matrix B shown below, is a submatrix of A:

B =


0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

1 0 0 1 0 1 0 1

0 1 0 1 0 1 1 0


′

.
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It is easy to check thatB is a (symmetric)OA(8, 4, 2, 3) and thereforeA is anNOA((s4, 8),

4, (s, 2), 3). Clearly, in order that this nested orthogonal array exists, it is necessary that

both the larger and smaller orthogonal arrays exist individually. By (2), in an ordi-

nary orthogonal array OA(8, k, 2, 3), k ≤ 4 and thus, the assertion about the maximum

number of columns in the nested orthogonal array follows. �

Remark. Taking s = 3 in Theorem 1, one gets an NOA((81, 8), 4, (3, 2), 3). It may

be noted that this array cannot be obtained via an application of Lemma 3 in [5]. An

NOA((s5, (s − 1)5, 5, (s, s − 1), 4) exists for every integer s ≥ 3 ([5]). For s = 3, one

thus obtains an NOA((243, 32), 5, (3, 2), 4). Applying Lemma 3 in [5] to this nested

orthogonal array yields an NOA((81, 16), 4, (3, 2), 3). However, in this nested array, the

smaller array has more rows than that in the corresponding array in Theorem 1 above.

Moreover, an application of either Theorem 1 or Theorem 2 in [5] shows that in an

NOA((81, 16), k, (3, 2), 3), k ≤ 5 and thus, one has k ≤ 5. This upper bound on k is not

attained by the array NOA((81, 16), 4, (3, 2), 3).

4. ASYMMETRIC NESTED ORTHOGONAL ARRAYS

4.1. Use of Hadamard matrices.

We make use Hadamard matrices to obtain some families of asymmetric nested orthog-

onal arrays of strength two and three. Let u ≥ 4 be a Hadamard number and Hu be a

Hadamard matrix of order u. Write Hu as Hu = [1u A
∗]. Let A be a u× (u− 1) matrix

obtained by replacing the −1’s in A∗ by 0. Then A is a symmetric orthogonal array

OA(u, u− 1, 2, 2) of strength two with symbols 0 and 1. Let Ā be a u× (u− 1) matrix

obtained by interchanging the two symbols in A. Let t,m be integers where t ≥ 3 and

2 ≤ m < t. Consider the tu× u matrix B given by[
A′ Ā′ · · · A′ Ā′ · · · A′ Ā′

0′u 1′u · · · (m− 2)1′u (m− 1)1′u · · · (t− 2)1′u (t− 1)1′u

]′
.

Then, it is easy to verify that B is an asymmetric NOA((tu,mu), u, (t×2u−1,m×2u−1), 2)

of strength two. The first mu rows of B form an OA(mu, u, m× 2u−1, 2) while B is an

OA(tu, u, t× 2u−1, 2).

If t andm are both even integers, thenB is anNOA((tu,mu), u, (t×2u−1,m×2u−1), 3)

of strength three and in such a case, u− 1 is the maximum number of 2-symbol columns

that such an array can accommodate. The assertion about the strength of the array
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being 3 follows from the well known fact that [A′ Ā′]′ is an OA(2u, u − 1, 2, 3) and

that about the maximum number of columns follows from the fact that by (2), in an

OA(mu, k,m× 2k), 3), k ≤ u− 1. We thus have

Theorem 2. The existence of a Hadamard matrix of order u implies the existence of

an asymmetric NOA((tu,mu), u, (t × 2u−1,m × 2u−1), 2). Furthermore, if t and m are

both even integers, then B is an NOA((tu,mu), u, (t × 2u−1,m × 2u−1), 3) and u − 1 is

the maximum number of 2-symbol columns that such an array can accommodate.

Example 1. To illustrate Theorem 2, first let t = 3,m = 2. Then,

A =

 0 0 1 1

0 1 0 1

0 1 1 0


′

and

B =

[
0′ 1′ 21′

A′ Ā′ A′

]′
.

Clearly, B is an asymmetric nested orthogonal array NOA((12, 8), 4, (3 × 23, 24), 2).

where the first 8 rows of B form a symmetric OA(8, 4, 2, 2) while all the 12 rows form

an asymmetric OA(12, 4, 3× 23, 2).

Next, let t = 6, u = 2 and A as the OA(4, 3, 2, 2) exhibited above. The array B shown

below in transposed form is an NOA((24, 8), 4, (6× 23, 24), 3):
0011 1100 0011 1100 0011 1100

0101 1010 0101 1010 0101 1010

0110 1001 0110 1001 0110 1001

0000 1111 2222 3333 4444 5555


′

.

The first 8 rows of the above array is a tight OA(8, 4, 2, 3) while all the 24 rows form an

OA(24, 4, 6× 23, 3).

We now construct another family of asymmetric nested orthogonal arrays using

Hadamard matrices. As before, let Hu be a Hadamard matrix of order u ≥ 4 and

let A and Ā be the 2-symbol orthogonal arrays OA(u, u − 1, 2, 2) derived from Hu and

described in the beginning of this section.

Let c = (0, 1, . . . , u− 1)′ and define a 2u× (u+ 1) matrix B as

B =

[
c 0u A

c 1u Ā

]
.
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For 0 ≤ i ≤ u− 1, let a′i be the ith row of A and b′i be the ith row of Ā. Define the

(u− 2)× 1 vectors α and β as α = (2, 3, . . . , u− 1)′ and β = (u, u+ 1, . . . , 2u− 3)′ and

let

C =



0u−2 α 1u−2 ⊗ a′0
0u−2 β 1u−2 ⊗ b′0
1u−2 α 1u−2 ⊗ a′1
1u−2 β 1u−2 ⊗ b′1
21u−2 α 1u−2 ⊗ a′2
21u−2 β 1u−2 ⊗ b′2

...

(u− 1)1u−2 α 1u−2 ⊗ a′u−1

(u− 1)1u−2 β 1u−2 ⊗ b′u−1


.

We then have the following result.

Theorem 3. The matrix D =

[
B

C

]
is an asymmetric nested orthogonal array NOA((2u2−

2u, 2u), u+1, (u×(2u−2)×2u−1, u×2u), 2). Furthermore, u+1 is the maximum number

of columns that such an array can accommodate.

Proof. First observe that B as above is an asymmetric orthogonal array, OA(2u, u +

1, u × 2u, 2) of strength two. Furthermore, this array is tight as the lower bound in (1)

is attained. In B, the first column has u symbols, 0, 1, . . . , (u− 1) and the remaining u

columns have two symbols each, 0 and 1. Also, it is easy to see that C is an asymmetric

orthogonal array OA(2u2 − 4u, u+ 1, u× (2u− 4)× 2u−1, 2), where the first column has

u symbols, 0, 1, . . . , (u − 1), the second column has (2u − 4) symbols, 2, 3, . . . , (2u − 3)

and the remaining columns have two symbols each, 0 and 1. It then follows that D is an

asymmetric nested orthogonal array with the stated parameters, where B is the smaller

array, nested within D. The claim of the maximum number of columns being u + 1

follows from the fact that B is a tight array.

�

Example 2. Letting u = 4 in Theorem 3, one obtains an asymmetric nested orthogonal
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array NOA((24, 8), 5, (4× 6× 23, 4× 24), 2) displayed below in transposed form:
0123 0123 0000 1111 2222 3333

0000 1111 2345 2345 2345 2345

0011 1100 0011 0011 1100 1100

0101 1010 0011 1100 0011 1100

0110 1001 0011 1100 1100 0011



′

.

The first 8 rows of the above array constitute an OA(8, 5, 4×24, 2), while all the 24 rows

form an OA(24, 5, 4× 6× 23, 2).

Similarly, taking u = 8, one obtains an NOA((112, 16), 9, (8× 14× 27, 8× 28), 2).

4.2. Use of resolvable arrays.

We now present some asymmetric nested orthogonal arrays of strength two obtained by

exploiting the resolvability of orthogonal arrays. Let A be an OA(N, k, s1 × · · · × sk, 2),

such that its rows can be partitioned into s1 sets of N/s1 rows each, say A1, A2, . . . , As1 ,

and where each Ai (1 ≤ i ≤ s1) is an orthogonal array of strength unity. Such

an orthogonal array is called resolvable. This means that for 1 ≤ i ≤ s1, Ai is an

OA(N/s1, k, s1 × · · · × sk, 1) of strength one.

Let t,m, s1 ≤ m < t be integers such that s1 divides both t and m. Consider the

tN/s1 × (k + 1) matrix B given by

B =



0 A1

1 A2

...

(s1 − 1)1 As1

...

(m− s1)1 A1

(m− s1 + 1)1 A2

...

(m− 1)1 As1

...

(t− s1)1 A1

(t− s1 + 1)1 A2

...

(t− 1)1 As1



,
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where 0 and 1 are N/s1× 1 vectors of all zeros and all ones, respectively. Then, we have

the following result.

Theorem 4. The array B above is an NOA((tN/s1,mN/s1), k+1, (t×s1×· · ·×sk,m×
s1 × · · · × sk), 2).

Proof. From the resolvability of the array A, it is easy to see that B is an OA(tN/s1, k+

1, t× s1 × · · · × sk, 2). Also, the first mN/s1 rows of B form an OA(mN/s1, k + 1,m×
s1 × · · · × sk, 2). �

The following example illustrates Theorem 4.

Example 3. Consider a resolvable OA(16, 8, 42 × 26, 2), displayed below in transposed

form: 

0321 3012 0312 0132

2103 0321 0312 1023

0011 0011 1100 1010

1010 1010 0110 1001

0110 0110 0101 1100

1100 0011 1100 0101

1001 1001 0101 1100

1010 0101 0110 0110



′

,

where each set of four rows forms a resolvable set. Thus, s1 = 4. Following Theorem

4, we have an NOA((4t, 4m), 9, (t × 42 × 26,m × 42 × 26), 2), where t and m are both

multiples of 4 and 4 ≤ m < t. For example, taking t = 8 and m = 4, one gets an

NOA((32, 16), 9, (8× 42 × 26, 43 × 26), 2).

A simple method of obtaining a resolvable orthogonal array is as follows: Let A∗ =

OA(N, k, s1 × s2 × · · · × sk, 2) denote an orthogonal array of strength two. Clearly,

N/s1 is an integer. Without loss of generality, let the first column of A∗ have symbols

0, 1, . . . , s1 − 1. Permute the rows of A∗ such that the first N/s1 rows each have 0 in

the first column, the next N/s1 rows have 1 in the first column, . . ., the last N/s1 rows

have the symbol s1 − 1 in the first column. Deleting the first column of (the permuted)

A∗ leaves a resolvable orthogonal array OA(N, k − 1, s2 × · · · × sk, 2) = A, say, i.e.,

A = [A′1 A
′
2 · · · A′s1

]′, where each Ai, as before, is an orthogonal array OA(N/s1, k −
1, s2×· · ·×sk, 1) of strength unity. Using Theorem 4 and the resolvable orthogonal array

just constructed, one thus gets the following corollary to Theorem 4.

Corollary. The existence of an orthogonal array OA(N, k, s1 × s2 × · · · × sk, 2) implies
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the existence of a nested orthogonal array NOA((tN/s1,mN/s1), k, (t×s2×· · ·×sk,m×
s2 × · · · × sk), 2), where t,m are integers and s1 divides both t and m.

The following examples illustrate the above corollary.

Example 4. Consider the (ordinary) asymmetric orthogonal array OA(12, 5, 3× 24, 2),

say A, obtained by Wang and Wu [10]. Following the method described above and

choosing s1 = 2, we get a resolvable orthogonal array OA(12, 4, 3 × 23, 2), displayed

below in transposed form:
0 0 1 1 2 2 0 0 1 1 2 2

0 0 1 1 0 1 1 1 0 0 0 1

0 1 0 1 1 0 0 1 0 1 0 1

0 1 1 0 1 0 1 0 1 0 0 1


′

.

Taking m = 2 in Theorem 4, we thus have an NOA(((6t, 12), 5, (t × 3 × 23, 3 × 24), 2),

where t ≥ 4 is an even integer. It was shown in [10] that in an OA(12, k + 1, 3× 2k, 2),

k ≤ 4. In view of this result, one cannot add more 2-symbol columns in the arrays

NOA((6t, 12), 5, (t× 3× 23, 3× 24), 2).

For t = 4, 6 for example, one obtains an NOA((24, 12), 5, (4× 3× 23, 3× 24), 2) and

an NOA((36, 12), 5, (6× 3× 23, 3× 24), 2), respectively.

Example 5. Next, consider an OA(20, 9, 5×28, 2) given in [10]. Following the construc-

tion described above and again choosing s1 = 2, one obtains a resolvable orthogonal

array OA(20, 8, 5× 27, 2), displayed below:

00 11 22 33 44 00 11 22 33 44

01 01 01 01 01 01 01 01 01 01

01 10 11 01 00 10 01 00 10 11

00 01 10 01 11 11 01 10 10 00

01 00 01 10 11 10 11 01 10 00

01 01 01 01 10 10 10 10 01 10

01 10 00 11 10 01 01 11 00 10

00 10 01 11 01 11 10 10 00 01



′

.

From Theorem 4 therefore, we get an NOA((10t, 20), 9, (t × 5 × 27, 5 × 28), 2), where

t ≥ 4 is an even integer. It is known ([10]) that in an OA(20, k+ 1, 5× 2k, 2), k ≤ 8 and

hence, no further 2-symbol columns can be added to such nested orthogonal arrays.
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With t = 4 for example, one gets an NOA((40, 20), 9, (5 × 4 × 27, 5 × 28), 2) with a

maximum number of columns.

4.3. Arrays by juxtaposition.

A simple but effective method of construction of (ordinary) asymmetric orthogonal ar-

rays, leading to several new asymmetric orthogonal arrays was proposed by Suen [9]. His

method can be described as follows: Let L1 = OA(N1, k + 1, u × s1 × · · · × sk, 2) and

L2 = OA(N2, k + 1, v × s1 × · · · × sk, 2) be two orthogonal arrays of strength two each

such that N1/u = N2/v, where the u symbols in the first column of L1 are 0, 1, . . . , u−1,

the v symbols in the first column of L2 are u, u + 1, . . . , u + v − 1, and for 1 ≤ i ≤ k,

the si symbols in the (i + 1)st column of both L1 and L2 are 0, 1, . . . , si − 1. Then, the

array L = [L′1 L′2]
′ is an OA(N1 +N2, (u+ v)× s1 × · · · × sk, 2).

From the very method of construction, it easily seen that L in fact is a nested orthog-

onal array, NOA((N1 +N2, N1), k+ 1, ((u+ v)× s1× · · · × sk, u× s1× · · · × sk), 2). The

orthogonal array L1 is nested within the larger orthogonal array L. All the orthogonal

arrays in Table 1 of [9] are thus nested asymmetric orthogonal arrays. For example,

taking L1 = OA(24, 15, 2 × 6 × 213, 2) and L2 = OA(36, 15, 3 × 6 × 213, 2), obtained by

deleting 5 columns from an OA(36, 20, 6×3×218, 2) and permuting the first two columns,

one gets an NOA((60, 24), 15, (6× 5× 213, 6× 214), 2).

10



ACKNOWLEDGEMENT

This work was supported by the Indian National Science Academy under the Senior

Scientist scheme of the academy. The support is gratefully acknowledged.

REFERENCES

[1] A. Dey, Construction of nested orthogonal arrays, Discrete Math. 310 (2010), 2831–

2834.

[2] A. S. Hedayat, N. J. A. Sloane, J. Stufken, Orthogonal Arrays: Theory and Appli-

cations, Springer, New York, 1999.

[3] K. J. Horadam, Hadamard Matrices and Their Applications, Princeton University

Press, Princeton, NJ, 2007.

[4] M. C. Kennedy, A. O’Hagan, Predicting the output from a computer code when fast

approximations are available, Biometrika 87 (2000), 1–13.

[5] R. Mukerjee, P. Z. G. Qian, C. F. J. Wu, On the existence of nested orthogonal

arrays, Discrete Math. 308 (2008), 4635–4642.

[6] Z. Qian, C. Seepersad, R. Joseph, J. Allen, C. F. J. Wu, Building surrogate models

with detailed and approximate simulations, ASME J. Mech. Design 128 (2006),

668–677.

[7] Z. Qian, C. F. J. Wu, Bayesian hierarchical modeling for integrating low-accuracy

and high-accuracy experiments, Technometrics 50 (2008), 192–204.

[8] C. S. Reese, A. G. Wilson, M. Hamada, H. F. Martz, K. J. Ryan, Integrated analysis

of computer and physical experiments, Technometrics 46 (2004), 153–164.

[9] C.-Y. Suen, Construction of mixed orthogonal arrays by juxtaposition, Statist.

Probab. Lett. 65 (2003), 161–163.

[10] J. C. Wang, C. F. J. Wu, Nearly orthogonal arrays with mixed levels and small

runs, Technometrics 34 (1992), 409–422.

11


