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TEMPERED STABLE LAWS AS RANDOM WALK LIMITS

ARIJIT CHAKRABARTY AND MARK M. MEERSCHAERT

Abstract. Stable laws can be tempered by modifying the Lévy measure to cool the
probability of large jumps. Tempered stable laws retain their signature power law
behavior at infinity, and infinite divisibility. This paper develops random walk models
that converge to a tempered stable law under a triangular array scheme. Since tempered
stable laws and processes are useful in statistical physics, these random walk models
can provide a basic physical model for the underlying physical phenomena.

1. Introduction

Tempered stable laws were introduced in physics as a model for turbulent velocity fluc-

tuations (Koponen (1995); Novikov (1994)). They have also been used in finance (Carr

et al. (2002, 2003)) and hydrology (Meerschaert et al. (2008)) as a model of transient

anomalous diffusion (Baeumer and Meerschaert (2010)). The general class of tempered

stable distributions for random vectors was developed by Rosiński (2007). In short, the

Lévy measure of a stable law is modified in the tail to reduce the probability of large

jumps. Often this is done in such a way that all moments exist, but tempering by a

power law of higher order is also useful (Sokolov et al. (2004)). This paper develops

random walk models that converge to a tempered stable law. Starting with a random

walk in the domain of attraction of a stable law, the basic idea is to modify the tails of

the jumps to mimic the tempering function of the limit. A triangular array scheme is es-

sential, since the limit is no longer stable. The results of this paper are intended to form

a useful random walk model for natural processes that are well described by a tempered

stable. The main result of this paper is Theorem 4.3, which shows that the weak limit

of the row sum of that triangular array is a tempered stable distribution. In Theorem

4.8, we show that the random walk process converges to the Lévy process generated by

the tempered stable distribution in the sense of finite-dimensional distributions.
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Section 2 gives a brief background of stable distributions and their domains of at-

traction. In Section 3, we define tempered stable distributions and the triangular array

model. In Section 4, we state and prove the results regarding the convergence of the

random walk to the tempered stable distribution.

2. Stable limits for random walks

Recall that a random vector X on Rd is infinitely divisible if and only if its character-

istic function E[ei〈λ,X〉] = eψ(λ), where

(2.1) ψ(λ) = i〈a, λ〉 − 1
2
〈λ,Qλ〉+

∫
x 6=0

(
ei〈λ,x〉 − 1− i〈λ, x〉1(‖x‖ ≤ 1)

)
M(dx),

where a ∈ Rd, Q is a nonnegative definite symmetric d × d matrix with entries in R,

and M is a σ-finite Borel measure on Rd \ {0} such that
∫
x 6=0

min{1, ‖x‖2}M(dx) <∞.

The triple [a,Q,M ] is called the Lévy representation, and it is unique (Meerschaert and

Scheffler, 2001, Theorem 3.1.11). The measure M is known as the Lévy measure of X.

A Rd valued random vector X is said to be stable if and only if for all n ≥ 1, there

exist bn > 0 and an ∈ Rd so that X1 + . . . + Xn
d
= bnX + an, where X1, X2, . . . are i.i.d.

copies of X. Clearly, a stable random vector is infinitely divisible. It is well known that

given a stable random vector, either it is Gaussian, or the Gaussian part is completely

absent, i.e., in the Lévy representation (2.1), Q = 0. In this paper, “stable random

vector” will refer to the latter case, i.e., non-Gaussian stable random vectors. For such

a random vector X, P (‖X‖ > ·) regularly varies with index −α for some 0 < α < 2.

Sometimes, X is also referred to as an α-stable random vector. The Lévy representation

of the random vector X is [a, 0,M0] for some a ∈ Rd where M0(dr, ds) = r−α−1drσ(ds),

and σ is a finite non-zero Borel measure on the unit sphere Sd−1 = {x ∈ Rd : ‖x‖ = 1},
see for example (Meerschaert and Scheffler, 2001, Theorem 7.3.16). The measure σ is

known as the spectral measure of X. For more details on stable distributions, the reader

is referred to Samorodnitsky and Taqqu (1994).

The domain of attraction of an α-stable random vector X consists of Rd valued random

vectors H such that there exist a sequence of positive numbers (bn) and a sequence (an)

in Rd satisfying

(2.2) b−1
n (H1 + · · ·+Hn)− an ⇒ X

as n→∞, where ⇒ denotes weak convergence and H1, H2, . . . are i.i.d. copies of H. A

necessary and sufficient condition for (2.2) is that V (r) = P (‖H‖ > r) varies regularly
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with index −α, and

(2.3) P
(
H
‖H‖ ∈ D

∣∣‖H‖ > r
)

=
P (‖H‖ > r, H

‖H‖ ∈ D)

V (r)
→ σ(D)

σ(Sd−1)

as r → ∞ for all Borel subsets D of Sd−1 such that σ(∂D) = 0, see for example

(Meerschaert and Scheffler, 2001, Theorem 7.3.16). When α > 1, m = E(H) exists,

and we can center to zero expectation in (2.2) by setting an = nb−1
n m. Then the limit

X also has zero mean, and its log-characteristic function

(2.4) ψ(λ) =

∫
x 6=0

(
ei〈λ,x〉 − 1− i〈λ, x〉

)
M(dx).

When 0 < α < 1, no centering is required: Set an = 0 in (2.2); then X is a centered

stable law with log-characteristic function

(2.5) ψ(λ) =

∫
x 6=0

(
ei〈λ,x〉 − 1

)
M(dx).

See for example (Meerschaert and Scheffler, 2001, Theorem 8.2.16).

Suppose that X is a stable random vector. Let {X(t)} denote the Lévy process as-

sociated with X, so that X(0) = 0 almost surely, X(t) has stationary, independent

increments, and X(1) = X in distribution. Suppose that (2.2) holds with an = 0,

let b(c) = bdce, and S(c) =
∑dce

j=1Hj for c ≥ 0. Then, as c → ∞, we also have

process convergence {b(c)−1S(ct)}t≥0 ⇒ {X(t)}t≥0 in the sense of finite dimensional

distributions (Meerschaert and Scheffler, 2001, Example 11.2.18) as well as conver-

gence in the Skorokhod space D([0,∞),Rd) of right continuous functions with left hand

limits, in the J1 topology (Meerschaert and Scheffler, 2004, Theorem 4.1). The ran-

dom vectors X(t) have smooth density functions P (x, t) that solve a fractional dif-

ferential equation ∂
∂t
P (x, t) = D∇α

σP (x, t) for anomalous diffusion (Meerschaert et al.

(1999)). The fractional derivative operator ∇α
Mf(x) is defined, for suitable functions

f(x) with Fourier transform f̂(λ) =
∫
ei〈λ,x〉f(x) dx, as the inverse Fourier transform of∫

‖s‖=1
(−i〈λ, s〉)ασ(ds)f̂(λ), and D > 0 is a positive constant that depends on choice of

the norming sequence b(c). The random walk Sn provides a physical model for particle

jumps, whose ensemble behavior is approximated by the stable density functions P (x, t).

For example, the random walk can be simulated to solve the fractional diffusion equa-

tion, a numerical method known as particle tracking (Zhang et al. (2006)). The purpose

of this paper is to develop analogous random walk models for tempered stables.
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3. Tempered random walks

This section develops random walk models that converge to a tempered stable, using

a triangular array scheme. As in Rosiński (2007), we define a d-dimensional proper

tempered α-stable random vector to be an infinitely divisible random vector with Lévy

representation [a, 0,M ] with

(3.1) M(dr, ds) = r−α−1q(r, s)drσ(ds)

for r > 0 and s ∈ Sd−1. Here α ∈ (0, 2), σ is a finite Borel measure on the unit sphere

Sd−1 = {x ∈ Rd : ‖x‖ = 1}, and q : (0,∞) × Sd−1 is a Borel measurable function

such that for all s ∈ Sd−1, q(·, s) is non-increasing, q(0+, s) = α and q(∞, s) = 0.

We also assume that q is continuous in the second variable, i.e., q(r, ·) is continuous

for all r > 0. In Rosiński (2007), the assumption is that q(0+, s) = 1. However, a

simple reparametrization yields q(0+, s) = α. It is also assumed in Rosiński (2007) that

q(·, s) is completely monotone, but we do not need that assumption in this paper. Note

that tempered stable random vectors are full dimensional, since the Lévy measure is

not concentrated on any lower dimensional subspace (Meerschaert and Scheffler, 2001,

Proposition 3.1.20). Let H be a random vector in the domain of attraction of X such

that (without loss of generality) P (H = 0) = 0. We will define a random walk that

approximates the tempered stable using a conditional tempering of the jumps. Define a

function π : (0,∞)× Sd−1 → R by

(3.2) π(u, s) = uα
∫ ∞
u

r−α−1q(r, s)dr .

From the fact that the function q is bounded above by α, it is immediate that the integral

on the right hand side is finite. Clearly,

∂π(u, s)

∂u
= αuα−1

∫ ∞
u

r−α−1q(r, s)dr − u−1q(u, s)

= αuα−1

∫ ∞
u

r−α−1 {q(r, s)− q(u, s)} dr ≤ 0,

the inequality following from the fact that q(·, s) is non-increasing. Thus π(·, s) is also

non-increasing. A simple application of the L’Hôpital’s rule yields that π(0+, s) = 1 and

π(∞, s) = 0.

Define a family of probability measures on (0,∞) by Π(du, s) = − ∂
∂u
π(u, s)du. Since

q is a measurable function, for every Borel set A ⊂ (0,∞), Π(A, ·) is a measurable
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function from Sd−1 to R. Hence there exists a random variable T > 0 whose conditional

distribution given H is Π (·, H/‖H‖).
Now we construct the tempered random walk. For t > 0, define

(3.3) H t =
H

‖H‖
(‖H‖ ∧ tT ) .

Let {(Hj : Tj) : j ≥ 1} be i.i.d. copies of (H,T ). Suppose vn → ∞ is a sequence of

positive numbers. Define Ynj := (‖Hj‖ ∧ vnTj)Hj/‖Hj‖ for n, j ≥ 1, and let

(3.4) Sn(k) := Yn1 + · · ·+ Ynk.

The next section shows that, for suitably chosen truncation thresholds vn, the random

walk (3.4) is asymptotically tempered stable.

4. Limits of tempered random walks

The results in this section show that for suitable truncation thresholds vn and center-

ing, the random walk (3.4) converges to a tempered stable. The form of the centering is

then related to the case with no tempering. We begin with a few technical results. Recall

that for sigma-finite Borel measures µn, µ on Γ = Rd \ {0}, µn
v→ µ (vague convergence)

means that µn(D) → µ(D) for Borel sets D ⊂ Γ that are bounded away from zero, for

which µ(∂D) = 0.

Lemma 4.1. Suppose that H t is defined by (3.3). Then

P (t−1H t ∈ ·)
P (‖H‖ > t)

v→ 1

σ(Sd−1)
M(·)

on Γ as t→∞, where M is as in (3.1).

For the proof, we shall need the following result from weak convergence. This result

is similar to Theorem 1.3.4 in van der Vaart and Wellner (1996), which states the corre-

sponding result for probability measures. Although the result is well known, we include

the proof here for completeness, since we could not locate a suitable reference.

Lemma 4.2. Suppose (µn) is a sequence of measures on some metric space S equipped

with the Borel sigma-field, converging weakly to some finite measure µ. Then, for all

bounded non-negative upper semicontinuous functions f , we have lim supn→∞
∫
fdµn ≤∫

fdµ .
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Proof. Since f is bounded and non-negative, we can assume without loss of generality

that 0 ≤ f < 1. For k ≥ 1, denote fk := 1
k

∑k
i=1 1

(
f−1

[
i−1
k
, 1
))

. It is easy to see that

f ≤ fk ≤ f + 1
k
. Thus, for fixed k ≥ 1,

lim sup
n→∞

∫
fdµn ≤ lim sup

n→∞

∫
fkdµn ≤

1

k

k∑
i=1

lim sup
n→∞

µn

(
f−1

[
i− 1

k
, 1

))

≤ 1

k

k∑
i=1

µ

(
f−1

[
i− 1

k
, 1

))
≤
∫
fdµ+

1

k
µ(S) ,

by the Portmanteau Theorem (Theorem 2.1, Billingsley (1968)) and the observation that

f−1
[
i−1
k
, 1
)

is a closed set because f is upper semicontinuous. Since µ is a finite measure,

this completes the proof. �

Proof of Lemma 4.1. Note that if q(r, ·) is continuous for all r > 0, then the same is

true for π(u, ·) for all u > 0. To see this, suppose that the former holds. Fix u >

0 and sn, s ∈ Sd−1 such that sn → s. By the assumption on q and the dominated

convergence theorem, it follows that limn→∞
∫∞
u
r−α−1q(r, sn)dr =

∫∞
u
r−α−1q(r, s)dr .

Then π(u, sn) → π(u, s), so π(u, ·) is continuous for every u > 0. A similar argument

shows that ∂π(u,·)
∂u

is continuous for every u > 0.

For the proof, we shall use the fact that as t→∞,

(4.1) P (‖H‖ > t)−1P

[
t−1‖H‖ ∈ dr, H

‖H‖
∈ ds

]
v→ α

σ(Sd−1)
r−α−1drσ(ds)

which is a restatement of Theorem 8.2.18 in Meerschaert and Scheffler (2001). It suffices

to show that for every closed set A ⊂ Rd \ {0},

(4.2) lim sup
t→∞

P (t−1H t ∈ A)P (‖H‖ > t)−1 ≤ σ(Sd−1)−1M(A) ,

and that for every ε > 0,

(4.3) lim
t→∞

P (t−1H t ∈ Bc
ε)P (‖H‖ > t)−1 = σ(Sd−1)−1M(Bc

ε) ,

where Br is the closed ball of radius r centered at origin: Br := {x ∈ Rd : ‖x‖ ≤ r} . Fix

a closed set A ⊂ Rd \ {0} and note that

P (t−1H t ∈ A) =

∫ ∞
0

∫
Sd−1

∫ ∞
0

1A((r ∧ u)s)Π(du, s) P
(
t−1‖H‖ ∈ dr, H

‖H‖
∈ ds

)
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Fix sequences rn and sn so that rn > 0, rn → r > 0, sn ∈ Sd−1 and sn → s. Then

lim sup
n→∞

∫ ∞
0

1A((rn ∧ u)sn)Π(du, sn)

≤ 1−
∫ ∞

0

lim inf
n→∞

1Ac((rn ∧ u)sn)

(
−∂π(u, sn)

∂u

)
du

= 1−
∫ ∞

0

(
−∂π(u, s)

∂u

)
lim inf
n→∞

1Ac((rn ∧ u)sn)du ≤
∫ ∞

0

1A((r ∧ u)s)Π(du, s)

by Fatou’s Lemma, continuity of ∂
∂u
π(u, ·), and the fact that Ac is open. Then (r, s) 7→∫∞

0
1A((r∧u)s)Π(du, s) is upper semicontinuous. From (4.1), it follows that for all ε > 0,

the restriction of P (‖H‖ > t)−1P [t−1‖H‖ ∈ dr,H/‖H‖ ∈ ds] to Bc
ε converges weakly to

that of αr−α−1drσ(ds)/σ(Sd−1). Thus, by Lemma 4.2 and the fact that A is bounded

away from zero, it follows that

lim sup
t→∞

P (t−1H t ∈ A)

P (‖H‖ > t)
≤
∫ ∞

0

∫
Sd−1

∫ ∞
0

1A((r ∧ u)s)Π(du, s)
α

σ(Sd−1)
r−α−1drσ(ds)

=

∫ ∞
0

∫
Sd−1

{∫ r

0

1A(us)Π(du, s)

}
α

σ(Sd−1)
r−α−1drσ(ds)

+

∫ ∞
0

∫
Sd−1

{∫ ∞
r

1A(rs)Π(du, s)

}
α

σ(Sd−1)
r−α−1drσ(ds) =: I1 + I2 .

Note that Lemma 4.2 applies since Π(du, s) is a probability measure for each s.

A change of the order of integration yields that

I1 =
1

σ(Sd−1)

∫ ∞
0

∫
Sd−1

1A(us)u−α
(
−∂π(u, s)

∂u

)
σ(ds)du .

It is immediate that I2 = σ(Sd−1)−1
∫∞

0

∫
Sd−1 1A(rs)απ(r, s)r−α−1drσ(ds) . Thus,

lim sup
t→∞

P (t−1H t ∈ A)

P (‖H‖ > t)

≤ 1

σ(Sd−1)

∫ ∞
0

∫
Sd−1

1A(rs)

{
απ(r, s)− r∂π(r, s)

∂r

}
r−α−1drσ(ds) .

(4.4)

From (3), it follows that απ(r, s)− r ∂
∂r
π(r, s) = q(r, s) . Plugging this in (4.4) yields that

lim sup
t→∞

P (t−1H t ∈ A)

P (‖H‖ > t)
≤ 1

σ(Sd−1)

∫ ∞
0

∫
Sd−1

1A(rs)q(r, s)r−α−1drσ(ds) =
M(A)

σ(Sd−1)
,



8 ARIJIT CHAKRABARTY AND MARK M. MEERSCHAERT

thus showing (4.2). For (4.3), note that as t→∞,

P (t−1H t ∈ Bc
ε) =

∫ ∞
ε

∫
Sd−1

π(ε, s)P

(
t−1‖H‖ ∈ dr, H

‖H‖
∈ ds

)
∼ P (‖H‖ > t)

∫ ∞
ε

∫
Sd−1

π(ε, s)
α

σ(Sd−1)
r−α−1drσ(ds)

= P (‖H‖ > t)
1

σ(Sd−1)

∫
Sd−1

ε−απ(ε, s)σ(ds) =
P (‖H‖ > t)

σ(Sd−1)
M(Bc

ε) ,

by (4.1), the fact that π(ε, ·) is continuous, and the definition of π. �

The following theorem is the main result of this paper. It shows that the tempered ran-

dom walk (3.4) converges weakly to a tempered stable, for suitable tempering constants

vn and suitable centering vectors an.

Theorem 4.3. For n ≥ 1 let bn := inf {x : P (‖H‖ > x) ≤ n−1} . If the sequence (vn)

satisfies

(4.5) lim
n→∞

v−1
n bn = σ(Sd−1)1/α ,

then,

(4.6) v−1
n Sn(n)− an ⇒ ρ

where ρ is an infinitely divisible probability measure on Rd with Lévy representation

[0, 0,M ], and (an) is defined by

(4.7) an := n

∫
{‖x‖<1}

xP (v−1
n Yn1 ∈ dx) .

Proof. Note that nP (‖H‖ > bn) → 1 (Resnick, 2007, p. 24). Since P (‖H‖ > ·) varies

regularly with index −α, (4.5) implies P (‖H‖ > vn)/P (‖H‖ > bn)→ σ(Sd−1) . Then

(4.8) lim
n→∞

nP (‖H‖ > vn) = σ(Sd−1) .

An appeal to Lemma 4.1 shows that

(4.9) nP (v−1
n Yn1 ∈ ·)

v→M(·),

and then it suffices to check (Meerschaert and Scheffler, 2001, Theorem 3.2.2):

(4.10) lim
δ↓0

lim sup
n→∞

nv−2
n E ‖Yn11(‖Yn1‖ ≤ vnδ)‖2 = 0 .

For this, note that ‖Yn1‖21(‖Yn1‖ ≤ vnδ) ≤ ‖H1‖21(‖H1‖ ≤ vnδ) + v2
nT

2
1 1(vnT1 ≤

vnδ, ‖H1‖ > vnδ) ≤ ‖H1‖21(‖H1‖ ≤ vnδ) + v2
nδ

21(‖H1‖ > vnδ). Since P (‖H‖ > ·) is
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regularly varying with index −α and α < 2, by Karamata’s theorem (Resnick, 2007,

Theorem 2.1) it follows that E [‖H‖21(‖H‖ ≤ vnδ)] ∼ (vnδ)
2P (‖H‖ > vnδ)α/(2− α) ∼

δ2−αv2
nP (‖H‖ > vn)α/(2 − α) as n → ∞. Using the regular variation of P (‖H‖ > ·)

once again, it is immediate that E [v2
nδ

21(‖H‖ > vnδ)] = v2
nδ

2P (‖H‖ > vnδ) ∼
δ2−αv2

nP (‖H‖ > vn) . To complete the proof, use (4.8) to obtain C < ∞ such that

for all δ > 0,

(4.11) lim sup
n→∞

nv−2
n E ‖Yn11(‖Yn1‖ ≤ vnδ)‖2 ≤ Cδ2−α .

�

The next two results show that the centering constants in (4.6) can be chosen in the

same way as for (2.2) when α 6= 1. We say that a tempered stable law with index

0 < α < 1 is centered if its log-characteristic function can be written in the form (2.5)

where M is given by (3.1).

Theorem 4.4. If 0 < α < 1 and vn satisfies (4.5), then v−1
n Sn(n) ⇒ ρ1 where ρ1 is

centered tempered stable.

Proof. In view of Theorem 4.3 and (2.1), it suffices to show that, if an is defined by (4.7),

then an →
∫
{‖x‖<1} xM(dx) . Fix 0 < ε < 1 and note that

an = n

∫
{ε<‖x‖<1}

xP (v−1
n Yn1 ∈ dx) + n

∫
{‖x‖≤ε}

xP (v−1
n Yn1 ∈ dx) =: I1 + I2 .

Clearly, by (4.9), limn→∞ I1 =
∫
{ε<‖x‖<1} xM(dx) . Thus, it suffices to show

(4.12) lim
ε↓0

lim sup
n→∞

‖I2‖ = 0 .

Note ‖I2‖ ≤ nv−1
n E[‖Yn1‖1(‖Yn1‖ ≤ vnε)] ≤ nv−1

n [E(‖H‖1(‖H‖ ≤ vnε)) +

vnεP (‖H‖ > vnε)]. Since α < 1, Karamata along with regular variation yields

E (‖H‖1(‖H‖ ≤ vnε)) ∼ vnε
1−αP (‖H‖ > vn)α/(1 − α). Then (4.12) follows, using

(4.8) and regular variation. �

Theorem 4.5. Suppose α > 1 and that for some β > α,

(4.13) lim sup
u↓0

sup
s∈Sd−1

u1−β[α− q(u, s)] <∞
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where vn satisfies (4.5). Then, v−1
n [Sn(n) − nE(H)] ⇒ ρ2 where ρ2 is an infinitely

divisible law with no Gaussian component, Lévy measure M and mean

(4.14) m = −α
∫ ∞

0

∫
Sd−1

{∫ r

0

(r − u)sΠ(du, s)

}
r−α−1drσ(ds).

Proof. Let

(4.15) θ := α

∫ ∞
0

∫
Sd−1

{∫ r

0

(r − u)sΠ(du, s)

}
r−α−1drσ(ds) +

∫
{‖x‖≥1}

xM(dx) .

We start with showing that the integrals on the right hand side of (4.15) are well defined.

Let g(r, s) :=
∫ r

0
(r − u)sΠ(du, s) . It is easy to see that ‖g(r, s)‖ ≤

∫ r
0

(r − u)Π(du, s) =:

ḡ(r, s) . Clearly,

(4.16) ḡ(r, s) = r[1− π(r, s)] +

∫ r

0

u
∂π(u, s)

∂u
du ,

and hence, ∂
∂r
ḡ(r, s) = 1 − π(r, s) = rα

∫∞
r
u−α−2+βu1−β[α − q(u, s)]du =

rα
∫ 1

r
u−α−2+βu1−β[α − q(u, s)]du + O(rα). Clearly (4.13) holds with β replaced by

β ∧ 2. Thus, without loss of generality, we can assume that β ≤ 2. Define K =

sup{u1−β[α− q(u, s)] : s ∈ Sd−1, 0 < u ≤ 1}. By hypothesis, K <∞. Thus,

rα
∫ 1

r

u−α−2+βα− q(u, s)
uβ−1

du ≤ Krα
∫ 1

r

u−α−2+βdu ≤ K ′rβ−1 ,

where K ′ = K/(α+1−β) > 0 since β ≤ 2 and α > 1. Thus, as r ↓ 0, ∂
∂r
ḡ(r, s) = O(rβ−1)

uniformly in s, and hence for some C <∞,

(4.17) ḡ(r, s) ≤ Crβ, r ≤ 1, s ∈ Sd−1 .

It follows that
∫ 1

0

∫
Sd−1 ḡ(r, s)r−α−1drσ(ds) < ∞ . It is easy to see that ḡ(r, s) ≤ r.

Since α > 1,
∫∞

1

∫
Sd−1 ḡ(r, s)r−α−1drσ(ds) <∞ . Thus, the first integral in (4.15) is well

defined. Since α > 1, it is easy to check that the second integral is also well defined.

Then it follows, using Theorem 3.1.14 and Remark 3.1.15 in Meerschaert and Scheffler

(2001), that any tempered stable law with index α > 1 has a finite mean.

Next we want to show that

(4.18) lim
n→∞

[
n

vn
E(H)− an

]
= θ .

Write nv−1
n E(H)− an = nE [v−1

n (H1 − Yn1)] + nv−1
n E [Yn11(‖Yn1‖ ≥ vn)] = I1 + I2 . Fix

1 < N <∞ and write

I2 = n

∫
{1≤‖x‖<N}

xP
(
v−1
n Yn1 ∈ dx

)
+ n

∫
{‖x‖≥N}

xP
(
v−1
n Yn1 ∈ dx

)
:= I21 + I22 .
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By (4.9), it follows that

(4.19) lim
n→∞

I21 =

∫
{1≤‖x‖<N}

xM(dx) .

Using Karamata’s Theorem we get ‖I22‖ ≤ nv−1
n E [‖Yn1‖1(‖Yn1‖ ≥ vnN)] ≤

nv−1
n E [‖H‖1(‖H‖ ≥ vnN)] ∼ N1−αnP (‖H‖ > vn)α/(α − 1) as n → ∞. This, in view

of (4.8) show that limN→∞ lim supn→∞ ‖I22‖ = 0 . In conjunction with (4.19), this shows

that

(4.20) lim
n→∞

I2 =

∫
{‖x‖≥1}

xM(dx) .

It remains to show that

(4.21) lim
n→∞

I1 = α

∫ ∞
0

∫
Sd−1

{∫ r

0

(r − u)sΠ(du, s)

}
r−α−1drσ(ds) .

To that end, fix 0 < ε < 1 < N <∞ and note that

I1 = nE

[
H

‖H‖
(
v−1
n ‖H‖ − T

)
1
(
v−1
n ‖H‖ > T

)]
= n

∫ ε

0

∫
Sd−1

g(r, s)P

(
v−1
n ‖H‖ ∈ dr,

H

‖H‖
∈ ds

)
+n

∫ N

ε

∫
Sd−1

g(r, s)P

(
v−1
n ‖H‖ ∈ dr,

H

‖H‖
∈ ds

)
+n

∫ ∞
N

∫
Sd−1

g(r, s)P

(
v−1
n ‖H‖ ∈ dr,

H

‖H‖
∈ ds

)
=: I11 + I12 + I13 .

We shall now show that g is jointly continuous. Clearly, g(r, s) = ḡ(r, s)s . Thus, it

suffices to show that ḡ is jointly continuous. Since q is assumed to be continuous in the

second variable, an appeal to the dominated convergence theorem shows that π is jointly

continuous. By (3), it follows that ∂
∂u
π(u, ·) is continuous for every u > 0. In view of

(4.16), it suffices to show that the function (r, s) 7→
∫ r

0
u ∂
∂u
π(u, s)du is jointly continuous.

For that, fix a sequence rn → r and sn → s. Note that∫ rn

0

u
∂π(u, sn)

∂u
du =

∫ rn

0

u
∂π(u, s)

∂u
du+

∫ rn

0

u

[
∂π(u, sn)

∂u
− ∂π(u, s)

∂u

]
du =: J1 + J2 .

Clearly, as n→∞, J1 →
∫ r

0
u ∂
∂u
π(u, s)du . Let R = supn≥1 rn and note that,

|J2| ≤
∫ R

0

u

∣∣∣∣∂π(u, sn)

∂u
− ∂π(u, s)

∂u

∣∣∣∣ du ≤ R

∫ ∞
0

∣∣∣∣∂π(u, sn)

∂u
− ∂π(u, s)

∂u

∣∣∣∣ du
= R

[
2

∫ ∞
0

{
∂π(u, sn)

∂u
∨ ∂π(u, s)

∂u

}
du+ 2

]
,
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the second equality following from the identity |a − b| = 2(a ∨ b) − (a + b).

Since,
∣∣ ∂
∂u
π(u, sn) ∨ ∂

∂u
π(u, s)

∣∣ ≤ − ∂
∂u
π(u, s) , an appeal to the dominated con-

vergence theorem along with the fact that ∂
∂u
π(u, ·) is continuous shows that

limn→∞
∫∞

0

{
∂
∂u
π(u, sn) ∨ ∂

∂u
π(u, s)

}
du = −1 , which in turn shows that J2 → 0 as

n→∞. This shows that g is jointly continuous.

By (4.1), (4.8) and the fact that g is jointly continuous, it follows that limn→∞ I12 =

α
∫ N
ε

∫
Sd−1 g(r, s)r−α−1drσ(ds) . Note that

‖I11‖ ≤ n

∫ ε

0

∫
Sd−1

ḡ(r, s)P

(
v−1
n ‖H‖ ∈ dr,

H

‖H‖
∈ ds

)
≤ Cn

∫ ε

0

∫
Sd−1

rβP

(
v−1
n ‖H‖ ∈ dr,

H

‖H‖
∈ ds

)
= Cnv−βn

∫ εvn

0

rβP (‖H‖ ∈ dr)→ C
α

β − α
εβ−ασ(Sd−1)

as n → ∞, using (4.17), Karamata’s Theorem, and (4.8). This shows that

limε↓0 lim supn→∞ ‖I11‖ = 0. Finally, by similar calculations and the fact that ‖g(r, s)‖ ≤
r, it follows that

‖I13‖ ≤ nv−1
n

∫ ∞
Nvn

rP (‖H‖ ∈ dr)→ α

α− 1
σ(Sd−1)N1−α .

This shows that limN→∞ lim supn→∞ ‖I13‖ = 0. Thus, (4.21) follows. By (4.20) and

(4.21), (4.18) follows.

From Theorem 4.3 and (4.18) it follows that

(4.22) v−1
n Sn(n)− n

vn
E(H) = v−1

n Sn(n)− an + an −
n

vn
E(H)⇒ ρ− θ := ρ2

so that ρ2 has Lévy representation [−θ, 0,M ]. Using (Meerschaert and Scheffler, 2001,

Remark 3.1.15), we can write the log-characteristic function of a tempered stable law

with mean zero in the form (2.4). Then it follows easily that (4.14) holds. �

Remark 4.6. As noted in Section 2, we can center to zero expectation in (2.2) when

α > 1, or dispense with the centering when α < 1. Theorems 4.4 and 4.5 shows that

the same centering can be used for the tempered random walk. If α < 1, the limit is

centered tempered stable, analogous to a centered stable law. If α > 1, and we center

to zero expectation for the untempered random walk jumps, the limit contains a shift

depending on the spectral measure and the tempering function. The shift comes from

the fact that I1 = nv−1
n E [H1 − Yn1]→ −m in (4.21).
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Remark 4.7. The special case d = 1 is also important in applications (Meerschaert et al.

(2008)). Suppose d = 1, and that H and π(·, ·) are as before. In this case, the conditional

distribution of T given H can be written in a simpler form: P (T > u|H > 0) = π(u, 1)

and P (T > u|H < 0) = π(u,−1). Let (vn), (an) and ρ be as in Theorem 4.3. For n ≥ 1,

suppose that Yn1, . . . , Ynn are i.i.d. with

Yn1
d
= sgn(H)(|H| ∧ vnT ) .

Let Sn(k) :=
∑k

j=1 Ynj. As a restatement of Theorem 4.3, we obtain that

v−1
n Sn(n)− an ⇒ ρ .

If α < 1, we can set an = 0. If α > 1, we can take an = nv−1
n E(H), provided

lim sup
u↓0

2α− q(u, 1)− q(u,−1)

uβ−1
<∞

for some β > α.

Let {X(t)} be the Lévy process generated by the tempered stable random vector X

with distribution ρ, so that X(0) = 0 almost surely, {X(t)} has stationary, independent

increments, and X(1) = X in distribution. The next result shows that the tempered

random walk (3.4) faithfully approximates the tempered stable process.

Theorem 4.8. Suppose that (4.6) holds as in Theorem 4.3. Then

(4.23) {vnSn([nt])− tan}t≥0 ⇒ {X(t)}t≥0

as n→∞ in the sense of finite dimensional distributions.

Proof. The Lévy representation of the limit ρ in (4.6) is [0, 0,M ]. Use (4.9)

to get [nt]P (v−1
n Yn1 ∈ ·) ∼ ntP (v−1

n Yn1 ∈ ·) v→ tM(·) and (4.10) to get

limδ↓0 lim supn→∞ [nt] v−2
n E ‖Yn11(‖Yn1‖ ≤ vnδ)‖2 = 0 . Then v−1

n Sn ([nt])− ant⇒ ρt fol-

lows by the general convergence criteria for triangular arrays (Meerschaert and Scheffler,

2001, Theorem 3.2.2), where ρt has Lévy representation [0, 0, tM ], since∥∥∥∥ant− [nt]

∫
{‖x‖<1}

xP (v−1
n Yn1 ∈ dx)

∥∥∥∥ ≤ ∫
{‖x‖<1}

‖x‖P (v−1
n Yn1 ∈ dx)

≤
{
v−2
n E ‖Yn11(‖Yn1‖ ≤ vn)‖2

}1/2 → 0

using (4.11). To prove convergence of finite dimensional distributions, use the fact that

increments of the random walk are independent. �
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Remark 4.9. Take the exponential tempering function q(r, s) = e−λr for s = ±1. Then

the random vectors X(t) have smooth density functions p(x, t) that solve a tempered

fractional diffusion equation ∂tp = cq ∂α,λ−x p+ c(1− q) ∂α,λx p. where P (H < −r)/P (|H| >
r) ∼ q as r → ∞. The operator on the right hand side is the negative genera-

tor of the continuous convolution semigroup associated with X. Some properties of

the tempered fractional diffusion equation are developed in Baeumer and Meerschaert

(2010). Theorem 4.8 shows that the tempered random walk (3.4) provides a useful

approximation to the process {X(t)}. In this case, the distribution of Ti is given by

P (Ti > u) = π(u, s) = uα
∫∞
u
r−α−1e−λrdr, which involves the incomplete gamma func-

tion. The tempering thresholds vn do not depend on q. For example, if H belongs to the

domain of normal attraction of some stable law, then we can take vn = cn1/α for some

c > 0. Any random walk in the domain of attraction of a stable law can be modified

using this tempering, to approximate an exponentially tempered stable.

Remark 4.10. Suppose that the tempering variable is conditionally exponential with

P (Ti > t| H‖H‖ = s) := π(t, s) = e−λst for some continuous s 7→ λs > 0. Let h(r, s) =

r−α−1q(r, s) and use (3.2) to get u−αe−λsu =
∫∞
u
h(r, s) dr. Take derivatives with respect

to u on both sides to obtain −αu−α−1e−λsu − λsu−αe−λsu = −h(u) and write

(4.24) q(u, s) = uα+1h(u) = (α + λsu)e−λsu.

Using this tempering function for the Lévy measure (3.1) yields a tempered stable law

X with a particularly simple tempering variable Ti. If 1 < α < 2, then the form of

the Lévy measure shows that X is the sum of two independent exponentially tempered

stable laws, one with index α, and the other with index α− 1.

Remark 4.11. The goal of this paper is to construct random walk models that lead

to a tempered stable limit. To conclude this paper, we provide a practical, heuristic

interpretation of those results. A stable process serves to approximate a random walk

with power-law jumps. A tempered stable approximates the same random walk, once the

largest jumps are reduced. The tempering process represents an external force applied

independently to each jump, the exact nature of which determines the tempered stable

limit. Any random walk in the domain of attraction of a stable, and subjected to this type

of independent tempering, can be faithfully approximated by a tempered stable. A few

concrete examples are provided in Meerschaert et al. (2010): Precipitation data can be

tempered due to atmospheric water content; measurements of hydraulic conductivity can
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be tempered by volume averaging; daily stock returns could be tempered by automatic

trading limits. See also Aban et al. (2006) for additional discussion.

5. Acknowledgement

The authors are grateful to an anonymous referee for some comments that helped to

improve the paper.

References

Aban, I., Meerschaert, M., and Panorska, A. (2006). Parameter estimation for the

truncated Pareto distribution. Journal of the American Statistical Association,

101(473):270–277.

Baeumer, B. and Meerschaert, M. M. (2010). Tempered stable Lévy motion and transient
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