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Abstract

In the analysis of high-dimensional data it is common to reduce dimension from thousands or tens
of thousands to a much smaller number, often between 5 and 20. One reason for such a substantial
reduction is to reduce the conceptual difficulty of the problem. This difficulty highlights the need for
models that permit a small number of features to provide the majority of information available for
classification, but allow a much larger number, indeed potentially all features, to supply the remaining
information that is needed for a higher level of performance. Inference in such cases is almost bound
to involve significantly nonlinear aspects. In this paper we suggest approaches of this type, based on
empirical approximations to Bayes rule classifiers and involving adaptive feature selection to optimise
performance. This intrinsically nonlinear approach enables the methodology to exploit any interactions
among features that might enhance classifier accuracy. The methodology is sequential, and involves
steadily building a model of increasing complexity, stopping when an empirical measure of error indicates
that further complexity would only degrade performance.
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1 Introduction

Contemporary methods for feature selection in high-dimensional data analysis are generally based on
assumptions of linearity. For example, if a response variable, Y , is observed in the continuum then
it is argued that the dependence of Y on a p-vector X can be expressed through a linear predictive
model, Y = α+ βTX + error, where α denotes a scalar and β is an unknown p-vector. A major step in
reducing dimension involves setting almost all the values of β equal to zero, for example by imposing an
L1 penalty as in the case of the Lasso (Tibshirani (1996); Zou (2006); Meinshausen (2007)). A similar
approach is used when the response variable is a zero-one class label, L. There the probability that the
class label equals zero is taken to be expressed by a logit-linear model:

P (L = 0) =
{

1 + exp
(
α+ βTX

)}−1
, P (L = 1) = 1− P (L = 0) , (1.1)

and β can again be dimension-reduced by applying an L1 penalty.

Typically, p is decreased from a value in the thousands or tens of thousands to one between about 5
and 20 by following this approach. However, the massive dimension reduction here reflects a degree of
pragmatism, rather than a firm conclusion that a model such as that at (1.1) is the most appropriate.
In particular, we generally do not believe that the distribution of the class label depends on only a small
number of the components of X. More likely it depends at least partly on many more, but on pragmatic
grounds we focus on a relatively small number. If we were to attempt to build a classifier where the
dependence of the class label L, or the response variable Y , on X involved more than a few features,
then the linear model would likely be inadequate, since in relatively high dimensional cases the manner
of dependence can be quite complex.

In some problems of this type it is in theory possible to construct a classifier so that it enjoys
especially strong performance. Suppose, for example, that datasets Xj = {Xj1, . . . , Xjnj

} are drawn
from respective populations Πj , for j = 1, 2, where each data vector Xji = (Xji1, . . . , Xjip) is of length
p and has probability density fj , say. Assume too, only for the sake of simple exposition, that the
vector components Xji1, . . . , Xjip are completely independent, and have a common, symmetric density
φ when j = 1 but have the respective densities φ(·+ ν1), . . . , φ(·+ νp) when j = 2, where ν1, . . . , νp are
constants. (Therefore Π1 and Π2 are distinguished from one another by component-wise translation.)
Then, if

∑
k ν

2
k =∞, the Bayes-rule classifier can asymptotically distinguish perfectly between Π1 and

Π2, as p→∞, but not if
∑
k ν

2
k <∞. Details will be given in section 2.2.

Of course, practical, empirical classifiers can be constructed to give the same high level of performance
when

∑
k ν

2
k = ∞. In this case a great deal of information about the differences between Π1 and Π2

accumulates as dimension grows. However, in many practical problems this high degree of accuracy
is unreasonable, and we expect to encounter much less than perfect classification. This is illustrated
by the case

∑
k ν

2
k < ∞, which, in broader terms than those described by the above examples, is the

subject of the present paper.

Motivated by examples such as these we develop methods for classification in problems where a
small number of components is sufficient for reasonably effective classification, but a larger number is
required for optimal or near-optimal performance. Our approach is based on a bottom-up, rather than
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top-down, algorithm; that is, we look first for the single most effective component, and steadily adjoin
new components until an estimator of classification error fails to decrease. Most competing algorithms
operate in the reverse direction, steadily reducing the number of components.

Our approach is nonlinear, in that it avoids models such as that at (1.1) for the class-label distri-
bution, and instead uses empirical approximations to Bayes-rule procedures, based on projections and
nonparametric density estimators. This technique enables the methodology to capitalise on interactions
among features that might enhance classification accuracy.

There is a vast literature on statistical methods for classification. As well as linear techniques,
discussed above but also including contributions by, among many others, Donoho and Elad (2003),
Donoho (2006) and Candes and Tao (2007), it involves approaches founded on thresholding (e.g. Fan
and Li (2001), the elastic net (Zou and Hastie (2005)), covariance regularisation (e.g. Bickel and Levina
(2008); Witten and Tibshirani (2009)), sure independence screening (Fan and Lv (2008)) and nonlinear
covariance ranking (Hall and Miller (2009)). Cross-validation methods for estimating error rates, similar
to approaches proposed in section 3, include those suggested by Efron (1983), Efron and Tibshirani
(1997) and Ghosh and Hall (2008). Techniques based on projection pursuit and related ideas (see e.g.
Friedman and Tukey (1974); Friedman (1987)) can be used to reduce the variability of classification
methods, and comprise part of the methodology that we propose. Empirical approaches to classification
via the Bayes rule include those discussed by Krzyżak (1991), Lapko (1993), Pawlak (1993), Devroye
et al. (1996), Ancukiewicz (1998) and Hall and Kang (2005). There are several book-length treatments
of classification and related problems, for example those given by Duda et al. (2001), Hastie et al. (2009)
and Shakhnarovich et al. (2006). Dudoit et al. (2002) discuss the performance of a variety of classifiers.

2 Bayes rule motivation

2.1 Bayes classifier as a benchmark

We observe data in the form of independent p-vectors Xji, for 1 ≤ i ≤ nj and j = 1, 2, where Xji comes
from population Πj . The subscript j = L(Xji) denotes the (class) label of any given data vector Xji in
the sample Xj = {Xj1, . . . , Xjnj}. We focus on cases where the nj ’s are much less than p, and where the
samples X1 and X2 are used to construct a classifier, Cl say. Given a new p-vector, Z say, the classifier
determines that Cl(Z) = 1 if Z was assessed by Cl to have come from Π1, i.e. to have label L(Z) = 1.

The ideal Bayes classifier ClBayes, which minimises error rate, concludes that Z comes from Π1 if
gBayes(Z) > 1

2 , where

gBayes(x) = P{L(Z) = 1 |Z = z} =
πf1(x)

πf1(x) + (1− π)f2(x)
, (2.1)

fj denotes the probability density of data drawn from Πj , and π is the prior probability of Π1. In
particular, gBayes(z) equals the probability that Z comes from Π1, given that Z = z. The Bayes risk, or
error rate, is given by:

errateBayes ≡ P{ClBayes(Z) 6= L(Z)} = π

∫
z:gBayes(z)≤ 1

2

f1(z) dz + (1− π)
∫
z:gBayes(z)>

1
2

f2(z) dz , (2.2)
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We formalise the definition of the distribution of Z by taking the distribution to be a mixture: Z is
drawn from Π1 with probability π and from Π2 with probability 1− π.

The Bayes classifier is impractical for very high-dimensional data, because we neither know the
densities fj nor have much opportunity to estimate them from the relatively small samples that are
typically available. However, this is not a serious drawback for the sorts of problems we have in mind,
discussed in section 1 and in section 2.2 below.

2.2 Motivating examples

In this section we expand on the elementary example introduced in section 1, making the simplifying
assumption that the prior probabilities π and 1−π equal 1

2 and that the components Xjik, for 1 ≤ k ≤ p,
of the p-vector Xji = (Xji1, . . . , Xjip), are independent with respective density functions φjk. Further,
we take the corresponding distributions to differ only in terms of location, and define φ1k(u) = φ(u)
and φ2k(u) = φ(u + νk) for each k, where φ is a fixed density and the νk’s are constants. This case is
useful because its simplicity enables a particularly transparent illustration of the general context of our
work.

If we knew the population densities f1 and f2 then we would assign a new data value Z to Π1 if
gBayes(Z) > 1

2 , where gBayes is as defined at (2.1). Equivalently, we would assert that Z came from Π1

if log{f1(Z)/f2(Z)} > 0. Now, when Z = (Z1, . . . , Zp),

log{f1(Z)/f2(Z)} =
p∑
k=1

{log φ(Zk)− log φ(Zk + νk)} , (2.3)

If the location differences νk are fixed and nonzero, or converge to a nonzero limit, then the right-hand
side of (2.3) diverges in probability to +∞ as p increases, if Z comes from Π1, and diverges to −∞
otherwise. In this case we achieve asymptotically perfect classification, and of course we can construct
practical, empirical methods that do the same, without knowing f1 and f2. (For example, the empirical
Bayes approach suggested in sections 3.1 and 3.3 achieves this outcome.)

Perfect classification also holds in cases where νk converges to zero but the series
∑
k ν

2
k diverges:

∞∑
k=1

ν2
k =∞ , (2.4)

Indeed, under mild conditions that are satisfied for most standard distributions, it is shown in Appendix
A.1 that if Z is drawn from Π1, and W has the distribution of a general component of Z, then

E{log φ(W )− log φ(W + ν)} = 1
2 ν

2E{φ′(W )/φ(W )}2 + o
(
ν2
)

(2.5)

as ν → 0. An argument based on the law of large numbers can now be used to show that if (2.4) holds
and Z comes from Π1 then the series on the right-hand side of (2.3) diverges to +∞ with probability 1,
and hence that P{gBayes(Z) > 1

2} → 1. Similarly, if Z comes from Π2 then P{gBayes(Z) < 1
2} → 1.

Therefore, asymptotically perfect classification again prevails, and a practical, empirical classifier can
be constructed to achieve the same result without knowing the densities f1 and f2.
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In the present paper we focus on broader, more challenging settings, exemplified by but of course
not restricted to the independent component model where (2.4) fails, and where asymptotically perfect
classification is not possible. In the case of independent components when Π1 and Π2 are distinguished
only by location changes, the case we consider is characterised by the assumption

∞∑
k=1

ν2
k <∞ . (2.6)

Here, under conditions (A.1) and (A.2) in Appendix A.1, the series at (2.3) converges with probability 1
as p → ∞, no matter whether Z comes from Π1 or Π2. It can be proved from this property that the
limit of the probability that the Bayes rule classifier makes an error, when classifying data that are
equally likely to come from Π1 and Π2, equals

1
2

[
P{S1(∞) ≤ 0}+ P{S2(∞) ≥ 0}

]
, (2.7)

where

S1(q) =
q∑

k=1

{log φ(Wk)− log φ(Wk + νk)}, S2(q) =
q∑

k=1

{log φ(Wk − νk)− log φ(Wk)}

and the random variables W1,W2, . . . are independent and identically distributed with density φ. (Recall
that we are assuming that both prior probabilities equal 1

2 .) Of course, the Bayes rule minimises error
rate over all possible classifiers, and so no other approach can beat the rate given by (2.7).

This example has at least two important implications. First, even if we know f1 and f2, the prob-
ability of misclassification does not necessarily converge to zero as p (and sample size) diverge. In
particular, allowing both sample size and dimension to be very large does not necessarily result in a
substantial reduction in error rate, since the amount of information that accumulates through increasing
dimension can be relatively small, although strictly positive. Secondly, if we do not know f1 and f2,
but can consistently estimate the joint q-variate densities of data from Π1 and Π2 where q < p, then we
can construct a classifier for which the error rate is 1

2 [{P (S1(q) ≤ 0}+ P{S2(q) ≥ 0}] (compare (2.7)),
and this can be made as close as we like to the minimum error rate at (2.7) by choosing q large. This
setting and its generalisations comprise the context of this paper. We show that in particularly difficult
problems we can get arbitrarily close to the minimum error rate by constructing approximations, of
finite but increasingly high dimension, to the much higher dimensional, but unknowable, densities of
the actual data vectors.

Although the independent-component case is very specialised, its considerable simplicity helps to
convey intuition. We shall use it again in section 5.1, where we shall show in different respects that, for
large q, the ordering of components in terms of decreasing values of |νk| minimises classification error
for a given value of q.

Generalisations and extensions are also possible. For example, restricting attention to the indepen-
dent component case for simplicity, the location change in the model can be altered to a scale change,
where the definition φ2k(u) = φ(u + νk) is replaced by φ2k(u) = φ(σku)σk, the constants σk satisfy
σk → 1 as k →∞, and assumption (2.6) is altered to the assertion that the series

∑
k (σk−1) converges.
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3 Methodology

3.1 Empirical Bayes rule

In this section we suggest methodology based on conventional kernel density estimation. Section 3.2 will
treat alternative approaches founded on ideas from projection pursuit and additive modelling. In both
cases the techniques are based on a sequence of nonparametric density approximations, and particularly
in section 3.1 it is simpler if we standardise each feature for scale, since this makes it feasible to use the
same bandwidth for each feature. Note that, since we are working simultaneously with thousands or
tens of thousands of features, the natural scales of those quantities can vary extensively.

These considerations lead us to replace the kth component, Xjik, of the p-vector Xji by

X̂jik = Xjik

/
σ̂j.k , (3.1)

where σ̂2
j.k = n−1

j

∑
i (Xjik− X̄j.k)2 and X̄j.k = n−1

j

∑
i Xjik. Alternatively, a robust estimator of scale

could be used.

Our methodology is recursive, as follows. Assume that, at the previous step, we chose feature indices
k̂1, . . . , k̂q−1. It helps interpretation if we consider k̂` to be an estimator of some specific feature index
k`, say, where k1, . . . , kq−1 are distinct. Write fj(· | k1, . . . , kq−1) for the joint density of the features
with indices k1, . . . , kq−1, in a random vector drawn from Πj .

At the next step, choose a new feature index, k say, from the set {1, . . . , p} \ {k̂1, . . . , k̂q−1}, and
construct a nonparametric estimator f̂j(· | k̂1, . . . , k̂q−1, k) of fj(· | k1, . . . , kq−1, k), for j = 1, 2, based on
the features with indices k̂1, . . . , k̂q−1, k and using a bandwidth sequence h1, . . . , hq. Specifically, define

f̂j(x | k̂1, . . . , k̂q−1, k) =
1

nj
∏
` h`

nj∑
i=1

∏
`=k̂1,...,k̂q−1,k

K

(
x` − X̂ji`

h`

)
, (3.2)

where x = (x1, . . . , xp) and K is a univariate kernel. Thus, f̂j is a conventional q-variate kernel density
estimator, although based on the rescaled data X̂ji rather than the original data Xji, and treating only
the vector components with indices k̂1, . . . , k̂q−1, k.

Since we standardise the vector components for scale (see (3.1)) then in applications we would likely
take the bandwidths h` to be constant, and choose this value to minimise a leave-one-out estimator of
error rate, as discussed two sections below.

Put

ĝ(x) = ĝ(x | k̂1, . . . , k̂q−1, k)

=
π f̂1(x | k̂1, . . . , k̂q−1, k)

π f̂1(x | k̂1, . . . , k̂q−1, k) + (1− π) f̂2(x | k̂1, . . . , k̂q−1, k)
, (3.3)

and take the classifier Cl(· | k̂1, . . . , k̂q−1, k) to be the one that assigns Z to Π1 if ĝ(Z) > 1
2 , and to Π2

otherwise. Estimate the error rate of this classifier using leave-one-out methods (see section 3.3), and
choose k to minimise the error rate. Ties for the minimising q can be broken by choosing, from among
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the tied values, the one that minimises the average distance that ĝ lies on the wrong side of 1
2 when an

incorrect decision is made. Note that ĝ can equivalently be defined by ĝ = ĝ1/(ĝ1 + ĝ2), where

ĝj(x) = πj n
−1
j

nj∑
i=1

∏
`=k̂1,...,k̂q−1,k

K

(
xk`
− X̂ji`

h`

)
, (3.4)

x = (x1, . . . , xp), π1 = π and π2 = 1− π.

We continue iterating this process until no further improvements are made. If the same bandwidth
is used for each feature, its value can be updated after each new feature selection step, using minimum
error rate as the criterion. (Choosing a separate bandwidth for each feature introduces significant noise,
and so is unattractive.) At termination the classifier is a relatively low-dimensional approximation to
the Bayes classifier discussed in section 2.1. Therefore we refer to it as empirical Bayes.

This approach differs from more conventional ones in that it is bottom up, rather than top down.
That is, rather than start with vectors of length p and successively knock out features, which (for
example) the Lasso does as the penalty is increased, our approach starts with vectors of length 1 and
successively adds features depending on the success of the classifier based on the features selected so far.

3.2 Projective density approximations

Alternatives to the density estimator at (3.2) include variants based on projection pursuit and related
ideas. For example, suppose we have selected q ≥ 2 components, k̂1, . . . , k̂q say, using the ideas in
section 3.1. At this point we might take q no larger than 2 to 4. Let X̌ji denote the subvector of Xji

obtained by removing all but the components with indices k̂1, . . . , k̂q. We can construct a univariate
density approximation as follows:

f̌j(u |ω) =
1
nh

nj∑
i=1

K

(
u− ω · X̌ji

h

)
, (3.5)

for j = 1, 2, where ω is a q-vector of unit length and, if ω(1) and ω(2) are q-vectors, ω(1) · ω(2) denotes
their inner (or scalar) product. We can choose ω = ω̂ to minimise a leave-one-out estimator of the error
rate of the classifier constructed as in section 3.1 but where ĝ, rather than being defined by (3.3), is taken
to be ĝ = ĝ1/(ĝ1 + ĝ2), where ĝj , instead of having the definition at (3.4), is given by ĝj = πj f̌j(· | ω̂),
and f̌j is given by (3.5). This approach is motivated by a desire to reduce the variance inherent in
a regular multivariate density estimator by converting it to a one-dimensional form using a projection
that minimises error rate.

3.3 Estimating error rate

The error rate for a general classifier Cl, for classifying a new data value at z, is err(z) = P{Cl(Z) 6=
L(Z) |Z = z}, and the expected (overall) error rate is errate = E{err(X)}. A leave-one-out estimator
of errate is given by

êrrate =
2∑
j=1

πj n
−1
j

nj∑
i=1

I{Cl−ji(Xji) 6= I(Xji)} ,
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where Cl−ji is the version of Cl when Xji is omitted from the data X1 ∪ X2.

In particular, if ĝ−ji denotes the version of ĝ, at (3.3), constructed when Xji is omitted from Xj and
the other sample is left unchanged, then

êrrate = π n−1
1

n1∑
i=1

I
{
ĝ−1i(X−1i) ≤ 1

2

}
+ (1− π)n−1

2

n2∑
i=1

I
{
ĝ−2i(X−2i) > 1

2

}
. (3.6)

Pursuing the algorithm in section 3.1, and given the values of the previously chosen indices k̂1, . . . , k̂q−1,
we select k = k̂q to minimise êrrate when the latter is computed from data for which all features except
those with the indices (k̂1, . . . , k̂q−1, k) have been deleted. Ties can be broken as suggested below (3.3).

4 Numerical results

In this section we compare the error rates in finite samples for some commonly used classification
methods in high dimensional settings and compare it with our proposed methodology. The following
alternative classification methods are considered: nearest shrunken centroid (NSC), elastic net (ENET)
and sure independence screening (SIS). The error rates of all of the above classifiers will depend on the
choice of a regularisation parameter and we employ two different methods for comparing the error rates.
Firstly, we compare the minimum error rates over the selected range of regularisation values; the method
providing the absolute minimum error in this sense could be termed the ‘best’ method. Secondly, we
use cross-validation (CV) to select a regularisation parameter for each method and compare the error
rates on the test sample at each of these selected regularisation parameters.

We now briefly describe the alternative classification methods. The nearest shrunken centroid (NSC)
is a regularised version of the nearest centroid classifier. The NSC method shrinks the classwise mean
towards the overall mean, for each feature separately. Details can be found in Hastie et al. (2009). The
elastic net (ENET) procedure of Zou and Hastie (2005) employs a weighted combination of the `1 and
`2 norms (in our case we used weight 1

2 ) and treats the resulting weighted sum as the penalty function.
The SIS procedure of Fan and Lv (2008) initially selects a set of d predictors out of p, where d ≈ γn for
some γ ∈ (0, 1), and applies any suitably chosen estimation procedure on the smaller set of predictors.
In our simulations we used d = bn/2c and the Lasso as the second stage estimation procedure.

4.1 Simulation results: samples selected from standard normal

We consider Πj ≡ Np(µj , Ip), j = 1, 2, with µj = (µj,1, . . . , µj,p). Sixty observations were selected from
each group for constructing the training sample and thirty observations from each group were used for
the test sample and p = 500. The class probabilities are π = 1 − π = 1

2 . The following four cases
describe different classification situations, corresponding to different choices of µ1 and µ2.

(a): Assign µj,k = 0 for all j, k. Let r = bp/5c. Select the following five components {r, . . . , 5r} and
change the corresponding component values in µ1 and µ2 to 2 and −2, respectively. In this case there
is a clear difference between the two means at a very small number of components.
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(b): In this case µ1 is a linear periodic function taking equispaced values in [−2, 2] and µ2 is a
periodic function within the interval [−2, 2], with a parabolic shape. µ1 and µ2 are very close at almost
all components, there is a systematic difference between them.

(c): µ1 is the same as Case (b) above. And µ2,r = µ1,r + δr, for all 1 ≤ r ≤ p, where the δr

are independent Gaussian (0, 1/10) random variables. In this case the two populations are very similar
(individual components are very close) and yet over all the p components, a distinct pattern of difference
emerges.

(d): This is same as Case (c) above, except δr are independent Cauchy (0, 1/10) random variables.

Table 1 shows the relative performance of different methods in Cases (a)–(d). It can be seen that
the method suggested in this paper, indicated throughout by NEW, is similar to the other competing
methods. We conclude that in the case of light tails, NEW performs similarly to competing classification
methods.

Table 1: Error rates for different classification methods with
observations from a Gaussian distribution.

Error rates for different classification methods†

Case NSC ENET SIS NEW

(a) 0.4667 0.45 0.4667 0.4663
0.4667 0.5167 0.5333 0.5667

(b) 0.35 0.40 0.3833 0.3667
0.3833 0.4167 0.50 0.4883

(c) 0.4167 0.40 0.3667 0.3833
0.5333 0.45 0.5167 0.5167

(d) 0.3333 0.40 0.4333 0.3833
0.3833 0.4833 0.45 0.65

† For each case, first row shows the absolute minimum error rate

over all regularisation values. Second row shows the error rate

evaluated at the optimum (CV-based) regularisation value.

4.2 Simulation results: samples selected from a heavy tailed distribution

We now consider the situation where Πj are Cauchy with location parameter µj , j = 1, 2 and scale
parameter 1. All the components of the p-dimensional sample are assumed to be independent. As
earlier, we consider the same classification settings, with µj being modified differently in each of the
four cases. Table 2 show the relative performance of different methods in Cases (a)–(d).

The superiority of the NEW method in the Cauchy case is displayed clearly through the figures in
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column one (under error rates). Due to the heavy tailed nature of the data the competing methods,
whose classification procedure is based on the mean, fail to capture the difference between the two
populations.

5 Theoretical properties

5.1 Minimising error rate

The error rate of the Bayes classifier is given by (2.2), and can be written equivalently as:

errateBayes = 1− π
∫
f2−f1>0

(f2 − f1) = 1− (1− π)
∫
f1−f2>0

(f1 − f2) .

Therefore, given a choice between two or more versions of the pair (f1, f2), the error rate is minimised
by selecting the pair for which

∫
f1−f2>0

(f1 − f2), or equivalently,
∫
f2−f1>0

(f2 − f1), is greatest. In the
methodology suggested in section 3.3 we are making this choice empirically and sequentially.

In particular, given feature indices k1, . . . , kq−1 (in practice, estimators k̂1, . . . , k̂q−1 of those indices),
we wish to select the next index kq which is such that, among all p− q choices of kq,

d(~k) ≡
∫
x : f1(x |~k)−f2(x |~k)>0

{f1(x |~k)− f2(x |~k)} dx

is largest. Here, ~k = (k1, . . . , kq) and x = (x1, . . . , xq). The quantity êrrate in (3.6) is an estimator of

Table 2: Error rates for different classification methods with
observations from a Cauchy distribution.

Error rates for different classification methods†

Case NSC ENET SIS NEW

(a) 0.3167 0.3167 0.4167 0.2667
0.35 0.3833 0.5333 0.3167

(b) 0.50 0.50 0.40 0.2333
0.5667 0.5667 0.4167 0.5883

(c) 0.50 0.50 0.3833 0.2167
0.6333 0.6833 0.50 0.7167

(d) 0.50 0.50 0.50 0.30
0.55 0.70 0.7167 0.4167

† For each case, first row shows the absolute minimum error rate

over all regularisation values. Second row shows the error rate

evaluated at the optimum (CV-based) regularisation value.
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1 − (1 − π) d(~k), and choosing the qth index to minimise êrrate, for k̂1, . . . , k̂q−1 fixed, is an empirical
approximation to choosing kq, for given k1, . . . , kq−1, to maximise d(~k).

In the independent component model discussed in section 2.2 the difference f1−f2, when we consider
kq = k to be the index of the next added feature, is very nearly proportional to |νk|, as can be seen
by simple Taylor expansion. This suggests that, except possibly for the first few feature indices, the
order in which new indices should be added is that of the values of |νk|. Theoretical confirmation of
this property will be given in section 5.2.

5.2 Formula for error rate

In the independent component model, if j = 1 then the p-variate distribution of Xji has density f1(x) =
Πk≤p φ(xk), where φ is a univariate density, and if j = 2 then the density is f2(x) = Πk≤p φ(xk + νk),
where ν1, . . . , νp are real numbers. For simplicity we again take the prior probabilities π and 1 − π to
equal 1

2 .

Suppose we have chosen specific component indices k1, . . . , kq−1 (without loss of generality they
equal 1, . . . , q − 1, respectively), and we wish to choose the next index so as to minimise error rate of
the Bayes classifier. In Appendix A.2 we shall prove that, if component index k ≥ q is selected, then
the error rate of the classifier based on components with indices 1, . . . , q − 1, k is given by

errate(1, . . . , q − 1, k) = errate(1, . . . , q − 1)− 1
2 ν

2
k E

{
φ′(W )
φ(W )

}2

fq−1(0) + o
(
ν2
k

)
(5.1)

for small νk, where errate(1, . . . , q − 1) denotes the error rate of the classifier based on the first q − 1
components, fq−1 equals the density of the distribution of

Sq−1 =
q−1∑
`=1

log{φ(W` + ν`)/φ(W`)} , (5.2)

and W,W1, . . . ,Wq−1 are independent and identically distributed with density φ. This makes it clear
that:

for large values of q the error rate is reduced by the greatest amount by
choosing, as the next component, the one for which |νk| is largest.

(5.3)

We shall also show that this result is essentially unchanged if we replace φ(u) by the expected value,
µ(u), of the corresponding kernel density estimator:

µ(u) =
∫
K(v)φ(u− hv) dv . (5.4)

That is, in effect, what happens when we use kernel density estimators to compute the error densities
f1 and f2; this connection will be drawn in detail in section 5.3. In particular, although the formulae for
errate(1, . . . , q−1, k) and errate(1, . . . , q−1) in (5.1) alter when φ is replaced by µ, and E{φ′(W )/φ(W )}2

changes to E{µ′(W )/µ(W )}2, the conclusion (5.3) is unaltered, because:

even though the effect of smoothing might be felt significantly on the value of error
rate, its influence on the accuracy with which we choose the order of the sequence of
components is relatively minor.

(5.5)

11



See Appendix A.2 for a proof of (5.5). This property ensures that empirical Bayes methods can be
effective.

5.3 With probability converging to 1 as n → ∞, the empirical Bayes rule

deduces the correct order of features, and the rule is asymptotically

equivalent to the Bayes rule

For the sake of simplicity and brevity we again confine attention to the independent component case,
showing in the theorem below that the empirical Bayes algorithm suggested in sections 3.1 and 3.3
gives, with probability converging to 1, the correct ordering of components along a sequence that is
unboundedly long as n → ∞. High-dimensional settings other than the independent component one
are also treatable, but can be so complex that they lose transparency. The theorem below depends on
a lemma that applies in the general case, and is stated in Appendix A.3. It can be used to derive the
more general results.

Next we state regularity conditions. We take the asymptotic parameter to be n, and assume that
n1, n2 and p are all functions of n, with n1 and n2 being approximately the same size as n. Recall that
if Z = (Z1, . . . , Zp) is drawn from Π1 then the vector components are all distributed as W , and that
the empirical Bayes algorithm is based on kernel density estimators with kernel K and bandwidth h`,
depending on n, applied to the `th selected component. We assume of these quantities that:

(a) K is a symmetric, compactly supported probability density satisfying
|K(x− y)| ≤ B1 |x− y| for all x, y, where B1 > 0;

(b) h−1
` ≤ B2 h

−1 for ` ≥ 1 and each n, where h = h(n), B2 > 0 and maxh` → 0;
(c) n � n1 � n2 and p = O(nB3) for some B3 > 0;
(d) E(|W |B4) <∞ where B4 > 2 is sufficiently large, and the variance of each component equals 1.

(5.6)

The assumption in part (d) that all variances equal 1 is reasonable because we rescale all components;
see (3.1). It means that the moment condition assumed earlier in (d) is imposed with respect to the
same scale for each component.

Throughout we take the distribution of W , and the sequence ν1, ν2, . . . not to depend on n, and
we ask that the sequence satisfy (2.6). As argued in section 2.2, (2.6) is equivalent to asserting that
the classification problem is difficult; the problem would be much easier if the series in (2.6) diverged.
Suppose too that the function λ(u |h) = µ(u) (the latter defined as at (5.4)) has a finite moment
generating function in a given neighbourhood of the origin for all sufficiently small bandwidths, and
that µ(· |h) is sufficiently regular. Specifically: for some r, t, h0 > 0 and s > 1,

sup
|ν|≤supk |νk|

sup
h∈(0,h0]

E
[

exp{r |λ(W + ν |h)|}
]
<∞ , (5.7)

E

∣∣∣∣µ′(W |h)
µ(W |h)

∣∣∣∣2s + E

∣∣∣∣µ′′(W |h)
µ(W |h)

∣∣∣∣s + E

∣∣∣∣ψt(W |h)
µ(W |h)

∣∣∣∣ <∞ , (5.8)

where ψt(u |h) = supv : |v|≤t |µ′′′(u + v |h)|. Let k0
1, k

0
2, . . . denote the feature indices which, in that
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order, minimise error rate for the Bayes classifier, and assume that:

for a sequence `(1), . . . , `(r) of distinct integers, the product over 1 ≤ j ≤ r of the
characteristic function χ± of λ(W ± νk0

`(j)
|h)− λ(W |h) is absolutely integrable

for both choices of the ± signs, and the integral is bounded uniformly in all h ∈ (0, h0],
for some h0 > 0.

(5.9)

(Assumptions (5.7)–(5.9) are readily verified for standard distributions of W , for example the Normal
and Student’s t.) We also assume that, for constants B5 > 0 and ξ ∈ (0, 1

2 ),

p = O
(
nB5

)
, h ≤ 1 , hH(q0) ≥ n−ξ , (5.10)

with h = min{h1, . . . , hq0} and H = H(q) =
∏

1≤h≤q h`. Let k0
1, . . . , k

0
p, a permutation of 1, . . . , p, de-

note the sequence of indices that give successive minima of the error rate, at (2.2), of the ideal Bayes clas-
sifier. That is, if we have constructed a classifier based on vector components with indices k0

1, . . . , k
0
q−1

where q ≤ p, then, among all choices of the qth component index from {1, . . . , p} \ {k0
1, . . . , k

0
q−1} that

could be used to increase dimension by one unit, the choice k0
q reduces the error rate of the Bayes

classifier by the greatest amount.

The last part of (5.10) imposes a condition on the sizes of the bandwidths, which we illustrate here
in the practically important case where each h` takes the same value. There hH(q0) = hq0+1, and so
to ensure the last part of (5.10) we need log h−1 ≤ {ξ (log n)/(q + 1). Since, by the first part of (5.9),
q = o(log n), then taking h = exp{−ξ (log n)/(q+ 1)} will ensure that h→ 0 and the last part of (5.10)
holds.

Let k̂1, k̂2, . . . denote the feature indices chosen empirically as suggested in section 3.3. Write L̃(Z) for
the class label determined by the ideal Bayes rule (i.e. L̃(Z) = 1 if gBayes(Z) > 1

2 and equals 2 otherwise,
where gBayes is given by (2.1)), and let L̂(Z) denote the class label determined by the classifier suggested
in sections 3.1 and 3.3 (i.e. L̂(Z) = 1 if ĝ(Z) > 1

2 and equals 2 otherwise, where ĝ = ĝ1/(ĝ1 + ĝ2) and ĝj
is given by (3.4) but with q = q0 and the set of feature indices taken to be k̂1, . . . , k̂q0).

The following theorem shows that, with probability converging to 1 as n diverges, the empirically
chosen indices k̂1, . . . , k̂q0 are identical to the ideal ones, k0

1, . . . , k
0
q , and the empirical Bayes classifier

suggested in sections 3.1 and 3.3 gives the same results as the ideal Bayes classifier discussed in section
2.1.

Theorem 5.1. Assume (5.6)–(5.10), and, given η > 0, let q0 = q0(n) denote any sequence of integers
diverging to infinity such that q0 = o(log n) and the q0th largest value of νk satisfies n−η = o(ν2

q0). Then,
for some η, η′ > 0,

P
(
k̂q = k0

q for 1 ≤ q ≤ q0
)

= 1−O
(
n−η

′)
, P

{
L̂(Z) = L(Z)

}
= 1−O

(
n−η

′)
(5.11)

as n→∞.

Appendix A

A.1. Proof of (2.5): Let the random variable W have the distribution with density φ. Assume that φ is
three times differentiable, and define ψ1t(u) = supv : |v|≤t |φ′′′(u+v)| and ψ2t(u) = supv : |v|≤t | log φ(u+
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v)|, where t > 0. We shall assume of φ that for for some s > 1 and some t > 0,

E

∣∣∣∣φ′(W )
φ(W )

∣∣∣∣2s + E

∣∣∣∣φ′′(W )
φ(W )

∣∣∣∣s + E

∣∣∣∣ψ1t(W )
φ(W )

∣∣∣∣ <∞ , (A.1)

and for all s > 0 and some t > 0,
E
{
ψ2t(W )s

}
<∞ . (A.2)

We shall prove that (A.1) and (A.2) imply (2.5). Conditions (A.1) and (A.2) are satisfied by standard
distributions, such as the normal, Student’s t distribution, the gamma distribution with shape parameter
not less than 3, etc.

By Taylor expansion,

φ(W + ν)
φ(W )

= 1 + ν
φ′(W )
φ(W )

+ 1
2 ν

2 φ
′′(W )
φ(W )

+ 1
6 ν

3 φ
′′′(W + Θν)
φ(W )

,

where the random variable Θ satisfies P (|Θ| ≤ 1) = 1. Let E denote the event that none of |νφ′(W )/φ(W )|,
|ν2φ′′(W )/φ(W )| and |ν3ψ1ν(W )/φ(W )| exceeds 1

2 . By further Taylor expansion,

E

[
I(E) log

{
φ(W + ν)
φ(W )

}]
= E

(
I(E)

[
ν
φ′(W )
φ(W )

+ 1
2 ν

2 φ
′′(W )
φ(W )

− 1
2

{
ν
φ′(W )
φ(W )

}2
])

+O
(
ν3
)
. (A.3)

Markov’s inequality and (A.1) imply that P (Ẽ) = O(νmin(2s1,3)), where s1 ≥ 1 is a value of s in (A.1).
Moreover, if u, v > 1 and u−1 + v−1 = 1 then, in view of (A.2),

E

[
I(Ẽ)

∣∣∣∣ log
{
φ(W + ν)
φ(W )

}∣∣∣∣ ] ≤ P (Ẽ)1/uE

[∣∣∣∣ log
{
φ(W + ν)
φ(W )

}∣∣∣∣v
]1/v

= O
{
P (Ẽ)1/u

}
= o(ν2) , (A.4)

where to obtain the two identities we took v so large that (1− v−1) min(2s1, 3) > 2.

Similarly,

E

[
I(Ẽ)

∣∣∣∣∣ν φ′(W )
φ(W )

+ 1
2 ν

2 φ
′′(W )
φ(W )

− 1
2

{
ν
φ′(W )
φ(W )

}2
∣∣∣∣∣
]

≤ E
{
I(Ẽ)

∣∣∣∣ν φ′(W )
φ(W )

∣∣∣∣}+ ν2E

(
I(Ẽ)

[∣∣∣∣φ′′(W )
φ(W )

∣∣∣∣+
{
φ′(W )
φ(W )

}2
])

= O
{
P (Ẽ)1/2 ν + P (Ẽ)1/s ν2

}
= o
(
ν2
)
. (A.5)

Combining (A.3)–(A.5) we conclude that

E

[
log
{
φ(W + ν)
φ(W )

}]
= E

[
ν
φ′(W )
φ(W )

+ 1
2 ν

2 φ
′′(W )
φ(W )

− 1
2

{
ν
φ′(W )
φ(W )

}2
]

+ o
(
ν2
)

= − 1
2 ν

2E{φ′(W )/φ(W )}2 + o
(
ν2
)
, (A.6)

which is identical to (2.5).
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A.2. Proof of (5.1): We assume (A.1) and (A.2) and note that a rigorous proof follows closely the
lines in Appendix A.1. Therefore we give only an outline here. In the notation of (5.2), define ∆± =
log{φ(W ± ν)/φ(W )}, where the signs are taken respectively, ν = νk and

Sq−1 =
q−1∑
`=1

log{φ(W` + ν`)/φ(W`)} , Tq−1 =
q−1∑
`=1

log{φ(W`)/φ(W` − ν`)} .

By (A.6),

E(∆±) = ∓ 1
2 ν

2E{φ′(W )/φ(W )}2 + o
(
ν2
)
,

and therefore, writing Fq−1 and Gq−1 for the distribution functions of Sq−1 and Tq−1, respectively,

P (Sq−1 + ∆+ > 0) = E{P (Sq−1 > −∆+ |∆+)}

= 1− Fq−1(0) + E(∆+)F ′q−1(0) + o
(
ν2
)

= 1− Fq−1(0)− 1
2 ν

2E{φ′(W )/φ(W )}2 fq−1(0) + o
(
ν2
)
,

P (−Tq + ∆− < 0) = E{P (Tq−1 > ∆− |∆−)}

= 1−Gq−1(0) + 1
2 ν

2E{φ′(W )/φ(W )}2 fq−1(0) + o
(
ν2
)
.

(We assume that the first two derivatives of Fq−1 and Gq−1 are uniformly bounded, and converge to
the corresponding derivatives of the limit of the distribution functions.) The error rate of the classifier
based on the components with indices 1, . . . , q − 1, k is therefore

errate(1, . . . , q − 1, k) = 1
2

{
P (Sq−1 + ∆+ > 0) + P (Tq−1 −∆− < 0)

}
= errate(1, . . . , q − 1)− 1

2 ν
2E{φ′(W )/φ(W )}2 fq−1(0) + o

(
ν2
)

(A.7)

as ν → 0, uniformly in k ∈ [q, p], where (as before) ν = νk and errate(1, . . . , q−1) = 1−Fq−1(0)+Gq−1(0)
is the error based on just the components with indices 1, . . . , q− 1. Result (A.7) is equivalent to (5.1).

Under conditions (5.8) and (5.9), a proof in the case where φ is replaced by µ, the latter defined
at (5.4), is similar to that given above, except that the ratio φ′/φ in (A.7) is replaced by µ′/µ, which
converges to φ′/φ as the bandwidth, h, converges to zero. Also, Fq−1 and Gq−1 are similarly altered,
to Fq−1,h and Gq−1,h, say, again in a way that becomes negligibly small as h → 0. For example, Fq−1

changes to the distribution function Fq−1,h of

Sq−1,h =
q−1∑
`=1

log{µ(W` + ν`)/µ(W`)} .

Therefore, defining errateq−1,h = 1− Fq−1,h(0) +Gq−1,h(0), and recalling that ν = νk, we see that the
analogue of (A.7) now holds in the form:

errateq−1,h = errateq−1,h − 1
2 ν

2E{µ′(W )/µ(W )}2 fq−1(0) + o
(
ν2
)
. (A.8)

Again it is clear that, for large q and provided that the values of |νk| are decreasing steadily, the greatest
reduction in error rate (here errateq−1,h, rather than errate(1, . . . , q − 1)) is achieved by adjoining the
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component with index k for which |νk| is largest. Therefore, even though the effect of smoothing might
be felt significantly on the value of error rate, and the quantities errateq−1,h and errate(1, . . . , q − 1)
might not be directly comparable, smoothing does not appreciably affect the accuracy with which we
choose the order of the sequence of components. This establishes (5.5).

A.3. Lemma for Appendix A.4: First we state regularity conditions. As before we take the asymptotic
parameter to be n, but we do not assume the independent component model. Therefore, when we
refer below to (5.6) we interpret part (d) of that assumption as meaning that “the B4th moments of
all components of X are bounded by a constant that depends only on B4, chosen sufficiently large...”
rather than that “E(|W |B4) <∞ where B4 > 2 is sufficiently large....”

Recall that ~k = (k1, . . . , kq) and that fj(· |~k) is the joint density of the components of Xj1 whose
indices comprise the vector ~k. Defining x = (x1, . . . , xp), let

µj(x |~k) =
∫
. . .

∫ { q∏
`=1

K(u`)
}
fj(xk1 − h1u1, . . . , xkq

− hquq |~k) du1 . . . duq

denote the expected value of the following “naive” density estimator, based on the unscaled featuresXjik:

f̃j(x |~k) =
1

nj
∏
`≤q h`

nj∑
i=1

∏
`=k1,...,kq

K

(
xk`
−Xji`

h`

)
. (A.9)

In the definition of µj(· |~k) we have suppressed dependence on h1, . . . , hq.

Define ρ(x |~k) = π2 µ2(x |~k)/π1 µ1(x |~k), where π1 = π and π2 = 1− π. Put

errateq(~k) =
2∑
j=1

πj P
{
ρ(Xj1 |~k) ./2j 1

}
, (A.10)

where Xj1 is a p-vector drawn from Πj , ./1j denotes ≤ or > according as j = 1 or 2, and ./2j means
≥ or < according as j = 1 or j = 2. Recall that fj(· |~k) denotes the joint density of (Zk1 , . . . , Zkq

),
and let g(x |~k) = π f1(x |~k)/{π f1(x |~k) + (1− π) f2(x |~k)}. In this notation, errateq(~k) is the error rate
that would arise if we were to replace the function g(x |~k) in the Bayes-rule estimator based on data
components with indices in the sequence ~k, by π µ1(x |~k)/{π µ1(x |~k) + (1− π)µ2(x |~k)}.

Let δ, η1, η2, η3 > 0 satisfy η1 < η2 and η1 + 2η2 + η3 < 1. We impose the following conditions on
µj(· |~k):

inf
k : 1≤k≤p, k 6=k0

q

errateq(k0
1, . . . , k

0
q−1, k)− errateq(k0

1, . . . , k
0
q−1, k

0
q) > 20 ε , for 1 ≤ q ≤ q0 , (A.11)

where ε > 0 may depend on n, and

max
1≤q≤q0

max
~k⊆K(q)

max
[

max
j1,j2∈{1,2}

P
{
µj1(Xj21 |~k) ≤ n−η1

}
,

max
j=1,2

P
{
|ρ(Xj1 |~k)− 1| ≤ A1 n

−η2
}]
≤ ε , (A.12)

nη1+η2
(
κq−1B1B2 q h

−1 nδ−(1/2) e+ κq n−C1
)
≤ H , (A.13)

3 (nj − 1)−1 nη1+2η2+η3 ≤ H , (A.14)
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where H =
∏
`≤q h`, κ supK and C1 > 0. Define

P (n) = 24pq0
[
(n1 ∨ n2)

{
exp

(
− nη3

)
+ n−C1

}
+ exp

{
− (n1 ∧ n2) ε2

}]
, (A.15)

and let Z denote a p-vector drawn from the mixture population πΠ1 + (1− π) Π2. Let k0
1, k

0
2, . . . be as

defined below (5.8), and let k̂0
1, k̂

0
2, . . . be as defined below (3.6).

The following result is used in Appendix A.4 and proved in a longer version of this paper (Chatterjee
and Hall (2009)):

Lemma 1. If (5.6) and (A.11)–(A.14) hold then

P
(
k̂q = k0

q for 1 ≤ q ≤ q0
)
≥ 1− P (n) , P

{
L̂(Z) = L(Z)

}
≥ 1− P (n) . (A.16)

A.4. Proof of Theorem 5.1: The theorem will follow from the lemma above if we establish (A.11)–(A.14)
in the case ε = n−η, for a sufficiently small η > 0. To this end, let W,W1,W2, . . . be independent and
identically distributed with density φ. Formula (A.8) holds under conditions (5.8) and (5.9), and implies
(A.11) provided that ε in (A.11) is of smaller order then the square of q0th largest value of νk. This was
stipulated in the theorem by asking that n−η = o(ν2

q0).

Next we derive (A.12). Recall the definition of µ at (5.4), and put λ = logµ. Result (A.12) in
Appendix A.3 holds if, for each choice of ζ, ζ1, ζ2 ∈ {−1, 0, 1} such that ζ1 6= ζ2 and ζ1ζ2 = 0, we have,
uniformly in ~k ∈ K(q) for 1 ≤ q ≤ q0 and for all sufficiently large n:

P

{ q∑
`=1

λ(W` + ζ νk`
) ≤ −η1 log n

}
≤ ε , (A.17)

P

(∣∣∣∣ q∑
`=1

[
λ(W` + ζ1 νk`

)− λ(W` + ζ2 νk`
)− log{π/(1− π)}

]∣∣∣∣ ≤ A2 n
−η2
)
≤ ε , (A.18)

where A2 > 0 is any constant. To derive (A.17) for ε = n−η, where η > 0, it is necessary only to note
that, since the variables λ(W + ν) have a finite moment generating function uniformly in |ν| ≤ supk |νk|
and 0 < h ≤ h0 (see (5.8)), and since q = o(log n) (see the statement of the theorem), then an exponential
inequality for a sum of independent random variables (see e.g. de la Peña (1999)) implies that, for a
constant D1 > 0, the left-hand side of (A.17) is dominated by

exp
[
−D1 min

{
q−1 (log n)2, log n

}]
= O

(
n−D1

)
,

uniformly in ζ and in ~k ∈ K(q) for 1 ≤ q ≤ q0.

To simplify exposition we assume that (5.9) holds for r = 1 and `(1) = 1. Other cases can be treated
similarly. Property (A.18) in the case ε = n−η is equivalent to:

max(1) P
{
Qq(~k, ζ1, ζ2) ∈

[
c0 −A2 n

−η2 , c0 +A2 n
−η2
]}
≤ n−η , (A.19)

where Qq(~k, ζ1, ζ2) =
∑
`≤q {λ(W` + ζ1 νk`

) − λ(W` + ζ2 νk`
)} and max(1) denotes the maximum over

~k ∈ K(q), over 1 ≤ q ≤ q0, and over ζ1, ζ2 such that ζ1 6= ζ2 and ζ1ζ2 = 0. It is straightforward to show
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that, for any fixed q1 and for all C > 0, P (k̂` = k0
` for 1 ≤ ` ≤ q1) = 1 − O(n−C) as n → ∞. In

particular, this result holds for q1 = 1, and so it suffices to derive the version of (A.19) when k1 is held
fixed at k0

1. That is, in (A.19) we may take

Qq(~k, ζ1, ζ2) = Q0 +
q∑
`=2

{λ(W` + ζ1 νk`
)− λ(W` + ζ2 νk`

)} , (A.20)

where Q0 = λ(W1 + ζ1 νk0
1
)− λ(W1 + ζ2 νk0

1
).

By assumption (see (5.9)), the characteristic function χ± of λ(W ± νk0
1
) − λ(W ) is absolutely in-

tegrable for both choices of the ± signs, and so the characteristic function of Q0 is too. Therefore,
χ = max(|χ+|, |χ−|) is integrable. The characteristic function of Qq(~k, ζ1, ζ2) (on the left-hand side of
(A.20)), being the product of the characteristic functions of the independent summands on the right-
hand side of (A.20), is bounded above in absolute value by χ. Therefore the density of Qq(~k, ζ1, ζ2) is
bounded above by D2 = (2π)−1

∫
χ. Hence, the left-hand side of (A.19), when we take Qq(~k, ζ1, ζ2) to

be given by (A.20), is bounded above by 2D2A2n
−η2 , and therefore (A.19) holds for all sufficiently large

n if η < η2. This proves (A.18).

By assumption, hH ≥ n−ξ where ξ ∈ (0, 1
2 ). Without loss of generality, C1 ≥ 1

2 in (A.20), and η1+η2
and δ are sufficiently small to allow us to write ξ = 1

2 − ξ1 − η1 − η2 − δ, where ξ1 > 0. Then the left-
hand side of (A.13), multiplied by H−1, is dominated by a constant multiple of nη1+η2+δ−(1/2)+ξ κq q =
n−ξ1 κq q = o(1), where the last identity holds since q = o(log n). This proves (A.13). Also, if η1, η2 and
η3 are so small that η1 + 2η2 + η3 <

1
2 then the left-hand side of (A.14), multiplied by H−1, is bounded

above by a constant multiple of n−1+η1+2η2+η3+ξ ≤ nξ−(1/2) = o(1). This establishes (A.14).

This completes the derivation of (A.11)–(A.14); we have assumed that q = o(log n), that ε in (A.11)–
(A.14) equals n−η for sufficiently small η > 0, and that q0 has the property that the q0th largest νk is
of strictly smaller order than n−η. By taking η sufficiently small we ensure that the right-hand side of
(A.15) equals O(n−η

′
) for some η′ > 0. The theorem now follows from (A.16).
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Appendix B : Proof of Lemma 1 (not-for-publication)

We derive only the first inequality in (A.16); a proof of the second is similar.

Step 1: Bounding the effect of replacing X̂ji by Xji. Let 1 ≤ q ≤ p, and let ~k = (k1, . . . , kq) denote
any sequence of distinct values chosen from {1, . . . , p} and ordered arbitrarily. Given δ ∈ (0, 1

2 ), let
E1 = E1(δ) denote the event that

max
j=1,2

max
1≤i≤nj

max
1≤k≤p

∣∣X̂jik −Xjik

∣∣ ≤ nδ−(1/2) , (B.1)

and write Ẽ1 for the complement of E1. Since (i) the sth moments of all components of X are bounded
by a constant that depends only on s, (ii) the variances var(Xjik) all equal 1 (for (i) and (ii), see (5.6)(d),
and (iii) p diverges at only a polynomial rate (see (5.6)(d)), then Markov’s inequality can be used to
prove that:

for each given C1 > 0 and δ ∈ (0, 1), P{Ẽ1(δ)} ≤ n−C1 for all sufficiently large n, (B.2)

where the required value of B4 in (5.6)(d) increases as C1 increases and as δ decreases. Let B1 and B2

be as in (5.6)(a) and (5.6)(b), respectively; define κ = supK; and assume that

κ−1B1B2 q h
−1 nδ−(1/2) ≤ 1 . (B.3)
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The first of the following identities can be proved by Taylor expansion (using (B.1) and the Hölder
bound in (5.6)(a)), and the second by collecting terms from the product in the first (and using the
bound on supK in (5.6)(a)):

q∏
`=1

K

(
xk`
− X̂jik`

h`

)

=
q∏
`=1

{
K

(
xk`
−Xjik`

h`

)
+ Θ1(`, x)B1B2 h

−1nδ−(1/2)

}

=
q∏
`=1

K

(
xk`
−Xjik`

h`

)
+ Θ1(x)κq−1B1B2 q h

−1 nδ−(1/2) e , (B.4)

where, with probability at least P (E1), the random variables Θ1(`, x) and Θ1(x) satisfy |Θ1(`, x)|, |Θ1(x)| ≤
1 uniformly in the following sense:

uniformly in all choices of q such that (B.3) holds, in j = 1, 2, in all 1 ≤ i ≤ nj , in all choices of ~k,
in all ` and in all x.

(B.5)

Here we have used the fact that, if (B.3) is true,{
κ+B1B2 h

−1 nδ−(1/2)
}q
− κq ≤ κq

[
exp

{
κ−1B1B2 q h

−1 nδ−(1/2)
}
− 1
]

≤ κq−1B1B2 q h
−1 nδ−(1/2) e ,

since ex − 1 ≤ ex for 0 < x ≤ 1.

Taking the expected value of both sides of (B.4) we deduce that:

βj(~k) ≡ E
{ q∏
`=1

K

(
xk`
− X̂jik`

h`

)}
− E

{ q∏
`=1

K

(
xk`
−Xjik`

h`

)}
= θ1(x)

{
κq−1B1B2 q h

−1 nδ−(1/2) e+ κq P (Ẽ1)
}
, (B.6)

where |θ(x)| ≤ 1 and and a bound for P (Ẽ1) is given at (B.2). Therefore, defining (1 − E)R to equal
R− E(R) for any given random variable R, we have:

(1− E)
q∏
`=1

K

(
xk`
− X̂jik`

h`

)
− (1− E)

q∏
`=1

K

(
xk`
−Xjik`

h

)
= Θ2(x)

[
2κq−1B1B2 q h

−1 nδ−(1/2) e+ κq {I(Ẽ1) + P (Ẽ1)}
]
, (B.7)

where I(Ẽ1) denotes the indicator of the event Ẽ1, and the random variable Θ2(x) satisfies |Θ2(x)| ≤ 1
uniformly in the sense of (B.5).

Averaging (B.7) over all i in the range 1 ≤ i ≤ nj we deduce that

∆̂j

(
~k, x

)
−∆j

(
~k, x

)
= Θ3(x)

[
2κq−1B1B2 q h

−1 nδ−(1/2) e+ κq {I(Ẽ1) + P (Ẽ1)}
]
, (B.8)
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where

∆̂j

(
~k, x

)
= (1− E)

1
nj

nj∑
i=1

q∏
`=1

K

(
xk`
− X̂jik`

h`

)
, (B.9)

∆j

(
~k, x

)
= (1− E)

1
nj

nj∑
i=1

q∏
`=1

K

(
xk`
−Xjik`

h`

)
, (B.10)

and the random variable Θ3(x) satisfies |Θ3(x)| ≤ 1 uniformly in the following sense:

uniformly in all choices of q such that (B.3) holds, in j = 1, 2, in all choices of ~k and in all x. (B.11)

Using the notation at (A.9), (B.6), (B.9) and (B.10), writing H =
∏
`≤q h`, and recalling the definition

of f̂j at (3.2), we see from (B.8) that:

f̂j(x |~k) =
1

njH

nj∑
i=1

q∏
`=1

K

(
xk`
− X̂jik`

h`

)
= E

{
f̃j
(
x
∣∣~k)}+H−1

{
∆̂j

(
~k, x

)
−∆j

(
~k, x

)
+ ∆j

(
~k, x

)
+ βj(~k)

}
= E

{
f̃j
(
x
∣∣~k)}+H−1 ∆j

(
~k, x

)
+ Θ4(x)H−1

[
3κq−1B1B2 q h

−1 nδ−(1/2) e

+ κq
{

2 I(Ẽ1) + P (Ẽ1)
}]
, (B.12)

where |Θ4(x)| ≤ 1 uniformly in the sense of (B.11).

Step 2: Bounds to deviations of ∆j(~k, x). Define

γj(x) =
nj∑
i=1

q∏
`=1

K

(
xk`
−Xjik`

h`

)
,

so that (1 − E) γj(x) = nj ∆j(~k, x). To simplify notation, assume for the present that k` = ` for
1 ≤ ` ≤ q, and write fjq for the joint density of Xj11, . . . , Xj1q. In this notation,

E{γj(x)}
njH

=
∫
. . .

∫ { q∏
k=1

K(uk)
}
fjq(x1 − h1u1, . . . , xq − hquq) du1 . . . duq ,

var{γj(x)}
njH

≤
∫
. . .

∫ { q∏
k=1

K(uk)2
}
fjq(x1 − h1u1, . . . , xq − hquq) du1 . . . duq

≤ E{γj(x)}κq

njH
.

We can write (1−E) γj =
∑
i≤nj

∆ji where the random variables ∆ji, for 1 ≤ i ≤ nj , are independent
and identically distributed with zero mean and satisfy P (|∆ji| ≤ κq) = 1. Therefore by Bernstein’s
inequality, writing µj = E(f̃j) = (njH)−1E(γj), defining ∆j(~k, x) as at (B.10) and taking 0 < ξ ≤ 1,
we have:

P
{
H−1 |∆j(~k, ·)| > ξ µj

}
= P{|(1− E) γj | > ξ nj H µj}

≤ 2 exp
{
− ξ2 nj H µj/(2κq)

1 + (ξ/3)

}
≤ 2 exp

{
− ξ2 nj H µj

/(
3κq
)}
. (B.13)
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(The inequality is interpreted in a pointwise sense, for the functions γj and µj evaluated at arbitrary
particular points.)

Step 3: Implications of (B.12) and (B.13). The calculations in Step 2 remain valid if we work with the
notationally more complex case where ~k is a general vector with components equal to distinct integers
chosen between 1 and p. Let x = (x1, . . . , xp) be a p-vector. Given j = 1 or 2, write µj(x |~k) for the
version of µj(x) in this setting, and continue to take H =

∏
`≤q h`. Assume that η1, η2, η3 > 0 satisfy

η1 < η2 and η1 + 2η2 + η3 < 1, let Sj(~k) denote the set of p-vectors x such that µj(x |~k) > n−η1 , and
put ξ = ξ(n) = n−η2 . Let ∆(1)

j (x |~k) = H−1 ∆j(~k, x). Then, provided that (A.13) and (A.14) hold, it
follows from (B.13) that

P{|∆(1)
j (x |~k)| > n−η2 µj(x |~k)} ≤ 2 exp(−nη3) for all q ≥ 1, all ~k ∈ K(q),

all h1, . . . , hp such that (A.13) and (A.14) hold, and all x ∈ Sj(~k).
(B.14)

We introduce the following condition:

H−1
(
κq−1B1B2 q h

−1 nδ−(1/2) e+ κq n−C1
)
≤ n−η2 µj(x |~k) , (B.15)

where C1 > 0 is the constant in (B.2). If |∆(1)
j (x |~k)| ≤ n−η2 µj(x |~k) for j = 1, 2, and if (B.15) holds,

then it follows from (B.2), (B.12) and (B.14) that, if ~k ∈ K(q) and x ∈ S3(~k) = S1(~k) ∩ S2(~k), we have:
f̂j(x |~k) = µj(x |~k) {1+2 θ1j(x |~k)n−η2}, where, in the case r = 1, and provided that (A.14) and (B.15)
hold,

P{|θrj(x |~k)| > 1} ≤ 2 exp
(
− nη3

)
+ n−C1 . (B.16)

Hence, for the same ~k and x,

ĝ(x |~k) =
π1 f̂1(x |~k)

π1 f̂1(x |~k) + π2 f̂2(x |~k)

=
{

1 + 2 θ2j(x |~k)n−η2
} π1 µ1(x |~k)

π1 µ1(x |~k) + π2 µ2(x |~k)
, (B.17)

where, provided that (A.14) and (B.15) hold, θ2j(x |~k) satisfies (B.16) with r = 2.

Write S4(~k) for the set of x such that (B.15) holds for j = 1, 2. If (A.13) holds then S4(~k) ⊆ S3(~k).
Recall that ρ(x |~k) = π2 µ2(x |~k)/π1 µ1(x |~k), let A1 > 0, and define S5(~k) to be the set of all p-vectors
x such that |ρ(x |~k) − 1| > A1 n

−η2 . Since (B.17) holds for all ~k ∈ K(q) and all x ∈ S3(~k), with
θ2j(x |~k) satisfying (B.16), then an absolute constant A1 can be chosen such that, for all ~k ∈ K(q) and
all x ∈ S6(~k) = S3(~k) ∩ S5(~k), and provided that (A.13) and (A.14) hold,

P
[{
ĝ(x |~k) > 1

2

}
4 {ρ(x |~k) < 1}

]
≤ 2 exp

(
− nη3

)
+ n−C1 . (B.18)

Step 4: Approximating the error rate estimator. Let ĝ−ji denote the version of ĝ that we obtain if
we drop Xji from Xj . The arguments leading to (B.18) give: for all ~k ∈ K(q) and all x ∈ S6(~k), and
provided that (A.13) and (A.14) hold,

P
[{
ĝ−1i(x |~k) > 1

2

}
4 {ρ(x |~k) < 1}

]
≤ 2 exp

(
− nη3

)
+ n−C1 for 1 ≤ i ≤ n1 ,

P
[{
ĝ−2i(x |~k) ≤ 1

2

}
4 {ρ(x |~k) ≥ 1}

]
≤ 2 exp

(
− nη3

)
+ n−C1 for 1 ≤ i ≤ n2 , (B.19)

23



where E(1)4E(2) denotes the symmetric difference between events E(1) and E(2). Put ~h = (h1, . . . , hq).
The error rate estimator when the components chosen are those in the vector ~k = (k1, . . . , kq), in that
order, is:

êrrateq = êrrateq(~k |~h) =
2∑
j=1

πj n
−1
j

nj∑
i=1

I
{
ĝ−ji(Xji |~k) ./1j

1
2

}
=

2∑
j=1

πj n
−1
j

nj∑
i=1

I
{
ρ(Xji |~k) ./2j 1

}
+ Θ4(~k) , (B.20)

where the symbol ./1j denotes “≤” if j = 1 and “>” if j = 2, and ./2j denotes “≥” if j = 1 and “<” if
j = 2; ∣∣Θ4(~k)

∣∣ ≤ 2∑
j=1

πj n
−1
j #{i : Xji /∈ S6(~k)} ; (B.21)

the first identity in (B.20), being equivalent to the definition of êrrateq(~k |~h), holds with probability 1;
the second identity in (B.20) holds on the set E2, of which the complement is

Ẽ2 =
( n1⋃
i=1

[{
ĝ−1i(X1i |~k) > 1

2

}
4 {ρ(X1i |~k) < 1}

]
∩ {X1i ∈ S6(~k)}

)

∪
( n2⋃
i=1

[{
ĝ−2i(X2i |~k) ≤ 1

2

}
4 {ρ(X2i |~k) ≥ 1}

]
∩ {X2i ∈ S6(~k)}

)
; (B.22)

and, in view of (B.19) and (B.22),

P (Ẽ2) ≤ 4 (n1 + n2) exp
(
− nη3

)
+ 2 (n1 + n2)n−C1 . (B.23)

Returning to the bound on |Θ4(~k)| at (B.21), we see that

∣∣Θ4(~k)
∣∣ ≤ 2∑

j1=1

2∑
j2=1

n−1
j2

(Nj1j21 +Nj1j22) +
2∑
j=1

n−1
j Nj , (B.24)

where

Nj1j21 =
nj2∑
i=1

I{µj1(Xj2i |~k) ≤ n−η1} ,

Nj1j22 =
nj2∑
i=1

I

{
H−1

(
κq−1B1B2 q h

−1 nδ−(1/2) e+ κq n−C1
)
≤ n−η2 µj1(Xj2i |~k)

}
and Nj =

∑
i≤nj

I{|ρ(Xji |~k)−1| ≤ A1 n
−η2} denote independent random variables having the binomial

Bi(nj2 , rj1j2), Bi(nj2 , sj1j2) and Bi(nj , tj) distributions, respectively, with rj1j2 = P{µj1(Xj21 |~k) ≤
n−η1},

sj1j2 = P

{
H−1

(
κq−1B1B2 q h

−1 nδ−(1/2) e+ κq n−C1
)
≤ n−η2 µj1(Xj2i |~k)

}
and tj = P{|ρ(Xj1 |~k) − 1| ≤ A1 n

−η2}. Bernstein’s inequality implies that if N has the Bi(m, r)
distribution, and 0 ≤ ε ≤ 1

2 , then

P (N −mr > mε) ≤ exp
(
−mε2

)
, P (|N −mr| > mε) ≤ 2 exp

(
−mε2

)
. (B.25)
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Using (B.24) and the first part of (B.25) we deduce that

P

{∣∣Θ4(~k)
∣∣ > 2∑

j1=1

2∑
j2=1

(rj1j2 + sj1j2 + 2ε) +
2∑
j=1

(tj + ε)
}
≤ 10

2∑
j=1

exp
(
− nj ε2

)
, (B.26)

and using the second part of (B.25) we obtain:

P

[∣∣∣∣ nj∑
i=1

(1− E) I
{
ρ(Xji |~k) ./2j 1

}∣∣∣∣ > nj ε

]
≤ 2 exp

(
− nj ε2

)
. (B.27)

Recall that errateq(~k) is defined at (A.10). Combining the second identity in (B.20); the fact that
that result holds on the set E2, the probability of the complement of which is bounded by (B.23); and
(B.26) and (B.27); we see that, if

max
{

max
j1,j2∈{1,2}

max
j=1,2

max(rj1j2 , sj1j2), max
j=1,2

tj

}
≤ ε (B.28)

then

P
{ ∣∣êrrateq(~k |~h)− errateq(~k)

∣∣ > 20 ε
}

≤ 4 {(n1 + n2) exp
(
− nη3

)
+ n−C1

}
+ 12

2∑
j=1

exp
(
− nj ε2

)
≤ 24

[
(n1 ∨ n2)

{
exp

(
− nη3

)
+ n−C1

}
+ exp

{
− (n1 ∧ n2) ε2

}]
. (B.29)

Step 5: Choosing successive features. Let k0
1 denote the value of k that minimises errate(k) (here

k is a scalar, not a vector, so q = 1), and, given k0
1, . . . , k

0
q−1, let k = k0

q be the minimiser of
errateq(k0

1, . . . , k
0
q−1, k). In this step we assume not only that k0

1, . . . , k
0
q0 are uniquely defined, but

also that (A.11) holds for 1 ≤ q ≤ q0, where ε > 0 is as in (B.28) and (B.29). We suppose too that
(A.12) and (A.13) hold; it is the analogue of (B.28) uniformly over values of q and ~k.

In the first step of empirical error rate minimisation, where q = 1, we choose k = k̂1 to min-
imise êrrate(k). This involves searching among p different features. More generally, given values of
k̂1, . . . , k̂q−1, in step q we choose ~k = (k̂1, . . . , k̂q) to minimise êrrate(k̂1, . . . , k̂q−1, k) by searching among
p − q + 1 distinct values of k, to determine k̂q. If q ≤ q0 then the total number of searches involved is
less than pq0. If (A.11) and (A.12) hold then, in view of (B.29), the probability of the event F that
k̂q = k0

q for 1 ≤ q ≤ q0 satisfies:

1− P (F) ≤ 24pq0
[
(n1 ∨ n2)

{
exp

(
− nη3

)
+ n−C1

}
+ exp

{
− (n1 ∧ n2) ε2

}]
.

This is equivalent to the first inequality in (A.16).
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