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ON A CONJECTURE ON RAMANUJAN PRIMES

SHANTA LAISHRAM

Abstract. For n ≥ 1, the nth Ramanujan prime is defined to be the smallest positive integer Rn

with the property that if x ≥ Rn, then π(x) − π( x
2

) ≥ n where π(ν) is the number of primes not

exceeding ν for any ν > 0 and ν ∈ R. In this paper, we prove a conjecture of Sondow on upper bound

for Ramanujan primes. An explicit bound of Ramanujan primes is also given. The proof uses explicit

bounds of prime π and θ functions due to Dusart.

1. Introduction

In [3], J. Sondow defined Ramanujan primes and gave some conjectures on the behaviour of Ramanu-
jan primes. For n ≥ 1, the nth Ramanujan prime is defined to be the smallest positive integer Rn with
the property that if x ≥ Rn, then π(x) − π(x2 ) ≥ n where π(ν) is the number of primes not exceeding
ν for any ν > 0 and ν ∈ R. It is easy to see that Rn is a prime for each n. The first few Ramanujan
primes are given by R1 = 2, R2 = 11, R3 = 17, R4 = 29, R5 = 41, . . .. Sondow showed that for every
ε > 0, there exists N 0(ε) such that Rn < (2 + ε)n log n for n ≥ N 0(ε). In this note, an explicit value of
N 0(ε) for each ε > 0 is given. We prove

Theorem 1. Let ε > 0. For ε ≤ 1.08, let N 0 = N 0(ε) = exp( cε log 2
ε ) where c is given by the following

table.
ε ∈ (0, 2

11 ] ( 2
11 , .4] (.4, .6] (.6, .8] (.8, 1] (1, 1.08]

c 4 5 6 7 8 9

For ε > 1.08, let N 0 = N 0(ε) be given by

ε ∈ (1.08, 1.1] (1.1, 1.21] (1.21, 1.3] (1.3, 2.5] (2.5, 6] (6,∞)
N 0 169 101 74 48 6 2

Then

Rn < (2 + ε)n log n for n ≥ N 0(ε).

Sondow also showed that p2n < Rn < p4n for n > 1 and he conjectured ([3, Conjecture 1]) that
Rn < p3n for all n ≥ 1, where pi is the ith prime number. We derive the assertion of conjecture as a
consequence of Theorem 1. We have

Theorem 2. For n > 1, we have

p2n < Rn < p3n.
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We prove Theorems 1 and 2 in Section 3. In Section 2, we give preliminaries and lemmas for the
proof which depend on explicit and sharp estimates from prime number theory.

2. Lemmas

We begin with the following estimates from prime number theory. Recall that pi is the ith prime
prime and π(ν) is the number of primes ≤ ν. Let θ(ν) =

∑
p≤ν log p where p is a prime.

Lemma 2.1. For ν ∈ R and ν > 1, we have

(a) pi > i log i for i ≥ 1, i ∈ Z.
(b) ν(1− 0.006788

log ν ) ≤ θ(ν) ≤ ν(1 + 0.006788
log ν ) for ν ≥ 10544111.

(c) ν
log ν−1 ≤

ν≥5393
π(ν) ≤

ν>1

ν
log ν

(
1 + 1.2762

log ν

)
.

The estimate (a) is due to Rosser [2] and the estimates (b) and (c) are due to Dusart [1, p. 54]. �

From Lemma 2.1 (b) and (c), we obtain

Lemma 2.2. Hence for x ≥ 2 · 10544111, we obtain

π(x)− π(
x

2
) ≥ x

2 log x

(
1− 0.020364

log x

)
=: F (x) for x ≥ 2 · 10544111(1)

and

π(x)− π(
x

2
) ≥ x

2(log x− 1)

{
1− 1

log x
2

(
δ1 −

δ2
log x

2

)}
=: F1(x) for x ≥ 5393(2)

where δ1 = .2762 + log 2 and δ2 = 1.2762(1− log 2).

Proof. For x ≥ 2 · 10544111, we obtain from Lemma 2.1 (b) that

π(x)− π(
x

2
) ≥

θ(x)− θ(x2 )
log x

≥
x
(

1− 0.006788
log x

)
− x

2

(
1 + 0.006788

log x
2

)
log x

=
x

2 log x

(
1− 0.006788

log x

(
2 +

log x
log x

2

))
≥ x

2 log x

(
1− 0.006788

log x
(2 + 1)

)
which imply (1). For x ≥ 5393, we have from Lemma 2.1 (c) that

π(x)− π(
x

2
) ≥ x

log x− 1
−

x
2

log x
2

(
1 +

1.2762
log x

2

)
=

x

2(log x− 1)

{
2−

(
1 +

log 2− 1
log x

2

)(
1 +

1.2762
log x

2

)}
≥ x

2(log x− 1)

{
1− 1

log x
2

(
δ1 −

δ2
log x

2

)}
implying (2). �

For the proof of Theorem 1 for ε ≤ .4, we shall use the inequality (1). Then we may assume n ≤ N 0(.4)
for ε > .4 and we use (2) to prove the assertion.
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3. Proof of Theorems 1 and 2

For simplicity, we write ε1 = ε
2 , log2 n := log log n and

f0(n) := log n+ log2 n+ log(1 + ε1) and f1(n) :=
log2 n+ log(2 + 2ε1)

log n
.(3)

Let x ≥ (2 + 2ε1)n log n with n ≥ N 0(ε) =exp( c
2ε1

log 1
ε1

) =: n0(ε1). Then log x ≥ f0(n) + log 2 for
n ≥ n0(ε1).

First we consider ε1 ≤ .2. We observe that F (x) is an increasing function of x and 2n0(.2) log(n0(.2)) >
2 · 10544111. Therefore we have from (1) that

π(x)− π(x2 )
n

≥ 1 + ε1
1 + f1(n)

(
1− 0.020364

f0(n) + log 2

)
=: G(n).(4)

G(n) is again an increasing function of n. If G(n0(ε1)) > 1, then π(x) − π(x2 ) > n for all x ≥ (2 +
2ε1)n log n when n ≥ n0(ε1) and hence Rn < (2 + 2ε1)n log n for n ≥ n0(ε1). Therefore we show that
G(n0) > 1. It suffices to show

ε1 −
0.020364(1 + ε1)
f0(n) + log 2

> f1(n) =
log2 n0 + log(2 + 2ε1)

log n0

for which it is enough to show

ε1 ≥
log2 n0 + log(2 + 2ε1) + 0.020364(1 + ε1)

log n0
.

Since log n0 = c
2ε1

log 1
ε1

= c1
ε1

log 1
ε1

with c1 = 2, 2.5 when ε1 ≤ 1
11 ,

1
5 , respectively, we need to show

(c1 − 1) log 1
ε1

log2
1
ε1

+ log c1 + log(2 + 2ε1) + 0.020364(1 + ε1)
≥ 1.

The left hand side of the above expression is an increasing function of 1
ε1

and the inequality is valid at
1
ε1

= 11, 5 implying the assertion for ε1 ≤ .2.
Thus we now take .2 < ε1 ≤ .49. We may assume that n < n0(.2). Since x ≥ (2+2ε1)n0 log n0 > 5393,

we have from (2) that

π(x)− π(x2 )
n

≥ 1 + ε1

1 + f1(n)− 1
logn

{
1− 1

f0(n)

(
δ1 −

δ2
f0(n)

)}
.

Note that the right hand side of the above inequality is an increasing function of n since n < n0(.2).
We show that the right hand side of the above inequality is > 1. Since n ≥ n0(ε1), it suffices to show

log n0(ε1 +
1

log n0
− f1(n0))− 1 + ε1

f0(n0)
logn0

(
δ1 −

δ2
f0(n0)

)

=ε1 log n0 + 1− log2 n0 − log(2 + 2ε1)− 1 + ε1

1 + f1(n0)− log 2
logn0

(
δ1 −

δ2
f0(n0)

)
is > 0. Since n0(ε1) = exp( c1ε1 log 1

ε1
) where c1 = 3, 3.5, 4 if .2 < ε1 ≤ .3, .3 < ε1 ≤ .4 and .4 < ε1 ≤ .49,

respectively, we observe that the right hand side of the above equality is equal to

(c1 − 1) log
1
ε1

+ 1− log2

1
ε1
− log(2c1 + 2c1ε1)− 1 + ε1

1 + f1(n0)− log 2
logn0

(
δ1 −

δ2
f0(n0)

)



4 SHANTA LAISHRAM

This is an increasing function of 1
ε1

. We find that the above function is > 0 for ε1 ∈ {.3, .4, .49} implying
Rn < (2 + 2ε1)n log n for n ≥ n0(ε1) when ε1 ≤ .49. Further we observe that n0(.49) ≤ 339. As a
consequence, we have

Rn < 2.98n log n for n ≥ 339.

and

π(x)− π(
x

2
) ≥ 339 for x ≥ 2.98 · 339 log 339 > 5885.

Let n < 339. We now compute Rn by computing π(x) − π(x2 ) for p2n < x ≤ 5885. Recall that
Rn > p2n for n > 1. We find that Rn

n logn < 2.98, 3, 3.05, 3.08 for n ≥ 220, 219, 171, 169, respectively.
Clearly Rn

n logn < 2+ε for n ≥ N 0(ε) when ε ≤ 1.08. Thus Rn < 3n log n for n ≥ 219 and Rn < 3.08n log n
for n ≥ 169. For ε > 1.08, we check that the assertion is true by computing Rn for each n < 169. This
proves Theorem 1.

Now we derive Theorem 2. From the above paragraph, we obtain Rn < 3n log n for n ≥ 219. By
Lemma 2.1 (a), we have p3n > 3n log 3n for all n ≥ 1 implying the assertion of Theorem 2 for n ≥ 219.
For n < 219, we check that Rn < p3n and Theorem 2 follows. �
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