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EFFECT OF TRUNCATION ON LARGE DEVIATIONS FOR
HEAVY-TAILED RANDOM VECTORS

ARIJIT CHAKRABARTY

Abstract. This paper studies the effect of truncation on the large deviations behavior of the

partial sum of a triangular array coming from a truncated power law model. Each row of the

triangular array consists of i.i.d. random vectors, whose distribution matches a power law on a

ball of radius going to infinity, and outside that it has a light-tailed modification. The random

vectors are assumed to be Rd-valued. It turns out that there are two regimes depending on the

growth rate of the truncating threshold, so that in one regime, much of the heavy tailedness

is retained, while in the other regime, the same is lost.

1. Introduction

This paper answers the question of the extent to which truncated heavy-tailed random vectors
behave like heavy-tailed random vectors that are not truncated, from the point of view of large
deviations behavior. There are lot of situations where a power law is a good fit, and at the
same time the quantity of interest is physically bounded above. As a natural model for such
phenomena, we consider a truncated heavy-tailed distribution - a distribution that matches
a power law on a ball with “large” radius, centered at the origin, and outside that the tail
decays significantly faster or simply vanishes. It is obvious that if the truncating threshold is
fixed, then as the sample size goes to infinity, any effect of the heavy-tailed distribution that we
started with will eventually wash out. Thus, any interesting analysis of such a system should
necessarily let the truncating threshold go to infinity along with the sample size. Answering
the question posed above demands a systematic study of the relation between the growth rate
of the truncating threshold and the asymptotic properties of the truncated heavy-tailed model
which we now proceed to define formally. This question has previously been addressed in the
literature from a different angle, that of the central limit theorem; see ? and ?.

A random variable H that takes values in Rd is heavy-tailed or has a power law, if there is a
non-null Radon measure µ on Rd \{0} so that there is a sequence an going to infinity satisfying

(1.1) nP (a−1
n H ∈ ·) v−→ µ(·)
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2 A. CHAKRABARTY

on Rd \ {0}. Here Rd is a compact set obtained by adding to Rd a ball of infinite radius
centered at origin and the measure µ is extended to the former by µ(Rd \ Rd) = 0. It can be
shown that (??) implies that there exists α > 0 such that for any Borel set A ⊂ B and c > 0,
µ(cA) = c−αµ(A) . This is the definition of regularly varying tail with index α used by ? and
?. Since the truncating threshold changes with the sample size, we have a triangular array.
The n-th row of the array, comprises n i.i.d. random vectors denoted by Xn1, . . . , Xnn. For
1 ≤ j ≤ n, the observation Xnj , whose distribution should be thought of as the truncation of
a power tail, is defined by

(1.2) Xnj := Hj1 (‖Hj‖ ≤Mn) +
Hj

‖Hj‖
(Mn + Lj)1 (‖Hj‖ > Mn) .

Here (Mn) is a sequence of numbers going to infinity, H1, H2, . . . are i.i.d. copies of H that
satisfies (??), and (L,L1, L2, . . .) is a sequence of i.i.d. nonnegative random variables. We
assume that the families (H,H1, H2, . . .) and (L,L1, L2, . . .) are independent. In (??), Mn

denotes the level of truncation. The distribution of the random variable L represents the
modification of the model (??) outside the ball of radius Mn. We chose to formulate the results
in such a way that all of them will be true in the case when L is identically zero. However, almost
all the results are true under milder hypothesis like existence of some exponential moment. The
assumption on L will vary from result to result and will be stated as we go along. We would
like to mention at this point that the model (??) makes the modification outside the ball of
radius Mn radially identical, an assumption made for the sake of simplicity. An interesting
extension, which we leave aside for future investigation, would be to multiply Lj by a function
of Hj/‖Hj‖.

The motivation of this paper is based on the fact that the notion of heavy-tail as defined
in (??) is closely related to large deviation results for random walks with heavy-tailed step
size. Such studies in one dimension date back to ?, ?, ?, ? and ?, among others; a survey
on this topic can be found in Section 8.6 in ? and ?. More recently, the functional version of
large deviation principles for heavy-tailed Rd valued random variables has been taken up by ?.
There, it is shown among other things, that if H1, H2, . . . are i.i.d. copies of H that satisfies
(??), then

(1.3)
P
(
λ−1
n

∑n
j=1Hj ∈ ·

)
nP (‖H‖ > λn)

v−→ µ(·)
µ(Bc

1)
,

where λn is a sequence satisfying λ−1
n

∑n
j=1Hj

P−→ 0 and in addition

λn �
√
n1+γ for some γ > 0, if α = 2

λn �
√
n log n, if α > 2 ,
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and for r ≥ 0, Br := {x ∈ Rd : ‖x‖ ≤ r} denotes the closed ball of radius r centered at the
origin. (In the above equation, “vn � un” means that

lim
n→∞

un
vn

= 0 .

Throughout the paper, “�” will be used as a shorthand for the above, and “�” for the obvious
opposite.) Motivated by this, we ask the question “When does the model (??) retain the heavy-
tailedness so that the behavior is similar to that in (??)?” The conclusion of ? was that the
central limit behavior was completely determined by the truncation regime defined as follows:
the tails in the model (??) are called

(1.4)
truncated softly if limn→∞ nP (‖H‖ > Mn) = 0 ,
truncated hard if limn→∞ nP (‖H‖ > Mn) =∞ .

Our approach to answering the above mentioned question lies in studying the large deviation
behavior of the partial sum in both regimes - soft and hard truncation, as defined in (??).
Of course, there is an intermediate regime where the limit exists, and is finite and positive.
Unfortunately, the author has not been able to solve the large deviations for that regime. The
above mentioned reference studies the central limit behavior for that regime.

The paper is organized as follows. The large deviation principles for the truncated heavy-
tailed random variables is studied in the soft truncation and hard truncation regimes, as defined
in (??), in Sections ?? and ?? respectively. The conclusions of the paper are summarized in
Section ??.

2. Large deviations: the soft truncation regime

In this section, we study the behavior of the large deviation probabilities for sums of trun-
cated heavy-tailed random variables, when the truncation is soft. Let H be a Rd valued random
variable satisfying (??) for some sequence an going to infinity and a non-null Radon measure µ
on Rd with µ(Rd \Rd) = 0. It is well known that for such a H, P (‖H‖ > ·) is regularly varying
with index −α for some α > 0. We further assume that if α = 1 then H has a symmetric
distribution and if α > 1 then E(H) = 0. The triangular array {Xnj : 1 ≤ j ≤ n} is as defined
in (??), where H1, H2, . . . are i.i.d. copies of H, Mn is a sequence of positive numbers going
to ∞, L,L1, L2, . . . are i.i.d. [0,∞) valued random variables independent of H,H1, H2, . . . and
‖ · ‖ denotes the L2 norm on Rd, i.e., for x = (x1, . . . , xd) ∈ Rd,

(2.1) ‖x‖ :=

 d∑
j=1

x2
j

1/2

.

We shall study large deviations for the row sum Sn, defined by

Sn :=
n∑
j=1

Xnj .
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For this section, we assume that Mn goes to ∞ fast enough so that

lim
n→∞

nP (‖H‖ > Mn) = 0 ,

which is clearly equivalent to
Mn � an ,

where an is that satisfying (??). We assume in addition that

(2.2) lim
n→∞

Mn/
√
n1+γ =∞ for some γ > 0, if α = 2 ,

and

(2.3) lim
n→∞

Mn/
√
n logMn =∞, if α > 2 .

Define

(2.4) bn :=


inf{x : P (‖H‖ > x) ≤ n−1}, α < 2√
n1+γ , α = 2√
n log n, α > 2 ,

where γ is same as that in (??). Clearly, 1� bn �Mn and L(b−1
n Sn) is a tight sequence. The

following result, which is an easy consequence of Lemma 2.1 in ?, describes the large deviation
behavior of λ−1

n Sn where bn � λn �Mn.

Theorem 2.1. In the soft truncation regime, if λn is any sequence of positive numbers satis-
fying bn � λn �Mn, then, as n −→∞,

P (λ−1
n Sn ∈ ·)

nP (‖H‖ > λn)
v−→ µ(·)

µ(Bc
1)

on Rd \ {0}. Recall that for all r ≥ 0, Br denotes the closed ball of radius r, centered at the
origin.

Proof. Fix a sequence λn satisfying the hypotheses. The assumption that λn � bn implies that
λ−1
n Sn

P−→ 0 . By Lemma 2.1 in ?, it follows that

P
(
λ−1
n

∑n
j=1Hj ∈ ·

)
nP (‖H‖ > λn)

v−→ µ(·)
µ(Bc

1)

on Rd \ {0}. Note that

sup
A⊂Rd

∣∣∣∣∣∣P (λ−1
n Sn ∈ A)− P

λ−1
n

n∑
j=1

Hj ∈ A

∣∣∣∣∣∣
≤ nP (‖H‖ > Mn)

= o(nP (‖H‖ > λn)) ,

the last equality following from the assumption that λn �Mn. This completes the proof. �
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Before stating the next result we need some preliminaries. Define

(2.5) S := {x ∈ Rd : ‖x‖ = 1} ,

and a probability measure σ on S by

(2.6) σ(A) :=
1

µ(Bc
1)
µ

({
x ∈ Rd : ‖x‖ ≥ 1,

x

‖x‖
∈ A

})
.

Notice that σ is the measure satisfying

µ((r,∞)×A)
µ((1,∞)× S)

= r−ασ(A), r > 0, A ⊂ S ,

which is a consequence of the scaling property satisfied by µ, mentioned below (??). It is easy
to see that (??) implies

(2.7) P

(
H

‖H‖
∈ ·
∣∣∣∣‖H‖ > t

)
w−→ σ(·)

as t −→∞, weakly on S.
For k ≥ 1, we define a measure ν(k) on Rd \Bk−1 by

ν(k)(A) :=
∫
· · ·
∫

1

 k∑
j=1

xj ∈ A

 ν(dx1) . . . ν(dxk) ,

where

(2.8) ν(A) :=
µ(A ∩B1)
µ(Bc

1)
+ σ(A ∩ S) .

Extend ν(k) to Rd \ Bk−1 by putting ν(k)(Rd \ Rd) = 0. Let us record some properties of this
measure. First, notice that ν(k) is a Radon measure, that is, ν(k)(Bc

r) < ∞ for all r > k − 1,
which follows from the fact that ν puts finite measure on the set Bc

r−k+1, and the observation
that

ν(k)(Bc
r)

=
∫
{1≥‖x1‖>r−k+1}

. . .

∫
{1≥‖xk‖>r−k+1}

1

 k∑
j=1

xj ∈ Bc
r

 ν(dx1) . . .

. . . ν(dxk) ,

the equality following because ν(Bc
1) = 0. The next observation is that

ν(k)(Bc
k) = 0 ,

which follows trivially from the definition. Finally, observe that

ν(1) = ν .

The next result, Theorem ??, describes the large deviation behavior of M−1
n Sn. The reason

we call this a large deviation result is the following. This result, for example, shows that for all
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r ∈ (k−1, k) such that ν(k)({x ∈ Rd : ‖x‖ = r}) = 0 (which is in fact true for all but countably
many r’s in (k − 1, k)), there is some Cr ∈ (0,∞) so that, as n −→∞,

P (‖Sn‖ > rMn) ∼ Cr{nP (‖H‖ > Mn)}k .

Theorem 2.2. Suppose k ≥ 1 and that

(2.9) P (L > x) = o(P (‖H‖ > x)k−1)

as x −→∞. Then, in the soft truncation regime, as n −→∞,

P (M−1
n Sn ∈ ·)

{nP (‖H‖ > Mn)}k
v−→ 1

k!
ν(k)(·)

on Rd \Bk−1.

Before going to the proof, let us closely inspect the statement of the above result. Fix
k ≥ 1. Since ν(k) does not charge anything outside Bk and the vague convergence happens on
Rd \Bk−1, assume that

(2.10) A ⊂ Bk \Bk−1+ε ,

for some ε > 0. All that Theorem ?? says is

1
k!
ν(k)(int(A)) ≤ lim inf

n→∞

P (M−1
n Sn ∈ A)

{nP (‖H‖ > Mn)}k
≤

lim sup
n→∞

P (M−1
n Sn ∈ A)

{nP (‖H‖ > Mn)}k
≤ 1
k!
ν(k)(cl(A)) ,

where int(·) and cl(·) denote the interior and the closure of a set respectively.
The proof of Theorem ?? is based on the idea that for M−1

n Sn to belong to a set A satisfying
(??), it is “necessary and sufficient” that M−1

n

∑k
u=1Xnju belongs to A for at least one tuple

1 ≤ j1 < . . . < jk ≤ n, where Xnj ’s are as defined in (??). This idea is similar to the idea in
the proof of Lemma 2.1 in ?, that Sn is large “if and only if” exactly one of the summands is
large. The above heuristic statement is equivalent to

P (M−1
n Sn ∈ A)

∼ P

 ⋃
1≤j1<...<jk≤n

{
M−1
n

k∑
u=1

Xnju ∈ A

}
∼

(
n

k

)
P

M−1
n

k∑
j=1

Xnj ∈ A


=

(
n

k

)∫
. . .

∫
1

 k∑
j=1

xj ∈ A

P (M−1
n Xn1 ∈ dx1)(2.11)

. . . P (M−1
n Xnk ∈ dxk) .
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Again heuristically,

P (M−1
n Xn1 ∈ dx) ∼ nP (‖H‖ > Mn)ν(dx) ,

a formal statement of which is precisely the content of Lemma ?? below. Using this, it can be
argued that ∫

. . .

∫
1

 k∑
j=1

xj ∈ A

P (M−1
n Xn1 ∈ dx1) . . . P (M−1

n Xnk ∈ dxk)

∼
∫
. . .

∫
1

 k∑
j=1

xj ∈ A

 ν(dx1) . . . ν(dxk)

= ν(k)(A) .

The above, in view of (??), shows the statement of Theorem ??. These ideas, in fact, constitute
the crux of the rigorous proof. For the latter, we shall need the following lemmas.

Lemma 2.1. As t −→∞,
P (Xt/t ∈ ·)
P (‖H‖ > t)

v−→ ν(·)

on Rd \ {0}, where, for t > 0,

Xt := H1 (‖H‖ ≤ t) + (t+ L)
H

‖H‖
1 (‖H‖ > t) .

Proof. Since for all ε > 0, ν restricted to Bc
ε is a finite measure, it suffices to show that for

ε ∈ (0, 1),

(2.12) lim
t→∞

P (Xt/t ∈ Bc
ε )

P (‖H‖ > t)
= ν(Bc

ε ) ,

and that for A ⊂ Rd which is closed and bounded away from zero,

(2.13) lim sup
t→∞

P (Xt/t ∈ A)
P (‖H‖ > t)

≤ ν(A) .

For (??), note that

lim
t→∞

P (Xt/t ∈ Bc
ε )

P (‖H‖ > t)
= lim

t→∞

P (H/t ∈ Bc
ε )

P (‖H‖ > t)
= ν(Bc

ε ) ,

where the second equality follows from the fact that

(2.14)
P (H/t ∈ ·)
P (‖H‖ > t)

v−→ µ(·)
µ(Bc

1)
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in Rd \ {0}, which is a consequence of (??), and that Bc
ε is a µ-continuous set. For (??), fix an

A ⊂ Rd which is closed and bounded away from zero. Define a function T from Rd \ {0} to S
by T (x) = x

‖x‖ . Since A is closed,⋂
ε>0

T (A ∩ (B1+ε \ int(B1−ε))) = A ∩ S .

Thus, for fixed δ > 0 there is ε > 0 so that

σ (T (A ∩ (B1+ε \ int(B1−ε)))) ≤ σ(A ∩ S) + δ .

Define

Ã := T (A ∩ (B1+ε \ int(B1−ε))) .

Since A ∩ (B1+ε \ int(B1−ε)) is compact and T is continuous, Ã is compact and hence closed.
Note that

P (Xt/t ∈ A) ≤

P (Xt/t ∈ A ∩B1−ε) + P (Xt/t ∈ A ∩ (B1+ε \ int(B1−ε)) + P (‖Xt‖ ≥ (1 + ε)t) .

Clearly

P (Xt/t ∈ A ∩B1−ε) = P (H/t ∈ A ∩B1−ε)

and hence by (??), it follows that

lim sup
t→∞

P (Xt/t ∈ A ∩B1−ε)
P (‖H‖ > t)

≤ µ(A ∩B1)
µ(Bc

1)
.

It is also clear that, as t −→∞,

P (‖Xt‖ ≥ (1 + ε)t) = o (P (‖H‖ > t)) .

Note that

P
(
Xt/t ∈ A ∩ (B1+ε \ int(B1−ε))

)
≤ P (H/‖H‖ ∈ Ã, ‖H‖ ≥ (1− ε)t) .

Since Ã is closed, by (??) and the fact that P (‖H‖ > ·) is regularly varying with index −α, it
follows that

lim sup
t→∞

P (H/‖H‖ ∈ Ã, ‖H‖ ≥ (1− ε)t)
P (‖H‖ > t)

≤ (1− ε)−ασ(Ã)

≤ (1− ε)−α(σ(A ∩ S) + δ) .

Since ε and δ can be chosen to be arbitrarily small, this shows (??) and thus completes the
proof. �

The next lemma studies the asymptotics of the sum of a fixed number (k) of random variables
in the triangular array {Xnj : 1 ≤ j ≤ n}, as the row index (n) goes to infinity.
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Lemma 2.2. Suppose that (??) holds. Then,

P
(
M−1
n

∑k
j=1Xnj ∈ ·

)
P (‖H‖ > Mn)k

v−→ ν(k)(·) ,

on Rd \Bk−1.

Proof. Fix a ν(k) continuity set A ⊂ Bc
δ for some k−1 < δ < k. Fix ε > 0 so that (k−1)(1+ε) <

δ. Clearly,

P

M−1
n

k∑
j=1

Xnj ∈ A, ‖Xnj‖ ≤ (1 + ε)Mn, 1 ≤ j ≤ k


≤ P

M−1
n

k∑
j=1

Xnj ∈ A


≤ P

M−1
n

k∑
j=1

Xnj ∈ A, ‖Xnj‖ ≤ (1 + ε)Mn, 1 ≤ j ≤ k


+kP (L > εMn)P (‖H‖ > Mn) .

By the assumption on L, it follows that

P (L > εMn) = o(P (‖H‖ > εMn)k−1)

= o(P (‖H‖ > Mn)k−1) .

Since A ⊂ Bc
δ where δ > (k − 1)(1 + ε),

P

M−1
n

k∑
j=1

Xnj ∈ A, ‖Xnj‖ ≤ (1 + ε)Mn, 1 ≤ j ≤ k


=
∫
{η<‖x1‖≤1+ε}

· · ·
∫
{η<‖xk‖≤1+ε}

1

 k∑
j=1

xj ∈ A


P (M−1

n Xn1 ∈ dx1) . . . P (M−1
n Xnk ∈ dxk)

=
∫
{‖x1‖≤1+ε}

· · ·
∫
{‖xk‖≤1+ε}

1

 k∑
j=1

xj ∈ A

Pn(dx1) . . . Pn(dxk) ,(2.15)

where η := δ−(k−1)(1+ε) > 0 and Pn(·) denotes the restriction of P (M−1
n Xn1 ∈ ·) to Rd\Bη.

Let ν̃ denote the restriction of ν to Rd \Bη. Then, by Lemma ??, as n −→∞,

Pn(·)
P (‖H‖ > Mn)

w−→ ν̃(·)
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on Rd \Bη. Thus,
Pn(dx1) . . . Pn(dxk)
P (‖H‖ > Mn)k

w−→ ν̃(dx1) . . . ν̃(dxk)

on (Rd \Bη)k, as n −→∞. Consider the function f : Rd×k −→ R defined by

f(x1, . . . , xk) = 1(‖x1‖ ≤ 1 + ε) . . .1(‖xk‖ ≤ 1 + ε)1

 k∑
j=1

xj ∈ A

 .

The set of discontinuities of f is contained in

k⋃
j=1

{(x1, . . . , xk) : ‖xj‖ = 1 + ε} ∪

(x1, . . . , xk) :
k∑
j=1

xj ∈ ∂A

 .

The product measure ν̃k gives zero measure to this set because ν (and hence ν̃) does not charge
anything outside B1 and the set A has been chosen to satisfy∫

. . .

∫
1

 k∑
j=1

xj ∈ ∂A

 ν(dx1) . . . ν(dxk) = 0 .

Thus, as n −→∞, the right hand side of (??) is asymptotically equivalent to

P (‖H‖ > Mn)k
∫
{‖x1‖≤1+ε}

· · ·
∫
{‖xk‖≤1+ε}

1

 k∑
j=1

xj ∈ A

 ν̃(dx1) . . . ν̃(dxk) ,

which is same as P (‖H‖ > Mn)kν(k)(A). This completes the proof. �

We shall also need the following result, which has been proved in
?.

Lemma 2.3. If X1, . . . , XN are i.i.d. R-valued independent random variables with |Xi| ≤ C

a.s. where 0 < C <∞, then, for λ > 0,

P (SN − ESN > λ) ≤ exp
{
− λ

2C
sinh−1 Cλ

2Var(SN )

}
,

where

SN :=
N∑
i=1

Xi .

Proof of Theorem ??. We shall show that for every ν(k)-continuous set A ⊂ Rd \ Bδ for some
δ > k − 1,

(2.16) lim
n→∞

P (M−1
n Sn ∈ A)

{nP (‖H‖ > Mn)}k
=

1
k!
ν(k)(A) .
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We first show the lower bound, i.e., the lim inf of the left hand side is at least as much as the
right hand side. Fix a set A as described above. Define for ε > 0

A−ε := {x ∈ A : for all y ∈ Rd with ‖y − x‖ < ε, y ∈ A} .

Clearly,

lim
ε↓0

ν(k)(A−ε) = ν(k)(int(A)) = ν(k)(A) ,

where the second equality is true because A is ν(k)-continuous. Thus, for the lower bound, it
suffices to show that for all ε > 0 so that A−ε is a ν(k)-continuity set (which is true for all but
countably many ε’s),

(2.17) lim inf
n→∞

P (M−1
n Sn ∈ A)

{nP (‖H‖ > Mn)}k
≥ 1
k!
ν(k)(A−ε) .

Fix ε > 0 so that A−ε is a ν(k)-continuity set. Since we want to show (??), we can assume
without loss of generality that ν(k)(A−ε) > 0. Fix n ≥ k and define for 1 ≤ j1 < . . . < jk ≤ n

Cj1...jk :=

M−1
n

k∑
u=1

Xnju ∈ A−ε,
∥∥∥∥ ∑
i∈{1,...,n}\{j1,...,jk}

Xni

∥∥∥∥ < εMn

 .

Though the above definition also depends on n, we suppress that to keep the notation simple.
Clearly,

P (M−1
n Sn ∈ A) ≥ P

(⋃
Cj1...jk

)
,

where the union is taken over all subsets of size k of {1, . . . , n}, and

P (C1,...,k) = P

M−1
n

k∑
j=1

Xnj ∈ A−ε
P

(∥∥∥∥n−k∑
i=1

Xni

∥∥∥∥ < Mnε

)

∼ P (‖H‖ > Mn)kν(k)(A−ε) ,

as n −→ ∞, where the equivalence is true because M−1
n

∑n−k
i=1 Xni

P−→ 0 and by Lemma ??.
Thus, for (??), all that remains to show is

(2.18) P
(⋃

Cj1...jk

)
∼
∑

P (Cj1...jk) ,

where the union and the sum are both taken over all subsets of {1, . . . , n}. Fix η > 0 so that
(k − 1)(1 + η) < δ and subsets {i1, . . . , ik} and {j1, . . . , jk} of {1, . . . , n} so that

(2.19) # ({i1, . . . , ik} ∩ {j1, . . . , jk}) = l < k .
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Note that,

P (Ci1...ik ∩ Cj1...jk)

≤ P

(
M−1
n

∥∥∥∥ k∑
u=1

Xnju

∥∥∥∥ > δ,M−1
n

∥∥∥∥ k∑
u=1

Xniu

∥∥∥∥ > δ

)

≤ P

(
M−1
n

∥∥∥∥ k∑
u=1

Xnju

∥∥∥∥ > δ,M−1
n

∥∥∥∥ k∑
u=1

Xniu

∥∥∥∥ > δ,

‖Xnu‖ ≤ (1 + η)Mn for u ∈ {i1, . . . , ik} ∪ {j1, . . . , jk}
)

+2kP (L > ηMn)P (‖H‖ > Mn)

≤ P (‖Xnj‖ > [δ − (k − 1)(1 + η)]Mn for 1 ≤ j ≤ 2k − l)

+o(P (‖H‖ > Mn)k)

= O(P (‖H‖ > Mn)2k−l) .

Clearly, for fixed l, there are at most O(n2k−l) pairs of subsets satisfying (??). Thus,

∑
P (Ci1...ik ∩ Cj1...jk) =

k−1∑
l=0

O(n2k−lP (‖H‖ > Mn)2k−l)

= o(nkP (‖H‖ > Mn)k) ,

where the sum in the left hand side of the first line is taken over all pairs of distinct subsets
{i1, . . . , ik} and {j1, . . . , jk} of {1, . . . , n}. This shows (??) and thus completes the proof of the
lower bound.

For the upper bound, choose a sequence zn satisfying

{nP (‖H‖ > Mn)}
k+1
k+2 � nP (‖H‖ > zn)(2.20)

� {nP (‖H‖ > Mn)}
k
k+1 , if α < 2 ,

nP
(
‖H‖ > Mn

logMn

)
� nP (‖H‖ > zn)(2.21)

� min
(
{nP (‖H‖ > Mn)}

k
k+1 , nP

(
‖H‖ > n

Mn

))
, if α > 2 ,

nP
(
‖H‖ > Mn

logMn

)
� nP (‖H‖ > zn)(2.22)

� min
(
{nP (‖H‖ > Mn)}

k
k+1 , nP

(
‖H‖ >

(
n
Mn

)1+γ
))

, if α = 2 ,

where γ is same as that in (??). Note that if un and vn are sequences satisfying un � vn � 1,
then a sequence wn with

un � P (‖H‖ > wn)� vn ,
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can be constructed in the following way. Set, for example,

wn := U←
(

(unvn)−1/2
)
,

where
U(·) := 1/P (‖H‖ > ·) .

The reader is referred to ? for a definition of U←(·) (page 18), and a proof of the fact that wn
defined as above works (Subsection 2.2.1, page 23-24). Thus, existence of zn satisfying (??)
is immediate from the assumption that nP (‖H‖ > Mn) goes to zero as n −→ ∞. In view of
(??), a sequence satisfying (??) will exist if it can be shown that

nP

(
‖H‖ > Mn

logMn

)
� {nP (‖H‖ > Mn)}β ,(2.23)

when α > 2, where β = k/(k + 1). Letting ε ∈ (0, α − 2), δ ∈ (0, ε(1 − β)/2) and l(x) :=
xαP (‖H‖ > x), note that

nP
(
‖H‖ > Mn

logMn

)
{nP (‖H‖ > Mn)}β

= n1−βM−α(1−β)
n (logMn)αl(Mn/ logMn)l(Mn)−β

� n1−βM−α(1−β)
n (logMn)α(Mn/ logMn)ε(1−β)/2M ε(1−β)/2−δ

n

= n1−βM (ε−α)(1−β)−δ
n (logMn)c

� n1−βM (ε−α)(1−β)
n ,(2.24)

where c := α − ε(1 − β)/2. Using the fact that Mn �
√
n, which is a consequence of (??), it

follows that

n1−βM (ε−α)(1−β)
n � n1−βn(ε−α)(1−β)/2

= n(1−β)(2−α+ε)/2

→ 0 by choice of ε .

This clearly shows (??) when α > 2.
To establish that a sequence zn satisfying (??) exists, it suffices to check (??) and that

(2.25)
Mn

logMn
�
(
n

Mn

)1+γ

,

both when α = 2. For (??), let 0 < ε < 2γ/(1 + γ) < 2, where γ is same as that in (??). A
quick inspection reveals that the arguments leading to (??) hold regardless of the values of ε
and α. Using (??), it follows that when α = 2,

n1−βM (ε−α)(1−β)
n � n1−βn(ε−2)(1−β)(1+γ)/2

→ 0 by choice of ε .

Thus, (??) holds when α = 2. Using (??) once again, (??) follows.
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Write

S̃n :=
n∑
j=1

Xnj1(‖Xnj‖ ≤ zn) .

Fix 0 < ε < δ − k + 1 and define

Aε := {y ∈ Rd : ‖y − x‖ < ε for some x ∈ A} .

Assume that ε is chosen so that Aε is also a ν(k)-continuity set. Define the events

Dn :=

{
M−1
n

l∑
u=1

Xnju ∈ Aε for at least one tuple

1 ≤ j1 < j2 < . . . < jl ≤ n, 1 ≤ l < k

}
,

En :=

{
M−1
n

k∑
u=1

Xnju ∈ Aε for at least one tuple

1 ≤ j1 < j2 < . . . < jk ≤ n

}
,

Fn := {‖Xnj‖ > zn for at least (k + 1) many j’s ≤ n} ,

Gn := {‖S̃n‖ > εMn} .

Clearly,

P
(
M−1
n Sn ∈ A

)
≤ P (Dn) + P (En) + P (Fn) + P (Gn) .

Also,

P (En)

≤ nk

k!
P

M−1
n

k∑
j=1

Xnj ∈ Aε


∼ 1
k!
{nP (‖H‖ > Mn)}k

∫
· · ·
∫

1

 k∑
j=1

xj ∈ Aε
 ν(dx1) . . . ν(dxk)

by Lemma ??. By the fact that A ⊂ Bc
δ and ε < δ − k + 1,

P (Dn) ≤
k−1∑
l=1

nlP

‖ l∑
j=1

Xnj‖ > (δ − ε)Mn


≤

k−1∑
l=1

nllP [L > {(δ − ε)/l − 1}Mn]P (‖H‖ > Mn)

� nkP (‖H‖ > Mn)k ,
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the last inequality following from (??). By the choice of zn,

P (Fn) ≤ {nP (‖H‖ > zn)}k+1 � {nP (‖H‖ > Mn)}k .

All that remains is to show that

(2.26) P (Gn)� {nP (‖H‖ > Mn)}k .

Recall that ‖·‖ denotes the L2 norm as defined in (??). Denoting the coordinates of a Rd-valued
random variable Y by Y (j) for 1 ≤ j ≤ d, note that

P (Gn) ≤
d∑
j=1

P
(
|S̃(j)
n | > εMn/

√
d
)
.

In view of this, to show (??), It suffices to prove that for 1 ≤ j ≤ d,

ES(j)
n = o(Mn)(2.27)

P
(
|S̃(j)
n − ES̃(j)

n | > θMn

)
= o

(
{nP (‖H‖ > Mn)}k

)
,(2.28)

for all θ > 0. By the assumption that H has a symmetric law when α = 1, (??) is trivially true
in that case. We shall show (??) separately for the cases α < 1 and α > 1. We start with the
case α > 1. Note that for n large enough so that zn < Mn,

|ES(j)
n | = n|E[X(j)

n1 1(‖Xn1‖ ≤ zn)]|

= n|E[H(j)1(‖H‖ ≤ zn)]|

(since EH = 0 when α > 1) = n|E[H(j)1(‖H‖ > zn)]|

≤ nE[|H(j)|1(‖H‖ > zn)]

≤ nE[‖H‖1(‖H‖ > zn)]

= O(nznP (‖H‖ > zn))

= o(Mn) .

where the last step follows from the fact that the choice of zn implies that zn �Mn and that
nP (‖H‖ > zn)� 1, which are true, in fact, for all α. For the case α < 1, note that for n large
enough,

|ES(j)
n | = n|E[X(j)

n1 1(‖Xn1‖ ≤ zn)]|

= n|E[H(j)1(‖H‖ ≤ zn)]|

≤ nE[|H(j)|1(‖H‖ ≤ zn)]

≤ nE[‖H‖1(‖H‖ ≤ zn)]

= O(nznP (‖H‖ > zn))

= o(Mn) .



16 A. CHAKRABARTY

Thus, (??) is established for all α. Note that by Lemma ??,

P
(
|S̃(j)
n − ES̃(j)

n | > θMn

)
≤ K1 exp

{
−K2

Mn

zn
sinh−1K3

Mnzn

Var(S̃(j)
n )

}
,

for finite positive constants K1,K2 and K3. For (??), all that needs to be shown is

(2.29) exp

{
−K2

Mn

zn
sinh−1K3

Mnzn

Var(S̃(j)
n )

}
� {nP (‖H‖ > Mn)}k .

We shall show this separately for the cases α < 2 and α ≥ 2. We start with the case α ≥ 2.
For (??), we claim that it suffices to show that

Mn

zn
� logMn ,(2.30)

and Mnzn � Var(S̃(j)
n ) .(2.31)

Let C = 2kα and notice that

(2.32) MC
n P (‖H‖ > Mn)k � 1� n−k .

If (??) and (??) are true, it will follow that for large n,

exp

{
−K2

Mn

zn
sinh−1K3

Mnzn

Var(S̃(j)
n )

}
≤M−Cn .

In view of (??), this will show (??).
It follows directly from choice of zn that (??) is true. If α > 2, then

Var(S̃(j)
n )

Mnzn
= O(n/Mnzn)

= o(1)

by choice of zn. If α = 2, then there is a slowly varying function m : [0,∞)→ R at ∞ so that

Var(S̃(j)
n )

Mnzn
= O(nm(zn)/Mnzn)

= O
(
n/Mnz

1/(1+γ)
n

)
= o(1) .
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Finally, let us come to the case α < 2. Note that there is a slowly varying function m : [0,∞)→
R at ∞ (which is possibly different from the one chosen just above), so that

Mn

zn
∼

(
P (‖H‖ > zn)
P (‖H‖ > Mn)

)1/α m(Mn)
m(zn)

�
(
P (‖H‖ > zn)
P (‖H‖ > Mn)

)1/α zn
Mn

� {nP (‖H‖ > Mn)}−
1

α(k+2)
zn
Mn

.

This shows that
Mn

zn
� {nP (‖H‖ > Mn)}−u

for some u > 0. Also, note that

Var(S̃(j)
n ) = O(nz2

nP (‖H‖ > zn))

= o(znMn) ,

the last step following from the facts that zn �Mn and nP (‖H‖ > zn)� 1. Thus,

Mn

zn
sinh−1K3

Mnzn

Var(S̃(j)
n )
� {nP (‖H‖ > Mn)}−u ,

and hence,

exp

{
−K2

Mn

zn
sinh−1K3

Mnzn

Var(S̃(j)
n )

}
� exp

{
−K2{nP (‖H‖ > Mn)}−u

}
� {nP (‖H‖ > Mn)}k .

This shows (??) and thus completes the proof. �

Theorem ?? clearly excludes the boundary cases, i.e., it does not give the decay rate of
P (‖Sn‖ > kMn) when k is a positive integer. For stating the results for the boundary case, we
need some preliminaries. In view of the assumptions that E(H) = 0 whenever α > 1 and that
H has a symmetric distribution when α = 1, by ?, it follows that

(2.33) B−1
n

n∑
j=1

Hj =⇒ L(V) ,

for some sequence (Bn) going to infinity, and some (α∧2)-stable random variable V. Note that

P

Sn 6= n∑
j=1

Hj

 ≤ P (‖Hj‖ > Mn for some 1 ≤ j ≤ n)

≤ nP (‖H‖ > Mn)

→ 0 .
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Thus, it follows from (??) that

(2.34) B−1
n Sn =⇒ L(V) .

The next two results, which are the last two main results of this section, describe the behavior
of the large deviation probability for the boundary cases. Specifically, Theorem ?? gives the
decay rate of P (‖Sn‖ > Mn) and Theorem ?? gives the decay rate of P (‖Sn‖ > kMn) for
k ≥ 2.

Theorem 2.3. (The boundary case: k = 1) In the soft truncation regime, for all closed set
F ⊂ S,

lim sup
n→∞

P
(
‖Sn‖ > Mn,

Sn
‖Sn‖ ∈ F

)
nP (‖H‖ > Mn)

≤ Γ1(F ) ,

where,

Γ1(A) :=
∫
A
P (〈x,V〉 ≥ 0)σ(dx) ,

for A ⊂ S, and V is as in (??). If, in addition,

(2.35)
∫
S
P (〈x,V〉 = 0)σ(dx) = 0 ,

then, as n −→∞,

P
(
‖Sn‖ > Mn,

Sn
‖Sn‖ ∈ ·

)
nP (‖H‖ > Mn)

w−→ Γ1(·)

weakly on S.

Theorem 2.4. (The boundary case: k ≥ 2) Suppose k ≥ 2 and assume that (??) holds. Then,
in the soft truncation regime,

lim sup
n→∞

P
(
‖Sn‖ > kMn,

Sn
‖Sn‖ ∈ F

)
{nP (‖H‖ > Mn)}k

≤ Γk(F ) ,

for all closed set F ⊂ S, where for all A ⊂ S,

Γk(A) :=
1
k!

∑
s∈A

P (〈s,V〉 ≥ 0)σ({s})k .

If, in addition, for every s ∈ S,

(2.36) lim inf
t→∞

P
(
‖H‖ > t, H

‖H‖ = s
)

P (‖H‖ > t)
≥ σ({s})

and

(2.37) P (〈s,V〉 = 0)σ({s}) = 0 ,
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then,

P
(
‖Sn‖ > kMn,

Sn
‖Sn‖ ∈ ·

)
{nP (‖H‖ > Mn)}k

w−→ Γk(·) ,

weakly on S.

Before getting into the proof, let us try to understand the need for the assumption (??) when
k ≥ 2. Continuing on the note of the heuristic arguments after the statement of Theorem ??,
one would expect that for ‖Sn‖ to be at least as large as kMn, it would be “necessary” for the
sum of some k many of Xn1 . . . , Xnn to have norm at least kMn. For that to happen when
k ≥ 2, one would need that the directions of each of those k summands to be the same. Given
any direction s, this is possible only when the spectral measure admits an atom at {s}, and
(??) holds. This clearly isn’t true for k = 1, in which case, the sum of k random variables is
actually the random variable itself, and the norm of a particular Xnj being at least as large as
Mn is equivalent to ‖Hj‖ ≥Mn.

It is easy to see that for all k ≥ 1, Γk(S) ≤ σ(S) = 1, which in particular implies that Γk is a
finite measure. However, Γk might be the null measure, and if that is the case, the statements
of Theorems ?? and ?? just mean that P (‖Sn‖ > kMn) decays faster than {nP (‖H‖ > Mn)}k.
For the proofs, we shall need the following lemma, which in fact, proves the first parts of both
theorems.

Lemma 2.4. Suppose k ≥ 1 and assume that (??) holds. Then, as n −→∞,

lim sup
n→∞

P
(
‖Sn‖ > kMn,

Sn
‖Sn‖ ∈ F

)
{nP (‖H‖ > Mn)}k

≤ Γk(F ) ,

for all closed set F ⊂ S.

Proof. It is easy to see that for all k ≥ 1 and A ⊂ S,

Γk(A) =
1
k!

∫
S
. . .

∫
S
1

∥∥∥∥∥∥
k∑
j=1

xj

∥∥∥∥∥∥ = k,

∑k
j=1 xj

‖
∑k

j=1 xj‖
∈ A

P

 k∑
j=1

〈xj ,V〉 ≥ 0


σ(dx1) . . . σ(dxk) .

Fix k ≥ 1 and a closed set F ⊂ S. Let 0 < η < 1 and define

En :=

{∥∥∥∥∥
k∑

u=1

Xnju

∥∥∥∥∥ > (k − η)Mn for at least one tuple

1 ≤ j1 < j2 < . . . < jk ≤ n

}
.

By similar arguments as in the proof of Theorem ??, it follows that

P ({‖Sn‖ > kMn} ∩ Ecn) = o({nP (‖H‖ > Mn)}k)
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as n −→∞. Thus, for the upper bound, it suffices to show that

lim sup
η↓0

lim sup
n→∞

P
({
‖Sn‖ > kMn,

Sn
‖Sn‖ ∈ F

}
∩ En

)
{nP (‖H‖ > Mn)}k

≤ 1
k!

∫
S
. . .

∫
S
1

‖ k∑
j=1

xj‖ = k,

∑k
j=1 xj

‖
∑k

j=1 xj‖
∈ F

P

 k∑
j=1

〈xj ,V〉 ≥ 0



σ(dx1) . . . σ(dxk) .

and for that it suffices to show

lim sup
η↓0

lim sup
n→∞

P
(
‖Sn‖ > kMn,

Sn
‖Sn‖ ∈ F, ‖

∑k
j=1Xnj‖ > (k − η)Mn

)
P (‖H‖ > Mn)k

≤
∫
S
. . .

∫
S
1

‖ k∑
j=1

xj‖ = k,

∑k
j=1 xj

‖
∑k

j=1 xj‖
∈ F

P

 k∑
j=1

〈xj ,V〉 ≥ 0



(2.38) σ(dx1) . . . σ(dxk) .

Fix a sequence εn satisfying M−1
n � εn � M−1

n Bn, which is possible because Bn goes to
infinity, where Bn is as in (??). Also Bn = O(bn) = o(Mn), where bn is as defined in (??), thus
showing that εn goes to zero as n goes to infinity. Set

F η := {x ∈ S : ‖x− s‖ ≤ η for some s ∈ F} .
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Define the events

Un :=

‖
k∑
j=1

Xnj‖ > (k − η)Mn,

∑k
j=1Xnj

‖
∑k

j=1Xnj‖
∈ F η,

〈 ∑k
j=1Xnj

‖
∑k

j=1Xnj‖
, B−1

n

n∑
j=k+1

Xnj

〉
≥ −η

 ,

Vn :=

k − η < M−1
n ‖

k∑
j=1

Xnj‖ ≤
√
k2 + εn, ‖Sn‖ > kMn,

〈 ∑k
j=1Xnj

‖
∑k

j=1Xnj‖
, B−1

n

n∑
j=k+1

Xnj

〉
< −η

 ,

Wn :=

{
‖

k∑
j=1

Xnj‖ > (k − η)Mn, ‖Sn‖ > Mn,

∑k
j=1Xnj

‖
∑k

j=1Xnj‖
/∈ F η,

Sn
‖Sn‖

∈ F

}
,

Yn :=

‖
k∑
j=1

Xnj‖ > (k − η)Mn, min
1≤j≤k

‖Xnj‖ <
1− η

2
Mn

 ,

Zn :=

 min
1≤j≤k

‖Xnj‖ ≥
1− η

2
Mn, ‖

k∑
j=1

Xnj‖ >
√
k2 + εnMn

 .

Note that‖Sn‖ > kMn,
Sn
‖Sn‖

∈ F, ‖
k∑
j=1

Xnj‖ > (k − η)Mn

 ⊂ Un ∪ Vn ∪Wn ∪ Yn ∪ Zn .

Let k − 1 < r < k − η be such that

ν(k)
(
{x ∈ Rd : ‖x‖ = r}

)
= 0 .

For n ≥ 1, let Pn(·) and ν̃(k) denote the restrictions of
P
(
M−1
n

∑k
j=1Xnj ∈ ·

)
and ν(k) respectively to Rd \Br, i.e., for A ⊂ Rd,

Pn(A) := P

M−1
n

k∑
j=1

Xnj ∈ A ∩Bc
r

 ,

ν̃(k)(A) := ν(k) (A ∩Bc
r) .
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Then, by Lemma ??, it follows that

Pn(·)
P (‖H‖ > Mn)k

w−→ ν̃(k)(·) .

By (??), it follows that

Pn(dx)
P (‖H‖ > Mn)k

P

B−1
n

n∑
j=k+1

Xnj ∈ dy

 w−→ ν̃(k)(dx)P (V ∈ dy)

on Rd × Rd. Note that

P (Un)

=
∫

Rd

∫
Rd

1
(
‖x‖ > k − η, x

‖x‖
∈ F η

)
1(〈x, y〉 ≥ −η)Pn(dx)

P

B−1
n

n∑
j=k+1

Xnj ∈ dy

 .

Since F η is a closed set,

lim sup
n→∞

P (Un)
P (‖H‖ > Mn)k

≤
∫

1
(
‖x‖ ≥ k − η, x

‖x‖
∈ F η

)
P (〈x,V〉 ≥ −η)ν̃(k)(dx)

=
∫

1
(
‖x‖ ≥ k − η, x

‖x‖
∈ F η

)
P (〈x,V〉 ≥ −η)ν(k)(dx) .

Letting η ↓ 0, we get using the fact that F is a closed set,

lim sup
η↓0

lim sup
n→∞

P (Un)
P (‖H‖ > Mn)k

≤
∫

Rd
1
(
‖x‖ ≥ k, x

‖x‖
∈ F

)
P (〈x,V〉 ≥ 0)ν(k)(dx)

=
∫

Rd
. . .

∫
Rd

1

‖ k∑
j=1

xj‖ ≥ k,
∑k

j=1 xj

‖
∑k

j=1 xj‖
∈ F

P

 k∑
j=1

〈xj ,V〉 ≥ 0


ν(dx1) . . . ν(dxk)

=
∫
S
. . .

∫
S
1

∥∥∥∥∥∥
k∑
j=1

xj

∥∥∥∥∥∥ = k,

∑k
j=1 xj

‖
∑k

j=1 xj‖
∈ F

P

 k∑
j=1

〈xj ,V〉 ≥ 0


σ(dx1) . . . σ(dxk) ,

the last equality being true because ν(Bc
1) = 0 and the restriction of ν to S is σ. Thus, in order

to show (??), all that remains is to prove that

P (Vn) + P (Wn) + P (Yn) + P (Zn)� P (‖H‖ > Mn)k .
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Note that on the set Vn,

k2M2
n < ‖Sn‖2

=

∥∥∥∥∥∥
k∑
j=1

Xnj

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
n∑

j=k+1

Xnj

∥∥∥∥∥∥
2

+ 2

〈
k∑
j=1

Xnj ,

n∑
j=k+1

Xnj

〉

≤ (k2 + εn)M2
n +

∥∥∥∥∥∥
n∑

j=k+1

Xnj

∥∥∥∥∥∥
2

− 2Bnη

∥∥∥∥∥∥
k∑
j=1

Xnj

∥∥∥∥∥∥
≤ (k2 + εn)M2

n +

∥∥∥∥∥∥
n∑

j=k+1

Xnj

∥∥∥∥∥∥
2

− 2η(k − η)BnMn ,

and hence,

P (Vn)

≤ P

∥∥∥∥∥∥
k∑
j=1

Xnj

∥∥∥∥∥∥ ≥ (k − η)Mn


×P

∥∥∥∥∥∥
n∑

j=k+1

Xnj

∥∥∥∥∥∥
2

> 2η(k − η)BnMn − εnM2
n


� P (‖H‖ > Mn)k ,

the last step following from the fact that by the choice of εn, εnM2
n +B2

n = o(BnMn) showing

that 2η(k−η)BnMn−εnM2
n is much larger than B2

n which is the growth rate of
∥∥∥∑n

j=k+1Xnj

∥∥∥2
.

Since for any u, v ∈ Rd,∥∥∥∥ u+ v

‖u+ v‖
− u

‖u‖

∥∥∥∥ ≤
∥∥∥∥ u+ v

‖u+ v‖
− u

‖u+ v‖

∥∥∥∥+
∥∥∥∥ u

‖u+ v‖
− u

‖u‖

∥∥∥∥
=

‖v‖
‖u+ v‖

+
∣∣∣∣‖u+ v‖ − ‖u‖
‖u+ v‖

∣∣∣∣
≤ 2

‖v‖
‖u+ v‖

,

it follows that

P (Wn) ≤ P

∥∥∥∥∥∥
k∑
j=1

Xnj

∥∥∥∥∥∥ ≥ (k − η)Mn

P

∥∥∥∥∥∥
n∑

j=k+1

Xnj

∥∥∥∥∥∥ > η

2
Mn


� P (‖H‖ > Mn)k .
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Clearly,

P (Yn) ≤
k∑
j=1

P

(
‖Xnj‖ >

2k − 1− η
2(k − 1)

Mn

)

≤ kP (‖H‖ > Mn)P
(
L >

1− η
2(k − 1)

Mn

)
� P (‖H‖ > Mn)k ,

the last step following by (??). Finally,

P (Zn) ≤ kP

(
‖H‖ > 1− η

2
Mn

)k
P

(
L >

(√
k2 + εn
k

− 1
)
Mn

)
� P (‖H‖ > Mn)k ,

the last step being true because by the choice of εn, it follows that

1 � εnMn

= O

((√
k2 + εn
k

− 1
)
Mn

)
.

This completes the proof. �

Proof of Theorem ??. In view of Lemma ??, it suffices to show that

(2.39) lim inf
n→∞

P (‖Sn‖ > Mn)
nP (‖H‖ > Mn)

≥ Γ1(S) .

We assume without loss of generality that Γ1(S) > 0. For 1 ≤ j ≤ n, define

Cj :=

‖Xnj‖ ≥Mn,
∑

1≤i≤n,i6=j
〈Xni, Xnj〉 > 0

 .

Note that

(2.40) P (‖Sn‖ > Mn) ≥ P

 n⋃
j=1

Cj

 ,
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and that

P (Cj) =
∫
S

∫
Rd

1(〈x, y〉 > 0)P
(
‖Xn1‖ ≥Mn,

Xn1

‖Xn1‖
∈ dx

)

P

B−1
n

n∑
j=2

Xnj ∈ dy


=

∫
S

∫
Rd

1(〈x, y〉 > 0)P
(
‖H‖ ≥Mn,

H

‖H‖
∈ dx

)

P

B−1
n

n∑
j=2

Xnj ∈ dy


By (??) and (??), it follows that

lim inf
n→∞

P (Cj)
P (‖H‖ > Mn)

≥
∫
S

∫
Rd

1(〈x, y〉 > 0)σ(dx)P (V ∈ dy)

= Γ1(S) ,(2.41)

the equality in the last line following from (??). In view of (??) and (??), all that needs to be
shown is that

n2P (C1 ∩ C2) = o(nP (‖H‖ > Mn)) ,

but that follows from similar arguments as in the proof of Theorem ??. This completes the
proof. �

Proof of Theorem ??. In view of Lemma ??, it suffices to show that if (??) and (??) hold, then
for k ≥ 2 and s1, . . . , sr ∈ S,

(2.42) lim inf
n→∞

P (‖Sn‖ > Mn)
{nP (‖H‖ > Mn)}k

≥ 1
k!

r∑
i=1

P (〈si,V〉 ≥ 0)σ({si})k .

Denote for 1 ≤ j1 < . . . < jk ≤ n,

Cj1...jk :=
r⋃
i=1

‖Hju‖ ≥Mn,
Hju

‖Hju‖
= si for 1 ≤ u ≤ k,

∑
v 6=j1,...,jk

〈si, Xnv〉 > 0

 .

Note that,

P (‖Sn‖ > kMn) ≥ P
(⋃

Cj1...jk

)
,

where the union is taken over all tuples 1 ≤ j1 < . . . < jk ≤ n. It follows by (??) and (??) that
for any 1 ≤ j1 < . . . < jk ≤ n and 1 ≤ i ≤ r,

lim inf
n→∞

P
(
‖Hju‖ ≥Mn,

Hju
‖Hju‖

= si for 1 ≤ u ≤ k,
∑

v 6=j1,...,jk〈si, Xnv〉 > 0
)

P (‖H‖ > Mn)k

≥ σ({si})kP (〈si,V〉 ≥ 0) ,
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and hence for 1 ≤ j1 < . . . < jk ≤ n,

lim inf
n→∞

P (Cj1...jk)
P (‖H‖ > Mn)k

≥
r∑
i=1

σ({si})kP (〈si,V〉 ≥ 0) .

Thus, in order to show (??), it suffices to prove that as n −→∞,

P
(⋃

Cj1...jk

)
∼
∑

P (Cj1...jk) ,

where the sum and the union are taken over all tuples 1 ≤ j1 < . . . < jk ≤ n. That follows
from similar arguments leading to the proof of (??). This completes the proof. �

3. Large deviations: the hard truncation regime

The setup for this section is similar to that in Section ??, except that now we are in the
hard truncation regime. That is, H is a Rd-valued random variable such that (??) holds. If
α = 1, then H is assumed to have a symmetric law and if α > 1, then EH = 0.

For this section, we assume that Mn goes to ∞ slowly enough so that

(3.1) lim
n→∞

nP (‖H‖ > Mn) =∞ ,

an equivalent formulation of which is

(3.2) 1�Mn � an ,

where an is same as the one in (??). Moreover, we assume that

E‖H‖2 <∞ if α = 2 .

We further assume that EeεL <∞ for some ε > 0.
A sequence of random variables Zn follows the Large Deviations Principle (LDP) with speed

cn and rate function I if for any Borel set A,

− inf
x∈int(A)

I(x) ≤ lim inf
n→∞

1
cn

logP (Zn ∈ A)

≤ lim sup
n→∞

1
cn

logP (Zn ∈ A) ≤ − inf
x∈cl(A)

I(x) ,

where int(·) and cl(·) denote the interior and the closure of a set respectively, as before.
The first result of this section is an analogue of Cramér’s Theorem (Theorem 2.2.3, page

27 in ?) because of the following reason. Recall that Cramér’s Theorem gives the LDP for
n−1

∑n
i=1 Zi where Z1, Z2, . . . are i.i.d. random variables with finite exponential moments. Note

that the normalizing constant is n, the rate at which E
∑n

i=1 ‖Zi‖ grows. The following result
gives the LDP for the sequence Sn/{nMnP (‖H‖ > Mn)}. By Karamata’s Theorem, it is easy
to see that if α < 1,

E
n∑
i=1

∥∥∥∥Hi1 (‖Hi‖ ≤Mn) +
Hi

‖Hi‖
(Mn + Li)1 (‖Hi‖ > Mn)

∥∥∥∥
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grows like nMnP (‖H‖ > Mn) up to a constant, and hence we consider this to be an analogue
of Cramér’s Theorem, at least for that case. This result, however, is valid for α < 2.

Theorem 3.1 (Large Deviations (α < 2)). In the hard truncation regime, the random variable

Sn/{nMnP (‖H‖ > Mn)}

follows LDP with speed nP (‖H‖ > Mn) and rate function Λ∗, which is the Fenchel-Legendre
transform (refer to Definition 2.2.2, page 26 in ?) of the function Λ given by

Λ(λ) :=


∫

Rd
(
e〈λ,x〉 − 1

)
ν(dx), 0 < α < 1 ,∫

Rd
(
e〈λ,x〉 − 1− 〈λ, x〉

)
ν(dx), α = 1 ,∫

Rd
(
e〈λ,x〉 − 1− 〈λ, x〉

)
ν(dx)− 1

α−1

∫
S〈λ, s〉σ(ds), 1 < α < 2 ,

where S and the measures σ and ν are as defined in (??), (??) and (??) respectively.

Proof. We start by showing that Λ(λ) is well defined, that is, the integrals defining it exist.
We shall show this for the case 0 < α < 1, the rest are similar. To that end, notice that for
A ⊂ Rd,

ν(A) =
∫
S

∫
(0,1]

1(rs ∈ A)γ(dr)σ(ds) ,

where γ is the measure on (0, 1] defined by

γ(dr) := αr−α−1dr + δ1(dr) ,

and δ1 denotes the measure that gives a point mass to 1. Thus,∫ ∣∣∣e〈λ,x〉 − 1
∣∣∣ ν(dx) =

∫
S

∫
(0,1]

∣∣∣er〈λ,s〉 − 1
∣∣∣ γ(dr)σ(ds)

≤ ‖λ‖e‖λ‖
∫

(0,1]
rγ(dr) <∞

when 0 < α < 1. Thus, Λ(λ) is well defined in this case. Furthermore, a similar estimate will
show that the partial derivatives of the integrand (in the integral defining Λ(λ)) with respect
to λ are integrable with respect to ν. Due to sufficient smoothness of the integrand, it follows
that Λ(·) is differentiable.

Define

Xn := H1(‖H‖ ≤Mn) +
H

‖H‖
(Mn + L)1(‖H‖ > Mn) .

Since Λ is a differentiable function, using the Gärtner-Ellis theorem (Theorem 2.3.6 (page 44)
in ?), it suffices to show that for all λ ∈ Rd,

(3.3) lim
n→∞

1
P (‖H‖ > Mn)

logE exp(〈λ,M−1
n Xn〉) = Λ(λ) .
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This will be shown separately for the cases α < 1, α = 1 and α > 1. For the first case, note
that

E exp(〈λ,M−1
n Xn〉) = 1 +

∫
Rd\{0}

(
e〈λ,x〉 − 1

)
P (M−1

n Xn ∈ dx) .

By Lemma ?? and the fact that ν charges only {x : 0 < ‖x‖ ≤ 1}, for all 0 < ε < 1, it follows
that ∫

{ε≤‖x‖≤3}

(
e〈λ,x〉 − 1

)
P (M−1

n Xn ∈ dx)

∼ P (‖H‖ > Mn)
∫
{‖x‖≥ε}

(
e〈λ,x〉 − 1

)
ν(dx) .(3.4)

For α < 1 , e〈λ,x〉 − 1 is ν-integrable and hence,

lim
ε↓0

∫
{‖x‖≥ε}

(
e〈λ,x〉 − 1

)
ν(dx) =

∫ (
e〈λ,x〉 − 1

)
ν(dx) .

Also,

1
P (‖H‖ > Mn)

∫
{‖x‖>3}

∣∣∣e〈λ,x〉 − 1
∣∣∣P (M−1

n Xn ∈ dx)

≤ 1
P (‖H‖ > Mn)

E
[
exp

(
〈λ,M−1

n Xn〉
)
1(‖M−1

n Xn‖ > 3)
]

+P (L > 2Mn) .

By the Cauchy-Schwartz inequality,

1
P (‖H‖ > Mn)

E
[
exp

(
〈λ,M−1

n Xn〉
)
1(‖M−1

n Xn‖ > 3)
]

≤
[
E exp

(
2M−1

n ‖λ‖‖Xn‖
)]1/2 P (‖Xn‖ > 3Mn)1/2

P (‖H‖ > Mn)
.

Choose n large enough so that Mn > max(1, 2‖λ‖/ε) where ε is such that EeεL < ∞. Also,
observe that

M−1
n ‖Xn‖ ≤ (2 +M−1

n L) .

Thus,

E exp
(
2M−1

n ‖λ‖‖Xn‖
)
≤ exp(4‖λ‖)EeεL <∞ ,

while,
P (‖Xn‖ > 3Mn)1/2

P (‖H‖ > Mn)
=

P (L > 2Mn)1/2

P (‖H‖ > Mn)1/2
≤ e−εMn

P (‖H‖ > Mn)1/2
EeεL/2

−→ 0 .

This shows

(3.5) lim
n−→∞

1
P (‖H‖ > Mn)

∫
{‖x‖>3}

∣∣∣e〈λ,x〉 − 1
∣∣∣P (M−1

n Xn ∈ dx) = 0 .
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By Karamata’s theorem and the fact that e〈λ,x〉 = 1 + O(‖x‖), one can show that there is
C <∞ so that,

lim sup
n→∞

1
P (‖H‖ > Mn)

∫
{‖x‖<ε}

∣∣∣e〈λ,x〉 − 1
∣∣∣P (M−1

n Xn ∈ dx) ≤ Cε1−α ,

thus proving that

(3.6) lim
ε↓0

lim sup
n−→∞

1
P (‖H‖ > Mn)

∫
{‖x‖<ε}

∣∣∣e〈λ,x〉 − 1
∣∣∣P (M−1

n Xn ∈ dx) = 0 .

Clearly, (??), (??) and (??) show (??) and hence complete the proof for the case α < 1.
For the case α = 1, by the fact that when α = 1, H (and hence Xn) has a symmetric

distribution it follows that

E exp(〈λ,M−1
n Xn〉) = 1 +

∫
Rd\{0}

(
e〈λ,x〉 − 1− 〈λ, x〉

)
P (M−1

n Xn ∈ dx) .

Note that α = 1 implies that e〈λ,x〉 − 1− 〈λ, x〉 is ν-integrable. By arguments similar to those
for the case α < 1, it follows that as n −→∞,∫

Rd\{0}

(
e〈λ,x〉 − 1− 〈λ, x〉

)
P (M−1

n Xn ∈ dx)

∼ P (‖H‖ > Mn)
∫ (

e〈λ,x〉 − 1− 〈λ, x〉
)
ν(dx) .(3.7)

This completes the proof for the case α = 1.
For the case 1 < α < 2, note that

E exp(〈λ,M−1
n Xn〉)

= 1 +
∫

Rd\{0}

(
e〈λ,x〉 − 1− 〈λ, x〉

)
P (M−1

n Xn ∈ dx) +
∫
〈λ, x〉P (M−1

n Xn ∈ dx) .

For this case also, e〈λ,x〉 − 1− 〈λ, x〉 is clearly ν-integrable, and similar arguments as those for
the case α < 1 show (??). Thus, all that needs to be shown is as n −→∞,

(3.8)
∫
〈λ, x〉P (M−1

n Xn ∈ dx) ∼ − 1
α− 1

P (‖H‖ > Mn)
∫
S
〈λ, s〉σ(ds) .

For this, note that ∫
〈λ, x〉P (M−1

n Xn ∈ dx)

=
∫
{‖x‖≤Mn}

〈λ, x〉P (M−1
n H ∈ dx)

+
(
1 +M−1

n E(L)
) ∫
S
〈λ, s〉P

(
H

‖H‖
∈ ds, ‖H‖ > Mn

)
=: I1 + I2 .



30 A. CHAKRABARTY

By the assumption that EH = 0, it follows that

I1 = −
∫
{‖x‖>Mn}

〈λ, x〉P (M−1
n H ∈ dx)

= −M−1
n

∫ ∞
Mn

∫
S
〈λ, s〉rP

(
H

‖H‖
∈ ds, ‖H‖ ∈ dr

)
∼ −P (‖H‖ > Mn)

α

α− 1

∫
S
〈λ, s〉σ(ds) ,

the equivalence in the last line following by a result similar to Lemma 2.1 in ?. Notice that by
(??),

I2 ∼
∫
S
〈λ, s〉P

(
H

‖H‖
∈ ds, ‖H‖ > Mn

)
∼ P (‖H‖ > Mn)

∫
S
〈λ, s〉σ(ds)

This shows (??) and thus completes the proof. �

Similar calculations as above, for the case α ≥ 2, will show that
Sn/(nM−1

n ) follows LDP with speed nM−2
n and rate function that is the Fenchel-Legendre

transform of 1
2〈λ,Dλ〉, D being the dispersion matrix of H. This is, however, covered in much

more generality in Theorem ?? below, and hence we chose not to include this case in Theorem
??.

Cramér’s Theorem deals with n−1
∑n

i=1 Zi where Z1, Z2, . . . are i.i.d. random variables. On
a finer scale, n−1/2

∑n
i=1[Zi − E(Zi)] possesses a limiting Normal distribution by the central

limit theorem. For β ∈ (1/2, 1), the renormalized quantity n−β
∑n

i=1[Zi − E(Zi)] satisfies an
LDP but always with a quadratic rate function. The precise statement for this is known as
moderate deviations; see Theorem 3.7.1 in ?. The last result of this section is an analogue of
the above result, in the setting of truncated heavy-tailed random variables.

Theorem 3.2 (Moderate Deviations). Suppose that we are in the hard truncation regime, and
the sequence cn satisfies

(3.9) n1/2MnP (‖H‖ > Mn)1/2 � cn � nMnP (‖H‖ > Mn), if α < 2 ,

(3.10) n1/2 � cn �
n

M3
nP (‖H‖ > Mn)

, if 2 ≤ α < 3 ,

(3.11) n1/2 � cn � nM−δn for some δ > 0, if α = 3 ,

and

(3.12) n1/2 � cn � n, if α > 3 .
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Then, c−1
n (Sn −ESn) follows LDP with speed βn and rate Λ∗, the Fenchel-Legendre transform

of Λ, where

βn :=

{
c2n

nM2
nP (‖H‖>Mn)

, if α < 2 ,
c2n
n , if α ≥ 2 ,

and

Λ(λ) :=
1
2
〈λ,Dλ〉 .

Here, D is the d× d matrix with

Dij :=
2

2− α

∫
S
sisjσ(ds)

if α < 2 and the dispersion matrix of H if α ≥ 2, which is well defined even when α = 2 because
it has been assumed in that case, that E‖H‖2 <∞. If, in addition, D is invertible, then Λ∗ is
given by

Λ∗(x) =
1
2
〈x,D−1x〉 .

Before proceeding to prove the result, we point out that it is never vacuous, that is, a sequence
(cn) satisfying the hypotheses always exists. The existence of a sequence (cn) satisfying (??)
and (??) is immediate. Existence of (cn) satisfying (??) will be clear provided it can be shown
that, if α ≥ 2, then

(3.13) n1/2 � n

M3
nP (‖H‖ > Mn)

.

If α = 2, then by (??), it follows that

n−1/2M3
nP (‖H‖ > Mn) = o

(
M3
nP (‖H‖ > Mn)3/2

)
= o(1) ,

the second equality being true because P (‖H‖ > x) = O(x−2), which is a consequence of the
assumption that E‖H‖2 < ∞. This shows (??) when α = 2. When α > 2, (??) will follow
because now

M3
nP (‖H‖ > Mn)3/2 = o(1) .

For ensuring the existence of (cn) satisfying (??), observe that for δ < α/2, it holds that

n1/2M−δn � n1/2P (‖H‖ > Mn)1/2 � 1 .

Proof of Theorem ??. It is easy to see that βn −→ ∞ as n −→ ∞. Thus, in view of the
Gärtner-Ellis Theorem, it suffices to show that for all λ ∈ Rd,

(3.14) lim
n→∞

β−1
n logE exp

(
〈λ, (Mnbn)−1(Sn − ESn)〉

)
=

1
2
〈λ,Dλ〉 ,

where

bn :=

{
nMnP (‖H‖ > Mn)/cn, α < 2
n/(cnMn), α ≥ 2 .
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Notice that if α < 3, then we have that

n

M3
nP (‖H‖ > Mn)

� n .

By (??), (??) and (??), it follows that for all α ≥ 2,

cn � n .

Consequently,

(3.15) bn �M−1
n if α ≥ 2 .

By (??), it follows that

(3.16) bn � 1 if α < 2 .

Define

Xn := H1(‖H‖ ≤Mn) +
H

‖H‖
(Mn + L)1(‖H‖ > Mn) .

Let ξn be defined by

exp(〈λ, (bnMn)−1(Xn − EXn)〉)

= 1 + (bnMn)−1〈λ,Xn − EXn〉+
1
2

(bnMn)−2〈λ, (Xn − EXn)(Xn − EXn)Tλ〉+ ξn .

Our next claim is that

E exp(〈λ, (bnMn)−1(Xn − EXn)〉) = 1 +
1
2

(bnMn)−2〈λ,D(Xn)λ〉+ Eξn

= 1 +
1
2
γn〈λ,Dλ〉(1 + o(1)) + Eξn ,(3.17)

where

γn :=

{
b−2
n P (‖H‖ > Mn), α < 2
b−2
n M−2

n , α ≥ 2 .

Note that (??) follows trivially for the case α ≥ 2. For the case α < 2, in the proof of Theorem
2.2 of ?, it has been shown that as n −→∞,

Var(〈λ,Xn〉) ∼M2
nP (‖H‖ > Mn)

2
2− α

∫
S
〈λ, s〉2σ(ds) ,

which essentially means (??).
Clearly, nγn = βn, and by (??) and (??), it follows that

lim
n→∞

γn = 0 .
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Hence all that needs to be shown for (??) is Eξn = o(γn) as n −→ ∞. By Taylor’s Theorem,
there exists C <∞ so that

|ξn| ≤ C(bnMn)−3‖Xn − EXn‖3 exp
{
C(bnMn)−1‖Xn − EXn‖

}
≤ C(bnMn)−3‖Xn − EXn‖3 exp

{
Cb−1

n

(
4 +

L+ E(L)
Mn

)}
≤ 8C(bnMn)−3

(
‖Xn‖3 + ‖EXn‖3

)
exp

{
Cb−1

n

(
4 +

L+ E(L)
Mn

)}
.

Thus,
E|ξn| = O

(
(bnMn)−3E

[(
‖Xn‖3 + ‖EXn‖3

)
exp(CL/bnMn)

])
.

Note that

E
[
‖Xn‖3 exp(CL/bnMn)

]
= E

[
‖H‖31(‖H‖ ≤Mn)

]
E [exp(CL/bnMn)]

+P (‖H‖ > Mn)E
[
(Mn + L)3 exp(CL/bnMn)

]
= O(1)E

[
‖H‖31(‖H‖ ≤Mn)

]
+O

(
M3
nP (‖H‖ > Mn)

)
.

Also,

‖EXn‖3E [exp(CL/bnMn)]

= O(E(‖Xn‖3))

= O
(
E
[
‖H‖31(‖H‖ ≤Mn)

]
+M3

nP (‖H‖ > Mn)
)
,

the last step following by similar calculations as above. Thus,

Eξn =

(3.18) O
{

(bnMn)−3
(
E
[
‖H‖31(‖H‖ ≤Mn)

]
+M3

nP (‖H‖ > Mn)
)}

.

We claim that for all α,

(3.19) P (‖H‖ > Mn) = o(b3nγn) .

This is immediate by (??) if α < 2, and by (??) if 2 ≤ α < 3. When α = 3,

P (‖H‖ > Mn)�M−3+δ
n � n

cn
M−3
n = b3nγn ,

the second inequality following from (??). Thus, (??) holds when α = 3. For the case α > 3,
(??) implies (??).

If α < 3, then by Karamata’s Theorem,

E
[
‖H‖31(‖H‖ ≤Mn)

]
= O(M3

nP (‖H‖ > Mn)) .

Hence by (??) and (??), it follows that Eξn = o(γn) for the case α < 3. If α = 3, then

E
[
‖H‖31(‖H‖ ≤Mn)

]
= o(M δ

n) = o(b3nM
3
nγn) .
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Using (??) and (??), this shows that Eξn = o(γn) for the case α = 3. When α > 3,

E
[
‖H‖31(‖H‖ ≤Mn)

]
= O(1) = o(b3nM

3
nγn) ,

and this completes the proof. �

4. Conclusions

The proofs of the results in Section ?? make it clear that in the soft truncation regime, the
idea leading to the investigation of the large deviation behavior is similar to that in the case
of untruncated heavy-tailed distributions, as studied in ?, for example. The argument in the
untruncated case is based on showing that the partial sum is large “if and only if” exactly one
of the summands is large, while in the softly truncated case, it was showed that the partial sum
is large “if and only if” the sum of a fixed number of them is large. The similarity between
the two situations is clear. The results of Section ?? show that the large deviation analysis
in the case where the tails are truncated hard follow the same route as that for i.i.d. random
variables with exponentially light tails, namely the Gärtner-Ellis Theorem. Thus, the analysis
carried out in this ! paper provides the following answer to the question posed in Section ??:
when the growth rate of the truncating threshold is fast enough so that the model is in the
soft truncation regime, the effect of truncating by that is negligible, whereas when the same is
slow enough so that the model is in the hard truncation regime, the effect is significant to the
point that the model then behaves like a light-tailed one.
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