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INVERSE SEMIGROUPS AND THE CUNTZ-LI ALGEBRAS

S. SUNDAR

Abstract. In this paper, we apply the theory of inverse semigroups to the C∗-algebra U [Z]

considered in [Cun08]. We show that the C∗-algebra U [Z] is generated by an inverse semi-

group of partial isometries. We explicity identify the groupoid Gtight associated to the inverse

semigroup and show that Gtight is exactly the same groupoid obtained in [CL10].

1. Introduction

Ever since the appearance of the Cuntz algebras On and the Cuntz-Krieger algebras OA
there has been a great deal of interest in understanding the structure of C∗-algebras generated
by partial isometries. The theory of graph C∗-algebras owes much to these examples. It has
now been well known that these algebras admit a groupoid realisation and the groupoid turns
out to be r-discrete. Another object that is closely related with an r-discrete groupoid is that
of an inverse semigroup. The relationship between r-discrete groupoids and inverse semigroups
was already clear from [Ren80].

An inverse semigroup S is a semigroup such that for every s ∈ S, there exists a unique
s∗ ∈ S for which s∗ss∗ = s∗ and ss∗s = s. The universal example of an inverse semigroup is
the semigroup of partial bijections on a set. Just like one can associate a C∗-algebra to a group
, one can associate a universal C∗-algebra related with an inverse semigroup S and is denoted
C∗(S). This universal C∗-algebra captures the representations of the inverse semigroup ( as
partial isometries on a Hilbert space). One can canonically associate an r-discrete groupoid GS
to an inverse semigroup S such that the C∗-algebra of the groupoid GS coincides with C∗(S).
For a more detailed account of inverse semigroups and r-discrete groupoids, we refer to [Pat99]
and [Exe08].

Recently, Cuntz and Li in [CL10] has introduced a C∗-algebra associated to every integral
domain with only finite quotients. Earlier in [Cun08], Cuntz considered the integral domain Z.
Let R be an integral domain with only finite quotients. Then the universal algebra U [R] is the
universal C∗-algebra generated by a set of unitaries {un : n ∈ R} and a set of partial isometries
{sm : m ∈ R×} satisfying certain relations. In [CL10], it was proved that U [R] is simple and
purely infinite. A concrete realisation of U [R] can be obtained by representing sm and un on
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`2(R) by

sm → Sm : δr → δrm

un → Un : δr → δr+n

Then U [R] is isomorphic to the C∗-algebra generated by Sm and Un ( by the simplicity of
U [R]). The operator Sm is implemented by the multiplication by m (an injection) and Un

is implemented by the addition by n( a bijection). Thus it is immediately clear that U [R] is
generated by an inverse semigroup of partial isometries. Thus the theory of inverse semigroups
should explain some of the results obtained by Cuntz and Li in [CL10]. The purpose of this
paper is to obtain the groupoid realisation (obtained in [CL10]) by using the theory of inverse
semigroups. We spell out the details only for the case R = Z as the analysis for general integral
domains with finite quotients is similar. We should also remark that alternate approaches to
the Cuntz-Li algebras were considered in [BE10] and in [KLQ10]. The main point we want to
stress is if one uses the language of inverse semigroups one can obtain a groupoid realisation
systematically without having to guess anything about the structure of the Cuntz-Li algebras.

Now we indicate the organisation of this paper. In Section 2, the definition of U [Z] is
recalled and we show that U [Z] is generated by an inverse semigroup of partial isometries
which we denote it by T . In Section 3, we recall the notion of tight representations of an inverse
semigroup, a notion introduced by Exel in [Exe08]. We show that the identity representation of
T in U [Z] is in fact tight, and show that U [Z] is isomorphic to the C∗-algebra of the groupoid
Gtight (considered in [Exe08]) associated to T . In Sections 4 and 5, we explicity identify the
groupoid Gtight which turns out to be exactly the groupoid considered in [CL10]. In Section
6, we show that U [Z] is simple. In section 7, we digress a bit to explain the connection
between Crisp and Laca’s boundary relations and Exel’s tight representations of Nica’s inverse
semigroup. In the final Section, we give a few remarks of how to adapt the analysis carried out
in Sections 1− 6 for a general integral domain. A bit of notation: For non-zero integers m and
n, we let [m,n] to denote the lcm of m and n and (m,n) to denote the gcd of m and n. For a
ring R, R× denotes the set of non-zero elements in R.

2. The Regular C∗-algebra associated to Z

Definition 2.1 ([Cun08]). Let U [Z] be the universal C∗-algebra generated by a set of unitaries
{un : n ∈ Z} and a set of isometries {sm : m ∈ Z×} satisfying the following relations.

smsn = smn

unum = un+m

smu
n = umnsm∑

n∈Z/(m)

unemu
−n = 1
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where em denotes the final projection of sm.

Remark 2.2. Let χ be a character of the discrete multiplicative group Q×. Then the universal
property of the C∗-algebra U [Z] ensures that there exists an automorphism αχ of the algebra
U [Z] such that αχ(sm) = χ(m)sm and αχ(un) = un. This action of the character group of the
multiplicative group Q× was considered in [CL10].

For m 6= 0 and n ∈ Z, Consider the operators Sm and Un defined on `2(Z) as follows:

Sm(δr) = δrm

Un(δr) = δr+n

Then sm → Sm and un → Un gives a representation of the universal C∗-algebra U [Z] called the
regular representation and its image is denoted by Ur[Z]. We begin with a series of Lemmas
(highly inspired and adapted from [Cun08] and from [CL10]) which will be helpful in proving
that U [Z] is generated by an inverse semigroup of partial isometries.

Lemma 2.3. For every m,n 6= 0, one has em =
∑

k∈Z/(n) u
mkemnu

−mk.

Proof. One has

em = sms
∗
m

= sm(
∑

k∈Z/(n)

ukenu
−k)s∗m

=
∑

k∈Z/(n)

smu
ksns

∗
nu
−ks∗m

=
∑

k∈Z/(n)

ukmsmsns
∗
ns
∗
mu
−km

=
∑

k∈Z/(n)

ukmsmns
∗
mnu

−km

=
∑

k∈Z/(n)

ukmemnu
−km.

This completes the proof. 2

Lemma 2.4. For every m,n 6= 0, one has emen = e[m,n] where [m,n] denotes the least common
multiple of m and n.

Proof. Let c := [m,n] be the lcm of m and n. Then c = am = bn for some a, b. Now from
Lemma 2.3, it follows that

emen =
∑

r∈Z/(a),s∈Z/(b)

umrecu
−mrunsecu

−ns
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The product umrecu−mrunsecu−ns survives if and only if mr ≡ ns mod c. But the only choice
for such an r and an s is when r ≡ 0 mod a and s ≡ 0 mod b. [ Reason : Suppose there exists
r and s such that mr ≡ ns mod c. Then mr−ns

c is an integer. That is r
a −

s
b is an integer.

Multiplying by b, one has that br
a − s and hence br

a is an integer. But a and b are relatively
prime. Hence a divides r. Similarly b divides s]. Thus emen = ec. This completes the proof. 2

Lemma 2.5. Suppose r 6= s in Z/(d) then the projections uremu−r and usenu−s are orthogonal
where d is the gcd of m and n.

Proof. First note that edu−rusedu−sur = 0. Hence edu−rused = 0. Now note that

uremu
−rusenu

−s = uremedu
−rusedenu

−s [by Lemma 2.4 ]

= urem(edu−rused)enu−s

= 0

This completes the proof. 2

Lemma 2.6. Let m,n 6= 0 be given. Let d = (m,n) and c = [m,n]. Suppose r ≡ s mod d.
Let k be such that k ≡ r mod m and k ≡ s mod n. Then uremu

−rusenu
−s = ukecu

−k.

Proof. First note that uremu−r = ukemu
−k and usenu

−s = ukenu
−k. The result follows

from Lemma 2.4. 2

Lemma 2.7. For m,n 6= 0, one has s∗mensm = en′ where n
′

:= n
(n,m) .

Proof. First note that without loss of generality, we can assume that m and n are relatively
prime. Otherwise write m := m1d and n := n1d where d is the gcd of m and n. Then
(m1, n1) = 1 and

s∗mensm = s∗m1
s∗dsdsn1s

∗
n1
s∗dsdsm1

= s∗m1
en1sm1

So now assume m and n are relatively prime. Observe that s∗mensm is a selfadjoint projection.
For s∗mensms

∗
mensm = s∗menemsm = s∗memensm = s∗mensm. Again,

(s∗mensm)2 = s∗menemsm

= s∗memnsm [ by Lemma 2.4 ]

= s∗msmsns
∗
ns
∗
msm

= en

This completes the proof. 2

Lemma 2.8. Let m,n 6= 0 and k ∈ Z be given. If (m,n) does not divide k then one has
s∗mu

kenu
−ksm = 0.
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Proof. It is enough to show that x := enu
−ksm vanishes. Thus it is enough to show that

xx∗ = enu
−kemu

ken. Now Lemma 2.5 implies that xx∗ = 0. This completes the proof. 2

Lemma 2.9. Let m,n 6= 0 and k ∈ Z be given. Suppose that d := (m,n) divides k. Choose an
integer r such that mr ≡ k mod n. Then s∗mu

kenu
−ksm = uren1u

−r where n1 = n
d .

Proof. Now observe that ukenu−k = umrenu
−mr. Hence one has

s∗mu
kenu

−ksm = s∗mu
mrenu

−mrsm

= urs∗mensmu
−r

= uren1u
−r [ by Lemma 2.7 ]

This completes the proof. 2

Remark 2.10. Let P := {unemu−n : m 6= 0, n ∈ Z} ∪ {0}. Then the above observations show
that P is a commutative semigroup of projections which is invariant under the map x→ s∗mxsm.

The proof of the following proposition is adapted from [CL10].

Proposition 2.11. Let T := {s∗munekun
′
sm′ : m,m

′
, k 6= 0, n, n

′ ∈ Z} ∪ {0}. Then T is an
inverse semigroup of partial isometries. Let P := {unemu−n : m 6= 0, n ∈ Z} ∪ {0}. Then the
set of projections in T coincide with P . Also the linear span of T is dense in U [Z].

Proof. The fact that T is closed under multiplication follows from the following calculation.

s∗mu
neru

−n′sm′s
∗
ku

`esu
−`′sk′ = s∗mu

neru
−n′sm′s

∗
m′
s∗ksm′u

`esu
−`′sk′

= s∗mu
n−n′un

′
eru
−n′em′s

∗
ksm′u

`esu
−`u`−`

′
sk′

= s∗mu
n−n′ ẽem′s

∗
ksm′ f̃u

`−`′sk′ [ where ẽ = un
′
eru
−n′ and f̃ = u`esu

−`]

= s∗mu
n−n′s∗k(skẽs

∗
k)(skem′s

∗
k)(sm′ f̃ s

∗
m′

)sm′u
`−`′sk′

= s∗mku
kn−kn′pu`m

′−`′m′sk′m′ [ where p := (skẽs∗k)(skem′s
∗
k)(sm′ f̃ s

∗
m′

) ∈ P ]

Thus we have shown that T is closed under multiplication. Clearly T is closed under the
involution ∗. Thus the linear span of T is a ∗ algebra containing sm and un for every m 6= 0
and n ∈ Z. Hence the linear span of T is dense in U [Z].

Now we show that every element of T is a partial isometry. Let v := s∗mu
neku

n
′
sm′ be given.

Now,

vv∗ = s∗mu
neku

n
′
sm′s

∗
m′
u−n

′
eku
−nsm

= s∗mu
n(ekun

′
em′u

−n′ek)u−nsm

= s∗mu
neu−nsm [ where e := (ekun

′
em′u

−n′ek) ∈ P ]
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Now it follows from Remark 2.10 that vv∗ ∈ P . It also shows that the set of projections in T

coincides with P . This completes the proof. 2

The following equality will be used later. Let us isolate it now.

(2.1) s∗m1
uk1sn1s

∗
m2
uk2sn2 = s∗m1m2

um2k1em2n1u
k2n1sn1n2

Remark 2.12. We also need the following fact. If v ∈ T , let us denote its image in the regular
representation by V . Observe that v 6= 0 if and only if V 6= 0. This is clear for projections in
T . Now let v ∈ T be a non-zero element. Then vv∗ ∈ P is non-zero. Thus V V ∗ 6= 0 which
implies V 6= 0.

3. Tight representations of an inverse semigroup

Let us recall the notion of tight characters and tight representations from [Exe08].

Definition 3.1. Let S be an inverse semigroup with 0. Denote the set of projections in S by
E. A character for E is a map x : E → {0, 1} such that

(1) the map x is a semigroup homomorphism, and
(2) x(0) = 0.

We denote the set of characters of E by Ê0. We consider Ê0 as a locally compact Hausdorff
topological space where the topology on Ê0 is the subspace topology induced from the product
topology on {0, 1}E .

For a character x of E, let Ax := {e ∈ E : x(e) = 1}. Then Ax is a nonempty set satisfying
the following properties.

(1) The element 0 /∈ Ax.
(2) If e ∈ Ax and f ≥ e then f ∈ Ax.
(3) If e, f ∈ Ax then ef ∈ Ax.

Any nonempty subset A of E for which (1), (2) and (3) are satisfied is called a filter. More-
over if A is a filter then the indicator function 1A is a character. Thus there is a bijective
correspondence between the set of characters and filters. A filter is called an ultrafilter if it is
maximal. We also call a character x maximal or an ultrafilter if its support Ax is maximal.
The set of maximal characters is denoted by Ê∞ and its closure in Ê0 is denoted by Êtight.

The following characterization of maximal characters will be extremely useful for us and we
refer to [Exe09] for a proof. Let E be an inverse semigroup of projections. Let e, f ∈ E. We
say that f intersects e if fe 6= 0.

Lemma 3.2. Let E be an inverse semigroup of projections with 0 and x be a character of E.
Then the following are equivalent.

(1) The character x is maximal.
(2) The support Ax contains every element of E which intersects every element of Ax.
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Corollary 3.3. Let A be a unital C∗-algebra and E ⊂ A be an inverse semigroup of projections
containing {0, 1}. Suppose that E contains a finite set {e1, e2, · · · , en} of mutually orthogonal
projections such that

∑n
i=1 ei = 1. Then for every maximal character x of E, there exists a

unique ei for which x(ei) = 1.

Proof. The uniqueness of ei is clear as the projections e1, e2, · · · , en are orthogonal. Now to
show the existence of an ei in Ax, we prove by contradiction. Assume that ei /∈ Ax for every
i. Then by Lemma 3.2, we have that for every i, there exists an fi ∈ Ax such that eifi = 0.
Let f =

∏
fi. Then f ∈ Ax and thus nonzero and also fei = 0 for every i. As

∑
i ei = 1, this

forces f = 0. Thus we have a contradiction. 2

Let us recall the notion of tight representations of semilattices from [Exe08] and from [Exe09].
The only semilattice we consider is that of an inverse semigroup of projections or in otherwords
the idempotent semilattice of an inverse semigroup. Also our semilattice contains a maixmal
element 1. First let us recall the notion of a cover from [Exe08].

Definition 3.4. Let E be an inverse semigroup of projections containing {0, 1} and Z be a
subset of E. A subset F of Z is called a cover for Z if given a non-zero element z ∈ Z there
exists an f ∈ F such that fz 6= 0. A cover F of Z is called a finite cover if F is finite.

The following definition is actually Proposition 11.8 in [Exe08]

Definition 3.5. Let E be an inverse semigroup of projections containing {0, 1}. A represen-
tation σ : E → B of the semilattice E in a Boolean algebra B is said to be tight if given
e 6= 0 in E and for every finite cover F of the interval [0, e] := {x ∈ E : x ≤ e}, one has
supf∈F σ(f) = σ(e).

Let A be a unital C∗ algebra and S be an inverse semigroup containing {0, 1}. Let σ : S → A

be a unital representation of S as partial isometries in A. Let σ(C∗(E)) be the C∗−subalgebra
in A generated by σ(E). Then σ(C∗(E)) is a unital, commutative C∗−algebra and hence
the set of projections in it is a Boolean algebra which we denote by Bσ(C∗(E)). We say the
representation σ is tight if the representation σ : E → Bσ(C∗(E)) is tight.

Lemma 3.6. Let X be a compact metric space and E ⊂ C(X) be an inverse semigroup of
projections containing {0, 1}. Suppose that for every finite set of projections {f1, f2, · · · , fm}
in E, there exists a finite set of mutually orthogonal non-zero projections {e1, e2, · · · , en} in E

and a matrix (aij) such that
n∑
i=1

ei = 1

fi =
∑
j

aijej .

Then the identity representation of E in C(X) is tight.
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Proof. Let e ∈ E\{0} be given and let F be a finite cover for the interval [0.e]. With-
out loss of generality, we can assume that e = 1 (Just cut everything down by e). Let
F := {f1, f2, · · · , fm}. Then by the hypothesis there exists a finite set of mutually orthog-
onal projections {e1, e2, · · · , en} and a matrix (aij) such that fi =

∑
j aijej and

∑
i ei = 1.

For a given j, let Aj := {i : aij 6= 0}. Since F covers C(X), it follows that for every j, Aj is
nonempty. In otherwords, given j, there exists an i such that fi ≥ ej . Thus f := supi fi ≥ ej

for every j. Hence f ≥ supj ej = 1. This completes the proof. 2

In the next proposition, T denotes the inverse semigroup associated to U [Z] in Proposition
2.11.

Proposition 3.7. The identity representation of T in U [Z] is tight.

Proof. We apply Lemma 3.6. Let {ur1em1u
−r1 , ur2em2u

−r2 , · · · , urkemk
u−rk} be a finite set

of non-zero projections in P . By Lemma 2.3, it follows that each fi := uriemiu
−ri is a linear

combination of {usecu−s : s ∈ Z/(c)} where c is the lcm of m1,m2, · · · ,mk. Then Lemma 3.6
implies that the identity representation of T in U [Z] is tight. This completes the proof. 2.

Now we will show that the C∗−algebra of the groupoid Gtight of the inverse semigroup T

is isomorphic to the algebra U [Z]. First let us recall the construction of the groupoid Gtight
considered in [Exe08]. Let S be an inverse semigroup with 0 and let E denote its set of
projections. Note that S acts on Ê0 partially. For x ∈ Ê0 and s ∈ S, define (x.s)(e) = x(ses∗).
Then

• The map x.s is a semigroup homomorphism, and
• (x.s)(0) = 0.

But x.s is nonzeo if and only if x(ss∗) = 1. For s ∈ S, define the domain and range of s as Let
S be an inverse semigroup with 0 and let E denote its set of projections. Note that S acts on
Ê0 partially. For x ∈ Ê0 and s ∈ S, define (x.s)(e) = x(ses∗). Then

• The map x.s is a semigroup homomorphism, and
• (x.s)(0) = 0.

But x.s is nonzeo if and only if x(ss∗) = 1. For s ∈ S, define the domain and range of s as

Ds : = {x ∈ Ê0 : x(ss∗) = 1}

Rs : = {x ∈ Ê0 : x(s∗s) = 1}

Note that both Ds and Rs are compact and open. Moreover s defines a homoemorphism from
Ds to Rs with s∗ as its inverse. Also observe that Êtight is invariant under the action of S.

Consider the transformation groupoid Σ := {(x, s) : x ∈ Ds} with the composition and the
inversion being given by:

(x, s)(y, t) : = (x, st) if y = x.s

(x, s)−1 : = (x.s, s∗)
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Define an equivalence relation ∼ on Σ as (x, s) ∼ (y, t) if x = y and if there exists an e ∈ E
such that x ∈ De for which es = et. Let G = Σ/ ∼. Then G is a groupoid as the product
and the inversion respects the equivalence relation ∼. Now we describe a toplogy on G which
makes G into a topological groupoid.

For s ∈ S and U an open subset of Ds, let θ(s, U) := {[x, s] : x ∈ U}. We refer to [Exe08] for
the proof of the following two propositions. We denote θ(s,Ds) by θs. Then θs is homeomorphic
to Ds and hence is compact, open and Hausdorff.

Proposition 3.8. The collection {θ(s, U) : s ∈ S,U open in Ds} forms a basis for a topology
on G. The groupoid G with this topology is a topological groupoid whose unit space can be
identified with Ê0. Also one has the following.

(1) For s, t ∈ S, θsθt = θst,
(2) For s ∈ S, θ−1

s = θs∗, and
(3) The set {1θs : s ∈ T} generates the C∗ algebra C∗(G).

We define the groupoid Gtight to be the reduction of the groupoid G to Êtight. In [Exe08],
it is shown that the representation s → 1θs ∈ C∗(Gtight) is tight and any tight representation
factors through this universal one.

Proposition 3.9. Let T be the inverse semigroup associated to U [Z] in Proposition 2.11. Let
Gtight be the tight groupoid associated to T . Then U [Z] is isomorphic to C∗(Gtight).

Proof. Let tm, vn denote the images of sm, un in C∗(Gtight). The universality of the C∗−algebra
C∗(Gtight) together with Proposition 3.7 implies that there exists a homomorphism ρ : C∗(Gtight)→
U [Z] such that ρ(tm) = sm and ρ(vn) = un.

Note that the mutually orthogonal set of projections {uremu−r : r ∈ Z/(m)} cover T . Since
the representation of T in C∗(Gtight) is tight, it follows that

∑
r v

rtmt
∗
mv
−r = 1. Now the

universal property of U [Z] implies that there exists a homomorphism σ : U [Z] → C∗(Gtight)
such that σ(sm) = tm and σ(un) = vn. Now it is clear that ρ and σ are inverses of each other.
This completes the proof. 2

In the next two sections, we identify the groupoid Gtight explicitly.

4. Tight characters of the inverse semigroup T

In this section, we determine the tight characters of the inverse semigroup T defined in
Proposition 2.11. Let us recall a few ring theoretical notions. We denote the set of strictly
positive integers by N+. Consider the directed set (N+,≤) where we say m ≤ n if m|n. If m|n
then there exists a natural map from Z/(n) to Z/(m). The inverse limit of this system is called
the profinite completion of Z and is denoted Ẑ. In other words,

Ẑ := {(rm) ∈
∏
m∈N+

Z/(m) : rmk ∼= rm mod m}



10 S. SUNDAR

Also Ẑ is a compact ring with the subspace topology induced by the product topology on∏
Z/(m). Also Z embedds naturally in Ẑ. We also need the easily verifiable fact that the

kernel of the mth projection r = (rm)→ rm is in fact mẐ.
For r ∈ Ẑ, define a character ξr : P → {0, 1} by the following formula:

ξr(unemu−n) : = δrm,n

ξr(0) : = 0

In the above formula, the Dirac-delta function is over the set Z/(m). Thus δrm,n = 1 if and
only if rm ≡ n mod m.

Proposition 4.1. The map r → ξr is a topological isomorphism from Ẑ to P̂tight

Proof. First let us check that for r ∈ Ẑ, ξr is in fact a character and is maximal. Consider
an element r ∈ Ẑ. Let e := un1em1u

−n1 and f := un2em2u
−n1 be given. Let d := (m1,m2)

and c := [m1,m2]. Suppose ξr(e) = ξr(f) = 1. Then rm1 ≡ n1 mod m1 and rm2 ≡ n2

mod m2. Moreover, rc ≡ rmi mod mi for i = 1, 2. Thus ef = urcecu
−rc by Lemma 2.6 Hence

by definition ξr(ef) = 1. Now suppose ξr(e) = 1 and e ≤ f . Then by Lemma 2.5 and Lemma
2.6, it follows that m2 divides m1 and rm2 ≡ rm1 ≡ n1 ≡ n2 mod m2. Hence ξr(f) = 1. By
definition 0 is not in the support of ξr. Thus we have shown that the support of ξr is a filter
or in other words ξr is a character.

Now we claim ξr is maximal. This follows from the observation that for every m ∈ N+, the
set of projections {unemu−n : n ∈ Z/(m)} are mutually orthogonal. Thus if ξ is a character
then for every m there exists at most one rm for which ξ(urmemu−rm) = 1. This implies that
if ξ is a character which contains the support of ξr then ξ = ξr.

Now let ξ be a maximal character of P . Then by Corollary 3.3 and by the observation
in the previous paragraph, it follows that for every m there exists a unique rm such that
ξ(urmemu−rm) = 1. Now let k be given. Since both urmemu

−rm and urmkemku
−rmk belong to

the support of ξ, it follows that the product urmemu−rmurmkemku
−rmk does not vanish. Then

by Lemma 2.5, it follows that rmk ≡ rm mod m. Thus r = (rm) ∈ Ẑ and the support of ξr is
contained in the support of ξ. Thus again by the observation in the preceeding paragraph, it
follows that ξ = ξr.

It is clear from the definition that the map r → ξr is one-one and continuous. As Ẑ is
compact, it follows that the range of the map r → ξr which is P̂∞ is also compact. Hence
P̂∞ = P̂tight. Thus we have shown that r → ξr is a one-one and onto continuous map from Ẑ
to P̂tight. Since Ẑ is compact, it follows that the above map is in fact a homeomorphism. This
completes the proof. 2

From now on we will simply write r(e) in place of ξr(e) if r ∈ Ẑ and e ∈ P .
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5. The groupoid Gtight of the inverse semigroup T

Let us recall a few ring theoretical constructions. Consider the directed set (N+,≤) where
the partial order ≤ is defined by m ≤ n if m divides n. For m ∈ N+, let Rm := Ẑ. Let
φm`,m : Rm → R`m be the map defined by mulitplication by `. Then φm`,m is only an additive
homomorphism and it does not preserve the multiplication. We let R be the inductive limit of
(Rm, φm`,m). Then R is an abelian group and Ẑ is a subgroup of R via the inclusion R1 ⊂ R.

Note that R is a locally compact Hausdorff space. Moreover the group PQ :=
{[1 0

b a

]
:

a ∈ Q×, b ∈ Q
}

acts on R by affine transformations. The action is descibed explicitly by the
following formula. For x ∈ Rp [

1 0
n
m′

m
m′

]
x = mx+ np ∈ Rm′p

One can check that the above formula defines an action of PQ on R. We need the following
lemma.

Lemma 5.1. Let a := n
m′

and b := m
m′

. Then s∗
m′
unsm depends only on a and b.

Proof. Suppose n1

m
′
1

= n2

m
′
2

and m1

m
′
1

= m2

m
′
2

. Then n1m
′
2 = n2m

′
1 and m1m

′
2 = m

′
1m2. Now, we

have

s∗
m
′
1

un1sm1 = s∗
m
′
1

s∗m2
sm2u

n1sm1

= s∗
m
′
2

s∗m1
s∗
m
′
1

s
m
′
1
sm2u

n1sm1

= s∗
m
′
2

s∗m1
s∗
m
′
1

un1m2m
′
1s
m
′
1
sm1sm2

= s∗
m
′
2

s∗
m
′
1

s∗m1
un1m

′
2m1sm1sm′1

sm2

= s∗
m
′
2

s∗
m
′
1

un1m
′
2s
m
′
1
sm2

= s∗
m
′
2

s∗
m
′
1

un2m
′
1s
m
′
1
sm2

= s∗
m
′
2

un2s∗
m
′
1

s
m
′
1
sm2

= s∗
m
′
2

un2sm2

This completes the proof. 2

Remark 5.2. The above lemma has also been used in [BE10].

Now we explicitly identify the groupoid Gtight associated to the inverse semigroup T . When
we consider transformation groupoids, we consider only right actions. Thus we let PQ act on
R on the right by defining x.g = g−1x for x ∈ R and g ∈ PQ. We show that that groupoid
Gtight of the inverse semigroup T is isomorphic to the restriction of the transformation groupoid
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R× PQ to the closed subset Ẑ. (Here we consider PQ as a discrete group.) Let us begin with
a lemma which will be useful in the proof.

Lemma 5.3. In Gtight one has [(r, s∗
m′
un
′
eku

nsm)] = [(r, s∗
m′
un+n

′
sm)]

Proof. First observe that [(r, s∗
m′

)][(r.s∗
m′
, un

′
eku

nsm)] = [(r, s∗
m′
un
′
eku

nsm)]. Thus it is

enough to consider the case m
′

= 1. Now let s := un
′
eku

nsm , t := un+n
′
sm and e := un

′
eku
−n′ .

Now observe that ss∗ := ett∗. Hence if r(ss∗) = 1 then r(tt∗) = 1 and r(e) = 1. Moreover
es = et. Thus [(r, s)] = [(r, t)]. This completes the proof. 2.

Theorem 5.4. Let φ : R× PQ|Ẑ → Gtight be the map defined by

φ
((
r,

[
1 0
k
m

n
m

] ))
= [(r, s∗mu

ksn)]

Then φ is a topological groupoid isomorphism.

Proof.
The map φ is well defined.

Let (r,

[
1 0
k
m

n
m

] )
be an element in R × PQ|Ẑ . Then we have mr − k = ns for some

s ∈ Ẑ. Now we need to show that r(s∗mu
kenu

−ksm) = 1. By Lemma 2.9, it follows that
s∗mu

kenu
−ksm = urnen1u

−rn where n1 := n
(n,m) . Thus

r(s∗mu
kenu

−ksm) = r(urnen1u
−rn)

= δrn1 ,rn

= 1 [ Since rn = rn1 in Z/(n1)]

Surjectivity of φ:

First let us show that if [(r, s∗mu
ksn)] ∈ Gtight then

(
r,

[
1 0
k
m

n
m

])
∈ R × PQ|Ẑ. Consider an

element [(r, v := s∗mu
ksn)] in Gtight. Then r(vv∗) = 1 and vv∗ := s∗mu

kenu
−ksm. Now Lemma

2.8 and 2.9 implies that (m,n)|k. Let s be an integer such that ms ≡ k mod n. Again Lemma
2.9 implies that vv∗ = usen1u

−s where n1 := n
(n,m) . Now r(vv∗) = 1 implies that rn1 ≡ s

mod n1. But rn ≡ rn1 mod n1 ( as r ∈ Ẑ). Thus we have rn ≡ s mod n1. This in turn

implies that mrn ≡ ms ≡ k mod n. Hence mr − k ∈ nẐ. Hence
(
r,

[
1 0
k
m

n
m

])
∈ R × PQ|Ẑ.

Now the surjectivity of φ follows from Lemma 5.3.
Injectivity of φ:
Now suppose [(r, s∗m1

uk1sn1)] = [(r, s∗m2
uk2sn2)]. Then by definition there exists a projection

of the form e := urpepu
−rp such that e(s∗m1

uk1sn1) = e(s∗m2
uk2sn2) 6= 0. Consider a character χ
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of the discrete group Q∗. Let αχ be the automorphism of the algebra U [Z] such that αχ(un) =
un and αχ(sm) = χ(m)sm.

χ(
n1

m1
)e(s∗m1

uk1sn1) = αχ
(
e(s∗m1

uk1sn1)
)

= αχ
(
e(s∗m2

uk2sn2)
)

= χ(
n2

m2
)e(s∗m2

uk2sn2)

= χ(
n2

m2
)e(s∗m1

uk1sn1)

Since e(s∗m1
uk1sn1) 6= 0, it follows that χ( n1

m1
) = χ( n2

m2
) for every character χ of the discrete,

multiplicative group Q∗. Thus n1
m1

= n2
m2

.
From remark 2.12, it follows that e(s∗m1

uk1sn1) = e(s∗m2
uk2sn2) 6= 0 in Ur[Z]. Since n1

m1
= n2

m2
,

it follows immediately that k1
m1

= k2
m2

. Thus we have shown that φ is injective.
The map φ is a homeomorphism.
First we show φ is continuous. Let (rn, gn) be a sequence in R× PQ|Ẑ converging to (r, g).

Since we are considering PQ as a discrete group, we can without loss of generality assume that
gn = g for every n. Then, from Lemma 4.1, it follows that φ(rn, gn) converges to φ(r, g).

For an open subset U of Ẑ and g :=

[
1 0
k
m

n
m

]
, consider the open set

θ(U, g) := {(r, g) : r ∈ U and r.g ∈ Ẑ}.

Then the collection {θ(U, g) : U
open︷︸︸︷
⊂ Ẑ, g ∈ PQ} forms a basis for R × PQ|Ẑ. Moreover

φ(θ(U, g)) = θ(U, s∗mu
ksn). Hence φ is an open map. Thus we have shown that φ is a homeo-

morphism.
φ is a groupoid morphism.
First we show that φ preserves the source and range. By definition φ preserves the range.

Let
(
r, g :=

[
1 0
k
m

n
m

])
∈ R × PQ|Ẑ be given. Let v := s∗mu

nsn. Since r.g ∈ Ẑ, it follows that

there exists t ∈ Ẑ such that mr − k = nt. We need to show that ξr.v = ξt. (Just to keep
things clear we write ξr for the character determined by r). It is enough to show that the
support of ξt and that of ξr.v coincide. But then both the characters are maximal and thus
it is enough to show that the support of ξt is contained in the support of ξr.v. Thus, suppose
that ξt(u`esu−`) = 1. Then tns ≡ ts ≡ ` mod s. This implies mrns − k ≡ ntns ≡ n` mod ns.
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Thus mrns ≡ k + n` mod ns. Let n1 := ns
(ns,m) . Now observe that

(ξr.v)(u`esu−`) = ξr(vu`esu−`v∗)

= ξr(s∗mu
ksnu

`esu
−`s∗nu

−ksm)

= ξr(s∗mu
k+n`ensu

−(k+n`)sm)

= ξr(urnsen1u
−rns) [ By Lemma 2.9 ]

= δrns,rn1

= 1 [ Since rns = rn1 in Z/(n1)]

Thus we have shown that the support of ξt is contained in the support of ξr.v which in turn
implies that ξt = ξr.v. Hence φ preserves the source.

Now we show that φ preserves multiplication. Let γi := (ri,

[
1 0
ki
mi

ni
mi

]
) for i = 1, 2. Since

φ preserves the range and source, it follows that if γ1 and γ2 are composable, so do φ(γ1) and
φ(γ2). Observe that

φ(γ1)φ(γ2) = [(r1, s∗m1
uk1sn1s

∗
m2
uk2sn2 ]

= [r1, s∗m1m2
um2k1em2n1u

k2n1sn1n2 ]
(

Eq. 2.1
)

= [r1, s∗m1m2
um2k1+n1k2sn1n2 ]

(
Lemma 5.3

)
= φ(γ1γ2)

It is easily verifiable that φ preserves inversion. This completes the proof. 2

Remark 5.5. Combining Proposition 3.9 and Theorem 8.3, we obtain that U [Z] is isomorphic
to C∗(R× PQ|Ẑ) which is Remark 2 in page 17 of [CL10].

6. Simplicity of U [Z]

First we recall a few definitions from [Ren09]. Let G be an r-discrete, Hausdorff and locally
compact topological groupoid. Let G0 be its unit space. We denote the source and range maps
by s and r respectively. The arrows of G define an equivalence relation on G0 as follows:

x ∼ y if there exists γ ∈ G such that s(γ) = x and r(γ) = y

A subset E of G0 is said to be invariant if the orbit of x is contained in E whenever x ∈ E. For
x ∈ G0, define the isotropy group at x denoted G(x) by G(x) := {γ ∈ G : s(γ) = r(γ) = x}.

A groupoid G is said to be

• topologically principal if the set of x ∈ G0 for which G(x) = {x} is dense in G0.
• minimal if the only non-empty open invariant subset of G0 is G0.

We need the following theorem. We refer to [Ren09] for a proof.
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Theorem 6.1. Let G be an r-discrete, Hausdorff and locally compact topological groupoid. If
G is topologically principal and minimal then C∗red(G) is simple.

Proposition 6.2. The C∗-algebra U [Z] is simple.

Proof. Let G denote the groupoid R× PQ|Ẑ. Since the group PQ is solvable, it is amenable
and thus by Proposition 2.15 of [MR82], it follows that the full groupoid C∗-algebra C∗(G) is
isomorphic to the reduced algebra C∗red(G). Now we apply Theorem 6.1 to complete the proof.

First let us show G is minimal. Let U be a non-empty open invariant subset of G0. For
m = (m1,m2, · · · ,mn) ∈ (Z\{0})n and k ∈ Z, let

Um,k := {r ∈ Ẑ : rmi ≡ k mod mi}

Then the collection {Um,k} (where m varies over (Z\{0})n (we let n vary too) and k ∈ Z) is
a basis for the topology on Ẑ. Also observe that for a given m,

⋃
k∈Z Um,k = Ẑ. Moreover

the translation matrix

[
1 0

k1 − k2 1

]
maps Um,k1 onto Um,k2 . Now since U is non-empty and

open, there exists an m and a k0 such that Um,k0 ⊂ U . But since U is invariant, it follows that
Um,k ⊂ U for every k ∈ Z. Thus

⋃
k∈Z Um,k ⊂ U . This forces U = Ẑ. This completes the proof.

2

Now we show G is topologically principal. Let

E := {r ∈ Ẑ : r 6= 0, rpi = 0 ∀i, except for finitely many primes p}

If one identifies Ẑ with
∏

p prime

Ẑp then it is clear that E is dense in Ẑ. Now let r ∈ E be given.

We claim that G(r) = {r}. Suppose r.

[
1 0
k
m

n
m

]
= r. Then mr − k = nr. But rp = 0 except

for finitely many primes. Thus it follows that k is divisible by infinitely many primes which
forces k = 0. Now mr = nr and r 6= 0 implies m = n. Thus G(r) = {r}. This proves that G is
topologically principal. This completes the proof. 2

7. Nica-covariance, tightness and boundary relations

In this section, we digress a bit to understand some of the results in [Nic92],[CL07] and in
[LR10] from the point of view of inverse semigroups. Let us recall the notion of quasi-lattice
ordered groups considered by Nica in [Nic92]. Let G be a discrete group and P a subsemigroup
of G containing the identity e. Also assume that P∩P−1 = {e}. Then P induces a left-invariant
partial order ≤ on G defined by x ≤ y if and only if x−1y ∈ P . The pair (G,P ) is said to be
quasi-lattice ordered if the following conditions are satisfied.

(1) Any x ∈ PP−1 has a least upper bound in P , and
(2) If s, t ∈ P have a common upper bound in P then s, t have a least upper bound.
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If s, t ∈ P have a common upper bound in P then we denote the least upper bound in P by
σ(s, t). It is easy to show that s, t ∈ P have a common upper bound if and only if s−1t ∈
PP−1. Let us recall the Wiener-Hopf representation from [Nic92]. Consider the representation
W : P → B(`2(P )) defined by

W (p)(δa) := δpa

where {δa : a ∈ P} denotes the canonical orthonormal basis of `2(P ). Note that for s ∈ P ,
W (s) is an isometry and W (s)W (t) = W (st) for s, t ∈ P . For s ∈ P , let M(s) = W (s)W (s)∗

then

M(s)M(t) =

{
M(σ(s, t)) if s and t have a common upper bound in P

0 otherwise.
(7.2)

Let N := {W (s)W (t)∗ : s, t ∈ P}∪{0}. Then Equation (5) of Proposition 3.2 in [Nic92] implies
that N is an inverse semigroup of partial isometries. The following definition is due to Nica.

Definition 7.1 ([Nic92]). Let (G,P ) be a quasi-lattice ordered group. An isometric represen-
tation V : P → B(H) on a Hilbert space H (i.e. V (t)∗V (t) = 1 for t ∈ P , V (e) = 1 and
V (s)V (t) = V (st) for every s, t ∈ P ) is said to be Nica-covariant if the following holds

L(s)L(t) =

{
L(σ(s, t)) if s and t have common upper bound in P

0 otherwise.
(7.3)

where we set L(t) = V (t)V (t)∗. In other words a Nica-covariant representation of (G,P ) is
nothing but a unital representation of the inverse semigroup N which sends 0 to 0.

Let us say a Nica-covariant representation is tight if the corresponding representation on N
is tight. Now one might ask what are the tight representations of the inverse semigroup N ?
We prove that tight representations are nothing but Nica-covariant representations satisfying
the boundary relations considered by Laca and Crisp in [CL07]. This fact is implicit in [CL07]
and it is in fact explicit if one applies Theorem 13.2 of [Exe09]. The author believes that it is
worth recording this connection and we do this in the next proposition.

First let us fix a few notations. A finite subset F of P is said to cover P if given x ∈ P there
exists y ∈ F such that x and y have a common upper bound in P . Let

F := {F ⊂ P : F is finite and covers P}

Proposition 7.2. Let (G,P ) be a quasi-lattice ordered group. Consider a Nica-covariant
representation V : P → B(H). Then V is tight if and only if for every F ∈ F , one has∏
t∈F (1− V (t)V (t)∗) = 0.

Proof. Consider a Nica-covariant representation V : P → B(H). Suppose that V is tight.
Let F ∈ F be given. Note that F covers P if and only if {M(t) : t ∈ F} covers the set of
projections in N . Now the tightness of V implies that sup

t∈F
V (t)V (t)∗ = 1. This is equivalent

to saying that
∏
x∈F (1− V (t)V (t)∗) = 0. Thus we have the implication ’⇒’.
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Let V be a Nica-covariant representation for which
∏
t∈F (1 − V (t)V (t)∗) = 0 for every

F ∈ F . We denote the set of projections in N by E. Then E := {M(t) : t ∈ P} ∪ {0}. Let
{M(t1),M(t2), · · · ,M(tn)} ⊂ [0,M(t)] be a finite cover. Then M(ti) ≤ M(t) for every i. But
this is equivalent to the fact that t ≤ ti.

We claim that {t−1ti : i = 1, 2, · · · , n} covers P . Let s ∈ P be given. Then t ≤ ts which
implies M(ts) ≤M(t). Thus there exists a ti such that M(ts)M(ti) 6= 0. This implies that ts
and ti have a common upper bound in P . In other words, (ts)−1ti = s−1t−1ti ∈ PP−1. Thus
s and t−1ti have a common upper bound in P . This proves the claim.

By assumption it follows that
∏n
i=1(1 − L(t−1ti)) = 0 where L(s) := V (s)V (s)∗. Now

multiplying this equality on the left by V (t) and on the right by V (t)∗, we get

n∏
i=1

(V (t)V (t)∗ − V (t)V (t−1ti)V (t−1ti)∗V (t)∗) = 0

n∏
i=1

(V (t)V (t)∗ − V (ti)V (ti)∗) = 0

But this is equivalent to sup
i
L(ti) = L(t). This completes the proof. 2

Remark 7.3. The relations
∏
x∈F (1 − V (t)V (t)∗) = 0 for F ∈ F are the boundary relations

considered in [CL07].

Let QN be the C∗-subalgebra of U [Z] generated by u and {sm : m > 0}. In [Cun08], it was
proved that QN is simple and purely infinite. Moreover in [Cun08], it was shown that U [Z] is
isomorphic to a crossed product of QN with Z/2Z. Let

PN :=
{[1 0

k m

]
: k ∈ N and m ∈ N×

}
Note that PN is a semigroup of PQ.

Remark 7.4. In [LR10], it was proved that (PQ, PN) is a quasi-lattice ordered group. Moreover
it was shown in [LR10] that for the quasi-lattice ordered group (PQ.PN) Nica-covariance together
with boundary relations is equivalent to Cuntz-Li relations and the universal C∗-algebra made
out of Nica-covariant representations satisfying the boundary relations is in fact QN.

8. The Cuntz-Li algebra for a general integral domain

We end this article by giving a few remarks of how to adapt the analysis in Section 1− 6 for
a general integral domain R. Now Let R be an integral domain such that R/mR is finite for
every non-zero m ∈ R. We also assume that R is countable and R is not a field.
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Definition 8.1 ([CL10]). Let U [R] be the universal C∗-algebra generated by a set of unitaries
{un : n ∈ R} and a set of isometries {sm : m ∈ R×} satisfying the following relations.

smsn = smn

unum = un+m

smu
n = umnsm∑

n∈R/mR

unemu
−n = 1

where em denotes the final projection of sm.

Now the problem is the product uremu−rusenu−s may not be of the form ukecu
−k for some

k and c. Nevertheless it will be in the linear span of {ukemnu−k : k ∈ R/(mn)}. Let P denote
the set of projections in U [R] which is in the linear span of {uremu−r : r ∈ R/(m)} for some m.
Explicity, a projection e ∈ U [R] is in P if and only if there exists an m ∈ R× and ar ∈ {0, 1}
such that e =

∑
r aru

remu
−r.

Now it is easy to show that P is a commutative semigroup of projections containing 0.
Moreover P is invariant under conjugation by ur, sm and s∗m. One can prove the following
Proposition just as in the case when R = Z.

Proposition 8.2. Let T := {s∗muneun
′
sm′ : e ∈ P,m,m′ 6= 0, n, n

′ ∈ R}. Then T is an inverse
semigroup of partial isometries. Moreover the set of projections in T coincide with P . Also the
linear span of T is dense in U [R].

Let R̂ := {(rm) ∈
∏
R/(m) : rmk = rm in R/(m)} be the profinite completion of the ring R.

For r ∈ R̂, define
Ar := {f ∈ P : f ≥ urmemu−rm for some m}

Then Ar is an ultrafilter for every r ∈ R̂ and the map r → Ar is a topological isomorphism
from R̂ to P̂tight.

Let Q(R) be the field of fractions of R. For m 6= 0, let Rm := R̂. For every ` 6= 0, let
φm`,m : Rm → R`m be the map defined by multiplication by `. Then φm`,m is only an additive
homomorphism and it does not preserve the multiplication. We let R be the inductive limit of
(Rm, φm`,m). Then R is an abelian group and R̂ is a subgroup of R via the inclusion R1 ⊂ R.
Note that R is a locally compact Hausdorff space. Moreover the group

PQ(R) :=
{[1 0

b a

]
: a ∈ Q(R)×, b ∈ Q(R)

}
acts on R by affine transformations. The action is descibed explicitly by the following formula.
For x ∈ Rp [

1 0
n
m′

m
m′

]
x = mx+ np ∈ Rm′p
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One can check that the above formula defines an action of PQ(R) on R. Let Gtight be the
tight groupoid associated to the inverse semigroup T defined in Proposition 8.2. Then as in
the case when R = Z, we have the following theorem.

Theorem 8.3. Let φ : R× PQ(R)|R̂ → Gtight be the map defined by

φ
((
r,

[
1 0
k
m

n
m

] ))
= [(r, s∗mu

ksn)]

Then φ is a topological groupoid isomorphism. Moreover the C∗-algebra U [R] is isomorphic to
the full ( and the reduced) C∗-algebra of the groupoid R× PQ(R)|R̂.

We end this article by showing that U [R] is simple.

Proposition 8.4 ([CL10]). The C∗-algebra U [R] is simple.

Proof. Let us denote the groupoid R×PQ(R)|R̂ by G. As in Proposition 6.1, we need to show
that G is minimal and topologically principal. The proof of the minimality of G is exactly similar
to that in Proposition 6.1. We now show that G is topologically principal. For g ∈ PQ(R)\{1},
let us denote the set of fixed points of g in R̂ by Fg. It follows from Baire category theorem
that G is topologically principal if and only if Fg has empty interior for every g 6= 1.

Let g =

[
1 0
k
m

n
m

]
be a non-identity element in PQ(R). Suppose that Fg contains a non-

empty open set say U . Now note that R is dense in R̂. Thus U ∩ R is non-empty. Moreover
U ∩ R is infinite. Let r1, r2 be two distinct points of R in U . Since r1, r2 ∈ Fg, it follows that
mr1 − k = nr1 and mr2 − k = nr2. Thus we have (m − n)r1 = k = (m − n)r2. This forces
m = n and k = 0. This is a contradiction to the fact that g 6= 1. Thus for every g 6= 1, Fg
has empty interior which in turn implies that G is topologically principal. This completes the
proof. 2

Remark 8.5. In [KLQ10], Cuntz-Li type relations arising out of a semidirect product N oH

where N is a normal subgroup and H is an abelian group satisfying certain hypothesis were
considered. It was shown in [KLQ10] that the universal C∗-algebra generated by the Cuntz-Li
type relations is isomorphic to a corner of a crossed product algebra. It is possible to apply
inverse semigroups and tight representations to reconstruct this result. The details will be spelt
out elsewhere.
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