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INVERSE SEMIGROUPS AND THE CUNTZ-LI ALGEBRAS

S. SUNDAR

ABSTRACT. In this paper, we apply the theory of inverse semigroups to the C*-algebra U[Z]
considered in [Cun0O§]. We show that the C*-algebra U[Z] is generated by an inverse semi-
group of partial isometries. We explicity identify the groupoid Gyign: associated to the inverse

semigroup and show that Giigne is exactly the same groupoid obtained in [CL10].

1. INTRODUCTION

Ever since the appearance of the Cuntz algebras O, and the Cuntz-Krieger algebras Oyx
there has been a great deal of interest in understanding the structure of C*-algebras generated
by partial isometries. The theory of graph C*-algebras owes much to these examples. It has
now been well known that these algebras admit a groupoid realisation and the groupoid turns
out to be r-discrete. Another object that is closely related with an r-discrete groupoid is that
of an inverse semigroup. The relationship between r-discrete groupoids and inverse semigroups
was already clear from [Ren80].

An inverse semigroup S is a semigroup such that for every s € S, there exists a unique
s* € S for which s*ss* = s* and ss*s = s. The universal example of an inverse semigroup is
the semigroup of partial bijections on a set. Just like one can associate a C*-algebra to a group
, one can associate a universal C*-algebra related with an inverse semigroup S and is denoted
C*(S). This universal C*-algebra captures the representations of the inverse semigroup ( as
partial isometries on a Hilbert space). One can canonically associate an r-discrete groupoid Gg
to an inverse semigroup S such that the C*-algebra of the groupoid Gg coincides with C*(S).
For a more detailed account of inverse semigroups and r-discrete groupoids, we refer to [Pat99]
and [Exe08].

Recently, Cuntz and Li in [CL10] has introduced a C*-algebra associated to every integral
domain with only finite quotients. Earlier in [Cun08|, Cuntz considered the integral domain Z.
Let R be an integral domain with only finite quotients. Then the universal algebra U[R] is the
universal C*-algebra generated by a set of unitaries {u™ : n € R} and a set of partial isometries
{sm : m € R*} satisfying certain relations. In [CL10], it was proved that U[R] is simple and
purely infinite. A concrete realisation of U[R] can be obtained by representing s,, and u™ on
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*(R) by

Sm — Sm 1 0p — Opm

u = U":0p — Opan

Then U[R] is isomorphic to the C*-algebra generated by S,, and U™ ( by the simplicity of
U[R]). The operator S, is implemented by the multiplication by m (an injection) and U"
is implemented by the addition by n( a bijection). Thus it is immediately clear that U[R] is
generated by an inverse semigroup of partial isometries. Thus the theory of inverse semigroups
should explain some of the results obtained by Cuntz and Li in |[CL10]. The purpose of this
paper is to obtain the groupoid realisation (obtained in [CL10]) by using the theory of inverse
semigroups. We spell out the details only for the case R = Z as the analysis for general integral
domains with finite quotients is similar. We should also remark that alternate approaches to
the Cuntz-Li algebras were considered in [BE10] and in [KLQ10]. The main point we want to
stress is if one uses the language of inverse semigroups one can obtain a groupoid realisation
systematically without having to guess anything about the structure of the Cuntz-Li algebras.

Now we indicate the organisation of this paper. In Section 2, the definition of U[Z] is
recalled and we show that U[Z] is generated by an inverse semigroup of partial isometries
which we denote it by T'. In Section 3, we recall the notion of tight representations of an inverse
semigroup, a notion introduced by Exel in [Exe08]. We show that the identity representation of
T in U[Z] is in fact tight, and show that UJ[Z] is isomorphic to the C*-algebra of the groupoid
Gright (considered in [Exe08]) associated to 7. In Sections 4 and 5, we explicity identify the
groupoid Gygne which turns out to be exactly the groupoid considered in [CLI0]. In Section
6, we show that UJ[Z] is simple. In section 7, we digress a bit to explain the connection
between Crisp and Laca’s boundary relations and Exel’s tight representations of Nica’s inverse
semigroup. In the final Section, we give a few remarks of how to adapt the analysis carried out
in Sections 1 — 6 for a general integral domain. A bit of notation: For non-zero integers m and
n, we let [m,n] to denote the lem of m and n and (m,n) to denote the ged of m and n. For a
ring R, R* denotes the set of non-zero elements in R.

2. THE REGULAR C*-ALGEBRA ASSOCIATED TO 7Z

Definition 2.1 ([Cun08]). Let U[Z] be the universal C*-algebra generated by a set of unitaries

{u™ :n € Z} and a set of isometries {sy, : m € Z*} satisfying the following relations.

SmSn = Smn
unum — un+m
smu” = u"™"s,,
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where e, denotes the final projection of s.,.

Remark 2.2. Let x be a character of the discrete multiplicative group Q*. Then the universal
property of the C*-algebra U[Z] ensures that there exists an automorphism a, of the algebra
U[Z] such that ay(sm) = x(m)sm and oy (u™) = u™. This action of the character group of the
multiplicative group Q* was considered in [CLI0].

For m # 0 and n € Z, Consider the operators S,, and U™ defined on ¢%(Z) as follows:

Sm((sr) = (5rm
U™ (6r) = 6rtn

Then s, — S, and u™ — U™ gives a representation of the universal C*-algebra U|[Z]| called the
regular representation and its image is denoted by U,.[Z]. We begin with a series of Lemmas
(highly inspired and adapted from [Cun0O§| and from [CLI10]) which will be helpful in proving
that U[Z] is generated by an inverse semigroup of partial isometries.

Lemma 2.3. For every m,n # 0, one has e, = Zkez/(n) ume,,,umk

Proof. One has

*

€m = SmS,

= Sm( ube,uk)s?,
keZ/(n)
= Z smuksns,iu*ksfn
k€EZ/(n)
= Z ukmsmsns;;s;‘nu_km

kEZ/(n)

= E U™ s S T

kEZ/(n)

= g uF e u M.

keZ/(n)

This completes the proof. O

Lemma 2.4. For every m,n # 0, one has emen = €[, ] where [m,n| denotes the least common

multiple of m and n.

Proof. Let ¢ := [m,n| be the lem of m and n. Then ¢ = am = bn for some a,b. Now from
Lemma 2.3} it follows that

Cm€n = § : umrecufmrunsecufns

reZ/(a),s€Z/(b)
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The product v e u™™ u™ e, u~"° survives if and only if mr = ns mod ¢. But the only choice

for such an r and an s is when » =0 mod a and s =0 mod b. [ Reason : Suppose there exists

mr—ms r S

is an integer. That is 7 — 7 is an integer.

Multiplying by b, one has that %T — s and hence %T

r and s such that mr = ns mod c. Then
is an integer. But a and b are relatively
prime. Hence a divides r. Similarly b divides s]. Thus e,e, = e.. This completes the proof. O

T S

Lemma 2.5. Suppose r # s in Z/(d) then the projections u”e,u™" and u’e,u™% are orthogonal

where d is the ged of m and n.

Proof. First note that equ™"u’equ™*u" = 0. Hence equ~"u’eq = 0. Now note that

s

uepu " ule,uTt = uepmequT "ulege,uT® by Lemma ]

=u"enm(equ"u’eq)enu?
=0
This completes the proof. O

Lemma 2.6. Let m,n # 0 be given. Let d = (m,n) and ¢ = [m,n]. Suppose r = s mod d.

Let k be such that k =r mod m and k =s mod n. Then u"e,u"u’e,u® = ufeu™".

T k

Proof. First note that u"e,,u™" = u emu”® and ufe,u" k k

= u”epu~". The result follows
from Lemma 241 g

n

* _ L
Lemma 2.7. For m,n # 0, one has sy,e,s, = e,/ wheren = om) -

Proof. First note that without loss of generality, we can assume that m and n are relatively

prime. Otherwise write m := mid and n := njd where d is the gcd of m and n. Then
(my,n1) =1 and
Sy enSm = s,ﬁllszsdsm 321 $5S8dSm,
= 81, €nySmy
So now assume m and n are relatively prime. Observe that s, e,s,, is a selfadjoint projection.
For s en5mSrenSm = SimenemSm = Si€menSm = Si€nSm. Again,
(5% ensm)? = 5% enemsm
= Sy emnSm | by Lemma [2.4] |
= Sy, SmSnSySmSm

= ey
This completes the proof. O

Lemma 2.8. Let m,n # 0 and k € Z be given. If (m,n) does not divide k then one has

* , k —k _
sy utepu” sy, = 0.
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Proof. Tt is enough to show that x := e,u~"s,, vanishes. Thus it is enough to show that
zz* = e u e uFe,. Now Lemma implies that xz* = 0. This completes the proof. O

Lemma 2.9. Let m,n # 0 and k € Z be given. Suppose that d :== (m,n) divides k. Choose an

k k r n

integer r such that mr =k mod n. Then s}, u"e,u="sy, = u"ey, u™" where ny = T

k =

Proof. Now observe that uke,u~ e, ™. Hence one has

k

* T —mr

Sy u ent Fs, = spu™enu” ™ sy,

=u"sy ensSmu” "
=u"ep,u”" [ by Lemma [2.7] ]
This completes the proof. O

Remark 2.10. Let P := {u"epu™" :m # 0,n € Z} U{0}. Then the above observations show
that P is a commutative semigroup of projections which is invariant under the map x — s, TSy,

The proof of the following proposition is adapted from [CL10].

Proposition 2.11. Let T := {syu"epu™ s, : m,m’ k # 0,n,n € Z}U{0}. Then T is an
inverse semigroup of partial isometries. Let P := {u"e,u™"™ : m # 0,n € Z} U {0}. Then the
set of projections in T coincide with P. Also the linear span of T is dense in U[Z].

Proof. The fact that T is closed under multiplication follows from the following calculation.

! ! i !
* n -n * f —/ *x n —-n * * l 4
SpU epU " S SpU et Sy = S Ul ept S S SES, iU e Sy

! ’ ! ’
n—-n , n —n * l —L, L—1L
U utepuT e iSpS, ruesuT U Sy

3*

=S

’ !
* n —-n

! ~ a ~
=su"" " ée, 1sps, fu'=* s,/ [ where é = u" e;,u™ and f = ulesu™]

’ - ’
= spu" " sp(spésy)(ske,,y sZ)(sm/fs;/)sm/uzfé Sy

* kn—kn/ ufm/ —El m/

= 80U P s | where p = (spésy)(ske,, sp) (S, fs:‘n/) €P]

Thus we have shown that 7' is closed under multiplication. Clearly T is closed under the
involution *. Thus the linear span of T is a * algebra containing s,, and u" for every m # 0
and n € Z. Hence the linear span of T is dense in U|[Z].

’

Now we show that every element of T"is a partial isometry. Let v := s}, u"eiu”™ s,/ be given.
Now,

/ /
* * n n * —-n —Nn
VUt = spultepu” S, s uT " epu sy,

’ ’

% _n n —-n —n
= spu(epu e, u

ep)u " Sm
/ /

"sp [ where e 1= (epu e, u"" e;) € P |

ok .on, —
= s u""eu
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Now it follows from Remark that vo* € P. It also shows that the set of projections in T’
coincides with P. This completes the proof. O
The following equality will be used later. Let us isolate it now.

k * mok1 k

2 — 2M1
Sny = 8 u Cmani W 2 Sning

* k1 *
(2.1) Sy U Sny Sy U myms

mi

Remark 2.12. We also need the following fact. If v € T, let us denote its image in the regular
representation by V. Observe that v # 0 if and only if V' # 0. This is clear for projections in
T. Now let v € T be a non-zero element. Then vv* € P is non-zero. Thus VV™* # 0 which
implies V # 0.

3. TIGHT REPRESENTATIONS OF AN INVERSE SEMIGROUP

Let us recall the notion of tight characters and tight representations from [Exe08].

Definition 3.1. Let S be an inverse semigroup with 0. Denote the set of projections in S by
E. A character for E is a map x : E — {0,1} such that

(1) the map x is a semigroup homomorphism, and
(2) z(0) = 0.

We denote the set of characters of E by Ey. We consider Ej as a locally compact Hausdorff
topological space where the topology on Ej is the subspace topology induced from the product
topology on {0,1}¥.

For a character x of F, let A, :={e € E : z(e) = 1}. Then A, is a nonempty set satisfying
the following properties.

(1) The element 0 ¢ A,.
(2) If e Ay and f > e then f € A,.
(3) Ife, f € A, then ef € A,.

Any nonempty subset A of E for which (1), (2) and (3) are satisfied is called a filter. More-
over if A is a filter then the indicator function 14 is a character. Thus there is a bijective
correspondence between the set of characters and filters. A filter is called an ultrafilter if it is
maximal. We also call a character x maximal or an ultrafilter if its support A, is maximal.
The set of maximal characters is denoted by F and its closure in Eo is denoted by Etight.

The following characterization of maximal characters will be extremely useful for us and we
refer to [Exe09] for a proof. Let E be an inverse semigroup of projections. Let e, f € E. We
say that f intersects e if fe # 0.

Lemma 3.2. Let E be an inverse semigroup of projections with 0 and x be a character of E.
Then the following are equivalent.

(1) The character z is mazximal.

(2) The support A, contains every element of E which intersects every element of Ay.
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Corollary 3.3. Let A be a unital C*-algebra and E C A be an inverse semigroup of projections
containing {0,1}. Suppose that E contains a finite set {e1,ea, -+ ,en} of mutually orthogonal
projections such that Y ;" e; = 1. Then for every mazimal character x of E, there exists a
unique e; for which x(e;) = 1.

Proof. The uniqueness of e; is clear as the projections eq, eo, - - - , e, are orthogonal. Now to
show the existence of an e; in A;, we prove by contradiction. Assume that e; ¢ A, for every
i. Then by Lemma [3.2] we have that for every i, there exists an f; € A, such that e;f; = 0.
Let f =[] fi. Then f € A, and thus nonzero and also fe; = 0 for every i. As ). e; = 1, this
forces f = 0. Thus we have a contradiction. O

Let us recall the notion of tight representations of semilattices from [Exe(8] and from [Exe09].
The only semilattice we consider is that of an inverse semigroup of projections or in otherwords
the idempotent semilattice of an inverse semigroup. Also our semilattice contains a maixmal

element 1. First let us recall the notion of a cover from [Exe0§].

Definition 3.4. Let E be an inverse semigroup of projections containing {0,1} and Z be a
subset of E. A subset F' of Z is called a cover for Z if given a non-zero element z € Z there
exists an f € F such that fz # 0. A cover F' of Z is called a finite cover if F' is finite.

The following definition is actually Proposition 11.8 in [Exe08]

Definition 3.5. Let E be an inverse semigroup of projections containing {0,1}. A represen-
tation o : E — B of the semilattice E in a Boolean algebra B is said to be tight if given
e # 0 in E and for every finite cover F of the interval [0,¢e] := {x € E : x < e}, one has

SupfeFU(f) =o(e).

Let A be a unital C* algebra and S be an inverse semigroup containing {0,1}. Let 0 : S — A
be a unital representation of S as partial isometries in A. Let o(C*(E)) be the C*—subalgebra
in A generated by o(E). Then o(C*(E)) is a unital, commutative C*—algebra and hence
the set of projections in it is a Boolean algebra which we denote by By c«(g)). We say the
representation o is tight if the representation o : E — B¢« (g)) is tight.

Lemma 3.6. Let X be a compact metric space and E C C(X) be an inverse semigroup of
projections containing {0,1}. Suppose that for every finite set of projections {f1, fa,- -+, fm}
in E, there exists a finite set of mutually orthogonal non-zero projections {e1,ea,--- ,en} in E

and a matriz (a;j) such that
n
Yo
i=1
fi = Z aijej.
J

Then the identity representation of E in C(X) is tight.
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Proof. Let e € E\{0} be given and let F' be a finite cover for the interval [0.e]. With-

out loss of generality, we can assume that e = 1 (Just cut everything down by e). Let
F = {f1,fo, -+, fm}. Then by the hypothesis there exists a finite set of mutually orthog-
onal projections {ej,es,--- ,e,} and a matrix (a;;) such that f; = Zj a;je; and ), e; = 1.

For a given j, let A; := {i : a;; # 0}. Since F' covers C(X), it follows that for every j, A; is
nonempty. In otherwords, given j, there exists an ¢ such that f; > e;. Thus f :=sup; f; > ¢;
for every j. Hence f > sup;e; = 1. This completes the proof. O

In the next proposition, 7' denotes the inverse semigroup associated to U[Z] in Proposition

211

Proposition 3.7. The identity representation of T in U[Z)] is tight.

Proof. We apply Lemma Let {u" e, v u2emou™ "2, -+ ,u" em, u” "} be a finite set
of non-zero projections in P. By Lemma it follows that each f; := u"e,,,u™"" is a linear
combination of {ufe.u™* : s € Z/(c)} where c is the lem of my,mo,- - ,mg. Then Lemma
implies that the identity representation of 7" in U[Z] is tight. This completes the proof. 0.

Now we will show that the C*—algebra of the groupoid Gyigps of the inverse semigroup T°
is isomorphic to the algebra U[Z]. First let us recall the construction of the groupoid Gigne
considered in [Exe(08]. Let S be an inverse semigroup with 0 and let E denote its set of
projections. Note that S acts on Ey partially. For z € Ey and s € S, define (z.s)(e) = z(ses*).
Then

e The map z.s is a semigroup homomorphism, and
o (z.5)(0) =0.
But z.s is nonzeo if and only if z(ss*) = 1. For s € S, define the domain and range of s as Let

S be an inverse semigroup with 0 and let £ denote its set of projections. Note that S acts on
Ejy partially. For z € Fy and s € S, define (z.s)(e) = z(ses*). Then

e The map z.s is a semigroup homomorphism, and
e (z.5)(0) =0.
But z.s is nonzeo if and only if z(ss*) = 1. For s € S, define the domain and range of s as
Dy:={x e FEy:x(ss*) =1}
Ry:={x e Fy:a(s*s) =1}
Note that both Dg and R4 are compact and open. Moreover s defines a homoemorphism from
D, to R, with s* as its inverse. Also observe that Etight is invariant under the action of S.
Consider the transformation groupoid ¥ := {(z,s) : € Ds} with the composition and the
inversion being given by:
(x,8)(y,t) : = (z,st) if y = x.5s

(z,5)71: = (z.5,5%)
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Define an equivalence relation ~ on ¥ as (z,s) ~ (y,t) if = y and if there exists an e € F
such that x € D, for which es = et. Let G = ¥/ ~. Then G is a groupoid as the product
and the inversion respects the equivalence relation ~. Now we describe a toplogy on G which
makes G into a topological groupoid.

For s € S and U an open subset of Dy, let 0(s,U) :={[z,s] : z € U}. We refer to [Exe08] for
the proof of the following two propositions. We denote (s, D) by 65. Then 64 is homeomorphic
to Dy and hence is compact, open and Hausdorff.

Proposition 3.8. The collection {0(s,U) : s € S,U open in Dy} forms a basis for a topology
on G. The groupoid G with this topology is a topological groupoid whose unit space can be
identified with Ey. Also one has the following.

(1) Fors,t €S, 0,0, = 0y,

(2) Forse S, 0,1 =04, and

(3) The set {1y, : s € T'} generates the C* algebra C*(G).

We define the groupoid Gygne to be the reduction of the groupoid G to Etight. In [Exe08§],
it is shown that the representation s — 1g, € C*(Gyigne) is tight and any tight representation
factors through this universal one.

Proposition 3.9. Let T' be the inverse semigroup associated to U[Z] in Proposition|2.11 Let
Gright be the tight groupoid associated to T'. Then U[Z] is isomorphic to C*(Gright)-

Proof. Let t,,,v™ denote the images of s;,, u" in C*(Grignt). The universality of the C*—algebra
C*(Gtight) together with Propositionimplies that there exists a homomorphism p : C*(Giight) —
UJZ] such that p(t,,) = sm and p(v™) = u™.

Note that the mutually orthogonal set of projections {u"e,,u™" : r € Z/(m)} cover T. Since
the representation of T in C*(Gygnt) is tight, it follows that > v"t,,t;,0v™" = 1. Now the
universal property of U[Z] implies that there exists a homomorphism o : U[Z] — C*(Giight)
such that o(sy,) = t,, and o(u™) = v". Now it is clear that p and o are inverses of each other.
This completes the proof. O

In the next two sections, we identify the groupoid Gyigns explicitly.

4. TIGHT CHARACTERS OF THE INVERSE SEMIGROUP T

In this section, we determine the tight characters of the inverse semigroup 7' defined in
Proposition Let us recall a few ring theoretical notions. We denote the set of strictly
positive integers by N*. Consider the directed set (NT, <) where we say m < n if m|n. If m|n
then there exists a natural map from Z/(n) to Z/(m). The inverse limit of this system is called
the profinite completion of Z and is denoted Z. In other words,

7 :={(rm) € H Z/(m) : rpk =y mod m}

meN+
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Also Z is a compact ring with the subspace topology induced by the product topology on
[1Z/(m). Also Z embedds naturally in Z. We also need the easily verifiable fact that the
kernel of the m! projection r = (1) — 7y is in fact mZ.

For r € 7, define a character &, : P — {0,1} by the following formula:

In the above formula, the Dirac-delta function is over the set Z/(m). Thus 6, , = 1 if and
only if r,, =n mod m.

Proposition 4.1. The map r — &, is a topological isomorphism from 7 to Ptight

Proof. First let us check that for r € Z, &, is in fact a character and is maximal. Consider
an element 7 € Z. Let e := u™ey,u™ and f := u™en,u™ be given. Let d := (mq, ms)
and ¢ := [m1, ma]. Suppose {.(e) = &-(f) = 1. Then r,, = n1 mod m; and 7, = no
mod my. Moreover, r. = r,,, mod m; for i =1,2. Thus ef = u"°e.u™"* by Lemma Hence
by definition &, (ef) = 1. Now suppose &.(¢) =1 and e < f. Then by Lemma and Lemma
it follows that mqy divides m; and 7, = 1, = n1 = n2 mod my. Hence &.(f) = 1. By
definition 0 is not in the support of &.. Thus we have shown that the support of &, is a filter
or in other words &, is a character.

Now we claim &, is maximal. This follows from the observation that for every m € NT, the

n

set of projections {u"e,u™" : n € Z/(m)} are mutually orthogonal. Thus if £ is a character
then for every m there exists at most one r, for which {(u"™e,,u="") = 1. This implies that
if £ is a character which contains the support of &. then £ = &,.

Now let & be a maximal character of P. Then by Corollary and by the observation
in the previous paragraph, it follows that for every m there exists a unique r,, such that
E(u"menu~"™) = 1. Now let k be given. Since both u"™e,u™" and u"™*ke,, u~"mk belong to
the support of &, it follows that the product v e, u=""u"mk e, u”"™mk does not vanish. Then
by Lemma ﬁ, it follows that 7, = r,, mod m. Thus r = (ry,) € 7 and the support of &, is
contained in the support of £&. Thus again by the observation in the preceeding paragraph, it
follows that & = &,..

It is clear from the definition that the map r — &, is one-one and continuous. As 7 is
compact, it follows that the range of the map r — &, which is P is also compact. Hence
POO = ]ADm-ght. Thus we have shown that r — &, is a one-one and onto continuous map from 7
to Pm-ght. Since Z is compact, it follows that the above map is in fact a homeomorphism. This
completes the proof. O

From now on we will simply write (e) in place of &.(e) if r € Z and e € P.
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5. THE GROUPOID Gyigpt OF THE INVERSE SEMIGROUP T'

Let us recall a few ring theoretical constructions. Consider the directed set (NT, <) where
the partial order < is defined by m < n if m divides n. For m € NT, let R,, = 7. Let
Omem : Rm — Rem be the map defined by mulitplication by £. Then ¢, ,, is only an additive
homomorphism and it does not preserve the multiplication. We let R be the inductive limit of
(R, ¢mem)- Then R is an abelian group and 7 is a subgroup of R via the inclusion R; C R.

b a
a€Q*,be Q} acts on R by affine transformations. The action is descibed explicitly by the

10
Note that R is a locally compact Hausdorff space. Moreover the group Fgy := { [ ]

following formula. For = € R,

n m

7 7
m m

1 0
[ ]x:mm+np€72m/p

One can check that the above formula defines an action of Py on R. We need the following

lemma.

Lemma 5.1. Let a := ﬁ and b := % Then S:n/ u™sy, depends only on a and b.

! ! I !
Proof. Suppose - = 23 and ™} = ™2. Then nimy = nom; and mymy = m;ms. Now, we
my My my L)

have
* ni _ * * ni
smllu Smy = sm;smzstU Smy
% * * ni
—Smgsmlsm’lsmis’"?u Smy

/
* * * nimsam

=S 18,5 11U 1S 18m,S
m2 mi ml my mimo

’

% * % n1Mmeomi

=S /S5 /S u 2 S
my my M1 m

S 18
19 °ma
1 1

’
* * nim.
=5 /5 U285 18y,
my My my

’
* * nam

=5 /8 ,u"Ms 18y,
My My ™

* ng %
=5 U5 15 18m,
my my My

— S;’;L/2 Un2 Sm2
This completes the proof. O

Remark 5.2. The above lemma has also been used in [BE10].

Now we explicitly identify the groupoid Gyigns associated to the inverse semigroup 7. When
we consider transformation groupoids, we consider only right actions. Thus we let Py act on
R on the right by defining z.g = g~z for x € R and g € Py. We show that that groupoid
Gright of the inverse semigroup 7' is isomorphic to the restriction of the transformation groupoid
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R x Py to the closed subset Z. (Here we consider Py as a discrete group.) Let us begin with
a lemma which will be useful in the proof.

!/ /
Lemma 5.3. In Gyigny one has [(r,s” u™ epu™sp)] = [(r, s:n,u’”” Sm)]

Proof. First observe that [(r,s* )][(r.s*,,u" epu”sm)] = [(r,s* u" exu”sy)]. Thus it is
+

/ /

. ’ ! ! _
enough to consider the case m = 1. Now let s := u” exu”sy, , t ;== u""" s, and e ;== u" epu™"

Now observe that ss* := ett*. Hence if r(ss*) = 1 then r(¢t*) = 1 and r(e) = 1. Moreover
es = et. Thus [(r,s)] = [(r,t)]. This completes the proof. 0.

Theorem 5.4. Let ¢ : R X PQ|Z — Giight be the map defined by

o((r [i S] )) = [0, spuusn)]

m m

Then ¢ is a topological groupoid isomorphism.

Proof.
The map ¢ is well defined.
Let (r, 1 S] ) be an element in R x Pgl; . Then we have mr — k = ns for some
m m
s € 7. Now we need to show that r(stufe,u="s,) = 1. By Lemma it follows that
s;'fnukenu_ksm =u""ep, u”"™ where nj := (an) Thus

r(s;‘nukenu*ksm) =r(umepu""™)
=94

Tny™n

=1 [ Since 1y, = 1y, in Z/(n1)]

Surjectivity of ¢:

0

n

1
First let us show that if [(r, s¥,u¥s,)] € Gright then (r, [k ] ) R x Pgls;. Consider an

3|

m

k k k

element [(r,v := s} u"s,)] in Gygns. Then r(vv*) = 1 and vv* := s) u”e,u™"s,,. Now Lemma
2.8]and [2.9] implies that (m,n)|k. Let s be an integer such that ms =k mod n. Again Lemma

implies that vv* = u®e,,u™* where ny := (an) Now r(vv*) = 1 implies that r,, = s
mod n;. But r,, = 7r,, modng (asr € Z) Thus we have r,, = s mod ny. This in turn
R 1 0
implies that mr, = ms = kK mod n. Hence mr — k € nZ. Hence (r, [k n] ) € R x Pyly-
m m
Now the surjectivity of ¢ follows from Lemma [5.3]
Injectivity of ¢:
Now suppose [(r, 5%, u" sy, )] = [(r, sk, u"?s,,)]. Then by definition there exists a projection

k1

of the form e := u"e,u™"" such that e(s}, u¥s,,) = e(s},,u*?s,,) # 0. Consider a character x
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of the discrete group Q*. Let «, be the automorphism of the algebra U|[Z] such that a, (u") =
u™ and oy (sm,) = x(m)sp,.

X(i)e(S* Uklsm) = ax(e(s;';nuklsnl))

= ay (e(s uk25n2))

na

— (m—z)e(s uk25n2)
12

= X(m*Q)e(anlulem)

Since e(sk, uMs,,) # 0, it follows that x(Z- L) = x(;2) for every character x of the discrete,
multiphcatlve group Q*. Thus &L = 22

mi mo *
From remark it follows that e(s}, u" sy, ) = e(sh,,u"sp,) # 0 in U,[Z]. Since =
it follows immediately that :Tll = T% Thus we have shown that ¢ is injective.

The map ¢ is a homeomorphism.

First we show ¢ is continuous. Let (7, g,) be a

5 converging to (r,g).
Since we are considering Fp as a discrete group, we can without loss of generality assume that
gn = g for every n. Then, from Lemma it follows that ¢(ry, gn) converges to ¢(r, g).

1

For an open subset U of Z and g := , consider the open set

k n
0U,g) :={(r,g) : 7 € U and r.g € Z}.

open
Then the collection {§(U,g) : Moreover

#(0(U, g)) = 0(U, s ,uFs,). Hence ¢ is an open map. Thus we have shown that ¢ is a homeo-
morphism.

¢ is a groupoid morphism.

First we show that ¢ preserves the source and range. By definition ¢ preserves the range.

Let (g = [,{ 2] )

mm

5 be given. Let v := s}, u"s,. Since r.g € 7, it follows that

there exists ¢ € Z such that mr — k = nt. We need to show that &v = &. (Just to keep
things clear we write &, for the character determined by 7). It is enough to show that the
support of & and that of &..v coincide. But then both the characters are maximal and thus
it is enough to show that the support of & is contained in the support of &..v. Thus, suppose
that &(ugesu_g) = 1. Then t,s =ts = ¢ mod s. This implies mr,s — k = nt,s = nf mod ns.
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Thus mr,s = k +nf mod ns. Let ny := Now observe that

(ns,m)-
(&) (u'esu™) = & (vuequ™"v")
:§T(sfnuksnu£esu es*u ksm)
— 6 (s ub e (ktn0)g Y
=& (u"ep,u”") [ By Lemma [2.9]]

Thus we have shown that the support of & is contained in the support of &..v which in turn
implies that & = &,..v. Hence ¢ preserves the source.

1 0
Now we show that ¢ preserves multiplication. Let ~; := (ry, [ ki o ]) for i = 1,2. Since
m;  m;

¢ preserves the range and source, it follows that if 7, and 9 are composable, so do ¢(7y;) and
¢(y2). Observe that

@b('}/l) ( ) [(rlv mlu Snlsmguk28n2]

= [r1: Smyms m2k16m2n1“k "Snyns] (Eq. @)
= [1"1,sfmm2um2k1+”1k2snm2] (Lemma|5_,_3|)

= d(1172)

It is easily verifiable that ¢ preserves inversion. This completes the proof. O

Remark 5.5. Combining Pmposition and TheOTem we obtain that U[Z] is isomorphic
to C*(R x Pgls) which is Remark 2 in page 17 of [CL10).

6. SIMPLICITY OF U|[Z]

First we recall a few definitions from [Ren09]. Let G be an r-discrete, Hausdorff and locally
compact topological groupoid. Let G° be its unit space. We denote the source and range maps
by s and r respectively. The arrows of G define an equivalence relation on G° as follows:

x ~ y if there exists v € G such that s(y) =z and r(y) =y

A subset E of GY is said to be invariant if the orbit of z is contained in E whenever z € E. For
x € GV, define the isotropy group at = denoted G(z) by G(z) :={y € G : s(y) =7r(y) = z}.
A groupoid G is said to be

e topologically principal if the set of x € G° for which G(x) = {z} is dense in G°.
e minimal if the only non-empty open invariant subset of G° is G°.

We need the following theorem. We refer to [Ren09] for a proof.
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Theorem 6.1. Let G be an r-discrete, Hausdorff and locally compact topological groupoid. If
G is topologically principal and minimal then C},,(G) is simple.

Proposition 6.2. The C*-algebra U[Z] is simple.

Proof. Let G denote the groupoid R x Pgls;. Since the group Py is solvable, it is amenable
and thus by Proposition 2.15 of [MR82], it follows that the full groupoid C*-algebra C*(G) is
isomorphic to the reduced algebra C7,,(G). Now we apply Theorem to complete the proof.

First let us show G is minimal. Let U be a non-empty open invariant subset of G°. For
m = (my,ma, -+ ,my) € (Z\{0})" and k € Z, let

Unp:={re Z: rm, =k modm;}

Then the collection {U,, } (where m varies over (Z\{0})" (we let n vary too) and k € Z) is
a basis for the topology on 7. Also observe that for a given m, ez Umk = 7. Moreover
the translation matrix bk maps Uy, i, onto Up, ,. Now since U is non-empty and
1 — K2
open, there exists an m and a kg such that Up, ,, C U. But since U is invariant, it follows that
Un, C U for every k € Z. Thus | J,cz U C U. This forces U = 7. This completes the proof.
O
Now we show G is topologically principal. Let

E:={re Z:r # 0,7, = 0 Vi, except for finitely many primes p}

If one identifies Z with H Zp then it is clear that F is dense in Z. Now let r € E be given.
p prime

0

n

1
We claim that G(r) = {r}. Suppose r. | , = r. Then mr — k = nr. But 7, = 0 except

m m
for finitely many primes. Thus it follows that k is divisible by infinitely many primes which
forces k = 0. Now mr = nr and r # 0 implies m = n. Thus G(r) = {r}. This proves that G is
topologically principal. This completes the proof. O

7. NICA—COVARIANCE, TIGHTNESS AND BOUNDARY RELATIONS

In this section, we digress a bit to understand some of the results in [Nic92],|CL07] and in
[ILR10] from the point of view of inverse semigroups. Let us recall the notion of quasi-lattice
ordered groups considered by Nica in [Nic92]. Let G be a discrete group and P a subsemigroup
of G containing the identity e. Also assume that PNP~! = {e}. Then P induces a left-invariant
partial order < on G defined by x < y if and only if 271y € P. The pair (G, P) is said to be
quasi-lattice ordered if the following conditions are satisfied.

(1) Any z € PP~! has a least upper bound in P, and
(2) If s,t € P have a common upper bound in P then s,t have a least upper bound.
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If s,t € P have a common upper bound in P then we denote the least upper bound in P by
o(s,t). It is easy to show that s,¢ € P have a common upper bound if and only if s~!t €
PP~L. Let us recall the Wiener-Hopf representation from [Nic92]. Consider the representation
W : P — B({%(P)) defined by
W (p)(0a) := dpa

where {d, : a € P} denotes the canonical orthonormal basis of ¢2(P). Note that for s € P,
W (s) is an isometry and W (s)W (t) = W (st) for s,t € P. For s € P, let M(s) = W(s)W (s)*
then

(7.2)  M(s)M(t) = {

Let N := {W(s)W(¢)* : s,t € P}U{0}. Then Equation (5) of Proposition 3.2 in [Nic92] implies
that AV is an inverse semigroup of partial isometries. The following definition is due to Nica.

M(o(s,t)) if s and t have a common upper bound in P
0 otherwise.

Definition 7.1 ([Nic92]). Let (G, P) be a quasi-lattice ordered group. An isometric represen-
tation V : P — B(H) on a Hilbert space H (i.e. V(t)*V(t) =1 fort € P, V(e) =1 and
V(s)V(t) =V (st) for every s,t € P) is said to be Nica-covariant if the following holds

L(o(s,t)) if s and t have common upper bound in P

(7.3)  L(s)L(t) = {

0 otherwise.

where we set L(t) = V(t)V(t)*. In other words a Nica-covariant representation of (G, P) is
nothing but a unital representation of the inverse semigroup N which sends 0 to 0.

Let us say a Nica-covariant representation is tight if the corresponding representation on N
is tight. Now one might ask what are the tight representations of the inverse semigroup N7
We prove that tight representations are nothing but Nica-covariant representations satisfying
the boundary relations considered by Laca and Crisp in [CLOT]. This fact is implicit in [CLO7]
and it is in fact explicit if one applies Theorem 13.2 of [Exe09]. The author believes that it is
worth recording this connection and we do this in the next proposition.

First let us fix a few notations. A finite subset F' of P is said to cover P if given x € P there
exists y € F such that x and y have a common upper bound in P. Let

F :={F C P: F is finite and covers P}

Proposition 7.2. Let (G,P) be a quasi-lattice ordered group. Consider a Nica-covariant
representation V. : P — B(H). Then V is tight if and only if for every F € F, one has

[Lier(1 =V(#)V (1)) =0.

Proof. Consider a Nica-covariant representation V' : P — B(H). Suppose that V is tight.
Let F' € F be given. Note that F' covers P if and only if {M(t) : t € F'} covers the set of
projections in A. Now the tightness of V' implies that sup V(¢)V (¢)* = 1. This is equivalent

teF

to saying that [[,c (1 — V(¢)V(t)*) = 0. Thus we have the implication '=".
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Let V' be a Nica-covariant representation for which [[,c»(1 — V(£)V(t)*) = 0 for every
F € F. We denote the set of projections in N by E. Then E := {M(t) : t € P} U{0}. Let
{M(t1), M(t2), -+, M(tn)} C [0, M (t)] be a finite cover. Then M(t;) < M(t) for every i. But
this is equivalent to the fact that ¢ < ¢;.

We claim that {t~¢; : i = 1,2,--- ,n} covers P. Let s € P be given. Then ¢ < ts which
implies M (ts) < M(t). Thus there exists a t; such that M (ts)M(¢;) # 0. This implies that ts
and t; have a common upper bound in P. In other words, (ts)~'t; = s7't~'t; € PP~!'. Thus
s and t~'t; have a common upper bound in P. This proves the claim.

By assumption it follows that [[,(1 — L(t7't;)) = 0 where L(s) := V(s)V(s)*. Now
multiplying this equality on the left by V' (¢) and on the right by V (¢)*, we get

n

[TV —vveE )V ) v ) =0

i=1
[[vove) —vivie) ) =0
1=1
But this is equivalent to sup L(¢;) = L(t). This completes the proof. O

Remark 7.3. The relations [[,cp(1 =V (1)V(t)*) = 0 for F' € F are the boundary relations
considered in [CLOT].

Let Qn be the C*-subalgebra of U[Z] generated by u and {s,, : m > 0}. In [Cun0g|, it was
proved that Qy is simple and purely infinite. Moreover in [Cun08], it was shown that U[Z] is
isomorphic to a crossed product of Qn with Z/27. Let

PN::{[; T(:L] :k‘ENandeNX}

Note that Py is a semigroup of Fy.

Remark 7.4. In [LR10], it was proved that (Py, Px) is a quasi-lattice ordered group. Moreover
it was shown in [LR10] that for the quasi-lattice ordered group (Pg.Py) Nica-covariance together
with boundary relations is equivalent to Cuntz-Li relations and the universal C*-algebra made
out of Nica-covariant representations satisfying the boundary relations is in fact Q.

8. THE CUNTZ-LI ALGEBRA FOR A GENERAL INTEGRAL DOMAIN

We end this article by giving a few remarks of how to adapt the analysis in Section 1 — 6 for
a general integral domain R. Now Let R be an integral domain such that R/mR is finite for
every non-zero m € R. We also assume that R is countable and R is not a field.
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Definition 8.1 (|CL10]). Let U[R] be the universal C*-algebra generated by a set of unitaries
{u™:n € R} and a set of isometries {sy, : m € R*} satisfying the following relations.

SmSn = Smn

unum — uner

smu” = u""s,,
Z weu =1

where e, denotes the final projection of s.,.

k

Now the problem is the product u”e,,u""u’e,u™° may not be of the form u*e.u* for some

k and c. Nevertheless it will be in the linear span of {u*e,,,u=" : k € R/(mn)}. Let P denote

T

the set of projections in U[R] which is in the linear span of {u"e,u™" : r € R/(m)} for some m.

Explicity, a projection e € U[R] is in P if and only if there exists an m € R* and a, € {0,1}
such that e =) a,u"e,u™".

Now it is easy to show that P is a commutative semigroup of projections containing 0.
Moreover P is invariant under conjugation by ", s, and s},. One can prove the following

Proposition just as in the case when R = Z.

Proposition 8.2. Let T := {s;u"eu™ s _::e € P,m,m #0,n,n € R}. Then T is an inverse
semigroup of partial isometries. Moreover the set of projections in T coincide with P. Also the

linear span of T is dense in U[R].

Let R := {(ry) € [IR/(m) : "k = 7 in R/(m)} be the profinite completion of the ring R.

For r € R, define

A ={feP:f>umenu " for some m}
Then A, is an ultrafilter for every r € R and the map r — A, is a topological isomorphism
from R to Pm-ght.

Let Q(R) be the field of fractions of R. For m # 0, let R,, := R. For every ¢ # 0, let
Omem : Rm — Rem be the map defined by multiplication by £. Then ¢, is only an additive
homomorphism and it does not preserve the multiplication. We let R be the inductive limit of
(Rm, ¢mem)- Then R is an abelian group and Risa subgroup of R via the inclusion Ry C R.
Note that R is a locally compact Hausdorff space. Moreover the group

10

Powy =11, |

] a€QR)*,beQR))

acts on R by affine transformations. The action is descibed explicitly by the following formula.
For z € R,

n m

/ /
m m

1 0
[ ]x:maz—}-anRm/p
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One can check that the above formula defines an action of Pgry on R. Let Gyignt be the
tight groupoid associated to the inverse semigroup 7' defined in Proposition Then as in
the case when R = Z, we have the following theorem.

Theorem 8.3. Let ¢ : R X Py(g)

i — Gtight be the map defined by

¢<(r, [i 2] )) = [(r, 5% u"sy,)]

m m

Then ¢ is a topological groupoid isomorphism. Moreover the C*-algebra U[R] is isomorphic to
the full (and the reduced) C*-algebra of the groupoid R x Py(r)

R.
We end this article by showing that U[R] is simple.

Proposition 8.4 (|CL10]). The C*-algebra U[R] is simple.

Proof. Let us denote the groupoid R X Py(g)| by . As in Proposition we need to show
that G is minimal and topologically principal. The proof of the minimality of G is exactly similar
to that in Proposition We now show that G is topologically principal. For g € Py(g)\{1},
let us denote the set of fixed points of g in R by Fj. It follows from Baire category theorem

that G is topologically principal if and only if F,; has empty interior for every g # 1.

1 0
Let g = [ k n] be a non-identity element in Fgyg). Suppose that F; contains a non-
m m

empty open set say U. Now note that R is dense in R. Thus UNR is non-empty. Moreover
U N R is infinite. Let r1,72 be two distinct points of R in U. Since r1,72 € Fy, it follows that
mry — k = nry and mry — k = nry. Thus we have (m — n)ry = k = (m — n)ry. This forces
m = n and k = 0. This is a contradiction to the fact that g # 1. Thus for every g # 1, Fj
has empty interior which in turn implies that G is topologically principal. This completes the
proof. O

Remark 8.5. In [KLQ10], Cuntz-Li type relations arising out of a semidirect product N x H
where N is a normal subgroup and H 1is an abelian group satisfying certain hypothesis were
considered. It was shown in [KLQ10|] that the universal C*-algebra generated by the Cuntz-Li
type relations is isomorphic to a corner of a crossed product algebra. It is possible to apply
verse semigroups and tight representations to reconstruct this result. The details will be spelt
out elsewhere.

REFERENCES

[BE10] Giuliano Boavo and Ruy Exel, Partial crossed product description of the C*-algebras associated to
integral domains, arxiv:1010.0967v2/math.OA, 2010.

[CLO7]  John Crisp and Marcelo Laca, Boundary quotients and ideals of Toeplitz C*-algebras of Artin groups,
J. Funct. Anal. 242 (2007), no. 1, 127-156. MR 2274018 (2007k:46117)



20

[CL10]
[CL11]

[Cun08]

[Exe08]
[Exe09]
[KLQ10]
[LR10]
[MR82]
[Nic92]
[Pat99)]
[Ren80]

[Ren09]

S. SUNDAR

Joachim Cuntz and Xin Li, The regular C*-algebra of an integral domain, Quanta of maths, Clay
Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 149-170. MR 2732050

, C™*-algebras associated with integral domains and crossed products by actions on adele spaces,
J. Noncommut. Geom. 5 (2011), no. 1, 1-37. MR, 2746649

Joachim Cuntz, C™*-algebras associated with the ax + b-semigroup over N, K-theory and noncommu-
tative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Ziirich, 2008, pp. 201-215. MR 2513338
(20101:46086)

Ruy Exel, Inverse semigroups and combinatorial C* algebras, Bull.Braz.Math.Soc.(NS) 39 (2008),
no. 2, 191-313.

, Tight representations of semilattices and inverse semigroups, Semigroup Forum 79 (2009),
159-182.

S. Kaliszewski, M. Landstad, and J. Quigg, A crossed-product approach to the Cuntz-Li algebras,
arxiv:1012:5285, 2010.

Marcelo Laca and lain Raeburn, Phase transition on the Toeplitz algebra of the affine semigroup over
the natural numbers, Adv. Math. 225 (2010), no. 2, 643-688. MR 2671177

Paul S. Muhly and Jean N. Renault, C*—algebras of multivariable Wiener-Hopf operators,
Trans.Amer.Math.Soc. 274 (1982), no. 1, 1-44.

A. Nica, C*-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory 27
(1992), no. 1, 17-52. MR 1241114 (94m:46094)

Alan L. T. Paterson, Groupoids, inverse semigroups, and their operator algebras, Progress in Mathe-
matics, vol. 170, Birkhduser Boston Inc., Boston, MA, 1999. MR 1724106 (2001a:22003)

Jean Renault, A groupoid approach to C*-algebras, Lecture Notes in Mathematics, vol. 793, Springer,
Berlin, 1980. MR 584266 (82h:46075)

, C*-algebras and dynamical systems, Publicagbes Matematicas do IMPA. [IMPA Mathemati-
cal Publications], Instituto Nacional de Matemédtica Pura e Aplicada (IMPA), Rio de Janeiro, 2009,
270 Coléquio Brasileiro de Matematica. [27th Brazilian Mathematics Colloquium]. MR 2536186
(2011e:46110)

Acknowledgements: This work was undertaken during the author’s visit to the Insitute of Mathematical

Sciences,

Chennai in April 2011. I thank Prof. V.S.Sunder and Prof. Partha Sarathi Chakraborty for providing

me a visit. I would also like to thank Anil for explaining to me certain ring theoretical constructions.

EMAIL:

sundarsobers@gmail.com

Indian Statistical Institute, Delhi.



	1. Introduction
	2. The Regular C*-algebra associated to Z 
	3.  Tight representations of an inverse semigroup 
	4. Tight characters of the inverse semigroup T
	5. The groupoid Gtight of the inverse semigroup T
	6. Simplicity of U[Z]
	7. Nica-covariance, tightness and boundary relations
	8. The Cuntz-Li algebra for a general integral domain
	References

