isid/ms/2011/16 September 6,2011 http://www.isid.ac.in/~statmath/eprints

A note on Gaussian distributions in \mathbb{R}^n

B. G. Manjunath K. R. Parthasarathy

Indian Statistical Institute, Delhi Centre 7, SJSS Marg, New Delhi–110016, India

A note on gaussian distributions in \mathbb{R}^n

B.G. MANJUNATH and K.R. PARTHASARATHY

Indian Statistical Institute, Delhi Centre, 7, S. J. S. Sansanwal Marg, New Delhi – 110016, India E-mail : bgmanjunath@gmail.com; krp@isid.ac.in

Abstract. Given any finite set \mathcal{F} of (n - 1)– dimensional subspaces of \mathbb{R}^n we give examples of nongaussian probability measures in \mathbb{R}^n whose marginal distribution in each subspace from \mathcal{F} is gaussian. However, if \mathcal{F} is an infinite family of such (n - 1)–dimensional subspaces then such a nongaussian probability measure in \mathbb{R}^n does not exist.

Key words. gaussian distribution, characteristic function, homogeneous polynomial, linear functionals, nonunimodality, Hermite polynomial

AMS 1991 subject classification: primary, 60G15, 60E10; secondary, 62E15

1 Introduction

Starting with the simple example of E. Nelson as cited by W. Feller in [1] we have from the papers of B.K. Kale [3], G.G. Hamedani and M.N. Tata [2] and Y. Shao and M. Zhou [4] etc., as well as Section 10 of J. Stoyanov's book [5], several examples of bivariate and multivariate nongaussian distributions under which many linear functionals can have a gaussian distribution on the real line. These results suggest the possibility of characterizing a gaussian distribution in \mathbb{R}^n through properties of classes of linear functionals. Motivated by Nelson's example in [1] and the bivariate construction in [2] we introduce a perturbation of the standard gaussian density function in \mathbb{R}^n exhibiting the following interesting features: (1) Given any finite set $\{S_{j,1} \leq j \leq N\}$ of (n - 1)-dimensional subspaces it has a marginal density function which is standard gaussian in each $S_{j, j} \in \{1, 2, ..., N\}$; (2) There can exist linear functionals whose distributions may have nonunimodal density functions; (3) For certain choices of subspaces the nongaussian perturbation can be so chosen that any real symmetric measurable function of all the *n* coordinates has its distribution preserved. In particular, the sum of squares of all the coordinates can have the χ^2 distribution with *n* degrees of freedom.

We also demonstrate the following characterization of the multivariate gaussian distribution. Suppose $\{S_j, j = 1, 2, ...\}$ is a countably infinite set of (n - 1)-dimensional subspaces of \mathbb{R}^n and μ is a probability measure in \mathbb{R}^n such that the projection of μ in each subspace S_j is gaussian. Then μ itself is gaussian. This is a generalization of the characterization in [2] and a more precise version of the result in [4].

Our proofs follow the steps in [2] and use some additional geometric and topological arguments of a very elementary kind.

2 A perturbation of the gaussian characteristic function

We begin by examining a small perturbation of the characteristic function of the *n*-variate standard gaussian distribution with mean vector **0** and covariance matrix **I** as follows. Choose and fix any homogeneous polynomial \mathcal{P} of even degree 2k in *n* real variables $t_1, t_2, ..., t_n$ and define

$$\Phi(\boldsymbol{t};\varepsilon,\sigma,\mathcal{P})(\boldsymbol{t}) = e^{-\frac{1}{2}|\boldsymbol{t}|^2} + \varepsilon \ e^{-\frac{1}{2}\sigma^2|\boldsymbol{t}|^2}\mathcal{P}(\boldsymbol{t}), \ \boldsymbol{t} \in \mathbb{R}^n$$
(2.1)

where $\mathbf{t} = (t_1, ..., t_n)^T$, ε is a real parameter and σ is a parameter satisfying $0 < \sigma < 1$. Here

$$|\mathbf{t}|^2 = (t_1^2 + \dots + t_n^2).$$

Clearly, $\Phi(\cdot; \varepsilon, \sigma, \mathcal{P})$ is a real analytic function on \mathbb{R}^n satisfying

$$\Phi(\mathbf{0};\varepsilon,\sigma,\mathcal{P}) = 1,$$

$$\Phi(-\mathbf{t};\varepsilon,\sigma,\mathcal{P}) = \Phi(\mathbf{t};\varepsilon,\sigma,\mathcal{P}).$$
(2.2)

Let

$$Z_{\mathcal{P}} = \{ t | \mathcal{P}(t) = 0, t \in \mathbb{R}^n \}$$

$$(2.3)$$

be the set of zeros of \mathcal{P} in \mathbb{R}^n .

Since we are interested in the inverse Fourier transform of Φ we introduce the renormalized polynomial : \mathcal{P} : in the form of a formal definition.

Definition 2.1. Let

$$\mathfrak{N}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

and let $H_m(x)$ be the *m*-th Hermite polynomial defined by

$$\frac{d^m}{dx^m}\mathfrak{N}(x) = (-1)^m H_m(x)\mathfrak{N}(x), \ m = 0, 1, 2, \dots$$

(as in Feller [1]). For any real polynomial \mathcal{P} in n real variables given by

$$\mathcal{P}(t_1, t_2, ..., t_n) = \sum_{\boldsymbol{m}} a_{m_1, m_2, ..., m_n} t_1^{m_1} t_2^{m_2} ... t_n^{m_n}$$

its renormalized version : \mathcal{P} *: is defined by*

:
$$\mathcal{P}: (x_1, ..., x_n) = \sum_{m} a_{m_1, m_2, ..., m_n} H_{m_1}(x_1) H_{m_2}(x_2) ... H_{m_n}(x_n).$$

Note that for a homogeneous polynomial, its renormalized version need not be homogeneous.

Since the function Φ in (2.1) is in $\mathbb{L}_1(\mathbb{R}^n)$ its inverse Fourier transform f is defined by

$$f(\mathbf{x};\varepsilon,\sigma,\mathcal{P}) = \frac{1}{(2\pi)^n} \int e^{-i\mathbf{t}^T \mathbf{x}} \Phi(\mathbf{t};\varepsilon,\sigma,\mathcal{P}) dt_1 dt_2 \dots dt_n$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{-\frac{1}{2}|\mathbf{x}|^2} + \varepsilon \frac{1}{(2\pi)^n} \int e^{-i\mathbf{t}^T \mathbf{x}} e^{-\frac{1}{2}\sigma^2 |\mathbf{t}|^2} \mathcal{P}(\mathbf{t}) dt_1 \dots dt_n.$$
(2.4)

First, we note that

$$\frac{1}{(2\pi)^n}\int e^{-i\boldsymbol{t}^T\boldsymbol{x}}e^{-\frac{1}{2}\sigma^2|\boldsymbol{t}|^2}dt_1dt_2...dt_n=\frac{1}{\sigma^n}\prod_{j=1}^n\mathfrak{N}\left(\frac{x_j}{\sigma}\right).$$

Repeated differentiation with respect to $x_1, x_2, ..., x_n$ shows that for the homogeneous polynomial \mathcal{P} of degree 2k we have

$$\frac{1}{(2\pi)^n} \int e^{-i\boldsymbol{t}^T \boldsymbol{x}} e^{-\frac{1}{2}\sigma^2 |\boldsymbol{t}|^2} \mathcal{P}(\boldsymbol{t}) dt_1 dt_2 \dots dt_n$$
$$= \frac{1}{\sigma^n} \mathcal{P}\left(i\frac{\partial}{\partial x_1}, \dots, i\frac{\partial}{\partial x_n}\right) \left\{\prod_{j=1}^n \mathfrak{N}\left(\frac{x_j}{\sigma}\right)\right\}$$
$$= \frac{(-1)^k}{\sigma^{n+2k}} : \mathcal{P} : \left(\frac{x_1}{\sigma}, \dots, \frac{x_n}{\sigma}\right) \frac{1}{(\sqrt{2\pi})^n} e^{-\frac{1}{2\sigma^2}|\boldsymbol{x}|^2}$$

Thus the inverse Fourier transform (2.4) assumes the form

$$f(\boldsymbol{x};\varepsilon,\sigma,\mathcal{P}) = \frac{1}{(\sqrt{2\pi})^n} e^{-\frac{1}{2}|\boldsymbol{x}|^2} \left\{ 1 + \frac{(-1)^k \varepsilon}{\sigma^{n+2k}} : \mathcal{P} : \left(\frac{x_1}{\sigma}, ..., \frac{x_n}{\sigma}\right) e^{-\frac{1}{2\sigma^2}|\boldsymbol{x}|^2(1-\sigma^2)} \right\}.$$
(2.5)

Since, by assumption, $1 - \sigma^2 > 0$ the positive constant $K(\sigma, \mathcal{P})$ defined by

$$K(\sigma, \mathcal{P}) = \sup_{\boldsymbol{x} \in \mathbb{R}^n} \frac{|: \mathcal{P}: (x_1, ..., x_n)|}{\sigma^{n+2k}} e^{-\frac{1}{2}|\boldsymbol{x}|^2(1-\sigma^2)}$$
(2.6)

is finite and for all $x \in \mathbb{R}^n$

$$f(\mathbf{x};\varepsilon,\sigma,\mathcal{P}) \geq 0 \text{ if } |\varepsilon| \leq K^{-1}(\sigma,\mathcal{P})$$

we observe that $\Phi(\cdot; \varepsilon, \sigma, \mathcal{P})$ is a real characteristic function of the probability density function $f(\cdot; \varepsilon, \sigma, \mathcal{P})$ defined by (2.5) for any

 $\varepsilon \in [-K^{-1}(\sigma, \mathcal{P}), K^{-1}(\sigma, \mathcal{P})]$. Here we have made use of property (2.2). Thus we can summarize the discussion above as a theorem.

Theorem 2.2. Let $0 < \sigma < 1$, \mathcal{P} be a real homogeneous polynomial in n variables of even degree 2k, $K(\sigma, \mathcal{P})$ the positive constant defined by (2.6) and $\varepsilon \in [-K^{-1}(\sigma, \mathcal{P}), K^{-1}(\sigma, \mathcal{P})]$. Then the function $\Phi(\cdot; \varepsilon, \sigma, \mathcal{P})$ defined by (2.1) is the characteristic function of a probability density function $f(\cdot; \varepsilon, \sigma, \mathcal{P})$ defined by (2.5). Under this density function $f(\cdot; \varepsilon, \sigma, \mathcal{P})$ the linear functional $\mathbf{x} \longmapsto \mathbf{a}^T \mathbf{x}$ with $|\mathbf{a}| = 1$ has characteristic function $\varphi_{\mathbf{a}}$ and probability density function $g_{\mathbf{a}}$ on the real line given respectively by

$$\varphi_{\boldsymbol{a}}(t) = e^{-\frac{1}{2}t^2} + \varepsilon \ \mathcal{P}(\boldsymbol{a})e^{-\frac{1}{2}\sigma^2 t^2}t^{2k}, \ t \in \mathbb{R}$$
(2.7)

$$f_{a}(x) = \frac{1}{\sqrt{2\pi}} \left\{ e^{-\frac{1}{2}x^{2}} + \frac{(-1)^{k} \varepsilon \mathcal{P}(a)}{\sigma^{2k+1}} H_{2k}\left(\frac{x}{\sigma}\right) e^{-\frac{1}{2\sigma^{2}}x^{2}} \right\}.$$
 (2.8)

In particular, for any $a \in Z_{\mathcal{P}}$, the linear functional $a^T x$ has the normal distribution with mean 0 and variance $|a|^2$ but $f(\cdot; \varepsilon, \sigma, \mathcal{P})$ is a nongaussian density function for any $\varepsilon \in [-K^{-1}(\sigma, \mathcal{P}), K^{-1}(\sigma, \mathcal{P})] \setminus \{0\}$.

Proof. The first part is immediate from the discussion preceding the statement of the theorem. To prove the second part we note that the characteristic function $\varphi_{a}(t)$ of the linear functional $a^{T}x$ under the density function $f(\cdot; \varepsilon, \sigma, \mathcal{P})$ is $\Phi(ta; \varepsilon, \sigma, \mathcal{P})$ and (2.7) follows from (2.1) and the homogeneity of \mathcal{P} . Now (2.8) follows from Fourier inversion of (2.7). If $0 \neq a \in Z_{\mathcal{P}}$ then $0 = \mathcal{P}(a) = \mathcal{P}\left(\frac{a}{|a|}\right)$ and therefore

$$\varphi_{\underline{a}}(t) = e^{-\frac{1}{2}t^2}.$$

Hence $a^T x$ is normally distributed with mean 0 and variance $|a|^2$.

Corollary 2.3. Let $\{S_j, 1 \le j \le N\}$ be any finite set of (n - 1)-dimensional subspaces of \mathbb{R}^n . Then there exists a nongaussian analytic probability density function whose projection on S_j is gaussian for each $j \in \{1, 2, ..., N\}$.

Proof. By adding one more (n - 1)-dimensional subspace to the collection $\{S_j, 1 \le j \le N\}$, if necessary, we may assume without loss of generality that N is even. Choose a unit vector $a^{(j)} \in S_j^{\perp}$ for each j and define the homogeneous real polynomial \mathcal{P} of degree N by

$$\mathcal{P}(t) = \prod_{j=1}^{N} a^{(j)^T} t$$
, $t \in \mathbb{R}^n$

Clearly,

$$\mathcal{P}(t) = 0 ext{ if } t \in \bigcup_{j=1}^N S_j.$$

In other words

$$\bigcup_{j=1}^N S_j \subset Z_{\mathcal{P}}.$$

If we choose μ to be the probability measure with the density function $f(\cdot; \varepsilon, \sigma, \mathcal{P})$, $0 \neq \varepsilon$ in $[-K^{-1}(\sigma, \mathcal{P}), K^{-1}(\sigma, \mathcal{P})]$ in Theorem 2.2 it follows immediately from the last part of the theorem that every linear functional of the form $\boldsymbol{b}^T \boldsymbol{x}$ has a normal distribution with mean 0 and variance $|\boldsymbol{b}|^2$ whenever $\boldsymbol{b} \in Z_{\mathcal{P}}$. This completes the proof.

Remark 2.4. In the context of understanding the modes of the density function $g_a(x)$ given by (2.8) *it is of interest to note that*

$$\left\{ x \middle| x \neq 0, g'_{a}(x) = 0 \right\} =$$

$$\left\{ x \middle| x \neq 0, e^{\frac{x^{2}}{2}(\frac{1}{\sigma^{2}} - 1)} + \frac{(-1)^{k} \varepsilon \mathcal{P}(a)}{\sigma^{2k+2}} \frac{H_{2k+1}(\frac{x}{\sigma})}{x} = 0 \right\}.$$

Indeed, this is obtained by straightforward differentiation and using the recurrence relation $H_{2k+1}(x) = xH_{2k}(x) - H'_{2k}(x)$.

Example 2.5. Let *n* be even,

$$\mathcal{P}(t_{1}, t_{2}, ..., t_{n}) = t_{1}t_{2}...t_{n} \prod_{i>j} (t_{i}^{2} - t_{j}^{2})$$

$$= t_{1}t_{2}...t_{n} \begin{vmatrix} 1 & 1 & ... & 1 \\ t_{1}^{2} & t_{2}^{2} & ... & t_{n}^{2} \\ t_{1}^{4} & t_{2}^{4} & ... & t_{n}^{4} \\ . & . & ... & . \\ . & . & ... & . \\ t_{1}^{2(n-1)} & t_{2}^{2(n-1)} & ... & t_{n}^{2(n-1)} \end{vmatrix}$$
(2.9)

Then \mathcal{P} is a polynomial of even degree n^2 , which is antisymmetric in the variables $t_1, t_2, ..., t_n$. The renormalized version : \mathcal{P} : of \mathcal{P} is given by

$$: \mathcal{P}: (x_1, x_2, ..., x_n) = \begin{vmatrix} H_1(x_1) & H_1(x_2) & ... & H_1(x_n) \\ H_3(x_1) & H_3(x_2) & ... & H_3(x_n) \\ \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdots & \cdot \\ H_{2n+1}(x_1) & H_{2n+1}(x_2) & ... & H_{2n+1}(x_n) \end{vmatrix}$$
(2.10)

In particular, : \mathcal{P} : is antisymmetric in the variables $x_1, x_2, ..., x_n$. Fixing $0 < \sigma < 1$ we get for each $\varepsilon \in [-K^{-1}(\sigma, \mathcal{P}), K^{-1}(\sigma, \mathcal{P})]$, with $K(\sigma, \mathcal{P})$ being determined by (2.6), (2.10) and $k = \frac{1}{2}n^2$, the probability density function $f(\cdot; \varepsilon, \sigma, \mathcal{P})$ given by

$$f(\mathbf{x}; \varepsilon, \sigma, \mathcal{P}) = \frac{1}{(\sqrt{2\pi})^n} \left\{ e^{-\frac{1}{2}|\mathbf{x}|^2} + \frac{\varepsilon}{\sigma^{n(n+1)}} \right|_{H_1(\frac{x_1}{\sigma}) = H_1(\frac{x_2}{\sigma}) - \dots - H_1(\frac{x_n}{\sigma}) \\ H_3(\frac{x_1}{\sigma}) = H_3(\frac{x_2}{\sigma}) - \dots - H_3(\frac{x_n}{\sigma}) \\ \vdots = \vdots = \vdots = \vdots = \vdots \\ H_{2n+1}(\frac{x_1}{\sigma}) = H_{2n+1}(\frac{x_2}{\sigma}) - \dots - H_{2n+1}(\frac{x_n}{\sigma}) \\ e^{-\frac{1}{2}\sigma^2|\mathbf{x}|^2} \right\}.$$
(2.11)

By Theorem 2.2 and its Corollary we conclude that the projection of this density function on the (n-1)-dimensional hyperplanes $\{x | x_j = 0\}, 1 \le j \le n; \{x | x_i - x_j = 0\}, 1 \le i \le j \le n$ and $\{x | x_i + x_j = 0\}, 1 \le i \le j \le n$ are all (n-1)-dimensional gaussian densities.

If $g(x_1, x_2, ..., x_n)$ is any bounded continuous function which is symmetric in the variables $x_1, x_2, ..., x_n$ then the function $g : \mathcal{P}$: is an antisymmetric function in \mathbb{R}^n and therefore

$$\int_{\mathbb{R}^n} (g:\mathcal{P}:)(x_1, x_2, ..., x_n) e^{-\frac{1}{2\sigma^2}|\mathbf{x}|^2} dx_1 dx_2 ... dx_n = 0.$$

Thus

$$\int_{\mathbb{R}^{n}} g(x_{1}, ..., x_{n}) f(\mathbf{x}; \varepsilon, \sigma, \mathcal{P}) dx_{1} dx_{2} ... dx_{n}$$

=
$$\int_{\mathbb{R}^{n}} g(x_{1}, x_{2}, ..., x_{n}) \frac{1}{(\sqrt{2\pi})^{n}} e^{-\frac{1}{2}|\mathbf{x}|^{2}} dx_{1} dx_{2} ... dx_{n}$$

In other words, for $0 \neq \varepsilon \in [-K^{-1}(\sigma, \mathcal{P}), K^{-1}(\sigma, \mathcal{P})]$, any symmetric measurable function *g* on \mathbb{R}^n has the property that its distribution under the nongaussian density function $f(x; \varepsilon, \sigma, \mathcal{P})$ in (2.11) is the same as its distribution under the standard gaussian density function with mean **0** and covariance matrix *I*.

Example 2.6. We now specialize Example 2.5 to the case n = 2, $\sigma = 2^{-1/2}$ when

$$\mathcal{P}(t_1, t_2) = t_1 t_2 (t_1^2 - t_2^2),$$

: $\mathcal{P}: (x_1, x_2) = H_3(x_1) H_1(x_2) - H_1(x_1) H_3(x_2)$
= $x_1^3 x_2 - x_2^3 x_1.$

A simple computation shows that

$$\begin{aligned} K(\sigma, \mathcal{P}) &= 8 \sup |x_1^3 x_2 - x_2^3 x_1| \ e^{-\frac{1}{4}(x_1^2 + x_2^2)} \\ &= 128 \ e^{-2}. \end{aligned}$$

This supremum is easily evaluated by switching over to the polar coordinates $x_1 = rcos\theta$, $x_2 = rsin\theta$. Then

$$f(\mathbf{x};\varepsilon,\sigma,\mathcal{P}) = \frac{1}{2\pi} e^{-\frac{1}{2}(x_1^2 + x_2^2)} \left\{ 1 + 32\varepsilon (x_1^3 x_2 - x_2^3 x_1) e^{-\frac{1}{2}(x_1^2 + x_2^2)} \right\}$$
(2.12)

which is a probability density function whenever

$$|\varepsilon| \le \frac{e^2}{128}.$$

At $\varepsilon = 0$, it is the standard normal density function with mean **0** and covariance matrix *I*. We write $\eta = 32 \varepsilon$ and express the density function (2.12) as

$$f_{\eta}(x_1, x_2) = \frac{1}{2\pi} e^{-\frac{1}{2}(x_1^2 + x_2^2)} \left\{ 1 + \eta(x_1^3 x_2 - x_2^3 x_1) e^{-\frac{1}{2}(x_1^2 + x_2^2)} \right\}$$
(2.13)

Figure 1: Bivariate density $f_{\eta}(x_1, x_2)$ at $\eta = e^2/4$.

where

$$|\eta| \leq \frac{e^2}{4}.$$

When $a = (sin\theta, cos\theta)$ the density function g_{θ} of the linear functional $x \mapsto x_1 sin\theta + x_2 cos\theta$, under f_{η} is given by the formula (2.8) of Theorem 2.2 as

$$g_{\theta}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \left\{ 1 - \frac{\sqrt{2} \eta \sin(4\theta)}{32} (4x^4 - 12x^2 + 3)e^{-\frac{1}{2}x^2} \right\}.$$
 (2.14)

Thus

$$g_{\theta}'(x) = \frac{-x}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \left\{ e^{\frac{1}{2}x^2} - \frac{\sqrt{2} \eta \sin(4\theta)}{16} (4x^4 - 20x^2 + 15)e^{-\frac{1}{2}x^2} \right\}.$$

It is not difficult to find values of η in the range $(0, \frac{1}{4}e^2)$ and angle θ for which

$$\left\{x\left|e^{\frac{1}{2}x^{2}}-\frac{\sqrt{2} \eta \sin(4\theta)}{16}(4x^{4}-20x^{2}+15)=0, x\neq 0\right\}\neq\emptyset.$$
(2.15)

This reveals the possibility of nonunimodality of the density of some linear functionals under the joint density f_{η} . For an illutration cf. Fig. (2).

Figure 2: Nonunimodality of g_{θ} .

3 A characterization of gaussian distributions in \mathbb{R}^n

In the context of the Corollary to Theorem 2.2 we have the following characterization of a gaussian distribution in \mathbb{R}^n when the number *N* of (n - 1)-dimensional subspaces in the

corollary is countably infinite.

Theorem 3.1. Let $\{S_j, j = 1, 2...\}$ be a countably infinite set of (n - 1)-dimensional subspaces of \mathbb{R}^n and let μ be a probability measure in \mathbb{R}^n whose projection on S_j is gaussian for each j = 1, 2, Then μ is gaussian.

Proof. The fact that the projection of μ on the two distinct (n - 1)-dimensional subspaces S_1 and S_2 are gaussian implies that the multivariate Laplace transform $\hat{\mu}$ of μ given by

$$\widehat{\mu}(z_1, ..., z_n) = \int \exp(z_1 x_1 + ... + z_n x_n) \mu(dx_1 dx_2 ... dx_n)$$
(3.1)

is well-defined for $z \in \mathbb{C}^n$ and analytic in each of the complex variables z_j , j = 1, ..., n. Let m and Σ be respectively the mean vector and covariance matrix of the \mathbb{R}^n valued random variable x with distribution μ .

Choose and fix a unit vector $\boldsymbol{a}^{(j)} \in S_j^{\perp}$ for each j = 1, 2, Suppose

$$a^{(j)^T} = (a_{j1}, ..., a_{jn}), \ j = 1, 2, ...,$$

 $\alpha_j = \max_{1 \le r \le n} |a_{jr}|.$

Since

$$\sum_{r=1}^n a_{jr}^2 = 1, \ \forall j$$

it follows that $\alpha_j \ge n^{-1/2}$, $\forall j$. There exists an r_0 such that $a_{jr_0} = \alpha_j$ for infinitely many values of j. Restricting ourselves to this infinite set of j's and assuming $r_0 = 1$ without loss of generality we may as well assume that

$$\begin{aligned} \mathbf{a}^{(j)} &= (a_{j1}, ..., a_{jn})^T, \\ |a_{j1}| &= \max_{1 \le r \le n} |a_{jr}| \; \forall \; j = 1, 2, ..., \\ |a_{j1}| &\ge n^{-1/2} \; \forall j. \end{aligned}$$

Now consider the (n-1)- dimensional vector $\boldsymbol{b}^{(j)}$ defined by

$$\boldsymbol{b}^{(j)^T} = \left(\frac{a_{j2}}{a_{j1}}, \frac{a_{j3}}{a_{j1}}, \dots, \frac{a_{jn}}{a_{j1}}\right), \ j = 1, 2, \dots$$

where

$$\left|\frac{a_{jr}}{a_{j1}}\right| \le 1 \ \forall \ r = 2, 3, ..., n.$$

Thus all the vectors $\boldsymbol{b}^{(j)}$ are distinct and they constitute a bounded countable set in $\mathbb{R}^{(n-1)}$. Define the set

$$\mathbb{D} = \bigcap_{j < i} \left\{ \boldsymbol{s} \middle| \boldsymbol{s} \in \mathbb{R}^{(n-1)}, (\boldsymbol{b}^{(j)} - \boldsymbol{b}^{(i)})^T \boldsymbol{s} \neq 0
ight\}.$$

Being a countable intersection of dense open sets it follows from the Baire category theorem that \mathbb{D} is dense in $\mathbb{R}^{(n-1)}$. Let now

$$s = (s_2, s_3, ..., s_n)^T \in \mathbb{R}^{(n-1)}$$

be any fixed point in D. Define

$$s_{j1} = -\boldsymbol{b}^{(j)^T} \boldsymbol{s}, \ j = 1, 2, \dots$$

By the definition of \mathbb{D} , { s_{j1} , j = 1, 2, ...} is a bounded and countably infinite set of distinct points on the real line. Furthermore

$$a_{j1}s_{j1} + a_{j2}s_2 + \dots + a_{jn}s_n = 0 \ \forall \ j.$$

In other words, $(s_{j1}, s_2, ..., s_n)^T \in S_j$ for each j. By hypothesis the linear functional $s_{j1}x_1 + s_2x_2 + ... + s_nx_n$ has a normal distribution with mean $s_{j1}m_1 + s_2m_2 + ... + s_nm_n$ and variance $(s_{j1}, s_2, ..., s_n)\Sigma(s_{j1}, s_2, ..., s_n)^T$. Defining

$$\psi(z_1,...,z_n) = \exp(\boldsymbol{m}^T \boldsymbol{z} + rac{1}{2} \boldsymbol{z}^T \Sigma \boldsymbol{z}), \ \boldsymbol{z} \in \mathbb{C}^n$$

we conclude that the Laplace transform $\hat{\mu}$ defined by (3.1) and the function ψ satisfy the relation

$$\widehat{\mu}(s_{j1}, s_2, ..., s_n) = \psi(s_{j1}, s_2, ..., s_n)$$

for j = 1, 2, Since $\hat{\mu}(z, s_2, ..., s_n)$ and $\psi(z, s_2, ..., s_n)$ are analytic functions of z in the whole complex plane and they agree on the infinite bounded set $\{s_{j1}, j = 1, 2, ...\}$ it follows that

$$\widehat{\mu}(z, s_2, ..., s_n) = \psi(z, s_2, ..., s_n) \ \forall \ z \in \mathbb{C}.$$

Since this holds for all $(s_2, ..., s_n)^T \in \mathbb{D}$ which is dense in $\mathbb{R}^{(n-1)}$ and both sides of the equation are continuous on \mathbb{R}^n we have

$$\widehat{\mu}(s_1, s_2, ..., s_n) = \psi(s_1, s_2, ..., s_n)$$

for all $(s_1, s_2, ..., s_n)^T \in \mathbb{R}^n$. This implies that μ is a gaussian measure with mean vector m and covariance matrix Σ .

Acknowledgement

We thank S. Ramasubramanian for bringing our attention to the example of E. Nelson on page 99 of W.Feller [1] and J. Stoyanov for his useful suggestions.

References

- [1] W. Feller, An Introduction to Probability Theory and Its Applications (2000) (India: Wiley), Vol. II, 2nd edition
- [2] G.G. Hamedani and M.N. Tata, On the determination of the bivariate normal distribution from distributions of linear combinations of the variables, The American Mathematical Monthly, 82 (1975), 913–915
- [3] B.K. Kale, Normality of linear combinations of non-normal random variables, The American Mathematical Monthly, 77 (1970), 992–995
- [4] Y. Shao and M. Zhou, A characterization of multivariate normality through univariate projections, J. Multi. Analysis, 101 (2010), 2637–2640
- [5] J. Stoyanov, Counterexamples in Probability (1997) (New York: Wiley), 2nd edition