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Abstract. Given any finite set F of (n − 1)– dimensional subspaces of Rn we give examples of non-

gaussian probability measures in Rn whose marginal distribution in each subspace from F is gaussian.

However, if F is an infinite family of such (n − 1)–dimensional subspaces then such a nongaussian
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1 Introduction

Starting with the simple example of E. Nelson as cited by W. Feller in [1] we have from the
papers of B.K. Kale [3], G.G. Hamedani and M.N. Tata [2] and Y. Shao and M. Zhou [4] etc., as
well as Section 10 of J. Stoyanov’s book [5], several examples of bivariate and multivariate non-
gaussian distributions under which many linear functionals can have a gaussian distribution
on the real line. These results suggest the possibility of characterizing a gaussian distribution
in Rn through properties of classes of linear functionals. Motivated by Nelson’s example in
[1] and the bivariate construction in [2] we introduce a perturbation of the standard gaussian
density function in Rn exhibiting the following interesting features: (1) Given any finite set
{Sj, 1 ≤ j ≤ N} of (n− 1)–dimensional subspaces it has a marginal density function which
is standard gaussian in each Sj, j ∈ {1, 2, ..., N}; (2) There can exist linear functionals whose
distributions may have nonunimodal density functions; (3) For certain choices of subspaces
the nongaussian perturbation can be so chosen that any real symmetric measurable function
of all the n coordinates has its distribution preserved. In particular, the sum of squares of all
the coordinates can have the χ2 distribution with n degrees of freedom.

We also demonstrate the following characterization of the multivariate gaussian distribu-
tion. Suppose {Sj, j = 1, 2, ...} is a countably infinite set of (n− 1)–dimensional subspaces of
Rn and µ is a probability measure in Rn such that the projection of µ in each subspace Sj is
gaussian. Then µ itself is gaussian. This is a generalization of the characterization in [2] and a



more precise version of the result in [4].
Our proofs follow the steps in [2] and use some additional geometric and topological ar-

guments of a very elementary kind.

2 A perturbation of the gaussian
characteristic function

We begin by examining a small perturbation of the characteristic function of the n–variate
standard gaussian distribution with mean vector 0 and covariance matrix I as follows. Choose
and fix any homogeneous polynomial P of even degree 2k in n real variables t1, t2, ..., tn and
define

Φ(t; ε, σ,P)(t) = e−
1
2 |t|2 + ε e−

1
2 σ2|t|2P(t), t ∈ Rn (2.1)

where t = (t1, ..., tn)T, ε is a real parameter and σ is a parameter satisfying 0 < σ < 1. Here

|t|2 = (t2
1 + ... + t2

n).

Clearly, Φ(·; ε, σ,P) is a real analytic function on Rn satisfying

Φ(0; ε, σ,P) = 1,

Φ(−t; ε, σ,P) = Φ(t; ε, σ,P). (2.2)

Let

ZP = {t|P(t) = 0, t ∈ Rn} (2.3)

be the set of zeros of P in Rn.
Since we are interested in the inverse Fourier transform of Φ we introduce the renormal-

ized polynomial : P : in the form of a formal definition.

Definition 2.1. Let

N(x) =
1√
2π

e−
1
2 x2

and let Hm(x) be the m-th Hermite polynomial defined by

dm

dxm N(x) = (−1)mHm(x)N(x), m = 0, 1, 2, ...
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(as in Feller [1]). For any real polynomial P in n real variables given by

P(t1, t2, ..., tn) = ∑
m

am1,m2,...,mn tm1
1 tm2

2 ...tmn
n

its renormalized version : P : is defined by

: P : (x1, ..., xn) = ∑
m

am1,m2,...,mn Hm1(x1)Hm2(x2)...Hmn(xn).

Note that for a homogeneous polynomial, its renormalized version need not be homogeneous.

Since the function Φ in (2.1) is in L1(Rn) its inverse Fourier transform f is defined by

f (x; ε, σ,P) =
1

(2π)n

∫
e−itTxΦ(t; ε, σ,P)dt1dt2...dtn

=
1

(
√

2π)n
e−

1
2 |x|2 + ε

1
(2π)n

∫
e−itTxe−

1
2 σ2|t|2P(t)dt1...dtn.

(2.4)

First, we note that

1
(2π)n

∫
e−itTxe−

1
2 σ2|t|2 dt1dt2...dtn =

1
σn

n

∏
j=1

N

(
xj

σ

)
.

Repeated differentiation with respect to x1, x2, ..., xn shows that for the homogeneous polyno-
mial P of degree 2k we have

1
(2π)n

∫
e−itTxe−

1
2 σ2|t|2P(t)dt1dt2...dtn

=
1

σnP
(

i
∂

∂x1
, ..., i

∂

∂xn

){ n

∏
j=1

N

(
xj

σ

)}

=
(−1)k

σn+2k : P :
( x1

σ
, ...,

xn

σ

) 1
(
√

2π)n
e−

1
2σ2 |x|2 .

Thus the inverse Fourier transform (2.4) assumes the form

f (x; ε, σ,P)

=
1

(
√

2π)n
e−

1
2 |x|2

{
1 +

(−1)k ε

σn+2k : P :
( x1

σ
, ...,

xn

σ

)
e−

1
2σ2 |x|2(1−σ2)

}
.

(2.5)
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Since, by assumption, 1− σ2 > 0 the positive constant K(σ,P) defined by

K(σ,P) = sup
x∈Rn

| : P : (x1, ..., xn)|
σn+2k e−

1
2 |x|2(1−σ2) (2.6)

is finite and for all x ∈ Rn

f (x; ε, σ,P) ≥ 0 if |ε| ≤ K−1(σ,P)

we observe that Φ(·; ε, σ,P) is a real characteristic function of the probability density function
f (·; ε, σ,P) defined by (2.5) for any
ε ∈ [−K−1(σ,P), K−1(σ,P)]. Here we have made use of property (2.2). Thus we can summa-
rize the discussion above as a theorem.

Theorem 2.2. Let 0 < σ < 1, P be a real homogeneous polynomial in n variables of even degree 2k,
K(σ,P) the positive constant defined by (2.6) and ε ∈ [−K−1(σ,P), K−1(σ,P)]. Then the function
Φ(·; ε, σ,P) defined by (2.1) is the characteristic function of a probability density function f (·; ε, σ,P)
defined by (2.5). Under this density function f (·; ε, σ,P) the linear functional x 7−→ aTx with |a| = 1
has characteristic function ϕa and probability density function ga on the real line given respectively
by

ϕa(t) = e−
1
2 t2

+ ε P(a)e−
1
2 σ2t2

t2k, t ∈ R (2.7)

fa(x) =
1√
2π

{
e−

1
2 x2

+
(−1)k εP(a)

σ2k+1 H2k

( x
σ

)
e−

1
2σ2 x2

}
. (2.8)

In particular, for any a ∈ ZP , the linear functional aTx has the normal distribution with mean 0
and variance |a|2 but f (·; ε, σ,P) is a nongaussian density function for any ε ∈ [−K−1(σ,P), K−1(σ,P)]r
{0}.

Proof. The first part is immediate from the discussion preceding the statement of the theorem.
To prove the second part we note that the characteristic function ϕa(t) of the linear functional
aTx under the density function f (·; ε, σ,P) is Φ(ta; ε, σ,P) and (2.7) follows from (2.1) and the
homogeneity of P . Now (2.8) follows from Fourier inversion of (2.7). If 0 6= a ∈ ZP then
0 = P(a) = P

(
a
|a|
)

and therefore

ϕ a
|a|

(t) = e−
1
2 t2

.

Hence aTx is normally distributed with mean 0 and variance |a|2.
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Corollary 2.3. Let {Sj, 1 ≤ j ≤ N} be any finite set of (n− 1)–dimensional subspaces of Rn. Then
there exists a nongaussian analytic probability density function whose projection on Sj is gaussian for
each j ∈ {1, 2, ..., N}.

Proof. By adding one more (n− 1)–dimensional subspace to the collection {Sj, 1 ≤ j ≤ N},
if necessary, we may assume without loss of generality that N is even. Choose a unit vector
a(j) ∈ S⊥j for each j and define the homogeneous real polynomial P of degree N by

P(t) =
N

∏
j=1

a(j)T
t, t ∈ Rn.

Clearly,

P(t) = 0 if t ∈
N⋃

j=1

Sj.

In other words

N⋃
j=1

Sj ⊂ ZP .

If we choose µ to be the probability measure with the density function f (·; ε, σ,P), 0 6= ε

in [−K−1(σ,P), K−1(σ,P)] in Theorem 2.2 it follows immediately from the last part of the
theorem that every linear functional of the form bTx has a normal distribution with mean 0
and variance |b|2 whenever b ∈ ZP . This completes the proof.

Remark 2.4. In the context of understanding the modes of the density function ga(x) given by (2.8)
it is of interest to note that{

x
∣∣∣x 6= 0, g′a(x) = 0

}
={

x
∣∣∣x 6= 0, e

x2
2 ( 1

σ2−1) +
(−1)k εP(a)

σ2k+2

H2k+1( x
σ )

x
= 0

}
.

Indeed, this is obtained by straightforward differentiation and using the recurrence relation H2k+1(x) =
xH2k(x)− H′2k(x).

Example 2.5. Let n be even,
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P(t1, t2, ..., tn) = t1t2...tn ∏
i>j

(t2
i − t2

j )

= t1t2...tn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 ... 1
t2
1 t2

2 ... t2
n

t4
1 t4

2 ... t4
n

. . ... .

. . ... .

. . ... .

t2(n−1)
1 t2(n−1)

2 ... t2(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.9)

Then P is a polynomial of even degree n2, which is antisymmetric in the variables t1, t2, ..., tn.
The renormalized version : P : of P is given by

: P : (x1, x2, ..., xn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H1(x1) H1(x2) ... H1(xn)
H3(x1) H3(x2) ... H3(xn)

. . ... .

. . ... .

. . ... .
H2n+1(x1) H2n+1(x2) ... H2n+1(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.10)

In particular, : P : is antisymmetric in the variables x1, x2, ..., xn. Fixing 0 < σ < 1 we
get for each ε ∈ [−K−1(σ,P), K−1(σ,P)], with K(σ,P) being determined by (2.6), (2.10) and
k = 1

2 n2, the probability density function f (·; ε, σ,P) given by

f (x; ε, σ,P) =
1

(
√

2π)n

{
e−

1
2 |x|2

+
ε

σn(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H1( x1
σ ) H1( x2

σ ) ... H1( xn
σ )

H3( x1
σ ) H3( x2

σ ) ... H3( xn
σ )

. . ... .

. . ... .

. . ... .
H2n+1( x1

σ ) H2n+1( x2
σ ) ... H2n+1( xn

σ )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e−

1
2 σ2|x|2

}
. (2.11)

By Theorem 2.2 and its Corollary we conclude that the projection of this density function
on the (n− 1)–dimensional hyperplanes {x|xj = 0}, 1 ≤ j ≤ n; {x|xi − xj = 0}, 1 ≤ i ≤ j ≤ n
and {x|xi + xj = 0}, 1 ≤ i ≤ j ≤ n are all (n− 1)–dimensional gaussian densities.
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If g(x1, x2, ..., xn) is any bounded continuous function which is symmetric in the variables
x1, x2, ..., xn then the function g : P : is an antisymmetric function in Rn and therefore

∫
Rn

(g : P :)(x1, x2, ..., xn)e−
1

2σ2 |x|2 dx1dx2...dxn = 0.

Thus ∫
Rn

g(x1, ..., xn) f (x; ε, σ,P)dx1dx2...dxn

=
∫

Rn
g(x1, x2, ..., xn)

1
(
√

2π)n
e−

1
2 |x|2 dx1dx2...dxn.

In other words, for 0 6= ε ∈ [−K−1(σ,P), K−1(σ,P)], any symmetric measurable function g on
Rn has the property that its distribution under the nongaussian density function f (x; ε, σ,P)
in (2.11) is the same as its distribution under the standard gaussian density function with
mean 0 and covariance matrix I.

Example 2.6. We now specialize Example 2.5 to the case n = 2, σ = 2−1/2 when

P(t1, t2) = t1t2(t2
1 − t2

2),

: P : (x1, x2) = H3(x1)H1(x2)− H1(x1)H3(x2)

= x3
1x2 − x3

2x1.

A simple computation shows that

K(σ,P) = 8 sup |x3
1x2 − x3

2x1| e−
1
4 (x2

1+x2
2)

= 128 e−2.

This supremum is easily evaluated by switching over to the polar coordinates x1 = rcosθ,
x2 = rsinθ. Then

f (x; ε, σ,P) =
1

2π
e−

1
2 (x2

1+x2
2)
{

1 + 32ε(x3
1x2 − x3

2x1)e−
1
2 (x2

1+x2
2)
}

(2.12)

which is a probability density function whenever

|ε| ≤ e2

128
.

At ε = 0, it is the standard normal density function with mean 0 and covariance matrix I. We
write η = 32 ε and express the density function (2.12) as

fη(x1, x2) =
1

2π
e−

1
2 (x2

1+x2
2)
{

1 + η(x3
1x2 − x3

2x1)e−
1
2 (x2

1+x2
2)
}

(2.13)
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Figure 1: Bivariate density fη(x1, x2) at η = e2/4.

where

|η| ≤ e2

4
.

When a = (sinθ, cosθ) the density function gθ of the linear functional x 7−→ x1sinθ + x2cosθ,
under fη is given by the formula (2.8) of Theorem 2.2 as

gθ(x) =
1√
2π

e−
1
2 x2

{
1−
√

2 η sin(4θ)
32

(4x4 − 12x2 + 3)e−
1
2 x2

}
. (2.14)

Thus

g′θ(x) =
−x√

2π
e−

1
2 x2

{
e

1
2 x2 −

√
2 η sin(4θ)

16
(4x4 − 20x2 + 15)e−

1
2 x2

}
.
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It is not difficult to find values of η in the range (0, 1
4 e2] and angle θ for which

{
x
∣∣∣e 1

2 x2 −
√

2 η sin(4θ)
16

(4x4 − 20x2 + 15) = 0, x 6= 0

}
6= ∅. (2.15)

This reveals the possibility of nonunimodality of the density of some linear functionals under
the joint density fη . For an illutration cf. Fig. (2).
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Figure 2: Nonunimodality of gθ .

3 A characterization of gaussian distributions in Rn

In the context of the Corollary to Theorem 2.2 we have the following characterization of a
gaussian distribution in Rn when the number N of (n − 1)–dimensional subspaces in the
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corollary is countably infinite.

Theorem 3.1. Let {Sj, j = 1, 2...} be a countably infinite set of (n− 1)– dimensional subspaces of Rn

and let µ be a probability measure in Rn whose projection on Sj is gaussian for each j = 1, 2, ... . Then
µ is gaussian.

Proof. The fact that the projection of µ on the two distinct (n− 1)–dimensional subspaces S1

and S2 are gaussian implies that the multivariate Laplace transform µ̂ of µ given by

µ̂(z1, ..., zn) =
∫

exp(z1x1 + ... + znxn)µ(dx1dx2...dxn) (3.1)

is well-defined for z ∈ Cn and analytic in each of the complex variables zj, j = 1, ..., n. Let
m and Σ be respectively the mean vector and covariance matrix of the Rn valued random
variable x with distribution µ.

Choose and fix a unit vector a(j) ∈ S⊥j for each j = 1, 2, ... . Suppose

a(j)T
= (aj1, ..., ajn), j = 1, 2, ...,

αj = max
1≤r≤n

|ajr|.

Since

n

∑
r=1

a2
jr = 1, ∀j

it follows that αj ≥ n−1/2, ∀ j. There exists an r0 such that ajr0 = αj for infinitely many values of
j. Restricting ourselves to this infinite set of j‘s and assuming r0 = 1 without loss of generality
we may as well assume that

a(j) = (aj1, ..., ajn)T,

|aj1| = max
1≤r≤n

|ajr| ∀ j = 1, 2, ...,

|aj1| ≥ n−1/2 ∀j.

Now consider the (n− 1)– dimensional vector b(j) defined by

b(j)T
=
(

aj2

aj1
,

aj3

aj1
, ...,

ajn

aj1

)
, j = 1, 2, ....

where ∣∣∣∣ ajr

aj1

∣∣∣∣ ≤ 1 ∀ r = 2, 3, ..., n.
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Thus all the vectors b(j) are distinct and they constitute a bounded countable set in R(n−1).
Define the set

D =
⋂
j<i

{
s
∣∣∣s ∈ R(n−1), (b(j) − b(i))Ts 6= 0

}
.

Being a countable intersection of dense open sets it follows from the Baire category theorem
that D is dense in R(n−1). Let now

s = (s2, s3, ..., sn)T ∈ R(n−1)

be any fixed point in D. Define

sj1 = −b(j)T
s, j = 1, 2, ... .

By the definition of D, {sj1, j = 1, 2, ...} is a bounded and countably infinite set of distinct
points on the real line. Furthermore

aj1sj1 + aj2s2 + ... + ajnsn = 0 ∀ j.

In other words, (sj1, s2, ..., sn)T ∈ Sj for each j. By hypothesis the linear functional sj1x1 +
s2x2 + ... + snxn has a normal distribution with mean sj1m1 + s2m2 + ... + snmn and variance
(sj1, s2, ..., sn)Σ(sj1, s2, ..., sn)T. Defining

ψ(z1, ..., zn) = exp(mTz +
1
2

zTΣz), z ∈ Cn

we conclude that the Laplace transform µ̂ defined by (3.1) and the function ψ satisfy the rela-
tion

µ̂(sj1, s2, ..., sn) = ψ(sj1, s2, ..., sn)

for j = 1, 2, ... . Since µ̂(z, s2, ..., sn) and ψ(z, s2, ..., sn) are analytic functions of z in the whole
complex plane and they agree on the infinite bounded set {sj1, j = 1, 2, ...} it follows that

µ̂(z, s2, ..., sn) = ψ(z, s2, ..., sn) ∀ z ∈ C.

Since this holds for all (s2, ..., sn)T ∈ D which is dense in R(n−1) and both sides of the equation
are continuous on Rn we have

µ̂(s1, s2, ..., sn) = ψ(s1, s2, ..., sn)

for all (s1, s2, ..., sn)T ∈ Rn. This implies that µ is a gaussian measure with mean vector m and
covariance matrix Σ.
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