A note on Gaussian distributions in \mathbb{R}^{n}

B. G. Manjunath
K. R. Parthasarathy

A note on gaussian distributions in \mathbb{R}^{n}

B.G. MANJUNATH and K.R. PARTHASARATHY
Indian Statistical Institute, Delhi Centre, 7, S. J. S. Sansanwal Marg, New Delhi - 110016, India
E-mail : bgmanjunath@gmail.com; krp@isid.ac.in

Abstract

Given any finite set \mathcal{F} of $(n-1)$ - dimensional subspaces of \mathbb{R}^{n} we give examples of nongaussian probability measures in \mathbb{R}^{n} whose marginal distribution in each subspace from \mathcal{F} is gaussian. However, if \mathcal{F} is an infinite family of such ($n-1$)-dimensional subspaces then such a nongaussian probability measure in \mathbb{R}^{n} does not exist.

Key words. gaussian distribution, characteristic function, homogeneous polynomial, linear functionals, nonunimodality, Hermite polynomial

AMS 1991 subject classification: primary, 60G15, 60E10; secondary, 62E15

1 Introduction

Starting with the simple example of E. Nelson as cited by W. Feller in [1] we have from the papers of B.K. Kale [3], G.G. Hamedani and M.N. Tata [2] and Y. Shao and M. Zhou [4] etc., as well as Section 10 of J. Stoyanov's book [5], several examples of bivariate and multivariate nongaussian distributions under which many linear functionals can have a gaussian distribution on the real line. These results suggest the possibility of characterizing a gaussian distribution in \mathbb{R}^{n} through properties of classes of linear functionals. Motivated by Nelson's example in [1] and the bivariate construction in [2] we introduce a perturbation of the standard gaussian density function in \mathbb{R}^{n} exhibiting the following interesting features: (1) Given any finite set $\left\{S_{j}, 1 \leq j \leq N\right\}$ of $(n-1)$-dimensional subspaces it has a marginal density function which is standard gaussian in each $S_{j}, j \in\{1,2, \ldots, N\}$; (2) There can exist linear functionals whose distributions may have nonunimodal density functions; (3) For certain choices of subspaces the nongaussian perturbation can be so chosen that any real symmetric measurable function of all the n coordinates has its distribution preserved. In particular, the sum of squares of all the coordinates can have the χ^{2} distribution with n degrees of freedom.

We also demonstrate the following characterization of the multivariate gaussian distribution. Suppose $\left\{S_{j}, j=1,2, \ldots\right\}$ is a countably infinite set of $(n-1)$-dimensional subspaces of \mathbb{R}^{n} and μ is a probability measure in \mathbb{R}^{n} such that the projection of μ in each subspace S_{j} is gaussian. Then μ itself is gaussian. This is a generalization of the characterization in [2] and a
more precise version of the result in [4].
Our proofs follow the steps in [2] and use some additional geometric and topological arguments of a very elementary kind.

2 A perturbation of the gaussian characteristic function

We begin by examining a small perturbation of the characteristic function of the n-variate standard gaussian distribution with mean vector 0 and covariance matrix I as follows. Choose and fix any homogeneous polynomial \mathcal{P} of even degree $2 k$ in n real variables $t_{1}, t_{2}, \ldots, t_{n}$ and define

$$
\begin{equation*}
\Phi(\boldsymbol{t} ; \varepsilon, \sigma, \mathcal{P})(\boldsymbol{t})=e^{-\frac{1}{2}|\boldsymbol{t}|^{2}}+\varepsilon e^{-\frac{1}{2} \sigma^{2}|\boldsymbol{t}|^{2}} \mathcal{P}(\boldsymbol{t}), \boldsymbol{t} \in \mathbb{R}^{n} \tag{2.1}
\end{equation*}
$$

where $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)^{T}, \varepsilon$ is a real parameter and σ is a parameter satisfying $0<\sigma<1$. Here

$$
|\boldsymbol{t}|^{2}=\left(t_{1}^{2}+\ldots+t_{n}^{2}\right)
$$

Clearly, $\Phi(\cdot ; \varepsilon, \sigma, \mathcal{P})$ is a real analytic function on \mathbb{R}^{n} satisfying

$$
\begin{align*}
\Phi(\mathbf{0} ; \varepsilon, \sigma, \mathcal{P}) & =1 \\
\Phi(-\boldsymbol{t} ; \varepsilon, \sigma, \mathcal{P}) & =\Phi(\boldsymbol{t} ; \varepsilon, \sigma, \mathcal{P}) \tag{2.2}
\end{align*}
$$

Let

$$
\begin{equation*}
Z_{\mathcal{P}}=\left\{\boldsymbol{t} \mid \mathcal{P}(\boldsymbol{t})=0, \boldsymbol{t} \in \mathbb{R}^{n}\right\} \tag{2.3}
\end{equation*}
$$

be the set of zeros of \mathcal{P} in \mathbb{R}^{n}.
Since we are interested in the inverse Fourier transform of Φ we introduce the renormalized polynomial : \mathcal{P} : in the form of a formal definition.

Definition 2.1. Let

$$
\mathfrak{N}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

and let $H_{m}(x)$ be the m-th Hermite polynomial defined by

$$
\frac{d^{m}}{d x^{m}} \mathfrak{N}(x)=(-1)^{m} H_{m}(x) \mathfrak{N}(x), m=0,1,2, \ldots
$$

(as in Feller [1]). For any real polynomial \mathcal{P} in n real variables given by

$$
\mathcal{P}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\sum_{\boldsymbol{m}} a_{m_{1}, m_{2}, \ldots, m_{n}} t_{1}^{m_{1}} t_{2}^{m_{2}} \ldots t_{n}^{m_{n}}
$$

its renormalized version: \mathcal{P} : is defined by

$$
: \mathcal{P}:\left(x_{1}, \ldots, x_{n}\right)=\sum_{m} a_{m_{1}, m_{2}, \ldots, m_{n}} H_{m_{1}}\left(x_{1}\right) H_{m_{2}}\left(x_{2}\right) \ldots H_{m_{n}}\left(x_{n}\right) .
$$

Note that for a homogeneous polynomial, its renormalized version need not be homogeneous.
Since the function Φ in (2.1) is in $\mathbb{L}_{1}\left(\mathbb{R}^{n}\right)$ its inverse Fourier transform f is defined by

$$
\begin{align*}
f(\boldsymbol{x} ; \varepsilon, \sigma, \mathcal{P}) & =\frac{1}{(2 \pi)^{n}} \int e^{-i \boldsymbol{t}^{T}} \boldsymbol{x} \Phi(\boldsymbol{t} ; \varepsilon, \sigma, \mathcal{P}) d t_{1} d t_{2} \ldots d t_{n} \\
& =\frac{1}{(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2}|\boldsymbol{x}|^{2}}+\varepsilon \frac{1}{(2 \pi)^{n}} \int e^{-i \boldsymbol{t}^{T} \boldsymbol{x}_{\left.e^{\left.-\frac{1}{2} \sigma^{2} \right\rvert\, \boldsymbol{t}}\right|^{2}}^{\mathcal{P}}(\boldsymbol{t}) d t_{1} \ldots d t_{n}} \tag{2.4}
\end{align*}
$$

First, we note that

Repeated differentiation with respect to $x_{1}, x_{2}, \ldots, x_{n}$ shows that for the homogeneous polynomial \mathcal{P} of degree $2 k$ we have

$$
\begin{aligned}
& \frac{1}{(2 \pi)^{n}} \int e^{-i \boldsymbol{t}^{T}} \boldsymbol{x}_{e^{-\frac{1}{2}} \sigma^{2}|\boldsymbol{t}|^{2}}^{P}(\boldsymbol{t}) d t_{1} d t_{2} \ldots d t_{n} \\
& =\frac{1}{\sigma^{n}} \mathcal{P}\left(i \frac{\partial}{\partial x_{1}}, \ldots, i \frac{\partial}{\partial x_{n}}\right)\left\{\prod_{j=1}^{n} \mathfrak{N}\left(\frac{x_{j}}{\sigma}\right)\right\} \\
& =\frac{(-1)^{k}}{\sigma^{n+2 k}}: \mathcal{P}:\left(\frac{x_{1}}{\sigma}, \ldots, \frac{x_{n}}{\sigma}\right) \frac{1}{(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2 \sigma^{2}}|\boldsymbol{x}|^{2}} .
\end{aligned}
$$

Thus the inverse Fourier transform (2.4) assumes the form

$$
\begin{align*}
& f(\boldsymbol{x} ; \boldsymbol{\varepsilon}, \sigma, \mathcal{P}) \\
& =\frac{1}{(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2}|\boldsymbol{x}|^{2}}\left\{1+\frac{(-1)^{k} \varepsilon}{\sigma^{n+2 k}}: \mathcal{P}:\left(\frac{x_{1}}{\sigma}, \ldots, \frac{x_{n}}{\sigma}\right) e^{-\frac{1}{2 \sigma^{2}}|\boldsymbol{x}|^{2}\left(1-\sigma^{2}\right)}\right\} . \tag{2.5}
\end{align*}
$$

Since, by assumption, $1-\sigma^{2}>0$ the positive constant $K(\sigma, \mathcal{P})$ defined by

$$
\begin{equation*}
K(\sigma, \mathcal{P})=\sup _{x \in \mathbb{R}^{n}} \frac{\left|: \mathcal{P}:\left(x_{1}, \ldots, x_{n}\right)\right|}{\sigma^{n+2 k}} e^{-\frac{1}{2}|\boldsymbol{x}|^{2}\left(1-\sigma^{2}\right)} \tag{2.6}
\end{equation*}
$$

is finite and for all $x \in \mathbb{R}^{n}$

$$
f(x ; \varepsilon, \sigma, \mathcal{P}) \geq 0 \text { if }|\varepsilon| \leq K^{-1}(\sigma, \mathcal{P})
$$

we observe that $\Phi(\cdot ; \varepsilon, \sigma, \mathcal{P})$ is a real characteristic function of the probability density function $f(\cdot ; \varepsilon, \sigma, \mathcal{P})$ defined by (2.5) for any
$\varepsilon \in\left[-K^{-1}(\sigma, \mathcal{P}), K^{-1}(\sigma, \mathcal{P})\right]$. Here we have made use of property (2.2). Thus we can summarize the discussion above as a theorem.

Theorem 2.2. Let $0<\sigma<1, \mathcal{P}$ be a real homogeneous polynomial in n variables of even degree $2 k$, $K(\sigma, \mathcal{P})$ the positive constant defined by (2.6) and $\varepsilon \in\left[-K^{-1}(\sigma, \mathcal{P}), K^{-1}(\sigma, \mathcal{P})\right]$. Then the function $\Phi(\cdot ; \varepsilon, \sigma, \mathcal{P})$ defined by (2.1) is the characteristic function of a probability density function $f(\cdot ; \varepsilon, \sigma, \mathcal{P})$ defined by (2.5). Under this density function $f(\cdot ; \varepsilon, \sigma, \mathcal{P})$ the linear functional $\boldsymbol{x} \longmapsto \boldsymbol{a}^{T} \boldsymbol{x}$ with $|\boldsymbol{a}|=1$ has characteristic function $\varphi \boldsymbol{a}$ and probability density function $g_{\boldsymbol{a}}$ on the real line given respectively by

$$
\begin{gather*}
\varphi_{\boldsymbol{a}}(t)=e^{-\frac{1}{2} t^{2}}+\varepsilon \mathcal{P}(\boldsymbol{a}) e^{-\frac{1}{2} \sigma^{2} t^{2}} t^{2 k}, t \in \mathbb{R} \tag{2.7}\\
f_{\boldsymbol{a}}(x)=\frac{1}{\sqrt{2 \pi}}\left\{e^{-\frac{1}{2} x^{2}}+\frac{(-1)^{k} \varepsilon \mathcal{P}(\boldsymbol{a})}{\sigma^{2 k+1}} H_{2 k}\left(\frac{x}{\sigma}\right) e^{-\frac{1}{2 \sigma^{2}} x^{2}}\right\} . \tag{2.8}
\end{gather*}
$$

In particular, for any $\boldsymbol{a} \in Z_{\mathcal{P}}$, the linear functional $\boldsymbol{a}^{T} \boldsymbol{x}$ has the normal distribution with mean 0 and variance $|\boldsymbol{a}|^{2}$ but $f(\cdot ; \varepsilon, \sigma, \mathcal{P})$ is a nongaussian density function for any $\varepsilon \in\left[-K^{-1}(\sigma, \mathcal{P}), K^{-1}(\sigma, \mathcal{P})\right] \backslash$ $\{0\}$.

Proof. The first part is immediate from the discussion preceding the statement of the theorem. To prove the second part we note that the characteristic function $\varphi_{\boldsymbol{a}}(t)$ of the linear functional $\boldsymbol{a}^{T} \boldsymbol{x}$ under the density function $f(\cdot ; \varepsilon, \sigma, \mathcal{P})$ is $\Phi(t \boldsymbol{a} ; \varepsilon, \sigma, \mathcal{P})$ and (2.7) follows from (2.1) and the homogeneity of \mathcal{P}. Now (2.8) follows from Fourier inversion of (2.7). If $0 \neq a \in Z_{\mathcal{P}}$ then $0=\mathcal{P}(\boldsymbol{a})=\mathcal{P}\left(\frac{\boldsymbol{a}}{|\boldsymbol{a}|}\right)$ and therefore

$$
\varphi_{\frac{\boldsymbol{a}}{|\boldsymbol{a}|}}(t)=e^{-\frac{1}{2} t^{2}} .
$$

Hence $\boldsymbol{a}^{T} \boldsymbol{x}$ is normally distributed with mean 0 and variance $|\boldsymbol{a}|^{2}$.

Corollary 2.3. Let $\left\{S_{j}, 1 \leq j \leq N\right\}$ be any finite set of ($n-1$)-dimensional subspaces of \mathbb{R}^{n}. Then there exists a nongaussian analytic probability density function whose projection on S_{j} is gaussian for each $j \in\{1,2, \ldots, N\}$.

Proof. By adding one more ($n-1$)-dimensional subspace to the collection $\left\{S_{j}, 1 \leq j \leq N\right\}$, if necessary, we may assume without loss of generality that N is even. Choose a unit vector $\boldsymbol{a}^{(j)} \in S_{j}^{\perp}$ for each j and define the homogeneous real polynomial \mathcal{P} of degree N by

$$
\mathcal{P}(\boldsymbol{t})=\prod_{j=1}^{N} \boldsymbol{a}^{(j)^{T}} \boldsymbol{t}, \boldsymbol{t} \in \mathbb{R}^{n} .
$$

Clearly,

$$
\mathcal{P}(\boldsymbol{t})=0 \text { if } \boldsymbol{t} \in \bigcup_{j=1}^{N} S_{j} .
$$

In other words

$$
\bigcup_{j=1}^{N} S_{j} \subset Z_{\mathcal{P}}
$$

If we choose μ to be the probability measure with the density function $f(\cdot ; \varepsilon, \sigma, \mathcal{P}), 0 \neq \varepsilon$ in $\left[-K^{-1}(\sigma, \mathcal{P}), K^{-1}(\sigma, \mathcal{P})\right]$ in Theorem 2.2 it follows immediately from the last part of the theorem that every linear functional of the form $\boldsymbol{b}^{T} \boldsymbol{x}$ has a normal distribution with mean 0 and variance $|\boldsymbol{b}|^{2}$ whenever $\boldsymbol{b} \in Z_{\mathcal{P}}$. This completes the proof.

Remark 2.4. In the context of understanding the modes of the density function $g \boldsymbol{a}(x)$ given by (2.8) it is of interest to note that

$$
\begin{aligned}
& \left\{x \mid x \neq 0, g^{\prime}(x)=0\right\}= \\
& \left\{x \mid x \neq 0, e^{\frac{x^{2}}{2}\left(\frac{1}{\sigma^{2}}-1\right)}+\frac{(-1)^{k} \varepsilon \mathcal{P}(\boldsymbol{a})}{\sigma^{2 k+2}} \frac{H_{2 k+1}\left(\frac{x}{\sigma}\right)}{x}=0\right\} .
\end{aligned}
$$

Indeed, this is obtained by straightforward differentiation and using the recurrence relation $\mathrm{H}_{2 k+1}(x)=$ $x H_{2 k}(x)-H_{2 k}^{\prime}(x)$.

Example 2.5. Let n be even,

$$
\begin{align*}
\mathcal{P}\left(t_{1}, t_{2}, \ldots, t_{n}\right) & =t_{1} t_{2} \ldots t_{n} \prod_{i>j}\left(t_{i}^{2}-t_{j}^{2}\right) \\
& =t_{1} t_{2} \ldots t_{n}\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
t_{1}^{2} & t_{2}^{2} & \ldots & t_{n}^{2} \\
t_{1}^{4} & t_{2}^{4} & \ldots & t_{n}^{4} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & . \\
t_{1}^{2(n-1)} & t_{2}^{2(n-1)} & \ldots & t_{n}^{2(n-1)}
\end{array}\right| \tag{2.9}
\end{align*}
$$

Then \mathcal{P} is a polynomial of even degree n^{2}, which is antisymmetric in the variables $t_{1}, t_{2}, \ldots, t_{n}$. The renormalized version: \mathcal{P} : of \mathcal{P} is given by

$$
: \mathcal{P}:\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left|\begin{array}{cccc}
H_{1}\left(x_{1}\right) & H_{1}\left(x_{2}\right) & \ldots & H_{1}\left(x_{n}\right) \tag{2.10}\\
H_{3}\left(x_{1}\right) & H_{3}\left(x_{2}\right) & \ldots & H_{3}\left(x_{n}\right) \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & . \\
\cdot & \cdot & \ldots & . \\
H_{2 n+1}\left(x_{1}\right) & H_{2 n+1}\left(x_{2}\right) & \ldots & H_{2 n+1}\left(x_{n}\right)
\end{array}\right|
$$

In particular, : \mathcal{P} : is antisymmetric in the variables $x_{1}, x_{2}, \ldots, x_{n}$. Fixing $0<\sigma<1$ we get for each $\varepsilon \in\left[-K^{-1}(\sigma, \mathcal{P}), K^{-1}(\sigma, \mathcal{P})\right]$, with $K(\sigma, \mathcal{P})$ being determined by (2.6), (2.10) and $k=\frac{1}{2} n^{2}$, the probability density function $f(\cdot ; \varepsilon, \sigma, \mathcal{P})$ given by

$$
\begin{align*}
f(\boldsymbol{x} ; \varepsilon, \sigma, \mathcal{P})= & \frac{1}{(\sqrt{2 \pi})^{n}}\left\{e^{-\frac{1}{2}|\boldsymbol{x}|^{2}}\right. \\
& +\frac{\varepsilon}{\sigma^{n(n+1)}}\left|\begin{array}{cccc}
H_{1}\left(\frac{x_{1}}{\sigma}\right) & H_{1}\left(\frac{x_{2}}{\sigma}\right) & \ldots & H_{1}\left(\frac{x_{n}}{\sigma}\right) \\
H_{3}\left(\frac{x_{1}}{\sigma}\right) & H_{3}\left(\frac{x_{2}}{\sigma}\right) & \ldots & H_{3}\left(\frac{x_{n}}{\sigma}\right) \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & e_{2 n+1}\left(\frac{x_{1}}{\sigma}\right) & H_{2 n+1}\left(\frac{x_{2}}{\sigma}\right) & \ldots \\
H_{2 n+1}\left(\frac{x_{n}}{\sigma}\right)
\end{array}\right| \\
& \left.e^{-\frac{1}{2} \sigma^{2}|\boldsymbol{x}|^{2}}\right\} . \tag{2.11}
\end{align*}
$$

By Theorem 2.2 and its Corollary we conclude that the projection of this density function on the ($n-1$)-dimensional hyperplanes $\left\{x \mid x_{j}=0\right\}, 1 \leq j \leq n ;\left\{x \mid x_{i}-x_{j}=0\right\}, 1 \leq i \leq j \leq n$ and $\left\{\boldsymbol{x} \mid x_{i}+x_{j}=0\right\}, 1 \leq i \leq j \leq n$ are all $(n-1)$-dimensional gaussian densities.

If $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is any bounded continuous function which is symmetric in the variables $x_{1}, x_{2}, \ldots, x_{n}$ then the function $g: \mathcal{P}:$ is an antisymmetric function in \mathbb{R}^{n} and therefore

$$
\int_{\mathbb{R}^{n}}(g: \mathcal{P}:)\left(x_{1}, x_{2}, \ldots, x_{n}\right) e^{-\frac{1}{2 \sigma^{2}}|\boldsymbol{x}|^{2}} d x_{1} d x_{2} \ldots d x_{n}=0 .
$$

Thus

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} g\left(x_{1}, \ldots, x_{n}\right) f(\boldsymbol{x} ; \varepsilon, \sigma, \mathcal{P}) d x_{1} d x_{2} \ldots d x_{n} \\
& =\int_{\mathbb{R}^{n}} g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \frac{1}{(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2}|\boldsymbol{x}|^{2}} d x_{1} d x_{2} \ldots d x_{n} .
\end{aligned}
$$

In other words, for $0 \neq \varepsilon \in\left[-K^{-1}(\sigma, \mathcal{P}), K^{-1}(\sigma, \mathcal{P})\right]$, any symmetric measurable function g on \mathbb{R}^{n} has the property that its distribution under the nongaussian density function $f(x ; \varepsilon, \sigma, \mathcal{P})$ in (2.11) is the same as its distribution under the standard gaussian density function with mean 0 and covariance matrix I.

Example 2.6. We now specialize Example 2.5 to the case $n=2, \sigma=2^{-1 / 2}$ when

$$
\begin{aligned}
\mathcal{P}\left(t_{1}, t_{2}\right) & =t_{1} t_{2}\left(t_{1}^{2}-t_{2}^{2}\right), \\
: \mathcal{P}:\left(x_{1}, x_{2}\right) & =H_{3}\left(x_{1}\right) H_{1}\left(x_{2}\right)-H_{1}\left(x_{1}\right) H_{3}\left(x_{2}\right) \\
& =x_{1}^{3} x_{2}-x_{2}^{3} x_{1} .
\end{aligned}
$$

A simple computation shows that

$$
\begin{aligned}
K(\sigma, \mathcal{P}) & =8 \sup \left|x_{1}^{3} x_{2}-x_{2}^{3} x_{1}\right| e^{-\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}\right)} \\
& =128 e^{-2}
\end{aligned}
$$

This supremum is easily evaluated by switching over to the polar coordinates $x_{1}=r \cos \theta$, $x_{2}=r \sin \theta$. Then

$$
\begin{equation*}
f(x ; \varepsilon, \sigma, \mathcal{P})=\frac{1}{2 \pi} e^{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)}\left\{1+32 \varepsilon\left(x_{1}^{3} x_{2}-x_{2}^{3} x_{1}\right) e^{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)}\right\} \tag{2.12}
\end{equation*}
$$

which is a probability density function whenever

$$
|\varepsilon| \leq \frac{e^{2}}{128}
$$

At $\varepsilon=0$, it is the standard normal density function with mean $\mathbf{0}$ and covariance matrix I. We write $\eta=32 \varepsilon$ and express the density function (2.12) as

$$
\begin{equation*}
f_{\eta}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} e^{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)}\left\{1+\eta\left(x_{1}^{3} x_{2}-x_{2}^{3} x_{1}\right) e^{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)}\right\} \tag{2.13}
\end{equation*}
$$

Figure 1: Bivariate density $f_{\eta}\left(x_{1}, x_{2}\right)$ at $\eta=e^{2} / 4$.
where

$$
|\eta| \leq \frac{e^{2}}{4}
$$

When $\boldsymbol{a}=(\sin \theta, \cos \theta)$ the density function g_{θ} of the linear functional $\boldsymbol{x} \longmapsto x_{1} \sin \theta+x_{2} \cos \theta$, under f_{η} is given by the formula (2.8) of Theorem 2.2 as

$$
\begin{equation*}
g_{\theta}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}\left\{1-\frac{\sqrt{2} \eta \sin (4 \theta)}{32}\left(4 x^{4}-12 x^{2}+3\right) e^{-\frac{1}{2} x^{2}}\right\} \tag{2.14}
\end{equation*}
$$

Thus

$$
g_{\theta}^{\prime}(x)=\frac{-x}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}\left\{e^{\frac{1}{2} x^{2}}-\frac{\sqrt{2} \eta \sin (4 \theta)}{16}\left(4 x^{4}-20 x^{2}+15\right) e^{-\frac{1}{2} x^{2}}\right\} .
$$

It is not difficult to find values of η in the range $\left(0, \frac{1}{4} e^{2}\right]$ and angle θ for which

$$
\begin{equation*}
\left\{x \left\lvert\, e^{\frac{1}{2} x^{2}}-\frac{\sqrt{2} \eta \sin (4 \theta)}{16}\left(4 x^{4}-20 x^{2}+15\right)=0\right., x \neq 0\right\} \neq \varnothing . \tag{2.15}
\end{equation*}
$$

This reveals the possibility of nonunimodality of the density of some linear functionals under the joint density f_{η}. For an illutration cf. Fig. (2).

Figure 2: Nonunimodality of g_{θ}.

3 A characterization of gaussian distributions in \mathbb{R}^{n}

In the context of the Corollary to Theorem 2.2 we have the following characterization of a gaussian distribution in \mathbb{R}^{n} when the number N of $(n-1)$-dimensional subspaces in the
corollary is countably infinite.
Theorem 3.1. Let $\left\{S_{j}, j=1,2 \ldots\right\}$ be a countably infinite set of $(n-1)$-dimensional subspaces of \mathbb{R}^{n} and let μ be a probability measure in \mathbb{R}^{n} whose projection on S_{j} is gaussian for each $j=1,2, \ldots$. Then μ is gaussian.

Proof. The fact that the projection of μ on the two distinct ($n-1$)-dimensional subspaces S_{1} and S_{2} are gaussian implies that the multivariate Laplace transform $\widehat{\mu}$ of μ given by

$$
\begin{equation*}
\widehat{\mu}\left(z_{1}, \ldots, z_{n}\right)=\int \exp \left(z_{1} x_{1}+\ldots+z_{n} x_{n}\right) \mu\left(d x_{1} d x_{2} \ldots d x_{n}\right) \tag{3.1}
\end{equation*}
$$

is well-defined for $z \in \mathbb{C}^{n}$ and analytic in each of the complex variables $z_{j}, j=1, \ldots, n$. Let m and Σ be respectively the mean vector and covariance matrix of the \mathbb{R}^{n} valued random variable x with distribution μ.

Choose and fix a unit vector $\boldsymbol{a}^{(j)} \in S_{j}^{\perp}$ for each $j=1,2, \ldots$. Suppose

$$
\begin{aligned}
\boldsymbol{a}^{(j)^{T}} & =\left(a_{j 1}, \ldots, a_{j n}\right), j=1,2, \ldots \\
\alpha_{j} & =\max _{1 \leq r \leq n}\left|a_{j r}\right|
\end{aligned}
$$

Since

$$
\sum_{r=1}^{n} a_{j r}^{2}=1, \forall j
$$

it follows that $\alpha_{j} \geq n^{-1 / 2}, \forall j$. There exists an r_{0} such that $a_{j r_{0}}=\alpha_{j}$ for infinitely many values of j. Restricting ourselves to this infinite set of j^{\prime} s and assuming $r_{0}=1$ without loss of generality we may as well assume that

$$
\begin{aligned}
\boldsymbol{a}^{(j)} & =\left(a_{j 1}, \ldots, a_{j n}\right)^{T} \\
\left|a_{j 1}\right| & =\max _{1 \leq r \leq n}\left|a_{j r}\right| \forall j=1,2, \ldots \\
\left|a_{j 1}\right| & \geq n^{-1 / 2} \forall j
\end{aligned}
$$

Now consider the $(n-1)$-dimensional vector $\boldsymbol{b}^{(j)}$ defined by

$$
\boldsymbol{b}^{(j)^{T}}=\left(\frac{a_{j 2}}{a_{j 1}}, \frac{a_{j 3}}{a_{j 1}}, \ldots, \frac{a_{j n}}{a_{j 1}}\right), j=1,2, \ldots
$$

where

$$
\left|\frac{a_{j r}}{a_{j 1}}\right| \leq 1 \forall r=2,3, \ldots, n .
$$

Thus all the vectors $\boldsymbol{b}^{(j)}$ are distinct and they constitute a bounded countable set in $\mathbb{R}^{(n-1)}$. Define the set

$$
\mathbb{D}=\bigcap_{j<i}\left\{\boldsymbol{s} \mid \boldsymbol{s} \in \mathbb{R}^{(n-1)},\left(\boldsymbol{b}^{(j)}-\boldsymbol{b}^{(i)}\right)^{T} \boldsymbol{s} \neq 0\right\} .
$$

Being a countable intersection of dense open sets it follows from the Baire category theorem that \mathbb{D} is dense in $\mathbb{R}^{(n-1)}$. Let now

$$
\boldsymbol{s}=\left(s_{2}, s_{3}, \ldots, s_{n}\right)^{T} \in \mathbb{R}^{(n-1)}
$$

be any fixed point in \mathbb{D}. Define

$$
s_{j 1}=-\boldsymbol{b}^{(j)^{T}} s, j=1,2, \ldots
$$

By the definition of $\mathbb{D},\left\{s_{j 1}, j=1,2, \ldots\right\}$ is a bounded and countably infinite set of distinct points on the real line. Furthermore

$$
a_{j 1} s_{j 1}+a_{j 2} s_{2}+\ldots+a_{j n} s_{n}=0 \forall j .
$$

In other words, $\left(s_{j 1}, s_{2}, \ldots, s_{n}\right)^{T} \in S_{j}$ for each j. By hypothesis the linear functional $s_{j 1} x_{1}+$ $s_{2} x_{2}+\ldots+s_{n} x_{n}$ has a normal distribution with mean $s_{j 1} m_{1}+s_{2} m_{2}+\ldots+s_{n} m_{n}$ and variance $\left(s_{j 1}, s_{2}, \ldots, s_{n}\right) \Sigma\left(s_{j 1}, s_{2}, \ldots, s_{n}\right)^{T}$. Defining

$$
\psi\left(z_{1}, \ldots, z_{n}\right)=\exp \left(\boldsymbol{m}^{T} \boldsymbol{z}+\frac{1}{2} z^{T} \Sigma z\right), z \in \mathbb{C}^{n}
$$

we conclude that the Laplace transform $\widehat{\mu}$ defined by (3.1) and the function ψ satisfy the relation

$$
\widehat{\mu}\left(s_{j 1}, s_{2}, \ldots, s_{n}\right)=\psi\left(s_{j 1}, s_{2}, \ldots, s_{n}\right)
$$

for $j=1,2, \ldots$. Since $\widehat{\mu}\left(z, s_{2}, \ldots, s_{n}\right)$ and $\psi\left(z, s_{2}, \ldots, s_{n}\right)$ are analytic functions of z in the whole complex plane and they agree on the infinite bounded set $\left\{s_{j 1}, j=1,2, \ldots\right\}$ it follows that

$$
\widehat{\mu}\left(z, s_{2}, \ldots, s_{n}\right)=\psi\left(z, s_{2}, \ldots, s_{n}\right) \forall z \in \mathbb{C} .
$$

Since this holds for all $\left(s_{2}, \ldots, s_{n}\right)^{T} \in \mathbb{D}$ which is dense in $\mathbb{R}^{(n-1)}$ and both sides of the equation are continuous on \mathbb{R}^{n} we have

$$
\widehat{\mu}\left(s_{1}, s_{2}, \ldots, s_{n}\right)=\psi\left(s_{1}, s_{2}, \ldots, s_{n}\right)
$$

for all $\left(s_{1}, s_{2}, \ldots, s_{n}\right)^{T} \in \mathbb{R}^{n}$. This implies that μ is a gaussian measure with mean vector m and covariance matrix Σ.

Acknowledgement

We thank S. Ramasubramanian for bringing our attention to the example of E. Nelson on page 99 of W.Feller [1] and J. Stoyanov for his useful suggestions.

References

[1] W. Feller, An Introduction to Probability Theory and Its Applications (2000) (India: Wiley), Vol. II, 2nd edition
[2] G.G. Hamedani and M.N. Tata, On the determination of the bivariate normal distribution from distributions of linear combinations of the variables, The American Mathematical Monthly, 82 (1975), 913-915
[3] B.K. Kale, Normality of linear combinations of non-normal random variables, The American Mathematical Monthly, 77 (1970), 992-995
[4] Y. Shao and M. Zhou, A characterization of multivariate normality through univariate projections, J. Multi. Analysis, 101 (2010), 2637-2640
[5] J. Stoyanov, Counterexamples in Probability (1997) (New York: Wiley), 2nd edition

