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Abstract. Given any finite set F of (n — 1)— dimensional subspaces of R" we give examples of non-
gaussian probability measures in IR” whose marginal distribution in each subspace from F is gaussian.
However, if F is an infinite family of such (n — 1)-dimensional subspaces then such a nongaussian

probability measure in R” does not exist.
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1 Introduction

Starting with the simple example of E. Nelson as cited by W. Feller in [1] we have from the
papers of B.K. Kale [3], G.G. Hamedani and M.N. Tata [2] and Y. Shao and M. Zhou [4] etc., as
well as Section 10 of J. Stoyanov’s book [5], several examples of bivariate and multivariate non-
gaussian distributions under which many linear functionals can have a gaussian distribution
on the real line. These results suggest the possibility of characterizing a gaussian distribution
in R" through properties of classes of linear functionals. Motivated by Nelson’s example in
[1] and the bivariate construction in [2] we introduce a perturbation of the standard gaussian
density function in IR” exhibiting the following interesting features: (1) Given any finite set
{5;,1 < j < N} of (n — 1)-dimensional subspaces it has a marginal density function which
is standard gaussian in each S, j € {1,2,..., N}; (2) There can exist linear functionals whose
distributions may have nonunimodal density functions; (3) For certain choices of subspaces
the nongaussian perturbation can be so chosen that any real symmetric measurable function
of all the n coordinates has its distribution preserved. In particular, the sum of squares of all
the coordinates can have the x? distribution with 1 degrees of freedom.

We also demonstrate the following characterization of the multivariate gaussian distribu-
tion. Suppose {S;,j = 1,2,...} is a countably infinite set of (n — 1)-dimensional subspaces of
R" and p is a probability measure in R"” such that the projection of u in each subspace S; is
gaussian. Then y itself is gaussian. This is a generalization of the characterization in [2] and a



more precise version of the result in [4].

Our proofs follow the steps in [2] and use some additional geometric and topological ar-

guments of a very elementary kind.

2 A perturbation of the gaussian

characteristic function

We begin by examining a small perturbation of the characteristic function of the n-variate

standard gaussian distribution with mean vector 0 and covariance matrix I as follows. Choose

and fix any homogeneous polynomial P of even degree 2k in n real variables t1,t5, ..., t, and

define

D(t;e,0,P)(t) = e 2ltf 4 ¢ e_%azmzp(t), teR"

(2.1)

where t = (t,...,t,), ¢ is a real parameter and ¢ is a parameter satisfying 0 < ¢ < 1. Here

[t = (B+ .. +£).

Clearly, ®(-;¢,0, P) is a real analytic function on R” satisfying

®(0;¢,0,P) = 1,
d(—t;e,0,P) = O(t;¢,0,P).

Let
Zp ={t|P(t) =0,t e R"}

be the set of zeros of P in R".

(2.3)

Since we are interested in the inverse Fourier transform of ® we introduce the renormal-

ized polynomial : P : in the form of a formal definition.

Definition 2.1. Let

and let Hy,(x) be the m-th Hermite polynomial defined by

dm
dxm

N(x) = (=1)"Hy(x)N(x), m=0,1,2,...



(as in Feller [1]). For any real polynomial ‘P in n real variables given by
Pt b2, oo tn) =Y Gy gy By 2t
m

its renormalized version : P : is defined by

P (X1 e Xn) = Y @y gy Hiny (1) Hiny (32) oo Hi, (20).
m

Note that for a homogeneous polynomial, its renormalized version need not be homogeneous.

Since the function @ in (2.1) is in IL; (R") its inverse Fourier transform f is defined by

flxe0,P) = / e XD (1 ¢, 0, P)dtdty..dty

_liy2
= e 2‘x‘ _|_g

1 —itTx ,— 10?2
P(t)dty..dt,.
( /27-[)n (27-[)11/@ e ( ) 1 n

First, we note that

1 it X~ Lot 1o (%
) /e T X2 W g dty...dt, = Uﬂgm ~).

Repeated differentiation with respect to x1, x, ..., x, shows that for the homogeneous polyno-

mial P of degree 2k we have

SC e (BB L e
(

Thus the inverse Fourier transform (2.4) assumes the form

f(x;6,0,P)
1 1y (—1)ke X1 X\ L (xP(1-o?
_ x| D . 2 |XPP(1-0?)
( Tﬂ)ne 2 {1-1— T .‘P.(U,...,U>e 202 }

(2.5)



Since, by assumption, 1 — ¢ > 0 the positive constant K(c, P) defined by

K(o,P) = sup 7 :0(;2'2];-' %)l -4l (1-0%) 2.6)
XeR"

is finite and for all x € R”
f(x;¢,0,P) > 0if |e]| <K (o, P)

we observe that ®(-;¢,0, P) is a real characteristic function of the probability density function
f(-;&,0,P) defined by (2.5) for any

e € [-K~!(o,P),K (o, P)]. Here we have made use of property (2.2). Thus we can summa-
rize the discussion above as a theorem.

Theorem 2.2. Let 0 < ¢ < 1, P be a real homogeneous polynomial in n variables of even degree 2k,
K(c,P) the positive constant defined by (2.6) and ¢ € [—K~' (o, P), K~ (o, P)]. Then the function
D(-;¢,0,P) defined by (2.1) is the characteristic function of a probability density function f(-;¢,0,P)
defined by (2.5). Under this density function f(-;e,o, P) the linear functional x — a®x with |a| = 1
has characteristic function ¢ g and probability density function gg on the real line given respectively

by

pa(t) =e 2" +ePla)e 2", te R 2.7)
1 1 ~1keP X\ 1y
fal) = = {e 2 (;M(”’)HZk (5)e> } (2.8)

In particular, for any a € Zp, the linear functional a®x has the normal distribution with mean 0
and variance |a|? but f(-; ¢, 0, P) is a nongaussian density function forany ¢ € [-K~1(c, P),K~1(c, P)] ™

{o}.

Proof. The first part is immediate from the discussion preceding the statement of the theorem.
To prove the second part we note that the characteristic function ¢4 (t) of the linear functional
a’x under the density function f(-;¢,0, P) is ®(ta;¢,0, P) and (2.7) follows from (2.1) and the
homogeneity of P. Now (2.8) follows from Fourier inversion of (2.7). If 0 # a € Zp then

0="P(a)="P (ﬁ:‘) and therefore

pa(t)=ec2"
a
Hence a’x is normally distributed with mean 0 and variance |a|?. O]



Corollary 2.3. Let {S;,1 < j < N} be any finite set of (n — 1)~dimensional subspaces of R". Then
there exists a nongaussian analytic probability density function whose projection on S; is gaussian for
eachj € {1,2,..,N}.

Proof. By adding one more (n — 1)-dimensional subspace to the collection {S;,1 < j < N},
if necessary, we may assume without loss of generality that N is even. Choose a unit vector
al) € ]L for each j and define the homogeneous real polynomial P of degree N by

N .
P(t)=]]a""t, t € R™.
=1

Clearly,
N
P(t)=0ifte [ S,
j=1
In other words
N
U Sj C Zp.
j=1

If we choose y to be the probability measure with the density function f (;e0,P),0 #£ ¢
in [-K~!(o,P),K (o, P)] in Theorem 2.2 it follows immediately from the last part of the
theorem that every linear functional of the form b”x has a normal distribution with mean 0

and variance |b|*> whenever b € Zp. This completes the proof. O

Remark 2.4. In the context of understanding the modes of the density function gg(x) given by (2.8)
it is of interest to note that

{x‘x #0,97(x) = 0} =

x2 _1)k H X
{x’x £ 0167(%2—1) 4 ( 1(32;7;(:1) 2k—;1<(,-) _ 0}.

Indeed, this is obtained by straightforward differentiation and using the recurrence relation Hyy1(x) =
xHoy(x) — Hj (x).

Example 2.5. Let n be even,



Ptr,ta, s tn) = tbyty [ (8 —£7)

i>]
1 1 1
£ 8 f
t t th
oty (2.9)
D gD )

Then P is a polynomial of even degree n?, which is antisymmetric in the variables t, 2, ..., ty
The renormalized version : P : of P is given by

Hl(xl) Hl(.X'z) Hl(xn)
H3(X1) H3(X2) Hg(xn)

2P (X1, X2, .0 Xn) (2.10)

Hypi1(x1) Hopga(x2) ... Hopg1(xn)

In particular, : P : is antisymmetric in the variables x1, x2, ..., x,. Fixing 0 < ¢ < 1 we

get for each ¢ € [~K~!(c, P),K~1(0, P)], with K(c, P) being determined by (2.6), (2.10) and
k = 3n?, the probability density function f(-;¢ ¢, P) given by

1 2
;6,0,P) = e~ 2%
fleoP) = o |
Hy(3) Hy(32) Hi (%)
H3(3) Hs(2) Hs3(%2)
4t :
on(n+1)
Hyu1(3) Hong1() oo Hopa(32)
e*%azlxlz} ' (2.11)

By Theorem 2.2 and its Corollary we conclude that the projection of this density function
on the (n — 1)-dimensional hyperplanes {x|x; = 0},1 <j <n; {x|x; —x; =0}, 1 <i<j<n
and {x|x; +x; =0},1 <i <j <nareall (n — 1)-dimensional gaussian densities.
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If g(x1,x2, ..., xn) is any bounded continuous function which is symmetric in the variables
X1,X2, ..., X, then the function g : P : is an antisymmetric function in IR” and therefore

l P o) (xq, %, ..., Xy efﬁ‘x‘zdxldxz...dxn =0.
n g
Thus

/]Rg(xl,...,xn)f(x;e,U,P)dxldxz...dxn
—/ (X1, X2, ey Xp) !
JRre g 17 A27 s 4n (\/E)n

_1ix
il dx1dxy...dx;,.

In other words, for 0 # e € [-K~(c, P),K~!(o, P)], any symmetric measurable function g on
R" has the property that its distribution under the nongaussian density function f(x;e, o, P)
in (2.11) is the same as its distribution under the standard gaussian density function with

mean 0 and covariance matrix I.

Example 2.6. We now specialize Example 2.5 to the case n = 2, o = 271/2 when

P(t,t)) = hh(—1),
. P : (xl, xz) = H3(3C1)H1(X2) — Hl(xl)Hg(xz)

= X%XZ — X%Xl.

A simple computation shows that
K(o,P) = 8sup|xixy — x5x1] o1 (i +a3)

= 128 ¢ 2.

This supremum is easily evaluated by switching over to the polar coordinates x; = rcosf,
xy = rsinf. Then
1
f(x;e,0,P) = Ee_%(x%“%) {1 + 32¢(x5x0 — x§x1)e_%(x%+x%)} (2.12)
which is a probability density function whenever
2
e
< —.
< 128
At e = 0, it is the standard normal density function with mean 0 and covariance matrix I. We

write 7 = 32 € and express the density function (2.12) as

f’] (xlle) — %e_%(x%-&-x%) {1 —+ ;//(x:i;xz — x%xl)e_%(x%“‘x%)} (2'13)
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Figure 1: Bivariate density f,(x1,x2) at 7 = ¢?/4.

where

2

e

< —.
nl <5

When a = (sinb, cosfl) the density function gy of the linear functional x — x15in6 + x,cos0,
under f, is given by the formula (2.8) of Theorem 2.2 as

1 1 1 V2 17 sin(46)
32

(4x* — 1222 + 3)e—%x2} . (2.14)

Thus

(x) = —X 12 {e%xz B V2 17 sin(48)

o (4at — 2027 ¢ 15)e—5x2} .



It is not difficult to find values of 7 in the range (0, 1¢?] and angle 6 for which

{x

This reveals the possibility of nonunimodality of the density of some linear functionals under

e _ M(@# —20x24+15) = 0,x # 0} + . (2.15)

16

the joint density f,. For an illutration cf. Fig. (2).
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Figure 2: Nonunimodality of gy.

3 A characterization of gaussian distributions in R"

In the context of the Corollary to Theorem 2.2 we have the following characterization of a
gaussian distribution in R"” when the number N of (n — 1)-dimensional subspaces in the
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corollary is countably infinite.

Theorem 3.1. Let {S;,j = 1,2...} be a countably infinite set of (n — 1)— dimensional subspaces of R"
and let y be a probability measure in R" whose projection on S; is gaussian for each j = 1,2, ... Then
W is gaussian.

Proof. The fact that the projection of y on the two distinct (n — 1)-dimensional subspaces Sq
and S, are gaussian implies that the multivariate Laplace transform ji of y given by

(21, . 2n) = /exp(zlxl + oo+ zp X)) p(dxqdx;...dxy) (3.1)

is well-defined for z € C" and analytic in each of the complex variables zj,j = 1,..,n. Let
m and X be respectively the mean vector and covariance matrix of the R” valued random
variable x with distribution p.

Choose and fix a unit vector all) € S]-l foreachj=1,2,.... Suppose

T ,
al’ = (aj, - jn), j=1,2,..,
®; = max |a;l.
] 1§r§n| ]r|
Since
= 5
Z [fl]'r == 1, V]
r=1

it follows that a; > n 12y J- There exists an rq such that a;,, = «; for infinitely many values of
j. Restricting ourselves to this infinite set of j’s and assuming ry = 1 without loss of generality
we may as well assume that

u(]) = (aﬂ,...,a]-n)T,
japl = max |ay|Vj=12,..

lag| > n-Y2vj,

Now consider the (1 — 1)— dimensional vector b") defined by

AT A a3 Ain .

] ] ]

pU) = (22 22 T ,j=12,..
a1 ajn aj

where

Il <1vr=23 ..n

lljl

10



Thus all the vectors b'/) are distinct and they constitute a bounded countable set in R("~1).
Define the set

D =) {s‘s e R, (pU) — pNTg £ 0} :
j<i
Being a countable intersection of dense open sets it follows from the Baire category theorem
that ID is dense in R("~1). Let now

s = (52,53, ...,5,)] € R
be any fixed point in ID. Define
$ji1 = —b(j)Ts, j=12,...

By the definition of D, {sjl, j = 1,2,..} is a bounded and countably infinite set of distinct
points on the real line. Furthermore

aj181 + aj282 + ...+ AjnSn = 0 V]

In other words, (sj1,52, ey sn)T € §; for each j. By hypothesis the linear functional s;1x1 +
SpX2 + ... + s, x, has a normal distribution with mean Sjimy + Satp + ... + Spity and variance
(Sj1,52/ -+ Sn) (81,52, ..., Sn) T Defining

1
P(z1, . 2n) = exp(mTz + EZTZZ), ze(C"

we conclude that the Laplace transform ji defined by (3.1) and the function ¢ satisfy the rela-
tion
ﬁ(sjll 52/ ceer Sl’l) = lp(sjll SZ/ ceey SH)

forj = 1,2,.... Since ji(z,sy,...,5n) and ¢(z, sy, ..., Sy) are analytic functions of z in the whole
complex plane and they agree on the infinite bounded set {sj;,j = 1,2, ...} it follows that

i(z,82,.,5n) = ¥(z,82,...,50) Vz € C.

Since this holds for all (s, ..., sn)T € D which is dense in R("~1) and both sides of the equation
are continuous on R” we have

ﬁ(sl/ SZ/ ceer Si’l) = ED(S]/ SZ/ ceer Si’l)

for all (s1, sz, ..., sn)T € R". This implies that y is a gaussian measure with mean vector m and
covariance matrix 2. ]
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