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1 Introduction

The competing risks situation arises in life studies when a unit is subject to many,
say k , modes of failure and the actual failure , when it occurs , can be ascribed
to a unique mode. These k modes are also called the k risks to which the unit
is exposed and as they all seemingly compete for the life of the unit, the term
’competing risks’ is used to describe it. Suppose that the continuous positive
valued random variable T represents the lifetime of the unit and δ taking values
1, 2, . . . , k represent the risk which caused the failure of the unit.

The joint probability distribution of (T, δ) is specified by the set of k distribu-
tion functions

F (i, t) = P [T ≤ t, δ = i], (1)

or equivalently by the subsurvival functions

S(i, t) = P [T > t, δ = i], i = 1, 2, . . . , k. (2)

Let H(t) and S(t) denote , respectively the distribution function and the survivor
function of T . Let f(i, t) denote the sub-density function corresponding to ith risk.
Then the density function of T is h(t) =

∑k
i=1 f(i, t). It is easy to see that

k∑
i=1

F (i, t) = H(t),
k∑

i=1

S(i, t) = S(t)

and pi = F (i,∞) is the probability of failure due to the ith risk.
A commonly used description of the competing risks situation is the latent fail-

ure time model. Let X1, X2, . . . , Xk be the latent failure times of any unit exposed
to k risks, where Xi represents the time to failure if cause i were the only cause
of failure present in the situation. Fi denotes the marginal distribution of Xi and
F (x1, . . . , xk) denotes their joint distribution. The observable random variables are
still the time to failure T , where T = min(X1, X2, . . . , Xk) and the cause of failure
δ where δ = j if Xj = min(X1, X2, . . . , Xk). If X1, X2, . . . , Xk are independent,
then their marginal distributions carry all the probabilistic information regarding
the k risks. It is easily seen that the marginal and hence the joint distribution is
identifiable from the probability distribution of the observable random variables
(T, δ). However, in general when the risks are not independent, neither the joint
distribution of X ′s nor their marginals are identifiable from the probability distri-
bution of (T, δ) (Tsiatis (1975), Crowder (1991), (1993)). They have proved that
a unique independent and infinitely many dependent probability distributions of
(X1, X2, . . . , Xk) correspond to a single probability distribution of (T, δ). Hence
, the independence or otherwise of the latent lifetimes (X1, X2, . . . , Xk) cannot
be statistically tested from any data collected on (T, δ). The independence of
(X1, X2, . . . , Xk) has to be assumed on the basis of a priori information, if any.
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Also, the marginal distribution functions Fi(x) may not represent the probabil-
ity distribution of lifetimes in any practical situation. Elimination of jth risk may
change the environment in such a way that Fi(x) does not represent the lifetime
of Xi in the changed scenario.

In view of the above considerations, unless one can assume independence, it is
necessary to suggest appropriate models, develop methodology and carry out the
data analysis in terms of the observable random variables (T, δ) alone.

Kalbfleisch and Prentice (1980) proposed methods for analysing competing
risks data in terms of cause specific hazard rates λi(t), where

λ(i, t) = lim
∆t→0

1

∆t
P (t ≤ T < t+ ∆t, δ = i|T > t) =

f(i, t)

S(t)
(3)

For recent results see Crowder (2001), Kalbfleisch and Prentice (2002). Dewan and
Kulathinal (2003) have considered parametric models for sub-survival functions by
assuming a suitable parametric form for cause specific hazard rates. Aly, Kochar
and McKeague (1994), Kochar (1995) and Sun and Tiwari (1995) have considered
the problem of testing for equality of cause-specific hazard functions. Deshpande
(1990), Aras and Deshpande (1992), Deshpande and Dewan ( 2000) have consid-
ered the problem of analysing competing risks data by using the sub-distribution
functions and sub-survival functions. Recently Dewan, Deshpande and Kulathinal
(2003) have proposed tests for testing independence of T and δ.

2 Locally Most Powerful Rank Tests

Suppose k = 2, that is , a unit is exposed to two risks of failure denoted by 1 and
0. When n units are put to trial , the data consists of (Ti, δ

∗
i), i = 1, . . . , n where

δ∗ = 2− δ.
Suppose we wish to test the hypothesis H0 : F (1, t) = F (2, t), for all t. First

we look at tests based on likelihood theory. Under the null hypothesis the two
risks are equally effective. However one would expect that under the alternative
hypothesis the two risks are not equally effective atleast at some ages.

The likelihood function is given by (see , Aras and Deshpande (1992))

L(T , δ∗, f(1, ti), f(2, ti)) =
n∏

i=1

[f(1, ti)]
δ∗i [f(2, ti)]

1−δ∗i (1)

where T = (T1, . . . , Tn), δ∗ = (δ1, . . . , δn).
If F (i, t) depends upon the parameter θ , then inference about it can be based

on the above likelihood function.
When T and δ∗ are independent then Deshpande (1990) proposed the model

F (1, t) = θH(t), F (2, t) = (1− θ)H(t). (2)

Here θ = P [δ∗ = 1]. Under this model the likelihood reduces to

L(θ,H) = θ
∑n

i=1
δ∗i(1− θ)

∑n

i=1
(1−δ∗i)

n∏
i=1

h(ti). (3)
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The hypothesis F (1, t) = F (2, t) reduces to testing that θ = 1/2. Then the obvious
statistic is the sign statistic

U1 =
1

n

n∑
i=1

δ∗i. (4)

nU1 has B(n, θ) distribution and one can have optimal estimation and testing
procedures based on it. However, if F (1, t) and F (2, t) depend on a parameter θ in
a more complicated manner then one needs to look at locally most powerful rank
tests.

Let f(1, t) = f(t, θ), f(2, t) = h(t) − f(t, θ) where h(t) and f(t, θ) are known
density functions and incidence density such that f(t, θ0) = 1

2
h(t).

Let T(1) ≤ T(2) ≤ . . . ≤ T(n) denote the ordered failure times. Let

Wi =

{
1 if T(i) corresponds to first risk
0 otherwise.

(5)

Let Rj be the rank of Tj among T1, . . . , Tn . Let

R′ = (R1, R2, . . . , Rn), W ′ = (W1,W2, . . . ,Wn)

denote the vector of ranks and indicator functions corresponding to ordered min-
ima. The likelihood of ranks is given by

P (R,W, θ) =
∫
. . .
∫
0<t1<...<tn<∞

n∏
i=1

[f(ti, θ)]
wi [h(ti)− f(ti, θ)]

1−widti (6)

Theorem : If f ′(t, θ) is the derivative of f(t, θ) with respect to θ, then the locally
most powerful rank test for H0 : θ = θ0 against H1 : θ > θ0 is given by: reject H0

for large values of Lc =
∑n

i=1wiai, where

ai =
∫
. . .
∫
0<t1<...<tn<∞

f ′(ti, θ0)

f(ti, θ0)

n∏
i=1

[f(ti, θ0)dti]. (7)

Special cases
(i) If the model (2) holds with θ0 = 1/2, then sign test is the LMPR test.
(ii) If f(1, t) = 1

2
g(t, 0) and f(2, t) = 1

2
g(t, θ), θ > 0 and g(t, θ) is the logistic

density function g(t, θ) = e(x−θ)

[1+e(x−θ)]2
, then the LMPR test is based on the statistic

W+ =
∑n

i=1WiRi, which is the analogue of the Wilcoxon signed rank statistic for
competing risks data.

(iii) In case of Lehmann type alternative defined by F (1, t) = [H(t)
2

]θ, F (2, t) =

H(t)−[H(t)
2

]θ,, LMPR test is based on scores ai = E(E(j)) where E(j) is the jth order
statistic from a random sample of size n from standard exponential distribution.

But for more complicated families of distributions, e.g., Gumbel (1960), the
scores are complicated and need to be solved using numerical integration (see Aras
and Deshpande (1992)).
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3 Tests for bivariate symmetry

Assume that the latent failure times X and Y are dependent. Suppose their joint
distribution is given by F (x, y). On the basis of independent pairs (Ti, δ

∗
i) we

want to test whether the forces of two risks are equivalent against the alternative
that the force of one risk is greater than that of the other. That is we test the null
hypothesis of bivariate symmetry

H0 : F (x, y) = F (y, x) for every (x, y) (1)

Before we formulate the alternative of interest let us consider the following
theorem which is easy to prove.
Theorem 3.1: Under the null hypothesis of bivariate symmetry we have

(i)F (1, t) = F (2, t) for all t,
(ii)S(1, t) = S(2, t) for all t,
(iii) λ(1, t) = λ(2, t) for all t,
(iv) P [δ∗ = 1] = P [δ∗ = 0]
(v) T and δ∗ are independent.

In view of the above theorem, the following alternatives to the null hypothesis
are worth considering.

H1 : λ(1, t) < λ(2, t)

H2 : F (1, t) < F (2, t)

H3 : S(1, t) > S(2, t). (2)

All these alternatives say that risk II is more potent than risk I at all ages t in
some stochastic sense.

Sen (1979) considered fixed sample and sequential tests for the null hypothesis
of bivariate symmetry of the joint distribution of (X, Y ).The alternatives are ex-
pressed in terms of π1(t) = Pr[δ̃ = 1|T = t], the conditional probability that the
failure is due to first risk , given that failure occurs at time t. He derived optimal
score statistics for such parametric situations. But the statistics cannot be used
without the knowledge of the joint distribution F (x, y).

We look at various distribution-free test procedures for testingH0 against above
alternatives.

For testing H0 against H1 consider

ψ(t) = F (1, t)− F (2, t)

=
∫ t

0
S(t)[λ(1, u)− λ(2, u)]du (3)

H1 holds iff the above function is non-increasing on t.
Kochar and Dewan (2000) have suggested considering the following measure of

deviation between H0 and H1,

∆ =
∫
0<x<y<∞

[ψ(x)− ψ(y)] dF (x) dF (y) (4)

4



and its empirical estimator ∆n as the test statistic where ∆n is given by

∆n =
∫
0<x<y<∞

[ψn(x)− ψn(y)] dFn(x) dFn(y) (5)

where

F1n(t) =
1

n

n∑
j=1

I{δj = 1, Tj ≤ t},

Fn(t) =
1

n

n∑
j=1

I{Tj ≤ t},

and
ψn(t) = 2F1n(t)− Fn(t). (6)

are the empirical estimators of F1, F and ψ, respectively.
Then

∆n =
∫
0<x<y<∞

[ψn(x)− ψn(y)] dFn(x) dFn(y)

=
1

n3

∑
1≤i<j≤n

[j − i− 2
j∑

`=i+1

W`]

=
1

n3
[
n(n2 − 1)

6
− 2

n∑
i=1

(i− 1)(n− i+ 1)Wi] (7)

where Wi is as defined in (2.5).
Under H0, ∆ = 0, but under the alternative, ∆ > 0. Large values of the statis-

tic are significant. Rejecting H0 for large values of ∆n is equivalent to rejecting it
for small values of the statistic

U2 =
n−1∑
i=1

i(n− i)Wi+1 (8)

Since T and δ are independent under H0, W1,W2, . . . ,Wn are i.i.d. Bernoulli
random variables with P{Wi = 1} = P{Wi = 0} = 1

2
, i = 1, 2, . . . , n. Hence, the

moment generating function of the null distribution of U2 is given by

M(t) = 2−n+1
n−1∏
i=1

(1 + eait) (9)

where ai = i(n− i), i = 1, 2, · · · , n− 1.
Using (8), the exact null distribution of U2 can be obtained fol-

lowing the approach of Hettmansperger (1984 pp 35). For n =
5(1)20, the 5% and 1% critical values of U2 are given in Table 2.1.

TABLE 2.1
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Critical points of U2 and exact significance levels.

n α ≈ 0.01 α ≈ 0.05
5 - 0, 0.0625
6 - 0, 0.03125
7 0, 0.015625 6, 0.046875
8 7, 0.015625 14, 0.046875
9 8, 0.011719 22, 0.054688
10 18, 0.011719 34, 0.054688
11 28, 0.013672 50, 0.050781
12 38, 0.010254 67, 0.051758
13 54, 0.010498 90, 0.051514
14 74, 0.01001 118, 0.052734
15 98, 0.010132 148, 0.050293
16 126, 0.01001 186, 0.0513
17 158, 0.01001 228, 0.050308
18 198, 0.010269 278, 0.050613
19 242, 0.010311 332, 0.049911
20 290, 0.01005 396, 0.050467

The mean and variance of U2 under H0 are given by

E[U2] =
n(n2 − 1)

12
, V ar[U2] =

n(n4 − 1)

120
(10)

By the Central Limit Theorem, it can be shown that, under H0,

n
1
2{U2

n3
− 1

12
} L→ N(0,

1

120
). (11)

Hence, for large n, the critical values of U2 can be obtained by using the above
normal approximation.

To give an idea about the accuracy of the normal approximation of U2, we give
the exact (respectively, approximate) significance levels for n = 10 and n = 20.
For n = 10, P [U2 ≤ 18] = 0.011719 (resp. 0.0118) and P [U2 ≤ 34] = 0.054688
(resp. 0.0594). For n = 20, P [U2 ≤ 290]= 0.01005 (resp. 0.0111) and P [U2 ≤ 396]
= 0.050467 (resp. 0.049).

After change of integration, ∆ can also be expressed as

∆ =
∫ ∞

0
S2(x)F (x)[λ2(x)− λ1(x)] dx. (12)

It is seen from this representation that the test based on U2 is equivalent to the
test V of Yip and Lam (1992) proposed for the case of independent risks without
censoring. They have not discussed its small sample exact null distribution.

Deshpande (1990) proposed two tests for testing H0 versus H2 on heuristic
grounds.

The first test is the Wilcoxon signed rank type statistic

W+ =
n∑

i=1

(1− δ∗i)Ri. (13)
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It was felt that W+ will be large when the alternative H2 is true, there being
a greater incidence of the second risk upto any fixed time t.

Another test is based on the U-statistic

U3 =
1(
n
2

) ∑
1≤i<j≤n

φ3(Ti, δ
∗
i, Tj, δ

∗
j) (14)

where φ3 is given by

φ3(Ti, δ
∗
i, Tj, δ

∗
j) =


1 if δ∗j = 0, Ti > Tj

or δ∗i = 0, Ti < Tj

0 otherwise
(15)

Here the kernel φ3 takes value 1 if , and only if, a Y observation is the smallest
among (Xi, Xj, Yi, Yj).

Note that (
n

2

)
U3 =

n∑
i=1

(n−Ri + 1)δ∗i. (16)

Note that E(U3) = 1/2 under H0 and strictly larger than 1/2 under H2. U3

is same as the statistic proposed earlier to test for H0 against the alternative
HA1 of stochastic dominance of distribution functions of independent latent failure
times (see, Deshpande and Dewan (2003)) is also consistent for testing bivariate
symmetry against dominance of incidence functions.

For testing H0 against H2, one can consider the measure of deviation F (2, t)−
F (1, t), which is non-negative under H2. Then∫ ∞

0
[F (2, t)− F (1, t)]dH(t) = P [δ∗1 = 0, T1 ≤ T2]−

1

2
. (17)

A U-statistic estimator of this parameter is the statistic U3 discussed above.
Similarly for testing H0 against H3 consider the measure of deviation S(1, t)−

S(2, t), which is non-negative under H3. Then∫ ∞

0
[S(1, t)− S(2, t)]dH(t) = P [δ∗1 = 1, T1 > T2]−

1

2
. (18)

Consider the kernel

φ4(Ti, δi, Tj, δj) =


1 if δ∗i = 1, Ti > Tj

or δ∗j = 1, Ti < Tj

0 otherwise
(19)

Then the corresponding U-statistic is given by

U4 =
1(
n
2

) ∑
1≤i<j≤n

φ4(Ti, δi, Tj, δj) (20)

Then (
n

2

)
U4 =

n∑
i=1

(Ri − 1)δ∗i. (21)
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This statistic was earlier proposed by Bagai, Deshpande and Kochar (1989) to
test for equality of failure rates of independent latent competing risks.

Aly , Kochar and Mckeague (1994) proposed Kolmogrov-Smirnov type tests
for testing the equality of two competing risks against the alternatives H1 and H2.
Here we discuss their approach.

Consider

ψ∗(t) = F (2, t)− F (1, t)

=
∫ t

0
S(u)(λ(2, u)− λ(1, u))du. (22)

Under H0, ψ
∗(t) = 0. H1 holds iff ψ∗(t) is nondecreasing in t . Let ψ∗n(t) be

its empirical estimator. Consider

D1n = sup
0≤s<t<∞

{ψ∗n(t)− ψ∗n(s)}. (23)

Large values of the statistic are significant.
The exact null distribution of D1n is given by

P [nD1n < t] =
2

2t+ 1

2t∑
j=0

(cos
jπ

2t+ 1
)(sin

jπ(t+ 1)

2t+ 1
)

×(1 + cos
jπ

2t+ 1
)(

1− (−1)j

2
)/ sin

jπ

2t+ 1
. (24)

for t = 1, . . . , n+ 1.
The asymptotic null distribution of D1n is given by

√
nD1n

L→ sup
0≤x≤1

|W (x)|, (25)

where {W (t), t ≥ 0} is a standard Brownian motion. The asymptotic
0.90, 0.95, 0.99 quantiles of

√
nD1n were found to be 1.96, 2.241, 2, 807, respectively.

If one is interested in a general two sided alternative F (1, t) 6= F (2, t) for some t
or equivalently λ1(t) 6= λ2(t) for some t , then one can use the Kolmogrov-Smirnov
type statistic

Dn = sup
t≥0

|ψ∗n(t)|. (26)

Under H0,
√
nDn converges in distribution to sup0≤x≤1 |W (x)|. This test is consis-

tent against arbitrary departures from H0.
For testing H0 against H2, Aly , Kochar and McKeague (1994) proposed the

statistic
D2n = sup

0≤t∞
ψn(t). (27)

Large values of D2n are significant for testing H0 against H2. The exact nulltribu-
tion of D2n is given by

P [nD2n = k] =
1

2n

(
n

[n−k
2

]

)
, k = 0, 1, . . . , n. (28)

The asymptotic null distribution is given by

P [
√
nD2n > x] → 2(1− Φ(x)), x ≥ 0, (29)

where Φ is the standard normal distribution function.
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4 Censored data

Most of the above tests can be generalized to the case when the data is right
censored. Let C be the censoring random variable independent of the latent failure
times X and Y . Denote the survival function of C by Sc and assume that SC(t) > 0
for all t.

Now the available information consists of (T̃i, δ̃i), i = 1, 2, · · · , n where T̃ =
min(T,C) and δ̃ = δ∗I(T ≤ C). Aly et al (1994) generalised the function ψ∗ so as
to capture departures of H0 from H2 in case of censored data.

Let

φ(t) =
∫ t

0
S(u−)(SC(u−))

1
2 (λ(2, u)− λ(1, u))du (1)

which is the ψ∗ function when there is no censoring.
The integrand SC(u−)1/2 is the function required to compensate for censor-

ing in order that the D statistics remain asymptotically distribution-free. Under
H0, φ(t) = 0. H1 holds iff φ(t) is increasing in t.

The relevant statistic is

D3n = sup
0≤s<t<∞

{φn(t)− φn(s)}, (2)

An obvious choice of φn is

φn(t) =
∫ t

0
Ŝ(u−)(ŜC(u−))1/2 d(Λ̂1 − Λ̂2)(u) (3)

where Ŝ and ŜC are the product limit estimators of S̄ and SC , and Λ̂j is the Aalen
estimator of the cumulative CSHR function Λj(t) =

∫ t
0 λj(u) du.

Λ̂j(t) =
∑

i|T̃i≤t

I(δ̃i = j)

Ri

(4)

where Ri = #{k : T̃k ≥ T̃i} is the risk set at time T̃i. Large values of the statistic
are significant.

Since φ(t) > 0 for some t under H2, a suitable test procedure is based on large
values of

D4n = sup
0≤t<∞

φn(t). (5)

Aly et al (1994) showed that D3n and D4n are asymptotically distribution-free
with the same limiting distributions as those obtained in the uncensored case.

A suitable modification of U2 to censored data is given by the statistic

Kn =
∫
0<x<y<∞

(φn(x)− φn(y)) dŜ(x) dŜ(y) (6)

where φn and Ŝ are as defined above.
Kn can be expressed as

Kn =
∑

i|δ̃i 6=0

φn(i)(2Ŝ(T̃(i−1))− 1)(Ŝ(T̃(i−1))
1

n− i+ 1
(7)
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Large values of Kn are significant for testing H0 against H1.

Aly et al (1994) showed that, under H0,

n1/2φn
L→ W (S(.)) (8)

where W(.) is the standard Brownian Motion.
Using the continuous mapping theorem, we have

n1/2Kn
L→

∫
0<s<t<1

(W (t)−W (s)) ds dt

=
∫ 1

0
(2t− 1)W (t) dt

=
∫ 1

0
W (t) d(t2 − t)

L→ N(0, σ2)

where

σ2 = 2
∫
0≤s<t≤1

s(2s− 1)(2t− 1) ds dt

=
1

30
(9)

Sun and Tiwari (1995) modified the statistic U3 so that it can be used for
censored data.

V =
∫ ∞

0
(F (2, t)− F (1, t))dH(t)

=
∫ ∞

0
[S(t)]2d(Λ2(t)− Λ1(t)) (10)

A natural estimator of D is given by Vn where

Vn =
∫ ∞

0
[Ŝ(t−)]2d(Λ̂2(t)− Λ̂1(t)) (11)

where Ŝ(t) and Λ̂j are as defined above. In the absence of censoring Vn reduces to
the statistic U3.

Then Sun and Tiwari (1995) proved the following theorem.

Theorem: Let K(t) = 1− S(t)SC(t), τK = sup{t : K(t) < 1}. If
∫ τK
0

dH(t)
SC(t)

<∞,
then √

n(Vn − V )
L→ N(0, σ2) asn→∞, (12)

where

σ2 =
∫ ∞

0
S3(t)

d(Λ1(t) + Λ2(t))

SC(t)

+ 4
∫ ∞

0
(
∫ ∞

t
S2(u)d(Λ2(u)− Λ1(u)))

2d(Λ1(t) + Λ2(t))

S(t)SC(t)

− 4
∫ ∞

0
(
∫ ∞

t
S2(u)d(Λ2(u)− Λ1(u)))

d(Λ1(t) + Λ2(t))

SC(t)

(13)
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In particular, under H0,

σ2 =
∫ ∞

0

S2(t)

SC(t)
dH(t). (14)

A consistent estimator σ̂2 of σ2 is obtained by replacing S ans SC by their consistent
Kaplan Meier-estimators.

When there is no censoring σ2 = 1
3
. The test rejects for large values of the

statistic . The approximate power of this test of size α is equal to 1 − Φ(zα −√
nV/σ̂), where zα is the upper α percentile of standard normal distribution.

5 SIMULATION RESULTS

Given below are the results of a simulation study done for power comparisons of
various tests for the uncensored case listed above.

Random samples were generated from absolutely continuous bivariate expo-
nential (ACBVE) due to Block and Basu (1974) with density

f(x, y) =


λλ1(λ2+λ0)

λ1+λ2
e−λ1x−(λ2+λ0)y if x < y,

λλ2(λ1+λ0)
λ1+λ2

e−λ2y−(λ1+λ0)x if x > y,

where (λ0, λ1, λ2) are the parameters and λ = λ0 + λ1 + λ2. The CSHR’s are

λj(t) =
λjλ

λ1 + λ2

, j = 1, 2.

Under H1 λ1 < λ2.
X and Y are independent if and only if λ0 = 0. We set λ1 = 1 and consider λ2 =

1.0, 1.4, 1.8, 2.2 indicating larger and larger departures from H0. The case λ2 = 1.0
corresponds to the null hypothesis. n = 100 and there are 10000 replications.

λ2

Test 1.0 1.4 1.8 2.2
D1 3.76 41.98 82.53 96.83
D2 4.85 47.71 86.98 98.14
U2 5.09 44.60 83.96 96.92
U3 4.79 43.06 80.54 95.42
U4 4.99 42.67 80.81 95.77
Sign 4.39 49.50 88.29 98.66

Next we look at the censored case. The censoring distribution was
exponential with parameters 1 and 3, respectively. We use asymptotic
critical levels of 5 percent. Results are based on 5, 000 replications.

TABLE 3.1
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Observed levels and powers of Kn at an asymptotic level of 5 percent. The
underlying distribution of (X,Y ) is Block and Basu (1974) ACBVE with λ1 = 1.

(a) CENSORED (EXP(1))

n=50 n=100
λ2 λ0 = 0 λ0 = 1 λ0 = 0 λ0 = 1
1.0 .0218 .0312 .0360 .0376
1.5 .1864 .2192 .3732 .4302
2.0 .4482 .5080 .7862 .8342
2.5 .6928 .7414 .9546 .9704

(b) CENSORED (EXP(3))

n=50 n=100
λ2 λ0 = 0 λ0 = 1 λ0 = 0 λ0 = 1
1.0 .0048 .0124 .0084 .0172
1.5 .0342 .0762 .1012 .1834
2.0 .1202 .1986 .3216 .4860
2.5 .2496 .3774 .5862 .7344

From the table it is clear that the asymptotic critical levels give conservative
tests for the censored case, with the effect increasing as the censoring becomes more
severe. There is slight effect on the levels or the power due to lack of independence
of X and Y in the presence of censoring. The results are comparable with the test
proposed by Aly et al (1994) for the lightly censored case.

Remarks
(i) The various tests are consistent against their intended alternatives.
(ii We can also use these tests for the hypothesis λ1(t) = λ2(t) against the

alternative that cause-specific hazards are ordered.
(iii) The tests are distribution-free under H0. The null distribution of the tests

U3 and U4 is same as in the case of independent latent failures (see, Deshpande
and Dewan (2003)).

(iv) It is important to note that T and δ continue to be independent under the
null hypothesis of bivariate symmetry . Hence the conclusions of Lemma 1 in the
review paper hold under H0.

(v) The statistic U2 puts more weight on the middle observations and is less
sensitive to the observations in the beginning and the end of the experiment. On
the other hand, U3 puts more weight to later observations and U4 puts higher
weight to observations in the beginning.

(vi) Deshpande and Dewan (2000) proposed tests for testing bivariate symme-
try aginst dispersive asymmetry. Here the alternatives can be expressed in terms
of ordering of sub-survival functions and ordering of sub-distributions of the maxi-
mum of observations and δ . The statistic is a linear combination of two statistics,
the first one is a U-statistic based on minimum and δ and the other one is a

12



U-statistic based on maximum and δ. The one based on minimum and δ is the
statistic U4

(vii) The statistics U2, U3, U4 are all linear combinations of the sign statistic
and the Wilcoxon-signed rank type statistic.

(viii) Tests proposed by Aly, Kochar and Mckeague (1994) can be extended
to the case of multiple risks in which any two of the cause-specific risks are to be
compared. The statistic can be modified to test dominance of one risk over the
other in a specified interval.

6 Test for independence of T and δ

The nature of dependence between T and δ is crucial and useful in modelling
competing risks data via sub-distribution/subsurvival functions. If T and δ are
independent then Si(t) = pr(δ = i)S(t), allowing the study of the failure times
and the causes (risks) of failure separately. The hypothesis of equality of incidence
functions or that of cause-specific hazard rates reduces to testing whether pr(δ =
1) = pr(δ = 0) = 1/2. This simplifies the study of competing risks to a great
extent.

Dewan, Deshpande and Kulathinal (2004) studied the properties of the condi-
tional probability functions

Φi(t) = pr(δ = i | T ≥ t) = Si(t)/S(t), i = 1, 2

and
Φ∗

i (t) = pr(δ = i | T < t) = Fi(t)/H(t), i = 1, 2.

They observed
(i) T and δ are independent iff Φ1(t) = P [δ = 1] or Φ∗

2(t) = 1− P [δ = 1]
(ii) T and δ are PQD iff Φ1(t) ≥ P [δ = 1] or Φ∗

2(t) ≥ 1− P [δ = 1]
(iii) δ is Right Tail Increasing in T iff Φ1(t) is increasing in t.
(iv) δ is Left Tail Decreasing in T iff Φ∗

2(t) is decreasing in t.
They considered the problem of testing H0 : T and δ are independent which is

equivalent to
H0 : Φ1(t) is a constant

against various alternative hypotheses which characterise the properties of Φ1(t)
and Φ∗

0(t):

H1 : Φ1(t) is not a constant

H2 : Φ1(t) ≥ P [δ = 1] for all t with strict inequality for some t

H3 : Φ1(t) is a monotone nondecreasing function of t

H4 : Φ∗
0(t) is a monotone nonincreasing function of t.

A test based on the concept of concordance and discordance was proposed for
testing H0 against H1. Actually a one-sided version of the test was seen to be
consistent against H2 . Two tests were proposed to test H0 against H2. A test
using U-statistic was proposed for testing H0 against H3 and on the same lines
a test was proposed for testing H0 against H4. Note that there is no relationship
between H3 and H4 but both imply H2. Some of the test statistics considered are
already in the literature but in other contexts.

13



6.1 Testing H0 against H1

Kendall’s τ is used as a test statistic for a very general alternative of non-
independence. A pair (Ti, δi) and (Tj, δj) is a concordant pair if Ti > Tj, δi =
1, δj = 0 or Ti < Tj, δi = 0, δj = 1 and is a discordant pair if Ti > Tj, δi = 0, δj = 1
or Ti < Tj, δi = 1, δj = 0. Define the kernel

ψk(Ti, δi, Tj, δj) =



1 if Ti > Tj, δi = 1, δj = 0
or Ti < Tj, δi = 0, δj = 1

−1 if Ti > Tj, δi = 0, δj = 1
or Ti < Tj, δi = 1, δj = 0

0 otherwise.

Note that when both δi and δj are 1 or 0, then δi − δj = 0. The corresponding
U-statistic is given by

Uk =

(
n

2

)−1 ∑
1≤i<j≤n

ψ1(Ti, δi, Tj, δj).

It is seen that E(Uk) ≥ 0 under H2. Hence, a one-sided test based on Uk can be
used to test Φ1(t) ≥ φ1(0) for all t also.(

n
2

)
Uk can be written as

(
n

2

)
Uk =

n∑
j=1

(2Rj − n− 1)δj =
n∑

j=1

(2j − n− 1)Wj =
n∑

j=1

ajWj (1)

where aj = 2j − n− 1.
This statistic was introduced for the first time in Deshpande and Sengupta

(1995) for proportionality of cause specific hazard rates with independent compet-
ing risks. For details see Deshpande and Dewan (2003) and Dewan et al (2004).

6.2 Testing H0 against H2

H2 : Φ1(t) ≥ Φ1(0) which is equivalent to Φ∗
0(t) ≥ Φ∗

0(0). A. Test based on Φ1(t)
Consider

∆2(S1, S) =
∫ ∞

0
[S1(t)− φS(t)]dF (t) = pr(T2 > T1, δ2 = 1)− φ/2.

Under H0, S1(t)/S(t) = pr(δ = 1). This implies that ∆2(S1, S) = 0. Under H2,
S1(t) ≥ Φ1(0)S(t) and hence ∆2(S1, S) ≥ 0. Define the symmetric kernel

ψ2(Ti, δi, Tj, δj) =


1 if Tj > Ti, δj = 1

or if Ti > Tj, δi = 1
0 otherwise.

The corresponding U-statistic estimator is given by

US =

(
n

2

)−1 ∑
1≤i<j≤n

ψ2(Ti, δi, Tj, δj). (2)
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It can be shown that(
n

2

)
US =

n∑
j=1

(Rj − 1)δj =
n∑

j=1

(j − 1)Wj. (3)

The above statistic is proposed in equation (2.6) by Bagai et al. (1989) for testing
the equality of failure rates of two independent competing risks and is same as the
statistic U4.

We can derive another test for H0 versus H2 using the fact that Φ∗
0(t) ≥ Φ∗

0(0)
under H2.

6.3 Testing H0 against H3

Note that Φ1(t) ↑ t is equivalent to Φ1(t1) ≤ Φ1(t2), whenever t1 ≤ t2. This gives
γ(t1, t2) = S1(t2)S(t1) − S1(t1)S(t2) ≥ 0, t1 ≤ t2 with strict inequality for some
(t1, t2). Define

∆3(S1, S) =
∫ ∫

t1≤t2
γ(t1, t2)dF1(t1)dF1(t2) (4)

=
∫ ∞

0
[S2

1(t)− φ2/2]S(t)dF1(t).

Under H0, S1(t)/S(t) = φ. This implies that ∆3(S1, S) = 0. Under H3, ∆3(S1, S) ≥
0.

Define the kernel

ψ∗3(Ti, δi, Tj, δj, Tk, δk, Tl, δl) =



1 if Tk > Tj > Tl > Ti,
δi = δj = δk = 1, δl = 0

−1 if Tl > Tj > Tk > Ti,
δi = δj = δk = 1, δl = 0

0 otherwise.

Then the U-statistic corresponding to ∆3(S1, S) is given by

UR =

(
n

4

)−1 ∑
1≤i1<i2<i3<i4≤n

ψ3(Ti1 , δi1 , Ti2 , δi2 , Ti3 , δi3 , Ti4 , δi4),

where ψ3 is the symmetric version corresponding to ψ∗3.
Note that E(ψ∗3(Ti, δi, Tj, δj, Tk, δk, Tl, δl)) = ∆3(S1, S) and the expectation of

the symmetric kernel is 24∆3(S1, S) due to the possible combinations required to
obtain the symmetric kernel. Hence, E(UR) = 24∆3(S1, S). Under H0, E(U3) = 0
and under H3, E(UR) ≥ 0.

Theorem 1 As n tends to ∞, under H0, n
1/2UR converges in distribution to

N(0, σ2
3), where σ2

3 = (96/35)φ5(1− φ).

The null hypothesis is rejected for large values of n1/2UR/σ̂3 where σ̂2
3 =

(96/35)φ̂5(1− φ̂).
Tests proposed above will help in discriminating between the constant or pro-

portional warning-constant inspection and random signs censoring models due to
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Cooke (1996) and also to determine whether the corresponding mode of failure
becomes more likely with increasing age.

Based on similar considerations Dewan et al (2004) proposed a test for testing
H0 against H4.

For modelling the competing risks data in terms of (T, δ), it is of prime im-
portance to check whether T and δ are independent.The above tests are simple
and perform satisfactorily in distinguishing between the hypotheses. All tests are
typically consistent against larger alternatives than the one for which they are
proposed . The tests are “almost” distribution free in the sense that their null
distribution depends only on the parameter P (δ = 1) which can be estimated con-
sistently. If the hypothesis of independence is accepted then one can simplify the
model and study the failure time and cause of failure separately. If the hypothesis
is rejected then a suitable model under specific dependence between T and δ in
terms of the incidence functions is needed.
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