0.1 Partialling Out Interpretation of OLS regression

Recall:
Y=XB+¢

Now lets call a subset of variables X; and another (non intersecting) subset
of variables as Xgo. In other words, X is partitioned into X4 and Xg. We can
therefore write:

Y - Xslﬁsl + XSQ/BSQ +e
where ( is appropriately partitioned into 5, and 5.

Recall the normal equations:
A
X'XB=X'Y (1)

(for the rest of the course, unless specified, all estimators are OLS).
(1) can be rewritten as

A
X Xa XX Ba | _ ([ XaY
X X1 XlpXeo 3 XY
s2

The First Line implied by this condition:

AN AN
X.;lXSlle + X.;leZBsZ = Xgly

or
A

_ _ N
B = (X Xa) " X0Y — (X Xa) ™ X0 X8 (2)

1. If two sets of variables are orthogonal, that is, X’; X = 0, then running
the regression with all variables or seperately with each set of results yields

A
the same 3 s.

This has important implications on the impact of variables that have been
left out of the regresion.
The Second Line implied by this condition:

A A
X.;ZXSlle + X.;ZXsZBsZ = XgZY
A
Substitute the value of 3,; from (2):

1

_ _ AN
XpXar |[(X0Xe1) "  X0Y — (X0 X)) Xy X280

A
+ X0 X2B = XY
This implies

A _ A
XloXeoBay — XipXor (X1 Xo1) " X0y X 2B



_ Y/ ! I ! r =1
- XSZY - X82X81 ( sl sl) le
or,

_ A
o [T = X1 (X1 Xo1) ! XUy | XioBio

= X[ [ - X (X Xa) " XL ] Y

Recall the definition of the residual matrix: Therefore, we can re write this
expression in terms of the residual matrix:

A
X;ZMX51X82632 = X/ZMXSIY

S
Hence: R
632 = (X.QZMXleSZ)il X;ZMXsly

Recall again, that My , is idempotent: So, Mx,, .Mx,, = Mx,,. Also
Mx,, = M _ Therefore,

A

1
/832 = (X;ZMS(SI'MXHXSZ) X;ZMXSI'MXSIY

Define
X =Mx,, X,
and
Y*=Mx,Y
Then

A */ * \—1 * *
ﬁsZ = ( 52 32) XsZY
What is X}, 7 Its the residual when you run a regression of X , on X;.

What is Y*? Its the residual when you run a regression of Y on X;;. Therefore

A
is B9 is what you would get as the coeflicient of X, if

STEP 1: Run a regression of Y on X;. calculate and store residuals ey

STEP 2: Run a regression of each x in Xz on X,;. Calculate and store resid-
uals e,.

STEP 3: Run a regression of ey with all €, s as regressors. The coefficient of

each z in X, will be what you would obtain if you ran a regression of Y’
on X and Xgo.



0.2 Goodness of Fit

To evaluate the goodness of fit we look at how much of the variation in Y has
been explained. We will look at models with a constant (intercept term). So the
algebric properties when we run a model with an interecept term are relevant
here.

The varition in Y can be summarized by the Total Sum of Squares (TSS):

n
Z(yi —-y)*
i=1
To represent this in matrix notation, we can use M; where i =

what is M;Y?

MY =[I —i(i"))~ %Y =[I —i(n)" 4]y

Now,
1, 1< _
E“ Y = EzZyZ =1y
=1
1 0 0 Y1
01 0 |Y= : =Y
0 0 1 Un
So,
Y1 y y1—y
M;Y = — =
Yn y Yn — Y
Therefore

n
S (i —5)? = (MY) MY = Y'M{M;Y =Y'M;Y
i=1
N A
Since in a model with an intercept term the sum of residuals is zero, there-

fore,the mean residuals, £ = 0. Thus Mié = 2. This implies

D -y =Y [Mng + Q]

i=1

Now substituting Y gives us

_ (,BA’X’ 4 Q') <MiX,g’ + Q)



/\, A A, A A AAA
=3 X'M;XB+B'X'e+e M;XB+¢c¢

A A /
=X M;XB+EE
since X =0
£ 2 is called the residual sum of squares (ResidSS : also called square of

A A
residuals). 3'X'M; X} is the explained sum of squares (ExplSS; also called

regression sum of squares).
Therefore
TSS = FxplSS + Re sidSS

To judge the explanatory power of a model, we define R? (coeffecient of
determinination).

AN A /
,  ExplSS B X'M;XB £e
R* = TSS =~ n =1- n
. 77)2 o 77)2
> (wi— ) > wi—v)
=1 1=1

By its construction, R? lies between 0 and 1. But notice this is only true
for the model with the intercept term!

What is this expression for a regression with an intercept and an explanatory
variable? (HW)

Notice:

A A AN A\ A
B'X'M;XB=Y MY = (MlY) MY
n

:i(@i—@i):z(@i—yi)

i=1

(because in a regression with intercept the mean residual is zero)



