
0.1 Partialling Out Interpretation of OLS regression

Recall:
Y = Xβ + ε

Now lets call a subset of variables Xs1 and another (non intersecting) subset
of variables as Xs2. In other words, X is partitioned into Xs1 and Xs2. We can
therefore write:

Y = Xs1βs1 +Xs2βs2 + ε

where β is appropriately partitioned into β
s1

and β
s2
.

Recall the normal equations:

X ′X
∧

β = X ′Y (1)

(for the rest of the course, unless specified, all estimators are OLS).
(1) can be rewritten as
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The First Line implied by this condition:

X′
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βs1 +X
′
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1. If two sets of variables are orthogonal, that is, X′

s1Xs2 = 0, then running
the regression with all variables or seperately with each set of results yields

the same
∧

β s.

This has important implications on the impact of variables that have been
left out of the regresion.

The Second Line implied by this condition:

X′

s2Xs1
∧

βs1 +X
′

s2Xs2
∧

βs2 = X
′

s2Y

Substitute the value of
∧

β
s1

from (2):
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This implies
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= X′
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′
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X′

s2

[
I −Xs1 (X

′

s1
Xs1)

−1
X′

s1

]
Xs2

∧

β
s2

= X′

s2

[
I −Xs1 (X

′

s1Xs1)
−1
X ′

s1

]
Y

Recall the definition of the residual matrix: Therefore, we can re write this
expression in terms of the residual matrix:
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Hence:
∧
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Recall again, that MXs1
is idempotent: So, MXs1

.MXs1
= MXs1

. Also
MXs1

= M ′

Xs1
Therefore,

∧
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Define
X∗

s2
≡MXs1

X
s2

and
Y ∗ ≡MXs1

Y

Then
∧
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s2X
∗

s2)
−1X∗
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∗

What is X∗

s2
? Its the residual when you run a regression of X

s2
on Xs1.

What is Y ∗? Its the residual when you run a regression of Y on Xs1. Therefore

is
∧

βs2 is what you would get as the coefficient of X
s2

if

STEP 1: Run a regression of Y on Xs1. calculate and store residuals εY

STEP 2: Run a regression of each x in Xs2 on Xs1. Calculate and store resid-
uals εx.

STEP 3: Run a regression of εY with all εx s as regressors. The coefficient of
each x in Xs2 will be what you would obtain if you ran a regression of Y
on Xs1 and Xs2.
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0.2 Goodness of Fit

To evaluate the goodness of fit we look at how much of the variation in Y has
been explained. We will look at models with a constant (intercept term). So the
algebric properties when we run a model with an interecept term are relevant
here.

The varition in Y can be summarized by the Total Sum of Squares (TSS):
n∑

i=1

(yi −
_
y)2.

To represent this in matrix notation, we can use Mi where i =






1
1
:
1




 .

what is MiY ?

MiY = [I − i(i
′i)−1i′]Y = [I − i(n)−1i′]Y

Now,

1

n
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1

n
i

n∑
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
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So,
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Therefore

n∑

i=1

(yi −
_
y)2 = (MiY )

′

MiY = Y
′M ′

iMiY = Y
′MiY

= Y ′
[
MiX

∧

β +Mi

∧

ε

]

Since in a model with an intercept term the sum of residuals is zero, there-

fore,the mean residuals,

_
∧

ε = 0. Thus Mi

∧

ε =
∧

ε. This implies

n∑

i=1

(yi −
_
y)2 = Y ′

[
MiX

∧

β +
∧

ε

]

Now substituting Y gives us

=

(
∧

β′X ′ +
∧

ε
′
)(

MiX
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∧

ε
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=
∧

β′X ′MiX
∧

β +
∧

β′X′∧ε +
∧

ε
′

MiX
∧

β +
∧

ε
′
∧
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=
∧
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∧
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∧
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since X′
∧

ε = 0
∧

ε
′
∧

ε is called the residual sum of squares (Re sidSS : also called square of

residuals).
∧

β′X′MiX
∧

β is the explained sum of squares (ExplSS; also called
regression sum of squares).

Therefore
TSS = ExplSS +Re sidSS

To judge the explanatory power of a model, we define R2 (coeffecient of
determinination).

R2 =
ExplSS

TSS
=

∧

β′X′MiX
∧

β
n∑
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_
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= 1−
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ε
′
∧

ε
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_
y)2

By its construction, R2 lies between 0 and 1. But notice this is only true
for the model with the intercept term!

What is this expression for a regression with an intercept and an explanatory
variable? (HW )

Notice:

∧

β′X′MiX
∧

β =
∧

Y
′
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∧
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(
Mi

∧

Y

)′
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∧

Y

=
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(
∧
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_
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)
=
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(
∧
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_
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)

(because in a regression with intercept the mean residual is zero)
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