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Abstract

We model a housing market where each agent is endowed with

a house, and a social planner uses a matching rule to allocate these

houses amongst the agents. Agents have multiple single-peaked pref-

erences over these houses . We introduce the C-TTC algorithm which

encapsulates the idea of the Crawler algorithm from Bade (2019) and

the famous Top-trading cycle (TTC) algorithm. We finally show that

the C-TTC algorithm satisfies the three desirable properties of individ-

ual rationality, pareto optimality and strategy-proofness.
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1. INTRODUCTION

We look at the housing problem introduced in Shapley and Scarf (1974).

There are n houses and n agents. Initially, each agent owns a unique house

and different agents own different houses. Agents have strict preferences

over the houses. A matching rule reallocates the houses amongst the agents

based on the preferences of the agents over the houses. A social designer’s

problem is to find matching rules that satisfy certain desirable properties.

The matching literature (Sönmez (1999), Sethuraman (2016), Ma (1994) )

focuses predominantly on three desirable properties for such matching rules:

Individual rationality (IR), Pareto optimality (PO), and strategy-proofness.

IR requires that the house allocated to an agent is at least as good as his/her

initial endowed house. PO guarantees that there is no “better” way to

allocate the houses, that is, there is no other way to allocate the houses so that

every agent will be weakly better off and some agents will be strictly better

off. Strategy-proofness ensures that no agent can (unilaterally) misreport

his/her preference and get a strictly better allocation.

When agents’ preferences over the set of houses are allowed to be un-

restricted, we know from Roth and Postlewaite (1977),Roth (1982) and Ma

(1994) that Gale’s Top Trading Cycle (TTC) algorithm is the only matching

rule that satisfies these three conditions. However the uniqueness of the

result does not hold when the domain of preferences is restricted. Bade

(2019) provides a different algorithm called the Crawler, which satisfies IR,

PO, and strategy-proofness on the domain of single-peaked preferences.

This has further inspired studies on other restricted preference domains to

explore the nature of matching rules that satisfy these three conditions(e.g.,

Tamura (2023)).

In this paper, we have considered the multiple single-peaked domain

introduced in Reffgen (2015). While single-peaked preferences are defined
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with respect to an underlying ordering which is common for all agents,

multiple single-peaked preference domain is an union of several single-

peaked domains with different underlying orderings. Thus it captures

scenarios where there is no single objective way to order the houses like

house size or distance from the nearest public school etc. Instead each

agent may have different subjective perception of how to order the houses

, but given their personal understanding of the ordering, they still have

single-peaked preferences.

Multiple single-peaked preferences capture a wide variety of preference

domains. If all the agents’ orderings are same, then we have the usual

single-peaked domain. On the other extreme, if we allow for every possible

agents’ orderings , then we have the unrestricted domain. However in

reality, agents’ personal understanding of the orderings are often not too

dissimilar from each other. Agents agree on the basic structure but differ in

the exact positioning of some of the houses in their underlying orderings.

More precisely, we assume that agents can partition the set of houses into

HL, HM, HR such that they agree on the exact positioning of the houses in HL

and HR and the relative positioning of the houses in HM with respect to HL

and HR. However they disagree about the exact positioning of the houses

in HM. Since there is no common ordering over the houses in the set HM,

the Crawler algorithm fails to be defined in this domain. On the other hand,

although the TTC algorithm still satisfies IR, PO and strategy-proofness, it is

a complicated algorithm as it requires every agent, at every step to point to

their best house in the remaining set and then compute and resolve all cycles

formed. In this paper, we have introduced a new simpler matching rule

called the C-TTC algorithm. The C-TTC algorithm combines the Crawler

with the TTC algorithm. We subsequently show that the C-TTC algorithm

satisfies the three desirable properties.

The rest of the paper is organized as follows. Section 2 introduces the
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basic model. In section 3, we define the C-TTC algorithm. In section 4

we show that the C-TTC algorithm satisfies individual rationality, pareto

optimality and strategy-proofness.

2. PRELIMINARIES

Let N = {1, . . . , n} denote the set of agents and H = {h1, . . . , hn} denote

the set of houses.

A preference P over H is a complete, transitive and anti-symmetric binary

relation on H. We denote the weak part of a preference P with R i.e. aRb

implies either aPb or a = b. A preference is called single-peaked with respect

to a prior order ≺ if the farther away one goes from his/her top ranked

house, the lower is their rank. Formally we define single-peaked preference

as follows:

Definition 2.1. A preference P is said to satisfy single peakedness with

respect to a prior order ≺ if for all a, b ∈ H, aPb whenever [r1(P) ≺ a ≺ b or

b ≺ a ≺ r1(P)].1

For a prior ordering ≺, the single-peaked domain S(≺) is defined as the

collection of preferences on H such that they satisfy single-peakedness with

respect to the prior order ≺.

The houses are partitioned into three parts: HL = {h1, . . . , hκ}, HM =

{hκ+1, . . . , hκ̄−1}, and HR = {hκ̄, . . . , hn}. We denote by L the set of prior

(linear) orders on the set H such that for each ≺∈ L, ht ≺ ht+1 for all

t ∈ {1, . . . , κ − 1}, ht ≺ ht+1 for all t ∈ {κ̄, . . . , n − 1} , and hx ≺ hy ≺ hz for

all x ∈ {1, . . . , κ}, y ∈ {κ + 1, . . . , κ̄ − 1}, and z ∈ {κ̄, . . . , n}. Throughout

the paper, we assume that κ and κ̄ (and hence, HL, HM, HR) are arbitrary but

fixed. We denote by S the union of all single-peaked domains with respect

to prior orders in L, that is, S(L) = ∪≺∈LS(≺).

1r1(P) denotes the 1st ranked alternative in preference P.
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Each agent i ∈ N has a single-peaked preference over H with respect to

some prior order in L, that is, a preference in S , denoted by Pi. An element

of Sn is called a preference profile and is denoted by PN = (P1, . . . , Pn).

A matching µ : N → H is a bijection from the set of agents to the set of

houses. For convenience, we sometimes denote µ−1 by µ. For instance, we

write µ(h) = i to mean that agent i is matched to the house h in the matching

µ. Let M be the set of all matching. The houses are already matched with

the agents according to a matching e, which we call the initial endowment.

Similarly, given an endowment e, we denote by o(h) the owner of the house

h, that is, o(h) = i if and only if e(i) = h. WLOG, we assume e(i) = hi for

all i ∈ N.

A matching rule φ : Sn → M is a function that maps each preference

profile to a matching.

A matching rule is said to be individually rational if for every preference

profile, the house allocated to any agent is at least as good as his/her initial

endowed house.

Definition 2.2. A matching µ ∈ M is individually rational (IR) at the

preference profile PN ∈ Sn if for each i ∈ N, µ(i)Rie(i). A matching rule

φ : Sn → M is individually rational (IR) if φ(PN) is IR at every PN ∈ Sn.

A matching rule is pareto optimal if for every preference , no group of

agents can exchange their allocated houses amongst themselves and be

weakly better off.

Definition 2.3. A matching µ ∈ M is pareto optimal (PO) at the preference

profile PN ∈ Sn if there exists no other matching µ′ ∈ M such that

(i) for each i ∈ N, µ(i)′Riµ(i), and

(ii) for some j ∈ N, µ(j)′Pjµ(j).

A matching rule φ : Sn → M is pareto optimal (PO) if φ(PN) is PO at every

PN ∈ Sn.
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A matching rule is said to be strategy-proof if no agent can be better off

by misreporting his/her true preference.

Definition 2.4. A matching rule φ : Sn → M is strategy-proof if for all

i ∈ N, Pi, P′
i ∈ S and P−i ∈ Sn−1, φi(Pi, P−i)Ri φi(P′

i , P−i).

3. C-TTC ALGORITHM

In this section we introduce the C-TTC algorithm. The C-TTC algorithm is

a sort of combination of the Crawler and TTC algorithm. Roughly at each

stage, it applies a restricted TTC on the agents in HM, a left Crawler on the

agents in HL and a right Crawler on the agents in HR. 2

We now formally define the C-TTC algorithm. Consider a preference

profile PN . The C-TTC algorithm at PN is defined as follows:

Initialize : Set H1
L = HL, H1

M = HM and H1
R = HR. We denote the endow-

ment at stage s for any agent i ∈ N by es(i). Set e1(i) = e(i). Let os(h) be the

owner of the house h at stage s.

Stage s. Let the remaining houses in HL, HM, HR at stage s , denoted

by Hs
L, Hs

M, Hs
R, be indexed such that Hs

L = {hs
1, hs

2, . . . , hs
κ(s)}, Hs

M =

{hs
κ(s)+1, hs

κ(s)+2, . . . , hs
κ̄(s)−1}, Hs

R = {hs
κ̄(s), hs

κ̄(s)+1, . . . , hs
n(s)} where n(s) de-

notes the number of houses still remaining at stage s. Here one or more sets

in Hs
L, Hs

M, Hs
R may be empty. . Define H̄s

M = {hs
κ(s), hs

κ(s)+1, . . . , hs
κ̄(s)−1, hs

κ̄(s)}.

DIRECTED GRAPH: Construct the directed edges of the graph on Hs
L ∪

Hs
M ∪ Hs

R as follows :

If h ∈ Hs
L , then os(h) points to his/her best house in the set Hs

L ∪ H̄s
M. If

h ∈ Hs
M , then os(h) points to his/her best house in the set H̄s

M. If h ∈ Hs
R ,

then os(h) points to his/her best house in the set Hs
R ∪ H̄s

M.

OUTCOME RESOLUTION: Let hs
j be the first house from the left (i.e. low-

2A left Crawler is the one defined in Bade (2019). A right Crawler is it’s ’dual’ version by
proceeding in the reverse order. Tamura and Hosseini (2022) provides a precise description.
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est indexed) such that its owner os(hs
j ) does not point to his/her right.

Suppose os(hs
j ) points to hs

ĵ . Match os(hs
j ) with hs

ĵ and get them out of the al-

gorithm. Define the modified owners of the remaining houses Hs+1
L :=

{hs
1, . . . , hs

ĵ−1, hs
ĵ+1, . . . , hs

κ(s)} as follows: os+1(hs
k) = os(hs

k) for all k < ĵ,

os+1(hs
k) = os(hs

k−1) for all ĵ < k ≤ j, and os+1(hs
k) = os(hs

k) for all j <

k < κ(s). Reindex the remaining houses in Hs+1
L as {hs+1

1 , . . . , hs+1
κ(s+1)}

where hs+1
k = hs

k for all k < ĵ, and hs+1
k = hs

k+1 for all ĵ ≤ k ≤ κ(s + 1) and

κ(s + 1) = κ(s)− 1.

Let hs
i be the first house from the right (i.e. highest indexed) such that

its owner os(hs
i ) does not point to his/her left. Suppose os(hs

i ) points to hs
î .

Match os(hs
i ) with hs

î and get them out of the algorithm. Define the modified

owners of the remaining houses Hs+1
R := {hs

κ̄(s), . . . , hs
î−1, hs

î+1, . . . , hs
n(s)} as

follows: os+1(hs
k) = os(hs

k) for all k < i, os+1(hs
k) = os(hs

k+1) for all i ≤ k < î,

and os+1(hs
k) = os(hs

k) for all î < k < n(s). Reindex the remaining houses

in Hs+1
R as {hs+1

κ̄(s+1), . . . , hs+1
n(s+1)} where hs+1

k = hs
k for all κ̄(s + 1) ≤ k < î,

and hs+1
k = hs

k+1 for all î ≤ k ≤ n(s + 1). where κ̄(s + 1) − n(s + 1) =

κ̄(s)− n(s)− 1

For each cycle {hs
j1 , . . . , hs

jk} involving the houses in Hs
M, then match

os(hs
jl ) with hs

jl+1
for all l = 1, . . . , k where k + 1 = 1 and get them out of the

algorithm. Index the remaining houses Hs+1
M as {hs+1

κ(s+1)+1, . . . , hs+1
κ̄(s+1)−1}

such that hs+1
κ(s+1)+1 ≺ . . . ≺ hs+1

κ̄(s+1)−1 (Here we take any arbitrary but

fixed ≺ from L for representation purpose). For each cycle {hs
j1 , . . . , hs

jk} in

H̄s
M involving hs

κ(s) or hs
κ̄(s), define the modified owner for stage s + 1 as :

os+1(hs
jl+1

) = os(hs
jl ) for all l = 1, . . . , k where k + 1 = 1. Keep the owners of

all the other houses unchanged.

We continue this procedure until all the houses are out of the algorithm.

Example 3.1. Consider N = {1, . . . , 7} and HL = {h1, h2} , HM = {h3, h4, h5},

HR = {h6, h7} and a preference profile given as follows:
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P1 P2 P3 P4 P5 P6 P7

h5 h1 h7 h5 h6 h1 h2

h2 h2 h6 h3 h7 h2 h5

h3 h5 h3 h4 h5 h3 h1

h4 h3 h4 h2 h4 h4 h4

h6 h4 h5 h6 h3 h5 h3

h7 h6 h2 h1 h2 h6 h6

h1 h7 h1 h7 h1 h7 h7

Table 1

h1

1

h2

2

L

h3

3

h4

4

h5

5

h6

6

L

h7

7

h1

2

h2

1

R

h3

3

h4

4

h5

5

h6

6

L

h7

7

h1

2

h2

6

h3

3

h4

4

h5

1

h6

5

h7

7

R

h1

2

h2

6

h3

3

h4

4

h5

1

h6

5

h7

7

R

The above diagram shows how the C-TTC algorithm functions. The

circles denote the houses while the agents occupying a house is labelled at

the top of that house. Houses marked red are those that are no longer in the

market. For ease of presentation we have only presented the arrows from

the agents whose endowments are changing in a particular stage or if they
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are leaving the algorithm.

At stage 1, agents in H1
L point to their best house in H1

L ∪ H̄1
M = {h1, . . . , h6}.

Thus agents 1 and 2 point to h5 and h1 respectively. Agents in H1
R point

to their best house in H1
R ∪ H̄1

M = {h2, . . . , h7}. Thus agents 6 and 7 point

to houses h2 and h2 respectively. Agents in H1
M point to their best house

in H̄1
M = {h2, . . . , h6}. Thus agent 3, 4 and 5 point to houses h6, h5 and h6

respectively.

Agent 2 is the first agent from the left in H1
L who does not point to the

right and so he/she is allowed to choose his/her best house i.e. h1 and agent

1 who is currently occupying house h1 is shifted one house to the right i.e.

h2. All agents in H1
R point to their left and thus there is no agent who is the

first from the right in H1
R who does not point to the left. We further note that

no cycle is formed involving owners of the houses in the set H̄1
M. We end

the stage 1 with agent 2 leaving with house h1.

At stage 2, we again construct the directed graph as before. Observe that

there are no agents in H2
L who do not point to their right and no agents in

H2
R who do not point to their left. A cycle is formed involving agents 1, 5

and 6. Since this cycle is not restricted to H2
M (as it involves the boundary

houses), we simply exchange the houses and no one leaves.

At stage 3, agent 6 who currently occupies h2 is the first agent in H3
L not

pointing to the right. So he/she leaves the market by pointing to his/her

best i.e. h2. Agent 5 who occupies h6 is the first agent from the right in H3
R

not pointing to the left. So he/she leaves the market by pointing to his/her

best i.e. h6. The only cycle formed in H3
M is with agent 1 who points to

his/her current house h5. Since this cycle involves only agents in H3
M, agent

1 leaves with house h5.

Finally at stage 4, we have the remaining agents 3, 4 and 7 who form a

cycle. Since this cycle involves houses in H̄4
M, we exchange the houses and

do not let them leave at this stage. However they will leave in the following
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stage, when all of them will point towards themselves in the similar way

agents 6, 1, 5 left the market at stage 3.

OBSERVATION 3.1. Each agent moves in an unidirectional fashion from the

starting endowment till they reach their outcome in the C-TTC algorithm i.e.

for any two stage s, s′ and agent i, es(i) ≺ e(i) ≺ es′(i) or es′(i) ≺ e(i) ≺ es(i)

is not possible.

OBSERVATION 3.2. At any preference profile PN , if agent i ∈ N with e(i) /∈

HM, is matched with a house h ∈ HM at some stage s, then at some stage

s∗ < s he/she must have reached a boundary house (i.e. either hs∗
κ(s∗) or

hs∗
κ̄(s∗)). He/she must have been unable to form any cycle till stage s − 2

and formed a cycle at stage s − 1 by pointing to his/her matched house

h. Since this cycle does not only involve houses in Hs−1
M , he/she does not

immediately leave the algorithm with h at this stage s − 1. He/she is moved

to the house h but still remains in the algorithm. Finally at stage s, he/she

forms a cycle by pointing to his/her own house h ∈ Hs
M and leaves the

algorithm with h.

4. RESULTS

Theorem 4.1. The C-TTC algorithm satisfies individual rationality, pareto opti-

mality and strategy-proofness.

Before we prove Theorem 4.1, we state and prove two Lemmas which

we will need for the proof of Theorem 4.1.

Lemma 4.1. For any profile PN ∈ Sn and any agent i ∈ N, if i is matched with a

house h ∈ H at stage s of the C-TTC algorithm, then h is the most preferred house

among the houses remaining at stage s according to Pi.

Proof. Suppose agent i gets matched at stage s. We distinguish the following

cases.
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Case 1: Suppose i ∈ Hs
L. By the definition of the C-TTC algorithm, i

must have pointed to himself or to his/her left at stage s. By the domain

assumption r1(Pi, Hs
L ∪ H̄s

M) ∈ Hs
L implies that r1(Pi, Hs) ∈ Hs

L (since if

r1(Pi, Hs) ∈ Hs
R then HL ≺ HM ≺ HR and single-peakedness of the domain

imply that r1(Pi, Hs
L ∪ H̄s

M) must be hs
κ̄(s) i.e. the right boundary of H̄s

M ).

Since i is matched with r1(Pi, Hs
L ∪ H̄s

M) ∈ Hs
L at stage s, this implies that i

gets his/her most preferred house in the remaining houses. A similar logic

applies for the case when i ∈ Hs
R.

Case 2: Suppose i ∈ Hs
M. By the definition of the C-TTC algorithm,

he/she must have pointed to his/her best house in H̄s
M. Since i gets matched

at stage s, by the definition of the C-TTC algorithm, i’s most preferred house

in H̄s
M is in Hs

M. By the domain assumption, r1(Pi, H̄s
M) ∈ Hs

M implies that

r1(Pi, Hs) ∈ Hs
M (if r1(Pi, Hs) ∈ Hs

L(R) , then HL ≺ HM ≺ HR and single-

peakedness of the domain imply that r1(Pi, Hs) = hs
κ(s)(κ̄(s)) i.e. the left

(right) boundary of H̄s
M).Since i is matched with r1(Pi, H̄s

M) ∈ Hs
M at stage

s, this implies that i gets his/her most preferred house in the remaining

houses.

This completes the proof of Lemma 4.1. ■

Lemma 4.2. Suppose an agent i ∈ N has a preference Pi such that r1(Pi) ≺ e(i)

(e(i) ≺ r1(Pi)). Then agent i cannot be better-off by misreporting to a preference

P′
i such that r1(Pi) ≺ e(i) ≺ r1(P′

i ) (r1(P′
i ) ≺ e(i) ≺ r1(Pi)).

Proof. This follows directly from the single-peaked nature of the domain of

preferences and Observation 3.1. ■

Now let us begin with the proof of Theorem 4.1.

Proof. Strategy-proofness : Consider an agent i ∈ N at a preference profile

PN ∈ Sn getting matched with ϕi(PN) at stage s. We need to show that

ϕi(Pi, P−i)Riϕi(P′
i , P−i) for all P′

i ∈ S . We distinguish the following cases.
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Case 1: Consider the case where e(i) ∈ HL and ϕi(PN) ∈ HL. If ϕi(PN) ≺

e(i), then agent i must have pointed to his/her left at every stage t < s. This

implies that at each of these t stages, agent i was not the first agent who

pointed to his/her left. Now when i misreports to P′
i , at each of these stages

t < s, agent i is still not the first agent who pointed to his/her left and thus

the agents getting matched at each of these stages remains unchanged. Thus

agent i cannot be matched at an earlier stage than s under P′
i . This along

with Lemma 4.1 ensures that i cannot be better off by misreporting P′
i . Now

suppose e(i) ≺ ϕi(PN). At each of the stages t < s, then first agent from

the left who is pointing to his/her left remains unchanged since agent i

under misreported pref P′
i still points to his/her right (by Lemma 4.2). Thus

the agents getting matched as well as the outcome modification remains

unchanged at each of these stages t < s.Thus agent i cannot be matched at

an earlier stage than s under P′
i . This along with Lemma 4.1 ensures that i

cannot be better off by misreporting P′
i . This completes the proof for case 1.

Case 2: Consider the case where e(i) ∈ HL and ϕi(PN) ∈ HM. This

implies that at some stage s∗ < s agent i must have moved to the boundary

house of Hs∗
L . At each stage s∗ < t < s − 1 agent i pointed to his/her best

house in the set H̄t
M but was unable to form any cycle ( from Observation 3.2

). Suppose i misreports to P′
i . By similar logic as the e(i) ≺ ϕi(PN) sub-case

of Case 1, we argue that at any stage t < s∗, agent i cannot move to the

boundary house of Ht
L. If agent i misreports such that he/she leaves earlier

then ϕ(P′
i , P−i) ∈ HL which implies that ϕ(Pi, P−i)Riϕ(P′

i , P−i) due to the

domain assumption. Now if P′
i be such that he/she reaches the boundary

house of Hs∗
L at stage s∗ and he/she is able to form a cycle {hv

j1 , . . . , hv
jl} at

some stage s∗ < v < s where o(hv
j1) = i. We rule out the case where he/she

points to the boundary house of Hv
R i.e. hv

j2 ∈ Hv
R since that would imply that

he/she would move into the boundary house of Hv
R and by Observation 3.1,

ϕ(P′
i , P−i) ∈ HR which is worse than ϕ(Pi, P−i) ∈ HL. Thus i points to some
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house hv
j2 ∈ Hv

M and moves into that house at the end of the stage v and

subsequently leaves the market with hv
j2 by forming a cycle at stage v + 1.

We now argue that this cycle must have been available at stage v when agent

i was truthfully reporting Pi. Consider the agent o(hv
jl ) who is pointing to

agent i’s house to form the cycle. As long as i remains in the set H̄v
M, o(hv

jl )

will continue pointing to agent i. Again as long as o(hv
jl ) remains in the set

H̄v
M, o(hv

jl−1
) will continue pointing to agent o(hv

jl ) . Going in this manner it

is evident that all the agents of the cycle will be in the algorithm till agent i

leaves the set H̄t
M or completes the cycle at some stage t > v. But under Pi,

agent i had pointed to his/her best house in H̄t
M for each stage < s∗ < t < s.

This implies that ϕ(Pi, P−i)Riϕ(P′
i , P−i) = hv

j2 . This completes the proof for

case 2.

Case 3: Consider the case where e(i) ∈ HL and ϕi(PN) ∈ HR. This

implies that at some stage s∗ < s agent i must have moved to the boundary

house of Hs∗
L and at stage s∗ < s̄ < s agent i must have moved to the

boundary house of H s̄
R. Thereafter at each stage s̄ < t < s,agent i was not

the first agent from the right in Ht
R who did not point to the left. Finally at

stage s, agent i leaves the algorithm by pointing his/her best house in Hs
R.

Suppose agent i misreports to P′
i . By similar arguments as the e(i) ≺ ϕ(PN)

sub-case of Case 1, we argue that i cannot do any better than reach the

boundary house of HL at a stage s∗. At the boundary house of HL, if i is able

to form a cycle by pointing to some house h ∈ Hv
M at stage v, then i leaves

the algorithm with h at stage v + 1. By similar logic as in Case 2, we observe

that this cycle must have been available to i under truthful reporting at stage

s̄. This implies that i prefers the boundary house of HR at stage s̄ than h.

Hence i cannot do any better than reach the boundary house of HR at a stage

s̄ . Once i reaches the boundary house of HR at a stage s̄, no matter what

he/she reports, i cannot change his/her outcome until all agents to his right

who do not point to their left leave. This completes the proof for this case.
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Case 4: Consider the case where e(i) ∈ HM and ϕi(PN) ∈ HL. This

implies that at some stage s∗ < s agent i must have moved to the boundary

house of Hs∗
L , i.e. hs∗

κ(s∗−1). Thereafter, i stayed at the boundary house of

Hs∗
L till stage s − 1 and finally left the algorithm at stage s by being the first

agent from the left in Hs
L who did not point to the right. Suppose agent i

misreports to P′
i . By Lemma 4.2, r1(P′

i ) /∈ HR. Now suppose agent i can

form a cycle {hv
j1 , . . . , hv

jl} such that i points to some house h ∈ H̄v
M at some

stage v. If hRihs∗
κ(s∗−1) , then i must have pointed to h at some stage before

s∗. Moreover using similar arguments as in Case 2, this cycle must have

been available to i at that stage since all agents of this cycle will remain in

the algorithm. Since i pointed to the boundary house hs∗
κ(s∗−1), it must be

the case that hs∗
κ(s∗−1)Rih. Since i choose ϕ(PN) at stage s when hs∗

κ(s∗−1) was

available to him/her, ϕ(PN)Rihs∗
κ(s∗−1). This implies that ϕ(PN)Rih. Hence i

cannot manipulate by forming a cycle in HM. Now by misreporting, agent

i cannot get any better house in HM which implies that he/she will move

into the boundary house hs∗
κ(s∗−1) at some stage under P′

i . Once i reaches the

boundary house, no matter what he/she reports, he/she cannot change his

outcome until all agents to his left who do not point to their right leave. This

completes the proof for this case.

Case 5 : Consider the case where e(i) ∈ HM and ϕi(PN) ∈ HM. Suppose

agent i misreports to P′
i and forms a cycle at some stage t by pointing to a

house h ∈ H̄t
M. Since this cycle must be available to i when he/she points

to ϕ(PN) under truthful reporting, it must be the case that ϕ(PN)Rih. This

completes the proof for this case.

Case 6 : Consider the case where e(i) ∈ HM and ϕi(PN) ∈ HR. This is the

symmetric case of Case 4. Similar arguments follow.

Case 7 : Consider the case where e(i) ∈ HR and ϕi(PN) ∈ HL. This is the

symmetric case of Case 3. Similar arguments follow.

Case 8 : Consider the case where e(i) ∈ HR and ϕi(PN) ∈ HM. This is the
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symmetric case of Case 2. Similar arguments follow.

Case 9 : Consider the case where e(i) ∈ HR and ϕi(PN) ∈ HR. This is the

symmetric case of Case 1. Similar arguments follow.

This completes all possible cases and thus completes the strategy-proof

part of the theorem.

Pareto optimality : At each stage s, the agents who can leave the market are

the first agent from the left in Hs
L who does not point to his/her right or

the first agent from the right in Hs
R who does not point to his/her left and

any set of agents in Hs
M who form a cycle among themselves. Now from

Lemma 4.1, we know that each of these agents are leaving with their most

preferred house in the remaining set of houses. Thus starting from the first

stage, at each stage the agents leaving the C-TTC algorithm are leaving with

their best house in the remaining set of houses. This proves that the C-TTC

algorithm satisfies Pareto optimality.

Individual rationality : Fix any agent i ∈ N. Let P∗
i denote the preference of i

such that r1(P∗
i ) = e(i). We now argue that for any P−i , ϕ(P∗

i , P−i) = e(i).

Consider any agent with e(i) ∈ HL. He/she must point to his/her own

house at each stage. At every stage s whenever he/she is not matched, it

must be the case that there is some other agent j such that es(j) ≺ es(i).

This agent will leave with his/her best house h such that h ≺ es(j) ≺

es(i) by the definition of the C-TTC algorithm. Moreover the outcome

modification under such cases will be such that es(i) = es+1(i). Finally there

will be a stage s∗ such that agent i will be the first agent from the left who

doesn’t point to the right. At this stage, agent i will leave the market with

es∗(i) = e(i). One can argue using similar logic for the case of an agent

with e(i) ∈ HR. Finally when e(i) ∈ HM, agent i will point towards himself

at the first stage and form an own cycle and gets out of the market with

e(i). This completes all the cases and proves that whenever an agent’s own

endowment is his/her most preferred house, then he/she will always be
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matched that house irrespective of the preference of other agents. Now using

the fact that ϕ() is strategy-proof, we have ϕ(Pi, P−i)Riϕ(P∗
i , P−i) = e(i) for

every Pi, P−i. This completes the proof that C-TTC algorithm is individually

rational. ■
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