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Abstract

We study the impact of private investment in groundwater irrigation on the spatial and
sectoral distribution of rural economic activity in India. Exploiting a kink in access
to groundwater irrigation, generated from an absolute technological constraint on the
operational capacity of irrigation pumps with depth of the water table, we find evid-
ence of a significant improvement in agricultural production accompanied with modest
consumption gains. Irrigation causes a substantial increase in population density, but
has no effect on the employment rate or labour reallocation between sectors of the eco-
nomy. Furthermore, irrigated agriculture appears to provide additional employment
opportunities for waged labour from surrounding non-irrigated villages. Investigating
the dynamic effects from adoption indicate important in-migration of labour in the
short-run, as well as changes to fertility /mortality in the long to medium-run.
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1. Introduction

How a boost to agricultural productivity affects the process of economic growth and
development is a long standing question. First chronicled with reference to the Industrial
Revolution in England during the 18th century, scholars argued that it was a thriving
agricultural sector which enabled subsequent industrialisation (Nurkse, 1953; Robinson,
1954). Building on this evidence, models of structural transformation have shown that
a productive agricultural sector can generate demand and hence production in off-farm
sectors spurring a movement of labour towards the manufacturing and service industries
(Gollin et al., 2002; Ngai and Pissarides, 2007). This view however has been challenged,
indicating that in an open economy having a comparative advantage in farming will in fact
lead to the pooling-in of labour into the agricultural sector slowing down the development
process (Matsuyama, 1992). A resurgence of empirical studies have attempted to shed new
light on this debate, demonstrating that the movement of labour between sectors may vary
with the technological change (Bustos et al., 2016) and geographic scale (Blakeslee et al.,
2023) considered. In this paper, we investigate how groundwater irrigation in India has
shaped the rural economy over time.

Irrigation is one of the most conspicuous technologies for stimulating agricultural out-
put. Improved productivity primarily occurs through a direct yield effect, irrigated agricul-
ture is on average at least twice as productive as rainfed (Faures et al., 2002). Furthermore,
the technology has also been found to (1) minimise inter-annual variability by reducing ex-
posure to rainfall shocks (Sarsons, 2015), (2) augment land endowments (Blakeslee et al.,
2020), and (3) complement other key inputs such as high yielding varieties (Gollin et al.,
2021). In India, advancements in pumping equipment to extract groundwater revolution-
ised access to irrigation in the early 1970s. In 2013 approximately half of cultivated land
across the country was irrigated. Groundwater, accounting for over 70 % of this irrigated
land, provides the single largest source of irrigation (Jain et al., 2019). Arguably making
this technology one of the most recent salient changes to the agricultural sector.

Groundwater is extracted through tube-wells with an irrigation pump used to move
water up the tube to the surface. There are two types of irrigation pump available —
centrifugal and submersible. Centrifugal pumps are installed at ground level and generate
a pressure differential between the water table and the pumping mechanism. The maximum
possible pressure differential at any given altitude is achieved through a perfect vacuum in
the pumping mechanism. Under this ideal condition Bernoulli’s principle of fluid dynamics
dictates that the maximum depth from which water can be extracted by a centrifugal pump
is a constant (Faber, 1995). At sea-level this maximum depth is 10.33 meters. Below this
threshold, no centrifugal pump will be operational. Extracting water from greater depths
requires significantly more expensive submersible pumps which are placed at the bottom
of a tube-well and push the water to the surface.

For groundwater depths shallower than the maximum operational threshold, the more
cost effective centrifugal pumps are the farmers preferred choice. Hence if all centrifugal



pumps were homogenous in their ability to generate a perfect vacuum we would expect
to see a jump in access to irrigation at this threshold.! Evidence from industry stand-
ards however, suggest that centrifugal pumps typically offer a range of efficiencies (Elsey,
2020) such that a jump at any given groundwater depth is unlikely. Instead, there exists
a pump efficiency specific threshold such that as we approach the maximum operational
depth from shallower levels, a subset of lower-efficiency centrifugal pumps will not func-
tion. As we demonstrate empirically, this generates a kink in the mapping of centrifugal
pump adoption with groundwater depth at the arbitrarily stipulated maximum operational
threshold accompanied by an incomplete substitution to the more expensive submersible
pumps.

We exploit this quasi-random between village variation in access to groundwater in a
fuzzy Regression Kink (RK) design. This approach allows us to estimate the causal impact
of irrigation on agricultural production and the distribution of economic activity at the
local level. Our outcome variables are recorded between 2011 and 2013, by which time
half the villages in our sample have had access to irrigation for at least 14 years hence
capturing a long to medium-run effect. However leveraging heterogeneity in the timing of
tube-well construction also enables us to investigate the dynamic effects from adoption.
To test the validity of this empirical strategy formally, we carry out a number of placebo
tests to show that groundwater depth does not induce a kink in our outcome variables pre-
access to irrigation. Moreover, we demonstrate that there is also no kink with potentially
confounding geo-physical covariates such as temperature and rainfall.

In order to leverage spatial variation in groundwater depth at a high-resolution across
a large geographic area, we make use of existing and newly-assembled datasets compiled
at the village level across the country. Our assignment variable — groundwater depth — is
compiled using data published by the Central Ground Water Board (CGWB) which has
been monitoring wells four times a year since 1996. We use the geographic positioning sys-
tem (GPS) locations of these wells to match them to individual villages. Irrigation data,
including tube-well construction and ownership of irrigation pumps, is obtained from the
Minor Irrigation Censuses; the longest spanning database of information on irrigation in-
frastructure at the village level. We draw from remote sensing, administrative micro-data,
population and economic censuses which cover all households and businesses within the vil-
lage to measure the local agricultural production, consumption, sectoral labour allocation,
and demographics.

We estimate the impact of irrigation as an additional standard deviation unit (= 103
litres/ha/day) of groundwater on our outcomes of interest. Our results indicate that irrig-
ation significantly improves agricultural production — the monsoon/Kharif agricultural
output increases by 7.7%. Additionally, farmers appear to re-optimise their production
choices by (1) increasing the share of land cultivated, (2) moving away from drought toler-

"Homogeneity in pump efficiency is assumed in the work of Sekhri (2014) when investigating the impact
of irrigation on poverty and conflict in India. The author however, takes the maximum pumping depth to
be 8 meters based on expert opinion that centrifugal pumps rarely achieve a perfect vacuum.



ant crops, and (3) growing more water intensive crops. Gains in agricultural productivity
translate to modest improvements in consumption. We find evidence of an increase in the
ownership of household assets, especially solid housing, but no effect on consumption per
capita or the poverty rate.

In order to investigate changes in the sectoral distribution of economic activity in the
village, we consider employment in the agricultural sector as well as the six largest indus-
tries. A productivity boost from access to irrigation does not appear to have transformative
effects on the allocation of labour between sectors of the local economy. However when
analysing the employment status of residents in the nearest neighbouring village (within
5km of the main sample villages) that has not adopted groundwater irrigation, we find a
17.9% increase in the share of agricultural labourers working full-time. This provides sug-
gestive evidence of a pooling-in of farm labour from less agriculturally productive nearby
population centres.

Finally in terms of the village demographics, we find that irrigation causes a large
increase in the population density. This appears to be the result of both in-migration,
especially by the economically disadvantaged Scheduled Castes, as well as changes in fer-
tility /mortality. Furthermore when considering the dynamic effects of technology adoption,
our results are indicative of a significant pooling-in of the Scheduled Caste population in the
short-run, increasing by 21.4% in villages having invested in groundwater irrigation post
2000. Conversely, early adopters of the technology that have had access to irrigation for
at least 14 years by 2013, demonstrate a significantly higher share of the child population
suggesting that changes to fertility /mortality only evolve in the long to medium-run.

Our paper is linked to a resurging literature providing empirical evidence on the effect of
productivity shocks in agriculture on the process of economic development. Investigating
the role of the Green Revolution on income growth across the developing world, Gollin
et al. (2021) finds that the spread of high yielding variety crops significantly increased
agricultural productivity, reduced the share of labour in agriculture, thereby initiating the
process of industrialisation. Similarly, analysing the effect of an increase in yields from
improved fertiliser use in Africa, McArthur and McCord (2017) show that this generated
a 14% rise in GDP per capita and led to a 5% decline in the share of agricultural labour
over a five year period. In contrast to these studies, our paper exploits high-resolution
data with variation at the village level to investigate more localised changes within the
rural economy. Our findings indicate that despite villages being at the root of agricultural
productivity gains, they do not themselves witness a shift in off-farm opportunities.

At a more micro-level, researchers have attempted to better understand the presence
of heterogeneous response to agricultural shocks along different dimensions. In a study
exploiting the spread of improved seed varieties in Brazil, Bustos et al. (2016) show that
the direction of labour movement between sectors depends on the factor bias of the tech-
nological change. The authors find that hybrid maize which enabled a second harvest led
to a pooling-in of labour to the agricultural sector, consistent with our findings exploiting
irrigation as another form of land-augmenting technology. Using a household-level panel



during the peak of the Green Revolution, Foster and Rosenzweig (2004b) suggest important
differences on the effect of agricultural gains between landed and landless households. At
the village level, we investigate the spatial distribution effects from technology adoption,
finding that irrigated villages draw in farm labour from neighbouring non-irrigated villages.
Finally our results echo the early work by Foster and Rosenzweig (2004a, 1996) evaluating
the impact of the Green Revolution and more recently Blakeslee et al. (2023) and Asher
et al. (2022) leveraging variation in access to canal irrigation in India, which all document
a lack of village level off-farm growth following production gains in the agricultural sector.
We add to this literature in two ways. First, most studies have focused on technological
change dating back to the 1960s in the case of the Green Revolution and even earlier for
canals. In contrast our paper studies a much more recent period of agricultural change
in response to groundwater irrigation. Secondly, we exploit heterogeneity in the timing of
access to this technology to investigate the dynamic effects from adoption.

There also exists a number of studies which have evaluated transient agricultural shocks
due to climate variability. For instance, consistent with a theory of demand driven struc-
tural change, Emerick (2018) finds that positive rainfall shocks in India which boost ag-
ricultural production also lead to an expansion of the non-tradable sector. In response
to negative weather shocks in China, Minale (2018) reports in a significant proportion of
the agricultural labour force migrating to urban centres. In comparison to this literat-
ure, our paper studies how the local economy adjusts to a persistent shift in agricultural
productivity.

Our work also adds to a strand of causally interpretable evidence on the impact of
irrigation. The scarcity of such research is due in large part to the empirical challenges
involved in establishing reliable estimates. In a seminal paper, Duflo and Pande (2007) ana-
lyse the distributional effects of dams in India finding that beneficiaries living downstream
increased their agricultural productivity and experienced lower levels of poverty. Access
to irrigation has also been documented to reduce conflict (Sekhri, 2014), and encourage
farmers to move away from cultivating drought tolerant crops which increases vulnerability
to climate shocks in the long-run (Hornbeck and Keskin, 2014). Using randomly located
geological formations that store pockets of water in the bedrock, Blakeslee et al. (2020)
explore farmer adaptations to the drying up of groundwater for irrigation. The authors
find that while there is an immediate consequential decline in farm income, households
appear to successfully offset these losses by reallocating labour to off-farm employment.

The rest of the paper is structured as follows. Section 2 provides insight on the use of
irrigation in India over time and describes the different technologies available to farmers
for groundwater extraction. Our data sources are explained in Section 3, and the empirical
strategy including graphical evidence is presented in Section 4. Section 5 contains results
on the impact of irrigation on the rural economy. Finally, Section 6 concludes.



2. Background

In the 1950s, following independence, India invested extensively on public provision of
irrigation infrastructure making canals the dominant source of water for agricultural pur-
poses (Jain et al., 2019). However over the years, mininal maintenance of the infrastruc-
ture resulted in water supply from these canal networks becoming increasingly unreliable
(Mukherji, 2016). At the same time, technological advancements in pumping equipment
accompanied by government energy subsidies to operate these pumps made extracting
groundwater an affordable and appealing option (Shah et al., 2012). Hence as of the early
1970s, groundwater overtook canals as the largest source of irrigation. The following dec-
ades witnessed a groundwater revolution — by 2013 groundwater accounted for 70% of the
country’s irrigated area while the share irrigated by canals had declined to 20% (Jain et
al., 2019).

Figure 1 shows this gradual evolution in groundwater extraction over time among the
sample of villages used in this study. The share of villages with tube-wells increased
five-fold between 1986 to 2013. This expansion is also reflected on the intensive margin
of technology adoption over this period — on average, the number of tube-wells used to
extract groundwater for irrigation increased from 3 to 52 per village. This implies that
by 2013, which is when our primary outcome variables are recorded, half of the villages
will have had tube-wells for at least 14 years. Hence our study captures the medium to
long-run impact of private investment in groundwater irrigation, conceivably one of the
most salient recent technological innovation aimed at boosting agricultural productivity
(Mukherji, 2016).

Groundwater is extracted through tube-wells. A tube-well consists of a bore hole which
is drilled into the ground so as to tap groundwater from porous zones in the aquifer. An
irrigation pump is then used to move the water up the tube to the surface. There are two
main types of irrigation pump available — centrifugal and submersible. The choice of which
pumping technology is most suitable for extracting groundwater depends on the depth of
the water table in that location.

Centrifugal pumps are installed at ground level and create a vacuum with water moving
up the tube from an area of high pressure at the bottom of the tube-well, to an area of low
pressure in the pumping mechanism (Figure 2). The extraction of water from a tube-well
using a centrifugal pump can be described by Bernoulli’s principle of fluid dynamics (Faber,
1995) (Equation 1):

1 1
Py+ S pvt + pghy = Pa+ 5 pvd + pghs (1)

where the variables P;, v;, and h; refer respectively to the pressure (kg/m/s?), velocity
(m/s), and height (m), between the pump (i = 2) and the water table (i = 1). The
constants, p and g are the density of water (997 kg/m?3) and gravitational force (9.81
m/ 52) respectively. Assuming constant flow velocity we can rewrite Equation 1 in the



following form:

hy—hy = L2 (2)
Py

As can be interpreted from Equation 2, the maximum possible pressure differential is
achieved through a perfect vacuum (P,=0 kg/m/s?) in the pumping mechanism. Under
this ideal condition and atmospheric pressure at sea-level (P;=101,325 kg/m/s?) the max-
imum depth from which water can be extracted — that is, the difference between ho and
hy1 — is 10.33 meters. This represents the maximum theoretical threshold achievable by a
centrifugal pump.

Realistically however, it is unlikely that all centrifugal pumps are able to create a
perfect vacuum. Industry standards suggest that centrifugal pumps more typically offer
efficiencies ranging from 55 to 93 percent (Elsey, 2020).? This will reduce the depth from
which a centrifugal pump can extract groundwater. In Figure Al, we show that at sea-
level the depth from which a centrifugal pump can extract water falls from 10.33 to 5.18
meters as pump efficiency falls to half its maximum potential. Therefore, we propose an
efficiency specific threshold below which a centrifugal pump can no longer be used to access
groundwater for irrigation.

In a scenario where a centrifugal pump can no longer operate, submersible pumps can
provide an alternative technology for water extraction. Submersible pumps are placed at
the bottom of the tube-well and push the water to the surface. Consequently, provided it
has sufficient horsepower, a submersible pump could extract water from any depth.

Given its additional functionality, a submersible pump is significantly more expensive
than a centrifugal pump. Based on an online search among India’s top five irrigation pump
manufacturers, we found that the starting price of centrifugal pumps was less than half
that of submersible pumps.?> The lowest priced centrifugal was 3,000 Rupees (30 GBP)
compared to 7,500 Rupees (75 GBP) for the lowest priced submersible pump.* To put
these costs into context, the mean annual per capita consumption in our sample of villages
is approximately 18,000 Rupees (GBP 180).

In Appendix B we provide a simple decision making framework for the adoption of
these different irrigation pumping technologies available to farmers and demonstrate that

2We verified this on the site of numerous irrigation pump suppliers and manufacturers. The information
indicated that centrifugal pumps could achieve up to 90% efficiency, with most pumps ranging from 50 to
80%. See for instance: https://www.tapflopumps.co.uk, https://www.rotechpumps.com, and https:
//www.inoxmim. com.

3We sourced this information from providers, including: https://www.moglix.com and https://www.
indiamart.com.

4As an additional comparison we verified prices for the top three selling centrifugal and submersible
pumps. While centrifugal pumps ranged from 4,500 to 5,700 Rupees (45-57 GBP), the top three selling
submersible pumps were priced between 10,000 to 12,000 Rupees (100-120 GBP). Similarly when comparing
prices for pumps with the same features (e.g. horse power), submersible pumps where also twice the price
of centrifugal pumps.
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it is the subset of farmers that can afford a centrifugal pump but not a submersible that
generate a decline in overall centrifugal pump adoption culminating in zero take-up at the
maximum theoretical threshold. We empirically demonstrate the presence and validity of
this relationship in Section 4.

3. Data

For the purpose of this study we link observational groundwater data from wells in
2013 with multiple external contemporaneous datasets describing irrigation practices and
the rural economy to obtain a village level cross-section. Importantly for our empirical
approach, this enables us to leverage spatial variation in irrigation at a high-resolution
over a large geographical area.

3.1 Groundwater

Data on our assignment variable - groundwater depth - come from the official website
of the Central Ground Water Board (CGWB).® Since 1996, the CGWB has kept digitised
records from groundwater monitoring wells evenly spread across the entire country. In 2013,
the CGWB had a total of 17,116 monitoring wells covering 511 districts across 21 States.’
Wells are identified by Global Positioning System (GPS) coordinates and are monitored
four times in the year — pre-monsoon, mid-monsoon, pre-winter, and post-winter’ — so as
to capture both seasonal and inter-annual variation.

We construct our assignment variable as the maximum groundwater depth recorded at
any point over a three year period (2010-2013).% Taking a three year horizon enables us to
account for some of the temporal fluctuation which may affect groundwater depth. There
are concerns that groundwater irrigation in India is leading to a depletion of its aquifers and
the water table falling over time (Famiglietti, 2014). However as Figure 1 demonstrates,
between 1996 to 2013, the annual average maximum groundwater depth among our sample
of villages was stable around 7.5 metres. If however we consider the complete sample of
villages, that is including those outside our bandwidth, we do observe a drop in the average
maximum groundwater depth from 8 to 10.5 metres between 1996 to 2013.

Combining village boundary shapefiles offered by the Socioeconomic Data and Applic-
ations Center (SEDAC) of NASA,? along with the GPS coordinates of wells, we create a
village level match. Specifically, we attribute the measure of our assignment variable to a

SData can be downloaded in excel format from: http://cgwb.gov.in.

SIn 2011, India had a total of 640 districts across 28 States. The CGWB therefore provided coverage
for over 80% of India’s districts at the time.

"With some regional variation, the monsoon/Kharif season is from June to October and the
winter/Rabi season is from November to March.

80f the total groundwater monitoring wells sampled by the CGWB not all are monitored every year.
As a result, our assignment variable can only be calculated for a subset of 8,549 wells.

9Shapefiles mapping the whole of India are available at: https://sedac.ciesin.columbia.edu/data/
set/india-india-village-level-geospatial-socio-econ-1991-2001.
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village if the well falls within the village boundary. If more then one well was matched to
the same village, an average of our assignment variable was taken. Figure 3 presents a map
of our final sample of matched wells across the country as well as whether these fall below
or above the maximum theoretical threshold of a centrifugal pump. This threshold is cal-
culated based on Bernoulli’s principle of fluid dynamics described in Equation 2, assuming
100% pump efficiency and atmospheric pressure adjusted for village altitude.'® As Figure
3 plainly demonstrates, our data on groundwater depth provide the basis of our empirical
approach — evenly distributed high-resolution spatial variation across a large geographic
coverage.

3.2 Irrigation

We compile data on irrigation practices from the Minor Irrigation (MI) Censuses con-
ducted every 7 years since 1986 for the planning and management of water resources in
the agricultural sector.!’ These Censuses provide a countrywide database of groundwater
and surface water infrastructure that have a culturable command area of less than 2,000
hectares — known as minor irrigation schemes.'?

Specific to the needs of our study, the Fifth MI Census (2013) has data on ownership of
different pump types, including submersible and centrifugal. Importantly, there also exists
information on pump capacity (horse power) and usage (pumping hours) which we leverage
to calculate water input in litres following a standard engineering formula (Manring, 2013)
(for a complete discussion on the construction of this variable see Appendix C). This
measure enables us to capture the intensive margin of access to irrigation. Ryan and
Sudarshan (2022) also make use of this water use intensity variable in their recent work
evaluating the effect of groundwater rationing in Rajasthan.

Furthermore, we make use of the historical record of tube-well construction from all
the MI Censuses to map the evolution of technology adoption over time. As demonstrated
in Figure 1, by 2000 approximately half of the villages in our sample have had access to
irrigation for at least 14 years. We exploit this heterogeneity in the timing of adoption to
investigate the dynamic effects from access to irrigation.

%Data on altitude was extracted from raster files obtained from the ALOS Global Digital Surface Model
for the whole of India. A barometric formula was used to calculate atmospheric pressure at varying altitude.
Specifically, we estimate P = Pb.exp[%}, where P refers to pressure, g is the gravitational force,
M is the molar mass of the Earth’s air, h is height, R is the universal gas content, and T is temperature.
Note that though the base values for P, hy and Ty, naturally evolve with altitude, these are in fact constant
for the range of altitude found in our sample.

1Village level data from the MI Censuses are publicly available in excel format on the Government of
India open data platform at: http://data.gov.in. Background information on each Census (e.g. ques-
tionnaires and instruction manuals on data collection) as well as official reports and aggregated statistical
tables can be found on the official website of the MI Census at: http://micensus.gov.in.

12T contrast, medium and large irrigation schemes have a culturable command area of 2,000-10,000 ha
and above 10,000 ha respectively. These include dam and canal irrigation infrastructure.
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3.8 Agriculture

Data on agricultural production based on direct field measurements is not available
at the village level. We therefore rely on measures of vegetation cover calculated from
satellite images as a proxy for agricultural production at the village. Specifically, we use
data from the Enhanced Vegetation Index (EVI) estimated from images taken by the
Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard NASA’s Terra
satellite. This data was used by Asher and Novosad (2020) to evaluate the impact of
India’s national rural road expansion programme and was made available by the authors
as part of their replication dataset.’®> The authors extracted information on EVI from
gridded datasets across India for nine 16-day periods from June to October — covering the
monsoon/Kharif growing season — and similarly from November to March — covering the
winter/Rabi growing season — over a fourteen year period (2000-2014). This data was then
aggregated to our unit of analysis using village boundary shapefiles. We use the maximum
EVI value (log transformed for ease of interpretation) in each agricultural season of 2013
as our preferred outcome variable.!* Appendix C includes further information on how the
indices and proxies are constructed, a discussion of the literature on using remote sensing
imagery to predict crop production, as well as results from validation tests showing the
correlation between the indices and district level estimates of agricultural production.

In this study we are not only interested in capturing changes to agricultural production
in response to irrigation, but importantly changes in agricultural production choices. We
therefore leverage data from multiple external sources in order to obtain a range of village
level indicators on input use and crop choice. The Village Directory, administered as part
of the 2011 Population Census, keeps records of the three principle crops grown in each
village.!> We use this information to create three binary measures of crop choice. Spe-
cifically, does a village grow water intensive, drought tolerant, and cash crops.'® In terms
of agricultural inputs, we also draw upon the 2011 Village Directory for our measure of
land area cultivated. Finally, we compile data on two indicators of technology adoption —
water-saving technology (drip and sprinklers) is obtained from the Fifth MI Census (2013)
and mechanised farm equipment collected as part of the Socio Economic Caste Census

!3The paper by Asher and Novosad (2020) and its associated dataset is available at: https://www.
aeaweb.org/articles?id=10.1257/aer.20180268

14YWe demonstrate robustness of our results for varying specifications of this variable, including using
maximum EVI in level form as well as measuring the maximum as an average over three and five years.
Additionally, we report results on another proxy used in crop-mapping studies which measures the difference
between early season EVI and the maximum value.

Data from the 2011 Population Census Village Directory can be downloaded from: https://
censusindia.gov.in/2011census/censusdata2kll.aspx.

1Based on classification by the International Crops Research Institute for Semi-Arid Tropics, water
intensive crops include sugarcane, cotton, and rice, while drought tolerant crops include millet, sorghum,
maize, pigeon pea, and groundnut. Cash crops include sugarcane, oilseed, cotton, and tobacco. These
crops cannot be directly used for household consumption as they require post-harvest processing, but are
generally considered to be more profitable.
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(SECC) of India in 2012.17

3.4 Consumption

We consider a range of income and expenditure indicators. These are all obtained from
the Socioeconomic High-resolution Rural-Urban Geographic Dataset on India (SHRUG,
Version 1.5).!® Using household micro-data collected by the India Human Development
Survey-1I in 2012, the SHRUG provides predicted variables for consumption per capita and
the poverty rate based on a range of asset and income variables equivalent to those recor-
ded in the SECC (2012). Following the methodology suggested by Elbers et al. (2003) and
explained in detail in Appendix C, we leverage these predictions to impute consumption
and poverty using the SECC asset and income data so as to generate village level statistics.
Additionally, we consider an index of asset ownership as recorded by the SECC (2012),
as well as each individual major asset independently. Finally, we calculate a measure of
average night light (log transformed for ease of interpretation) per village in 2013. Night
light, captured by satellites as the pixel luminosity in a geographic polygon, is widely used
as a proxy for economic activity when direct measures are otherwise unavailable (Hende-
rson et al., 2011). Appendix C provides for a detailed discussion of the construction of
this variable, as well as evidence from the literature on its correlation to other economic
indicators.

3.5 Labour

We draw on the 2011 Population Census for information on labour allocation of village
residents. Specifically, we obtain data on total employment, as well as for two occupational
categories of employment in the agricultural sector — cultivators and labourers. Cultivators
are those that cultivate their own land, while labourers work for a daily wage. Data on
these categories is available disaggregated by gender, enabling us to test for shifts in labour
allocation for men and women separately. Furthermore, the data can also be disaggregated
by time spent employed. The Census of India considers two types of workers — main/full-
time workers are defined as those that are economically active in an employment category
for more than 6 months of the year, while marginal /part-time workers are active for less
than 6 months.

So as to obtain information on employment in village industries other than the agricul-
tural sector, we make use of data from the Sixth Economic Census conducted in 2013.1°

"The Government of India regularly conducts SECC surveys at the individual and household level
so as to determine eligibility into social programmes. Village level aggregates of this survey, including
household assets, are made available online as part of the work of Asher and Novosad (2020) evaluating
India’s national rural road construction programme. As mentioned previously, this paper and its associated
dataset is available at: https://www.aeaweb.org/articles?id=10.1257/aer.20180268

8For detailed information on the SHRUG, please refer to Asher et al. (2021). The dataset, including
codebooks and references, can be found at: http://www.devdatalab.org/shrug

9This data is available on the National Data Archive site: http://microdata.gov.in/nada43/index.
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The Economic Census is the only complete enumeration of all economic establishments
in India, formal and informal, with no restrictions on size or location.?’ Detailed records
are kept on employment and business characteristics including industry classification. We
concentrate our analysis on employment in the following village industries: agro-processing
(this excludes crop production), livestock, education, manufacturing, services, and forestry.
Among our sample, these six industries account for over 85% of employment. Unfortu-
nately, the Economic Census does not ask any questions on wages, inputs, or outputs,
hence we cannot investigate shifts in the production or profitability of these industries.

3.6 Demographics

Using the Population Census of 2011, we calculate population density of a village as
the ratio of total population to village area. Additionally, we disaggregate this measure by
gender and age. The adult population includes all those aged 18 years and over,?' while
the child population is between 0 to 6 years. In an attempt to identify the presence of
in-migration versus shifts in fertility and/or mortality, we calculate the share of the total
population by age and gender. Finally, we consider the share of the Scheduled Caste pop-
ulation. Members of these castes are among the most disadvantaged and form a significant
share of migration within the country.??

3.7 Covariates

In a placebo test, we consider four covariates which capture natural geo-physical fea-
tures of the village: temperature, rainfall, distance to nearest river, and whether the village
is in the command of a canal network (which depends on the local topography). The Cli-
mate Hazards Centre makes publicly available quasi-global high-resolution gridded data-
sets on temperature (CHIRTS) and rainfall (CHIRPS) (see Funk et al. (2014) and Funk
et al. (2019) for details on how these datasets are compiled using both satellite measures
and on-site station records).?? From these files, we extract information on the maximum
monthly temperature as well as annual rainfall and match these to villages using our village
boundary shapefiles. In order to account for temporal weather fluctuations we compute an
average of these measures over a three-year period (2010-2013). Distance to the nearest

php/catalog/47.

20 An establishment refers to any unit where an economic activity is carried out; with the exception of
those engaged in crop production, defence, and government administration.

21 At the village level the Population Census reports data on the total population as well as the population
aged 0-6 years. We estimate the 0-18 years population by multiplying the 0-6 population by 18/7. We then
estimate the adult population as the total minus the 0-17 years population.

22 According to the 2011 Population Census, 16% of intra-State migrants belonged to the Scheduled
Castes.

BTemperature data and related information is available at: https://www.chc.ucsb.edu/data/
chirtsmonthly, while precipitation data and its related information is available at: https://chc.ucsb.
edu/data/chirps.
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river is obtained from the 2011 Village Directory. Whether or not the village is in the
command area of a medium to large irrigation scheme, including dams and canal networks,
is taken from the Fifth MI Census (2013).

Finally, we show a balance test of our key outcome variables pre-access to irrigation.
For this, we rely on a sub-sample of villages with tube-wells built solely after 2000 and
data on our outcomes prior to this date. Irrigation is measured using the Third MI Census
conducted in 2000, village demographic indicators are obtained from the 2001 Popula-
tion Census of India, and proxies of consumption come from the 2002 Below Poverty Line
Census. Additionally, we make use of the previously described satellite imagery proxies for
agricultural production and night light dating back to 2000.

Each part of the dataset outlined above is matched at the village level. For variables
coming from the Population Census and Economic Census these are directly matched to
the SHRUG Dataset of India (Version 1.5) using Census village identifiers. As explained
previously, groundwater and weather data is linked using village shapefiles. Finally, for
the irrigation data we use a combination of Python and Stata code for fuzzy matching on
names adapted to the local Indian languages.?* Our final sample of villages are those that
have: (i) non-missing information across all our variables, (ii) tube-wells built by 2013, and
(iii) groundwater depth within the bandwidth of 7 metres from the maximum theoretical
depth threshold of a perfectly efficient centrifugal pump.2> Table 1 provides descriptive
statistics of all key variables on the final sample size of 3,327 villages across 423 districts
in 19 States of India. These statistics suggest that in an average village, approximately
76% of the agricultural land is irrigated by tube-wells. Agriculture is the largest employer
with approximately 13% of the workforce engaged as cultivators and 18% as manual la-
bourers. The village population encompasses just over 4000 people, with 20% belonging
to the Scheduled Castes and 28% recorded as being below the poverty line.

4. Empirical Approach

In this paper, we are interested in capturing the effects of irrigation on agricultural
production and the distribution of local economic activity. Irrigation practices however,
are likely to be endogenous. For instance, we might expect that villages with better access
to markets are more likely to adopt tube-wells. Any naive correlation estimates between
groundwater extraction for irrigation and economic outcomes will in such a case be biased;
partially attributing the effect of irrigation to markets rather than the technology itself.

24We use the Masala Merge algorithm developed by Paul Novosad which modifies the Levenshtein edit
distance to lower the cost of certain substitutions that are common to Hindi. The code and information
on this algorithm is available on the authors’ website: https://www.dartmouth.edu/~novosad/code.html.
This method resulted in a matching success of approximately 80%.

Z5The maximum theoretical threshold of a centrifugal pump is calculated based on Bernoulli’s principle of
fluid dynamics described in Equation 2 assuming 100% pump efficiency and atmospheric pressure adjusted
for village altitude

13


https://www.dartmouth.edu/~novosad/code.html

In order to identify exogenous variation in irrigation, we exploit the laws of physics which
dictate that there exists an arbitrary maximum groundwater depth from which water can
be extracted by a centrifugal pump.

Previous work by Sekhri (2014) evaluating the effect of access to water on poverty
and conflict in rural India also used the physical constraint on the operational capacity of
centrifugal pumps with groundwater depth as a source of exogenous variation. The author
adopts a fuzzy Regression Discontinuity (RD) Design at a threshold of 8 meters based on
expert opinion that achieving a perfect vacuum in the pumping mechanism is in practice
unlikely. However reports from industry standards suggest that centrifugal pumps in fact
typically offer efficiencies ranging from 55 to 93 percent (Elsey, 2020). Hence a jump in
access to groundwater, whether at 8 or 10.33 meters or anywhere in between, is unlikely.
In contrast we propose that pumps are drawn from a distribution of efficiencies leading to a
gradual decline in adoption of the technology culminating in zero take-up at the maximum
theoretical threshold, hence generating a kink in access to groundwater at that point.

In this section we outline our proposed empirical approach — fuzzy Regression Kink
(RK) Design.?6 Furthermore, we present graphical evidence and estimation results corrob-
orating the validity of this method.

4.1 Regression Kink Design

Centrifugal pumps provide the most affordable technology to privately access irrigation.
However as described in Section 2, there exists a maximum theoretical threshold below
which a centrifugal pump can no longer operate. Furthermore, the functionality of a pump
is limited by its efficiency. Hence as we approach the maximum theoretical threshold from
shallower depths, a subset of the lower efficiency pumps will not be operational. This leads
to a gradual decline in the use of centrifugal pumps for irrigation, with zero take-up of the
technology at the maximum theoretical threshold.?” In this context the change in slope
of the assignment function, which maps the relationship between groundwater depth and
irrigation, at the kink point is unknown and must be estimated based on observed data.
Accordingly, we employ a fuzzy RK design?® (Card et al., 2015b) wherein the assignment
function is specified as:

26There has been increasing interest in adopting RK designs in the applied economics literature. The
most common application so far has been the use of kinks in unemployment benefit schedules to capture
the effect of these on labour market outcomes (Card et al., 2015a; Landais, 2015). A small but growing
literature has also used this method to evaluate a range of topics including, but not limited to, the effect
of coalition governments on fiscal policies (Garmann, 2014), financial aid on educational outcomes (Nielsen
et al., 2010), and demand for prescription drugs (Simonsen et al., 2016).

2TSee Appendix B for a formal presentation of a decision-making framework explaining the adoption of
different pumping technologies by farmers.

28The difference between a sharp and fuzzy RK design is that the fuzzy RK design estimand replaces
the known change in slope of the assignment rule at the kink point with an estimate based on the observed
data.
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Ivds = 50 + 51(10 - k) + 52('LU - k) : Dvds + UXyds + Ns + €vds (3)

I,qs is groundwater extracted for irrigation in village v, district d, and state s. w is
the groundwater depth. k is the kink point, calculated based on Bernoulli’s principle of
fluid dynamics described in Equation 2 assuming 100% pump efficiency and atmospheric
pressure adjusted for village altitude. D,qs is a binary indicator which takes the value one
if village v has a groundwater depth w below the kink point k; that is w > k. We expect a
kink in the deterministic relationship between our treatment variable, irrigation, and our
assignment variable, groundwater depth, at k. It follows that if irrigation exerts a causal
effect on our outcome of interest we should then also expect to see an induced kink in the
relationship between the outcome and our assignment variable at k. This outcome function
is estimated as:

Yoas = Y0 + 71(w — k) + 2 (w — k) + Dyas + vXpds + s + Uvds (4)

Y,d4s is the outcome of interest. The causal impact can then be calculated as the ratio
of the coefficients — 3 = 73/d2 — and interpreted as the average treatment effect on the
treated. Standard errors for 3 are recovered using the Delta method. All our regressions
use a bandwidth of 7 metres from the kink point and a linear functional form. However
we demonstrate that our results are robust to a range of bandwidth down to 3 metres and
compare our findings when using a quadratic and cubic function.

Control variables and fixed effects are not necessary for identification in an RK design,
but do improve the efficiency of the estimation (Calonico et al., 2014; Imbens and Lemieux,
2008). We therefore include a vector of village geo-physical covariates, X,q4s, which include
temperature, rainfall, distance to river, and whether the village is in the command area of
a canal as controls in our specification.?? Furthermore, we also include state fixed effects,
ns and ps in Equation 3 and Equation 4 respectively. We show in a robustness test that
excluding these controls does not affect our results.

4.2 Impact of Groundwater Depth on Irrigation

Identification in a fuzzy RK design requires three key assumptions (Card et al., 2015b):
(1) the conditional density of the assignment variable, given the unobserved error in the
outcome, is continuously differentiable at the kink point, (2) there is no jump in the direct
marginal effect of the assignment variable on the outcome of interest at the kink point,3°
and (3) covariates are continuously differentiable at the kink point.

In response to the first assumption we plot the probability density function of the

These covariates are shown not to exhibit a discontinuity in the first derivative of the assignment
function at the kink point.

39 As explained by Card et al. (2015b), this condition is what differentiates an RK to an RD design. In
absence of this condition, wherein there exists a jump rather than a kink, an RD design would be used.
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assignment variable, groundwater depth, to check for manipulation of ones’ position at the
kink point. Firstly we note that as shown in Panel A of Figure 4 the exact location of
the kink point is village specific as it is adjusted for the local altitude. Panel B of Figure
4 shows the number of observations in each bin for groundwater depth normalised at the
kink point. The evolution of the distribution of our assignment variable shows no signs of
discontinuity around this point. This is further supported by the McCrary test, commonly
used in the RD literature, which estimates the log change in height between bins at the
kink point. Results from this test (displayed directly on the graph) confirm that we cannot
detect a significant discontinuity at that point.

The second assumption validates the treatment effect. Corroborating the known tech-
nological constraint and the effect of efficiency in limiting the operation of centrifugal
pumps with groundwater depth, Panel A of Figure 5 demonstrates a clear kink in the slope
of the relationship between centrifugal pump adoption and groundwater depth normalised
at the kink point. Specifically, we find a decline in the adoption of centrifugal pumps as
groundwater depth increases followed by a sharp visible switch to a constant near zero
adoption at the kink point (w > k). As expected, the price differential of submersible
pumps limits the substitution to this alternative technology (see Panel B of Figure 5). As
such, the amount of water extracted for irrigation closely follows the same change in slope
as centrifugal pump adoption with groundwater depth (see Panel C and D of Figure 5).3!
This graphical evidence is further substantiated in Table 2 which presents our results on
the assignment function. These indicate a statistically significant positive change in the
slope of centrifugal pump adoption (Column 1) with groundwater depth at the kink point,
and similarly in the case of irrigation (Columns 3 to 5).

Finally, the third assumption attempts to address the concern that there may be village
characteristics which are correlated to the treatment status. We first demonstrate that for
a range of covariates capturing local geo-physical factors, these do not exhibit a kink in
their relationship with groundwater depth. For instance, as shown in Panel A and B of
Figure 6 (with formal RK estimates reported in Columns 6 and 7 of Table 2) there is
clearly no kink in the relationship between groundwater depth with either temperature
or rainfall. Secondly, we test for the balance of our key outcome variables — irrigation,
agricultural production, poverty, and population — prior to having access to groundwater
irrigation. For this, we observe the distribution of these variables between 2000 to 2002
depending on the source of data among a sub-sample of villages that built tube-wells solely
after 2000. Table 3 presents the mean for this sub-sample of villages (Column 1), as well
as disaggregated for villages just below (Column 2) and those just above (Column 3) the
kink point. While there are average differences between villages (Columns 4 and 5), we
find no statistically significant change in slope at the kink point when using the fuzzy RK

31The cost of operating a submersible pump is significantly more expensive than a centrifugal. Among
our sample of villages, we find that average number of pumping hours for centrifugal pumps during the
rabi season is more than double that of submersible pumps. This may explain the low correlation between
water extraction and pump adoption for deeper depths.
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specification (Columns 6 and 7).

Robustness: In support of our empirical strategy, we conduct various robustness tests
reported in Appendix A. First, presented in Table Al, we demonstrate that our results are
consistent when the assignment variable is calculated as the maximum groundwater depth
observed over a one, three, or five year time horizon. Second, reported in Table A2 we
analyse the sensitivity of our results to the choice of polynomial order. The AIC is very
similar across all specifications, but we find that the standard errors increase substantially
with higher order polynomials (this trend has been noted in other RK studies; see Landais
(2015)). Third, we explore the sensitivity of the deterministic relationship between irrig-
ation and depth of the water table to the choice of bandwidth level. As shown in Figure
A2, our results are consistent across bandwidth down to 4 meters either side of the kink
point.

5. Results

In this section we report and discuss our results on the impact of an agricultural pro-
ductivity shift from access to irrigation on the sectoral distribution of rural economic activ-
ity. For each outcome variable we report the beta estimate (with the heteroskedasticity
robust standard errors in brackets) corresponding to the ratio of the coefficients capturing
the change in slope of the outcome (Equation 4) and the assignment function (Equation 3)
at the kink point (explained in Section 4). Our treatment variable, irrigation, is measured
as water extracted in litres/ha/day and standardised such that all results can be inter-
preted as the effect of a one standard deviation (= 103 litres/ha/day) increase in irrigation.

5.1 Agriculture

Before all else, we evaluate the impact of irrigation on agricultural production. To do so,
we leverage the maximum Enhanced Vegetation Index (EVI) value calculated from satellite
imagery as a proxy for agricultural yields in both the monsoon/Kharif and winter/Rabi
season of 2013. Irrigation appears to have a positive effect in fostering agricultural pro-
duction, especially during the monsoon/Kharif season. We estimate that a one standard
deviation increase in irrigation significantly boosts agricultural production by 7.7% during
the monsoon months, reported in Column 1 of Table 4. This result is robust to vari-
ations in the calculation of the EVI proxy (reported in Table A3).3? Additionally, we also
present graphical evidence of this effect in Panel A of Figure 7. Similar to that detected
for centrifugal pump adoption and irrigation, there is a sharp decline in monsoon /K hari f

32Table A3 reports results when using variations in the computation of the EVI proxy. Specifically, we
show that the estimates are robust to (1) using the level form of the EVI maximum value, (2) calculating the
maximum over varying time horizons in order to account for temporal fluctuations and potential outlying
years, and (3) using the difference between early season and the maximum value (a proxy also commonly
used in crop-mapping studies with satellite imagery).
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agricultural production with groundwater depth up until the kink point and levelling off
at greater depths.

Having established the effect of irrigation on agricultural production, we go on to ana-
lyse the pathways through which these effects may operate over and above the direct yield
impact. Improvements in agricultural output could happen through two main channels:
(1) conditional on higher production translating to higher profits farmers may increase
investment in other inputs, and/or (2) farmers may re-optimise their production strategy
in response to a reduced exposure to climate risk.

In response to the first channel we investigate investments in a range of inputs including
land, water-saving technology, and mechanised equipment, reported in Columns 3 to 5 of
Table 4 respectively. Irrigation significantly increases the share of village area used for
cultivation. A one standard deviation increase in irrigation leads to an 18.7% rise in the
proportion of village land being cultivated (Panel B of Figure 7 provides corresponding
graphical evidence). We may expect that alongside this increased land use, there is also a
shift in the size of landholdings. For instance, larger farmers may be more likely to invest
in irrigation and buy out smaller less productive non-irrigated farms. To test for this we
analyse the impact of irrigation on the share of households in four different landholding
categories — landless, 0-2, 2-4 and above 4 acres, reported in Table A4. We find no evidence
of a shift in landholding size, likely a reflection of how thin land markets are in rural
India (Mearns, 1999). We also do not detect any shifts in the ownership of mechanised
equipment, and a marginally significant decline in the use of water-saving technology. This
latter result confirms the growing concerns that private investment in tube-wells without
any regulations on treating groundwater as a common resource may be a leading factor in
water mismanagement (Dubash, 2007).

With respect to the second channel we analyse shifts in the most common crops grown in
the village, presented in Columns 6 to 8 of Table 4. We consider three categories of crops —
water intensive, drought tolerant, and cash — which are all characterised by differing levels
of risk. Water intensive crops (e.g. rice) are vulnerable to rainfall shocks. Conversely
drought tolerant crops (e.g. sorghum) are resistant to semi-arid conditions thereby an ef-
fective way of reducing exposure to adverse weather. Finally, cash crops (e.g.sugarcane),
which cannot be directly used for household consumption as they require post-harvest pro-
cessing, are generally considered to be quite profitable but also more susceptible to price
fluctuations. We find that in response to a one standard deviation increase in irrigation,
13.2% of villages were more likely to report growing water intensive crops and 18.8% of
villages were less likely to report cultivating crops that are drought tolerant. This provides
suggestive evidence that farmers rely on predictable access to groundwater, even during
the monsoon/Kharif season, as a form of insurance against weather shocks.
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5.2 Consumption

A boost to agricultural productivity from irrigation may have important welfare im-
plications at the village level. To capture this we conduct our analysis on a range of
consumption indicators, presented in Table 5.33 We do not detect any significant shifts
in consumption per capita, the poverty rate, or night light activity (Columns 1, 2, and 4
respectively). We do however, estimate a 0.47 standard deviation increase in the household
asset index for durable goods consumption (Column 3). When considering the effect inde-
pendently on the main items included in this index, we find that this result is mostly driven
by an increase in solid house construction (Column 1 of Table A6). The share of house-
holds that own a solid, brick and mortar, house increases by 19.8% with a one standard
deviation increase in irrigation. Panel C of Figure 7 provides graphical evidence of this rela-
tionship. The share of households who own a solid house declines with groundwater depth
from approximately 50% to just below 40% at the kink point, levelling off at deeper depths.

5.3 Labour

An increase in agricultural production with improved irrigation may simultaneously
increase demand for labour in this sector. This effect however, may be small or even
reversed if farmers switch to less labour intensive crops or replace labour activities with
specialist mechanised tools such as transplanters and harvesters. Furthermore, labour
supply to agriculture is likely to be influenced by market opportunities in other sectors.
On-farm growth may spur production in off-farm sectors hence increasing demand for
labour in those industries. Characterised by these complex interactions, the overall effect
of irrigation on the sectoral allocation of labour is ambiguous.

We first consider the effect of irrigation on employment of the village population. As
reported in Columns 1 to 3, Panel A of Table 6, we estimate a marginally significant decline
in the total employment rate which appears to be driven by a fall in female employment.
This drop may be related to the “income effect”, a trend suggesting that women appear
to drop out of the labour force as households become wealthier (Mehrotra et al., 2014;
Mehrotra and Sinha, 2017).

Secondly, we investigate the effect of irrigation on employment in the agricultural sector
presented in Columns 4 to 9 of Table 6. Agriculture is the largest employer in our sample
of villages with approximately 30% of working adults reporting their primary occupation
to be either cultivation (Columns 4 to 6) or manual labour (Columns 7 to 9). Irrigation
however, does not appear to have any significant effects on the employment rate (Panel
A) or share of the workforce (Panel B) engaged in these occupations. While we find no

33Beyond the direct income effect on the local population, it may be that a more productive agricultural
sector spurs demand and investment in village amenities. In view of this, we investigate whether irrigation
changes the probability of having access to five key services: primary school, hospital, bank, paved road, and
market. However as reported in Table A5, we do not find any evidence of improvements in the availability
of this infrastructure.
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evidence of labour movement in or out of this sector, there may be more subtle changes
occurring within the labour market. Cultivators may spend longer hours working on their
farm or employ manual labour for longer periods as they cultivate more land. In order to
test for this, we leverage the share of full-time workers (those that work for more than six
months of the year) as the outcome of interest (Panel C). Our results suggest that there
are no significant shifts on the intensive margin of work for either cultivators or labourers.

Next, we consider the effect of irrigation on labour allocation off-farm. Table 7 reports
estimates on the number of persons employed across all village industries, as well as in the
six largest employing industries independently. Our results suggest that irrigation does not
appear to have any significant effects on employment in across these sectors.?* Graphical
evidence from Panel E of Figure 7 shows that there is no discernible change in slope in the
mapping between the number of persons employed in industries and groundwater depth at
the kink point. Furthermore, as demonstrated in Panel E of Figure A3 this result is tightly
estimated and consistent across bandwidth down to 3 meters either side of the kink point.

Finally, we examine the possibility that irrigation may have implications on the spatial
distribution of labour. Investment in tube-wells may provide villages with a comparative
advantage in farming thereby pooling-in labour from neighbouring villages, especially those
without access to the technology. So as to estimate this effect we consider the employment
status of residents in the nearest neighbouring village from our main sample (within a
maximum distance of 5km) that had no tube-wells in 2013. Using the standard regression
kink specification, we report in Table 8 the impact of irrigation on agricultural sector em-
ployment for the population in these nearest non-adopting neighbours. We find evidence
that in response to a one standard deviation increase in irrigation in village v, its nearest
neighbour without irrigation shows a significant increase in its share of full-time agricul-
tural labourers. This is especially so among female workers — the share of full-time female
labourers increases by 24.7%.3% In Table A8 we demonstrate that irrigation in village v
has no effect on the agricultural production in its nearest neighbour without tube-wells,
suggesting that the shift we estimate on full-time labour is indeed a response to higher
demand for workers in relatively more agriculturally productive villages.

5.4 Demographics

Reported in Table 9, we find that irrigation leads to large changes in the village demo-
graphics. Particularly, we estimate a 38.5% increase in population density from a one

34Unlike the Population Census which records employment of the village population even if this takes
place outside the village, the Economic Census measures the number of persons employed in village busi-
nesses even if these are not local residents. As a result, we cannot capture the employment rate or share of
the workforce for workers in village industries.

35In Table A7 we report these results for varying distance of the nearest neighbouring village. Within
2km, presented in Columns 1 and 2, the sample is vastly reduced hence our results are not precisely
estimated. However the point estimate on agricultural labourers remains very similar even at this smallest
distance.
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standard deviation increase in irrigation (Column 1 of Panel A). Panel F of Figure 7
provides graphical evidence of this effect. Population density falls by half with increas-
ing groundwater depth from approximately 8 to 4 persons per hectare at the kink point
and levels off at deeper depths. This considerable effect on the village population is likely
due to two key pathways: (1) a more productive agricultural sector may spur in-migration,
and/or (2) it provides the food supply critical in sustaining a higher fertility and/or reduced
mortality.

First we consider the migration pathway by examining the share of the male population.
According to the 2011 Population Census, work is the primary reason for which men
migrate in India. A pooling-in of labour from outside may increase the proportion of
men in the village. We do not find evidence of this shift, as presented in Column 2 of
Panel B. Note however that this does not rule out in-migration of working age men, but
may indicate that in the medium to long-run time frame we consider men are settling in
with their families. Indeed, population density appears to increase equally across gender
(Columns 2 and 3 of Panel A). Another group known to migrate for work are the Scheduled
Caste. Members of these castes are among India’s most economically disadvantaged groups
and in 2011 represented 16% of intra-state migrants. We find evidence, shown in Columns
1 to 3 of Panel C, that irrigation causes an 8% increase in the share of this population
group with similar effects for both men and women.

Second we consider the fertility and/or mortality pathway by investigating changes
in the share of village population by age group. Increased fertility will lead to a higher
proportion of children. Reduced mortality is likely to affect the most vulnerable, such as
children and the elderly, increasing their representation in the population. Our findings
indicate a significant increase of 0.89% in the share of the child (0 to 6 years) population,
reported in Column 5 of Panel B. As a robustness check, we replicate this analysis using
micro-data from the Socio Economic Caste Census of 2012. This dataset allows us to split
the village population in 10 year age brackets. Presented in Table A9, we find evidence of
a general increase across all age brackets, with the youngest population — age 1 to 10 years
— showing the highest increase.

5.5 Dynamic Effects

Finally, we investigate the dynamic effects from groundwater irrigation. To do so, we
leverage heterogeneity in the timing of technology adoption. As shown in Figure 1, by
2000 approximately half of our sample villages had constructed tube-wells for groundwater
extraction. We therefore split our sample by villages that had built tube-wells by 2000
— for which results are presented in Table 10 — and those that invested in the technology
solely after that date — with results presented in Table 11.

Panel A in both tables provides estimates on our agricultural sector indicators. The
effect of irrigation in promoting agricultural production in the monsoon season is marginally
higher among early adopters that have had access to the technology for at least 14 years.
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In terms of changes to area cultivated, this is particularly high — an increase of 46.6% —
among late adopters with access to irrigation for between 1 to 14 years. This may be due
to the technology being initially adopted by wealthier villages that were already exploiting
most of the available arable land. Unfortunately, we cannot test this proposition in the
absence of baseline wealth measures. This would also explain our results on consumption,
reported in Panels B, where we find that late adopters experience a much higher increase
in their ownership of household assets.

As in the case of the overall effects from irrigation, we find no evidence of changes in
aggregate employment, share of the workforce in the agricultural sector, and number of
persons employed in local industries (presented in Panels C). There are however interesting
differences to note on changes to the village demographics, reported in Panel D of both
tables. The point estimate on the share of the child population, significant at the 5%
level, is close to four times higher among early adopters compared to those who recently
experienced an agricultural productivity boost. We interpret these results to suggest that
increased fertility and/or reduced mortality is likely the outcome of a long to medium-run
effect. On the other hand, the increased share of the Scheduled Caste population is partic-
ularly high and significant only among late adopters. Tentatively, this may indicate that
in the short-run there is a large increase in demand for labour filled in by members of this
group. However in the long to medium-run, an increase to the farming population may
imply that they require less migrant labour.

5.6 Robustness

In this section, we examine the robustness of our results to alternative specifications
and sample selection. First, in Table A10, we show that the exclusion of our geo-physical
covariates do not change the results. Second, so as to account for the potential effect of
temporal fluctuations in the water table we exclude villages that have experienced a large
drop in their groundwater depth. Specifically, we measure the fluctuation in the maximum
groundwater depth over a decade (2000-2010) and capture outliers as those in the bottom
10th percentile of the distribution (corresponding to a drop in groundwater depth by more
than 4 metres). In Table All, we demonstrate that our results are robust to excluding
these villages. Finally, as explained in Section 2, the maximum theoretical threshold of a
centrifugal pump is affected by altitude. As shown in Figure 4, the depth from which a
perfectly efficient pump can extract water drops from 10.33 to 9.25 meters for the range of
altitude covered in our main sample of villages. In order to verify that our results are not
confounded with factors related to altitude, we exclude villages in the top 10th percentile
of the altitude distribution (corresponding to altitudes above 600 metres). Table A12 sug-
gests are results are robust to excluding villages at high altitudes.
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6. Conclusion

A substantial literature has documented the process of economic growth across coun-
tries, overwhelmingly finding that a boost to agricultural production precedes the re-
allocation of labour from the agricultural sector towards the manufacturing and service
industries initiating the course for industrialisation and development (Herrendorf et al.,
2014). Recently, this topic has received renewed interest among micro-empirical studies to
better understand the catalysts to this process, as well as how it unfolds across space.

In this paper, we analyse the effect of access to groundwater irrigation on agricultural
production and the rural labour market in India. Since the 1970s, adoption of tube-wells
for groundwater extraction has gradually increased making it the single largest source of
irrigation. The evolution of this technology adoption over the past 50 years is well suited
to empirically test the dynamic effects of productivity gains to agriculture.

To begin with, we find that irrigation significantly improves agricultural production
and enables farmers to re-optimise their production strategies by cultivating more land
and shifting away from drought tolerant crops. Secondly, irrigation leads to modest con-
sumption gains, mostly with respect to durable goods. Thirdly, we find a substantial
increase in population density, driven by a combination of in-migration and changes to
fertility /mortality. However, there is no evidence of reallocation of labour between sectors
of the rural economy. These results suggest that while villages are the root of agricultural
productivity gains, industrialisation does not happen at this scale.

The strength of our empirical approach is to estimate the impact of irrigation at a high
resolution across a large geographic scale. However, given that the variation in access to
groundwater is identified at the village and evenly dispersed geographically, we are unable
to aggregate and capture effects on the wider economy including spill-over effects to urban
centres.
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Figure 1: Tube-well construction and groundwater depth over time
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Notes: The percentage share of villages with tube-wells is represented by the bar graph with its axis on the left.
Data on tube-well construction is obtained from the Minor Irrigation (MI) Censuses conducted every seven years
since 1986. Annual maximum groundwater depth is represented by the line graph with its axis on the right. Data on
groundwater depth comes from the Central Ground Water Board (CGWB) which has been monitoring wells across
the country since 1996. The sample consists of villages with tube-wells in 2013 and groundwater depth within the
bandwidth (7 m) of the kink point (see Section 3 for details on variable construction and sample).
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Figure 2: Pumping mechanism of a centrifugal pump
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Notes: Extraction of water from a tube-well using a centrifugal pump can be described by Bernoulli’s principle of
fluid dynamics (Equation 1). Assuming constant flow velocity Equation 1 can be re-written in the form of Equation

2: hg —hy = %, where P; and Ps refer to pressure from the water table and the pump mechanism respectively,

p is the density of water (997 kg/m3), and g the gravitational force (9.81 m/sz). The maximum possible pressure
differential is achieved through a perfect vacuum (Py=0 k:g/m/sz) in the pumping mechanism. Under this ideal
condition and atmospheric pressure at sea-level (P;=101,325 kg/m/s?) the maximum depth from which water can be
extracted, calculated as the difference between hj and hs, is 10.33 meters. This represents the maximum theoretical
threshold which a centrifugal pump can achieve.
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Figure 3: Sample village location and groundwater depth
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Notes: The sample consists of villages with tube-wells in 2013 and groundwater depth within the bandwidth (7 m)
of the kink point (see Section 3 for details on variable construction and sample). Each circle on the map represents a
village in this sample. Red circles correspond to villages with a groundwater depth deeper than the kink point. Blue
points are villages with a groundwater depth shallower than the kink point. The kink point of a village is calculated
using Bernoulli’s principle of fluid dynamics described in Equation 2 assuming 100% pump efficiency and atmospheric
pressure adjusted for village altitude.
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Figure 4: Distribution of the assignment variable
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Notes: The kink point of a village is calculated using Bernoulli’s principle of fluid dynamics described in Equation 2
assuming 100% pump efficiency and atmospheric pressure adjusted for village altitude. Panel A shows the distribution
of the kink point for villages in our sample. Panel B plots the number of observations in each bin for groundwater
depth normalised at the threshold. A fuzzy RK design requires for the conditional density of the assignment variable,
given the unobserved error in the outcome, to be continuously differentiable at the kink point. The McCrary test,
reported in Panel B, provides an additional validation by estimating the log change in height between bins at that
point. The sample consists of villages with tube-wells in 2013 and groundwater depth within the bandwidth (7 m) of
the kink point (see Section 3 for details on variable construction and sample).
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Figure 5: Deterministic relation between groundwater depth, pump adoption, and irriga-

tion
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Notes: The x-axis in each panel represents our assignment variable, groundwater depth. This variable is normalised
around the kink point of the village. The kink point is calculated using Bernoulli’s principle of fluid dynamics described
in Equation 2 assuming 100% pump efficiency and atmospheric pressure adjusted for village altitude. Points to the
right of zero correspond to depths deeper than the kink point, while those left of zero are shallower. Each panel
reports results on the deterministic relation between our assignment variable and measures of pump adoption and
irrigation. Each panel shows the mean values of the variable of interest in each bin of the assignment variable. The
bin size is 0.5. The red dashed lines display predicted values of the regressions in the linear case allowing for a
discontinuous shift at the kink point. Formal estimates of the kink using the fuzzy RK specification are reported in
Table 2. The sample consists of villages with tube-wells in 2013 and groundwater depth within the bandwidth (7 m)

of the kink point (see Section 3 for details on variable construction and sample).
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Figure 6: Deterministic relation between groundwater depth and geo-physical covariates
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Notes: The x-axis in each panel represents our assignment variable, groundwater depth. This variable is normalised
around the kink point of the village. The kink point is calculated using Bernoulli’s principle of fluid dynamics described
in Equation 2 assuming 100% pump efficiency and atmospheric pressure adjusted for village altitude. Points to the
right of zero correspond to depths deeper than the kink point, while those left of zero are shallower. Each panel
reports results on the deterministic relation between our assignment variable and covariates. Each panel shows the
mean values of the covariate in each bin of the assignment variable. The bin size is 0.5. The red dashed lines display
predicted values of the regressions in the linear case allowing for a discontinuous shift at the kink point. Formal
estimates of the kink using the fuzzy RK specification are reported in Table 2. The sample consists of villages with
tube-wells in 2013 and groundwater depth within the bandwidth (7 m) of the kink point (see Section 3 for details on
variable construction and sample).

35



Figure 7: Deterministic relation between groundwater depth and outcomes
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Notes: The x-axis in each panel represents our assignment variable, groundwater depth. This variable is normalised
around the kink point of the village. The kink point is calculated using Bernoulli’s principle of fluid dynamics described
in Equation 2 assuming 100% pump efficiency and atmospheric pressure adjusted for village altitude. Points to the
right of zero correspond to depths deeper than the kink point, while those left of zero are shallower. Each panel reports
results on the deterministic relation between our assignment variable and a selection of our outcome variables. Each
panel shows the mean values of the outcome of interest in each bin of the assignment variable. The bin size is 0.5.
The red dashed lines display predicted values of the regressions in the linear case allowing for a discontinuous shift
at the kink point. Formal estimates of the kink using the fuzzy RK specification are reported in Tables 4, A6, 6, 7,
and 9 for Panels A to F respectively. The sample consists of villages with tube-wells in 2013 and groundwater depth
within the bandwidth (7 m) of the kink point (see Section 3 for details on variable construction and sample).
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Table 1: Descriptive statistics of sample

Mean SD N Source (Year)
(1) (2) (3) (4)

Panel A: Irrigation

Agricultural area irrigated by tube-wells (%) 76.425 42.347 3327 PC (2011)

Monsoon/Kharif irrigation (Itr/ha/day) 97.677 164.205 3327 MIC (2013)

Winter/ Rabi irrigation (Itr/ha/day) 108.561  170.330 3327 MIC (2013)

Tube-wells (nb/ha) 0.123 0.165 3327 MIC (2013)

Centrifugal pumps (nb/ha) 0.050 0.109 3327 MIC (2013)

Maximum groundwater depth (m) 8.964 3.468 3327 CGWB (2010-13)*
Panel B: Agriculture

Landholding size (ha) 3.541 5.967 2349 SECC (2012)

Share of HHs with mechanised equipment (%) 5.007 8.702 2349 SECC (2012)
Panel C: Consumption

Per capita consumption (‘000 Rs./annum) 18.439 4.547 3327 SECC (2012)

Share of HHs that are BPLP (%) 28.611 17.304 3327 SECC (2012)

Share of HHs who own a solid house (%) 44.444 29.047 2349 SECC (2012)
Panel D: Labour

Share of workforce are cultivators (%) 13.027 9.669 3327 PC (2011)

Share of workforce are agricultural labourers (%) 18.198 11.399 3327 PC (2011)

Persons employed in village businesses (nb) 435.149  697.281 3327 EC (2013)
Panel E: Demographics

Population (nb) 4029.857  4030.772 3327 PC (2011)

Share of population from scheduled castes (%) 20.004 16.366 3327 PC (2011)
Panel F: Covariates

Temperature (celsius) 32.171 1.735 3327 CHIRTS (2010-13)

Rainfall (mm) 1139.756  512.546 3327 CHIRPS (2010-13)2

Distance to nearest river (km) 23.400 25.486 3327 PC (2011)

Notes: This table presents summary statistics of the sample captured between 2011 to 2013 depending on the source of data. The sample
consists of villages with tube-wells in 2013 and groundwater depth within the bandwidth (7 m) of the kink point (see Section 3 for details on
variable construction and sample).

2Calculated as a three year average between 2010 to 2013.

bPoverty line is set at Rs.31/day.
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Table 2: Estimated kink in the deterministic relation of groundwater depth with pump adoption, irrigation, and covariates

Pump adoption Irrigation Covariates
Centrifugal  Submersible Average Monsoon/ Winter/ Temperature Rainfall Distance Inside canal
Kharif Rabi to river  command area
(nb/ha) (nb/ha) (standardised)  (standardised) (standardised) (celsius) (mm) (km) (binary)

(1) (2) 3) (4) () (6) (7) (®) 9)

8 0.003%* 0.001 0.107%%* 0.108%** 0.102%** -0.025 7.156 0.539 0.009
(0.001) (0.002) (0.014) (0.014) (0.014) (0.025) (7.217)  (0.412) (0.006)
Mean 0.050 0.063 0.000 0.000 0.000 32.171 1139.756  23.400 0.119
SD 0.109 0.112 1.000 1.000 1.000 1.735 512.546  25.486 0.324
N 3327 3327 3327 3327 3327 3327 3327 3327 3327

Notes: This table presents estimates on the effect of groundwater depth on pump adoption, irrigation, and covariates. §2 is the estimated change in slope of the assignment function at the
kink point (Equation 3). Pump adoption, calculated as the number of pumps per agricultural land area, is reported for centrifugal (Column 1) and submersible (Column 2) pumps. Irrigation
is measured as water input in litres and standardised. We report irrigation as an average over the year (Column 3), as well as independently for the Monsoon/Kharif (Column 4) and the dry
Winter/Rabi season (Column 5). We consider four geo-physical covariates reported in Columns 6 to 9 respectively: temperature (measured as a three year average, 2010-13, of the maximum
monthly temperature recorded in degrees Celsius), rainfall (measured as a three year average, 2010-13, of the total annual rainfall recorded in millimetres), distance to the nearest river (in
kilometres), and a binary indicator for whether the village has tube-wells inside the command area of a canal network. The sample consists of villages with tube-wells in 2013 and groundwater
depth within the bandwidth (7 m) of the kink point (see Section 3 for details on variable construction and sample). Mean and standard deviation is reported for the full sample. Each regression
includes state dummies and covariates; with the covariate of interest omitted from the vector of controls (see Section 4 for specification details). Heteroskedasticity robust standard errors are
reported in parentheses. * significant at 10% ** significant at 5% *** significant at 1%.
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Table 3: Balance of outcome variables pre-treatment for villages with tube-wells built post 2000

Full Deep Shallow Difference p-value on RK p-value on
sample (w>k) (w<k) inmeans difference estimate RK estimate

(1) (2) 3) (4) () (6) (7)

Panel A: Agriculture

Area irrigated by tube-wells (%) 3.424 2.921 3.713 0.792 0.35 2.195 0.67
Monsoon/Kharif production (EVI max, In)  8.944 8.929 8.953 0.024 0.00 0.026 0.66
Winter/ Rabi production (EVI max, in) 8.457 8.425 8.474 0.049 0.00 -0.055 0.48
Land (in) 5.937 6.051 5.868 -0.183 0.03 0.710 0.28
Panel B: Consumption
HHs with income above Rs.250/month (%) 80.253  81.659 79.315 -2.344 0.19 -9.476 0.54
HHs who own land (%) 57.048  60.940 54.626 -6.314 0.00 -20.506 0.15
Night light (in) 1.736 1.800 1.700 -0.100 0.00 0.285 0.24

Panel C: Demographics

Population (in) 7.612 7.600 7.620 0.021 0.76 0.830 0.13
Population from scheduled castes (%) 17.521 16.728 18.000 1.272 0.21 14.248 0.12
N 1459 532 927

Notes: The table presents summary statistics and balance tests pre-treatment for villages with tube-wells built after 2000. Data on demographics are obtained from the 2001
Population Census of India, consumption indicators are from the 2002 Below Poverty Line Census, irrigation variables come from the Third Minor Irrigation Census of 2000,
agricultural production (EVI max) and night light (mean) are taken from satellite imagery captured for the year 2000. Columns 1 to 3 show the unconditional mean for all
villages, villages with groundwater depths deeper than the kink point, and villages with groundwater depths shallower than the kink point respectively. Column 4 presents the
difference in means between Columns 2 and 3. Column 5 shows the p-value for the difference in means. Column 6 reports the regression kink estimates capturing the effect
of groundwater irrigation on each variable. The specification includes state dummies (see Section 4 for details). Finally Column 7 presents the p-value for the regression kink
estimates. The sample consists of villages with tube-wells built after 2000 and groundwater depth within the bandwidth (7 m) of the kink point (see Section 3 for details on
variable construction and sample).
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Table 4: Impact of irrigation on agriculture

Production Inputs Crop choice
Monsoon/ Winter/ Agricultural ~Water-saving Mechanised =~ Water =~ Drought  Cash
Kharif Rabi land technology equipment intensive tolerant
(EVI max, In)  (EVI max, in) (%) (%) (%) (binary) (binary)  (binary)

(1)

(2)

(3)

(4)

(5)

(6)

(7) (8)

Trrigation 00775 -0.005 18,7115 -6.051% -1.740 0.132%  -0.188%*  0.012
(standardised)  (0.030) (0.026) (4.579) (3.311) (1.869) (0.079)  (0.083)  (0.077)
Mean 4609.952 4865.387 67.034 4.753 5.007 0.689 0.343  0.227
SD 949.797 1041.578 24.487 18.671 8.702 0.463 0475  0.419
N 3327 3327 3327 3327 2349 2700 2700 2700

Notes: This table presents fuzzy RK estimates on the effect of irrigation on agricultural output and production choices. Irrigation is measured as litres/ha/day
and standardised. Using EVI, an index of vegetation cover from satellite imagery, we proxy for agricultural production by taking the maximum value of the index
(log transformed) in both the Monsoon/Kharif (Column 1) and the dry Winter/Rabi season (Column 2) of 2013. In Columns 3 to 5 we consider adoption of three
inputs respectively: agricultural land (percentage share of village area used for agricultural purposes), water-saving technology (percentage share of tube-wells which
are adapted to water-saving mechanisms such as drips and sprinklers), and mechanisation (percentage share of households who own mechanised farm equipment such
as tractors, harvesters etc.). Additionally, we also report results on three binary measures of crop choice reported in Columns 6 to 8 respectively: does a village grow
water intensive crops (sugarcane, cotton, and rice), drought tolerant crops (millet, sorghum, maize, pigeon pea, and groundnut), and cash crops (sugarcane, oilseed,
cotton, and tobacco). The sample consists of villages with tube-wells in 2013 and groundwater depth within the bandwidth (7 m) of the kink point (see Section 3 for
details on variable construction and sample). Mean and standard deviation reported for the full sample, and in the case of production on the level form of the variables.
The specification includes state dummies and covariates (see Section 4 for details). Heteroskedasticity robust standard errors are presented in parenthesis. * significant
at 10% ** significant at 5% *** significant at 1%.



Table 5: Impact of irrigation on consumption

Consumption Poverty rate Household assets Night light
per capita
(In) (share) (index) (In)

(1) (2) (3) (4)

Irrigation 0.027 -0.037 0.470%* 0.100
(standardised) (0.034) (0.026) (0.221) (0.084)

Mean 18.662 0.290 0.409 7.307
SD 4.762 0.178 1.000 5.200

N 3327 3327 2349 3327

Notes: This table presents fuzzy RK estimates on the effect of irrigation on consumption. Irrigation is
measured as litres/ha/day and standardised. Column 1 reports results on the imputed consumption per
capita (log transformed). Column 2 shows estimates on the imputed share of the population living below
the poverty line (poverty line is set at Rs.31/day). Column 3 shows the household asset ownership index
calculated as the village level average of the primary component of indicator variables for all household assets
captured in the Socio Economic Caste Census of 2012. Finally, using satellite imagery, Column 4 captures the
average night light in 2013. The sample consists of villages with tube-wells in 2013 and groundwater depth
within the bandwidth (7 m) of the kink point (see Section 3 for details on variable construction and sample).
Mean and standard deviation reported for the full sample, and in the case of night light and consumption
on the level form of the variables. The specification includes state dummies and covariates (see Section 4 for
details). Heteroskedasticity robust standard errors are presented in parenthesis, except for consumption and
poverty which report bootstrapped standard errors. * significant at 10% ** significant at 5% *** significant
at 1%.
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Table 6: Impact of irrigation on aggregate and agricultural sector employment

Total Cultivators Labourers

Person Male Female Person Male Female Person Male Female

(1) (2) 3) 4) () (6) (7) (®) 9)

Panel A: Share of population employed (%)
Irrigation -2.576%  -0.859 -4.285* -1.145 -0.358  -2.022 0.426 0.640 0.251
(standardised)  (1.445) (0.872) (2.495) (1.475) (1.772) (1.517) (1.741) (1.756) (2.091)

Mean 43.784  55.232 31.706  13.027 18.303  7.480 18.198  19.188  17.093
SD 10.526 7.016 17.376  9.669 11.345  9.964 11.399  11.172  14.057

Panel B: Share of workforce (%)

Irrigation - - - -0.312 0.365 -2.064 2.780 1.628 5.597
(standardised) (-) -) -) (2.939) (3.088) (3.212) (3.215) (3.013) (4.227)
Mean - - - 29.393 33.041 21.238 40.293 34.663  49.859
SD - - - 18.856  19.589  20.592  20.671 19.358  26.284

Panel C: Share of full-time workers (%)
Irrigation 4.839 3.734 4.261 4.457 2.069 4.328 3.501 2.842 6.568
(standardised)  (3.298) (2.878) (4.480) (2.843) (2.468) (5.046) (4.723) (4.672) (5.339)

Mean 75.369  82.137 61.180 86.884 91.027 69.532 64.495 70.671 54.374
SD 20.638  18.258 28.515 17.917 15904 31.141 29.690 29.227  33.989
N 3327 3327 3327 3327 3327 3327 3327 3327 3327

Notes: This table presents fuzzy RK estimates on the effect of irrigation on aggregate employment as well as within the agricultural sector.

Irrigation is measured as litres/ha/day and standardised. Panel A reports results on the percentage share of the population employed,
calculated as the ratio of those employed to the total working age population. Panel B reports results on the percentage share of the
workforce, calculated as the ratio of those employed to the total workforce. Panel C reports results on the percentage share of full-time
workers (those that work for more than 6 months of the year), calculated as the ratio of full-time workers to the total workforce. Alongside
total employment we consider two specific occupational categories in agriculture: cultivators are those who cultivate their own land, and
labourers are those who work for a daily wage. Furthermore, we disaggregate each of our categories by gender. The sample consists of
villages with tube-wells in 2013 and groundwater depth within the bandwidth (7 m) of the kink point (see Section 3 for details on variable
construction and sample). Mean and standard deviation reported for the full sample. The specification includes state dummies and covariates
(see Section 4 for details). Heteroskedasticity robust standard errors are presented in parenthesis. * significant at 10% ** significant at 5%
*** significant at 1%.
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Table 7: Impact of irrigation on industry sector employment

Manufacturing Services Forestry

All Agro-processing Livestock Education
1) 2) (3) (4) () (6) (7)
(In) (In) (In) (In) (In) (In) (In)
Irrigation 0.132 -0.079 -0.166 -0.066 0.472 0.387 -0.093
(standardised)  (0.248) (0.178) (0.316) (0.238) (0.299) (0.276) (0.110)
Mean 435.149 4.357 100.878 36.186 81.043 183.974 1.228
SD 697.281 16.939 235.447 55.302 176.170 316.905 7.174
N 3327 3327 3327 3327 3327 3327 3327

Notes:

This table presents fuzzy RK estimates on the effect of irrigation on employment within village industries.

Irrigation is measured as

litres/ha/day and standardised. Results are reported on the number of persons employed (log transformed). Column 1 calculates employment on
aggregate across all village industries. Columns 2 to 7 refer to each of the following largest employing sectors respectively: agro-processing, livestock,
education, manufacturing, services, and forestry. The sample consists of villages with tube-wells in 2013 and groundwater depth within the bandwidth
(7 m) of the kink point (see Section 3 for details on variable construction and sample). Mean and standard deviation are reported on the level form
of the variables for the full sample. The specification includes state dummies and covariates (see Section 4 for details). Heteroskedasticity robust

standard errors are presented in parenthesis.

* significant at 10% ** significant at 5%

skokok

significant at 1%.



Table 8: Impact of irrigation on the spatial distribution of agricultural
sector employment

Cultivators Labourers

Person Male Female  Person Male Female

(1) (2) 3) (4) (5) (6)

Panel A: Share of population employed (%)

Irrigation -1.605 -1.124 -1.170 1.897 3.042 0.751
(standardised) (2.481) (2.892) (2.498) (2.830) (2.988) (3.134)
Mean 13.573  18.542 8.360 17.267 18.272 16.179
SD 13.027  15.305  13.342 15.007 15.396 17.227

Panel B: Share of workforce (%)

Irrigation -2.928 -2.139 -0.412 4.871 4.309 6.981
(standardised)  (4.767) (4.919) (4.858) (5.097) (4.853) (6.203)

Mean 29.893 33.263 21.601 37.065 32.721 43.861

SD 25.020  26.167  25.851 27.328 25.968 32.995

Panel C: Share of full-time workers (%)
Irrigation 4.263 2.419  10.443 17.910**  16.098**  24.697***
(standardised)  (6.550) (6.570) (7.973) (7.553) (7.622) (8.116)

Mean 73.839 77.374  55.057 53.745 59.031 44.110
SD 35.235  35.501  41.459 38.062 38.998 40.009
N 2287 2287 2287 2287 2287 2287

Notes: This table presents fuzzy RK estimates on the spatial distribution effect of irrigation on agricul-
tural sector employment. These effects are measured for the nearest neighbouring village without access to
groundwater irrigation. Irrigation is measured as litres/ha/day and standardised. Panel A reports results
on the percentage share of the population employed, calculated as the ratio of those employed to the total
working age population. Panel B reports results on the percentage share of the workforce, calculated as the
ratio of those employed to the total workforce. Panel C reports results on the percentage share of full-time
workers (those that work for more than 6 months of the year), calculated as the ratio of full-time workers
to the total workforce. We consider two specific occupational categories in agriculture: cultivators are those
who cultivate their own land, and labourers are those who work for a daily wage. Furthermore, we disag-
gregate each of our categories by gender. The sample consists of villages without tube-wells in 2013 that
are the nearest neighbour within a 5km distance from our main sample of villages (villages with tube-wells
in 2013 and groundwater depth within the bandwidth (7 m) of the kink point, see Section 3 for details on
variable construction and sample). Mean and standard deviation reported for the nearest neighbour sample.
The specification includes state dummies and covariates (see Section 4 for details). Heteroskedasticity robust
standard errors are presented in parenthesis. * significant at 10% ** significant at 5% *** significant at 1%.
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Table 9: Impact of irrigation on village demographics

Persons Male Female Adult Child
(1) (2) (3) (4) (5)

Panel A: Population density (In)
Irrigation 0.385%**  (0.382%**  (0.390%**  0.344***  0.466%**
(standardised) — (0.128) (0.128) (0.129) (0.130) (0.133)

Mean 5.761 2.956 2.814 3.757 0.784
SD 5.556 2.879 2.723 3.635 0.836

Panel B: Share of the total population (%)

Irrigation - -0.206 - - 0.885%*
(standardised) (-) (0.289) (-) -) (0.446)

Mean - 51.162 - - 13.165

SD - 2.066 - - 3.294

Panel C: Share of scheduled caste population (%)
Irrigation 8.249%** 8 400***  8.079*** - -

(standardised) (2.886) (2.899) (2.881) (-) (-)
Mean 20.004 19.942 20.068 - -
SD 16.366 16.363 16.441 - -
N 3327 3327 3327 3327 3327

Notes: This table presents fuzzy RK estimates on the effect of irrigation on village demographics.

Irrigation is measured as litres/ha/day and standardised. Panel A presents results on population
density, calculated as the ratio of the population to village area (log transformed). We present
estimates for the total population in Column 1, as well as disaggregated by gender (Columns 2 and
3 for male and female respectively) and age (Columns 4 and 5 for adults, 18+ years, and child,
0-6 years, respectively). Panel B reports results on the percentage share of the male and child
population, calculated as the ratio of that population to the total population. Panel C presents
results on the percentage share of the Scheduled Caste population, calculated as the ratio of that
population to the total population. The sample consists of villages with tube-wells in 2013 and
groundwater depth within the bandwidth (7 m) of the kink point (see Section 3 for details on
variable construction and sample). Mean and standard deviation reported for the full sample, and
in the case of population density on the level form of the variables. The specification includes state
dummies and covariates (see Section 4 for details). Heteroskedasticity robust standard errors are
presented in parenthesis. * significant at 10% ** significant at 5% *** significant at 1%.
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Table 10: Impact of irrigation for villages with tube-wells built post 2000

Panel A: Agriculture

Monsoon/Kharif Winter/Rabi Agricultural Water Drought
production production land intensive tolerant
(EVI max, In) (EVI max, In) (%) (binary) (binary)
Irrigation 0.064 -0.052 46.634*** 0.153 -0.320
(standardised) (0.073) (0.067) (15.623) (0.174) (0.206)
Panel B: Consumption
Household Night
assets light
(index) (In)
Trrigation 1.634%** 0.069
(standardised) (0.618) (0.208)
Panel C: Labour
Population Cultivators Manual Education Manufacturing Services
employed labourers
(%) (%) (%) (In) (in) (In)
Irrigation -4.753 1.522 0.163 -0.110 1.549* 1.175
(standardised) (3.672) (7.823) (8.135) (0.557) (0.812) (0.718)
Panel D: Demographics
Population Male Child SC
density share share share
(In) (%) (%) (%)
Irrigation 0.572%* 0.179 0.380 21.464**
(standardised) (0.328) (0.711) (1.147) (8.532)
N 1459 1459 1459 1459 1459 1459

Notes: This table presents fuzzy RK estimates on the effect of irrigation on our key outcomes for villages with tube-wells built after 2000. Irrigation
is measured as litres/ha/day and standardised. Panel A reports results on the agricultural sector including: production in the Monsoon/K harif
and Winter/Rabi season (EVI max log transformed), share of village area used for agriculture, whether the village grows water intensive and drought
tolerant crops. Panel B reports results on consumption including: household asset ownership index and log of average night light luminosity. Panel
C reports results on labour allocation, including: aggregate employment rate, share of the workforce in agriculture, and number of persons employed
in village industries (log transformed). Panel D reports results on village demographics including: log of population density, population share of
adults, children, and Scheduled Caste. The sample consists of villages with tube-wells built between 2000 to 2013 and groundwater depth within
the bandwidth (7 m) of the kink point (see Section 3 for details on variable construction and sample). The specification includes state dummies
and covariates (see Section 4 for details). Heteroskedasticity robust standard errors are presented in parenthesis. * significant at 10% ** significant

at 5% *** significant at 1%.
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Table 11: Impact of irrigation for villages with tube-wells built before 2001

Panel A: Agriculture

Monsoon/Kharif Winter/Rabi Agricultural Water Drought

production production land intensive tolerant

(EVI max, In) (EVI max, In) (%) (binary) (binary)
Irrigation 0.087*** 0.015 7.552% 0.127 -0.116
(standardised) (0.032) (0.027) (3.873) (0.083) (0.079)

Panel B: Consumption

Household Night
assets light
(index) (In)
Irrigation 0.034 0.089
(standardised) (0.213) (0.088)
Panel C: Labour
Population Cultivators Manual Education Manufacturing Services
employed labourers
(%) (%) (%) (In) (in) (In)
Irrigation -1.391 -1.974 4.040 -0.086 0.082 0.066
(standardised) (1.492) (2.956) (3.306) (0.259) (0.306) (0.285)

Panel D: Demographics

Population Male Child SC
density share share share
(In) (%) (%) (%)
Irrigation 0.303** -0.337 1.121°%* 2.942
(standardised) (0.130) (0.307) (0.456) (2.745)
N 1868 1868 1868 1868 1868 1868

Notes: This table presents fuzzy RK estimates on the effect of irrigation on our key outcomes for villages with tube-wells built before 2001. Irrigation
is measured as litres/ha/day and standardised. Panel A reports results on the agricultural sector including: production in the Monsoon/K harif
and Winter/Rabi season (EVI max log transformed), share of village area used for agriculture, whether the village grows water intensive and drought
tolerant crops. Panel B reports results on consumption including: household asset ownership index and log of average night light luminosity. Panel
C reports results on labour allocation, including: aggregate employment rate, share of the workforce in agriculture, and number of persons employed
in village industries (log transformed). Panel D reports results on village demographics including: log of population density, population share of
adults, children, and Scheduled Caste. The sample consists of villages with tube-wells built prior to 2000 and groundwater depth within the
bandwidth (7 m) of the kink point (see Section 3 for details on variable construction and sample). The specification includes state dummies and

covariates (see Section 4 for details). Heteroskedasticity robust standard errors are presented in parenthesis. * significant at 10% ** significant at
5% *** significant at 1%.
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Appendices
A. Additional Tables and Figures

Figure Al: Effect of efficiency and altitude on the maximum depth achievable by a cent-
rifugal pump
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Notes: The maximum depth from which water can be extracted by a centrifu%al pump can be calculated using
Equation 2. 100% pump efficiency creates a perfect vacuum where Po=0 kg/m/s“. Atmospheric pressure is highest
at sea-level where P1=101,325 kg/m/s? Hence a pump working with 100% efficiency at sea-level achieves the
maximum theoretical threshold from which water can be extracted — 10.33 metres. 75% and 50% pump efficiency
indicate the corresponding percentage drop from a case of perfect vacuum. Altitude decreases atmospheric pressure
(calculated using a barometric formula). The range of altitude plotted correspond to those found in the sample of
villages.
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Figure A2: Estimated kink in the deterministic relation between groundwater depth and
irrigation at a range of bandwidths
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Notes: This figure presents point estimates and 90% confidence intervals on the effect of groundwater depth on
irrigation at one meter interval bandwidths (Equation 3). Irrigation is calculated as water input in litres as an
average over the year and standardised. Each regression includes state dummies and covariates (see Section 4 for
details). Formal estimates of the kink for a bandwith of 7 metres are reported in Table 2. The sample consists of
villages with tube-wells in 2013 and groundwater depth within the bandwidth (7 m) of the kink point (see Section 3
for details on variable construction and sample).
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Figure A3: Estimated kink in the deterministic relation between groundwater depth and
outcomes at a range of bandwidths
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Notes: This figure presents point estimates and 90% confidence interval on the effect of groundwater depth on a
selection of our outcome variables at one meter interval bandwidths (Equation 3). Each regression includes state
dummies and covariates (see Section 4 for details). Formal estimates of the kink using the fuzzy RK specification
with a bandwidth of 7 metres are reported in Tables 4, A6, 6, 7, and 9 for Panels A to F respectively. The sample
consists of villages with tube-wells in 2013 and groundwater depth within the bandwidth (7 m) of the kink point (see
Section 3 for details on variable construction and sample).
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Table Al: Estimated kink in the deterministic relation of groundwater
depth with pump adoption and irrigation when groundwater depth is meas-
ured over varying time horizons

Pump adoption Irrigation
Centrifugal ~Submersible Average Monsoon/ Winter/
pumps pumps Kharif Rabi
(nb/ha) (nb/ha) (standardised)  (standardised) (standardised)

(1) (2) (3) (4) (5)

Panel A: Maximum groundwater depth in 2013

O 0.003* -0.001 0.052%** 0.058%** 0.044%**
(0.002) (0.002) (0.013) (0.013) (0.013)
Panel B: Average maximum groundwater depth over 2010-2013
02 0.003** 0.001 0.107%** 0.108*** 0.102%+*
(0.001) (0.002) (0.014) (0.014) (0.014)
Panel C: Average maximum groundwater depth over 2008-2013
02 0.004** -0.001 0.096*+* 0.097*** 0.092%+*
(0.002) (0.002) (0.015) (0.014) (0.015)
N 3327 3327 3327 3327 3327

Notes: This table presents estimates on the effect of groundwater depth on pump adoption and irrigation
when groundwater depth is measured over varying time horizons. &2 is the estimated change in slope of the
assignment function at the kink point (Equation 3). Panel A presents estimates when the assignment variable
is measured as the maximum groundwater depth recorded at any point in 2013. Panel B corresponds to the
main specification reported in Table 2 when the assignment variable is measured as a three year average over
2010-2013. Panel C presents results when groundwater depth is measured as an average over five years (2008-
2013). Pump adoption, calculated as the number of pumps per agricultural land area, is reported for centrifugal
(Column 1) and submersible (Column 2) pumps. Irrigation is measured as water input in litres and standardised.
We report irrigation as an average over the year (Column 3), as well as independently for the Monsoon/Kharif
(Column 4) and the dry Winter/Rabi season (Column 5). The sample consists of villages with tube-wells in
2013 and groundwater depth within the bandwidth (7 m) of the kink point (see Section 3 for details on variable
construction and sample). The specification includes state dummies and covariates (see Section 4 for details).
Heteroskedasticity robust standard errors are reported in parentheses. * significant at 10% ** significant at 5%
*** significant at 1%.
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Table A2: Estimated kink in the deterministic relation of groundwater depth
with pump adoption and irrigation for different functional forms

Pump adoption Irrigation
Centrifugal Submersible Average Monsoon/ Winter/
pumps pumps Kharif Rabi
(nb/ha) (nb/ha) (standardised)  (standardised) (standardised)

(1) (2) (3) (4) (5)

Panel A: Linear

8 0.003%* 0.001 0.107%%* 0.108%** 0.102%%*
(0.001) (0.002) (0.014) (0.014) (0.014)

AIC  -6742.49 -5870.33 7927.19 7856.20 8044.51

R? 0.36 0.21 0.37 0.39 0.35

Panel B: Quadratic

8 0.014%%* 0.001 0.009 0.020 -0.002
(0.005) (0.007) (0.050) (0.049) (0.051)

AIC  -6743.96 -5866.36 7918.48 7849.16 8034.98

R? 0.36 0.21 0.38 0.39 0.36

Panel C: Cubic

8 -0.007 -0.002 -0.255%* -0.241%* -0.265%*
(0.012) (0.018) (0.114) (0.113) (0.116)
AIC  -6743.96 -5866.36 7918.48 7849.16 8034.98
R? 0.36 0.21 0.38 0.39 0.36
N 3327 3327 3327 3327 3327

Notes: This table presents estimates on the effect of groundwater depth on pump adoption and irrigation for
varying functional forms. §2 is the estimated change in slope of the assignment function at the kink point (Equation
3). Panel A corresponds to the main specification reported in Table 2 when using a linear functional form. Panel
B reports results when adopting a quadratic function and Panel C a cubic function. Pump adoption, calculated as
the number of pumps per agricultural land area, is reported for centrifugal (Column 1) and submersible (Column 2)
pumps. Irrigation is measured as water input in litres and standardised. We report irrigation as an average over the
year (Column 3), as well as independently for the Monsoon/Kharif (Column 4) and the dry Winter/Rabi season
(Column 5). The sample consists of villages with tube-wells in 2013 and groundwater depth within the bandwidth (7
m) of the kink point (see Section 3 for details on variable construction and sample). The specification includes state
dummies and covariates (see Section 4 for details). AIC is the Akaike Information Criterion. Heteroskedasticity
robust standard errors are reported in parentheses. * significant at 10% ** significant at 5% *** significant at 1%.
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Table A3: Impact of irrigation on agricultural production with varying prox-
ies

EVImax EVImax  EVI Differenced EVImax EVI max
2013 2013 2013 2012-14 2011-15
(In) (level) (in) (In) (In)

(1) (2) (3) (4) (5)

Panel A: Monsoon/Kharif season

Irrigation  0.077%%*  383.953%+* 0.173%* 0.053* 0.038
(standardised)  (0.030)  (144.906) (0.081) (0.030)  (0.028)

Mean 4609.952  4609.952 2361.142 4548.341  4538.157

SD 949.797  949.797 1084.559 902.152  875.150

Panel B: Winter/Rabi season

Irrigation -0.005 -60.399 -0.017 0.005 0.005
(standardised) (0.026) (152.321) (0.037) (0.026) (0.027)
Mean 4609.952 4609.952 2361.142 4548.341  4538.157
SD 949.797 949.797 1084.559 902.152 875.150
N 3327 3327 3327 3327 3327

Notes: This table presents fuzzy RK estimates on the effect of irrigation on agricultural production for vary-
ing specifications. Irrigation is calculated as litres/ha/day and standardised. Panel A reports results for the
Monsoon/Kharif season, and Panel B for the dry Winter/Rabi season. Column 1 corresponds to the main spe-
cification reported in Table 4 where EVI is calculated as the maximum value (log transformed) in 2013. Column 2
reports results on the maximum EVI value in level form. Column 3 uses an alternative EVI proxy which is the dif-
ference (log transformed) between early season and the maximum in 2013. Column 4 measures the EVI maximum
value over a 3 year period and Column 5 over a 5 year period. The sample consists of villages with tube-wells in
2013 and groundwater depth within the bandwidth (7 m) of the kink point (see Section 3 for details on variable
construction and sample). Mean and standard deviation are reported for the full sample on the level form of the
variables. The specification includes state dummies and covariates (see Section 4 for details). Heteroskedasticity
robust standard errors are presented in parenthesis. * significant at 10% ** significant at 5% *** significant at

1%.

53



Table A4: Impact of irrigation on the distribution of land-
holdings

Landless 0-2 Acres 2-4 Acres 4+ Acres
(%) (%) (%) (%)

(1) (2) 3) (4)

Irrigation -5.121 4.887 -0.725 0.959
(standardised) (4.436) (3.329) (1.530) (2.508)
Mean 56.436 20.994 9.599 12.970
SD 22.177 17.540 7.725 13.449
N 2349 2349 2349 2349

Notes: This table presents fuzzy RK estimates on the effect of irrigation on the dis-
tribution of landholdings. Irrigation is measured as litres/ha/day and standardised.
Results are reported for four categories of land acreage in Columns 1 to 4 respect-
ively — 0, 0-2, 2-4, and over 4. Each variable is calculated as the percentage share
of households who own that specific landholding size. The sample consists of villages
with tube-wells in 2013 and groundwater depth within the bandwidth (7 m) of the kink
point (see Section 3 for details on variable construction and sample). Mean and stand-
ard deviation reported for the full sample. The specification includes state dummies
and covariates (see Section 4 for details). Heteroskedasticity robust standard errors
are presented in parenthesis. * significant at 10% ** significant at 5% *** significant
at 1%.
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Table A5: Impact of irrigation on village amenities

Primary Hospital Commercial Paved Market
school bank road
(binary) (binary) (binary) (binary)  (binary)

(1) (2) 3) (4) (5)

Irrigation -0.104 -0.041 -0.028 0.070 -0.012
(standardised) (0.081) (0.034) (0.052) (0.076)  (0.074)
Mean 0.949 0.044 0.868 0.276 0.264
SD 0.220 0.204 0.339 0.447 0.441
N 3327 3327 3327 3327 3327

Notes: This table presents fuzzy RK estimates on the effect of irrigation on village amenities.
Irrigation is measured as litres/ha/day and standardised. We consider the availability of five key
services captured by binary variables, reported in Columns 1 to 5 respectively, for whether a village
has a: primary school, hospital, paved road, commercial bank, and regular market. The sample
consists of villages with tube-wells in 2013 and groundwater depth within the bandwidth (7 m) of
the kink point (see Section 3 for details on variable construction and sample). Mean and standard
deviation reported for the full sample. The specification includes state dummies and covariates
(see Section 4 for details). Heteroskedasticity robust standard errors are presented in parenthesis.
* significant at 10% ** significant at 5% *** significant at 1%.
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Table A6: Impact of irrigation on ownership of household
assets

Solid house Refrigerator ~ Vehicle Phone
(%) (%) (%) (%)

(1) (2) (3) (4)

Irrigation 19.772%%* -0.209 1.728 0.948
(standardised) (5.919) (2.246) (3.027) (3.772)

Mean 44.444 8.717 21.288  72.581
SD 29.047 13.027 16.160  22.451

N 2349 2349 2349 2349

Notes: This table presents fuzzy RK estimates on the effect of irrigation on ownership

of assets. Irrigation is measured as litres/ha/day and standardised. Results are repor-
ted for four assets in Columns 1 to 4 respectively — solid house, refrigerator, vehicle,
and phone. Each variable is calculated as the percentage share of households who own
that specific asset. The sample consists of villages with tube-wells in 2013 and ground-
water depth within the bandwidth (7 m) of the kink point (see Section 3 for details
on variable construction and sample). Mean and standard deviation reported for the
full sample. The specification includes state dummies and covariates (see Section 4 for
details). Heteroskedasticity robust standard errors are presented in parenthesis. * sig-
nificant at 10% ** significant at 5% *** significant at 1%.

56



LG

Table A7: Impact of irrigation on the spatial distribution of agricultural sector employment by varying
distance of nearest neighbour

Nearest neighbour within 2km  Nearest neighbour within 5km  Nearest neighbour within 10km

Cultivators Labourers Cultivators Labourers Cultivators Labourers

(1) 2) 3) (4) () (6)

Panel A: Share of population employed (%)

Irrigation 1.935 3.796 -1.605 1.897 -3.450 3.435
(standardised)  (4.808) (5.843) (2.481) (2.830) (2.225) (2.554)
Mean 11.186 15.325 13.573 17.267 14.019 17.538
SD 12.177 14.423 13.027 15.007 13.215 15.015

Panel B: Share of workforce (%)

Irrigation 7.982 8.179 -2.928 4.871 -5.475 7.519
(standardised) (9.246) (10.996) (4.767) (5.097) (4.245) (4.576)
Mean 26.283 35.229 29.893 37.065 30.468 37.210
SD 24.596 28.261 25.020 27.328 25.080 27.175

Panel C: Share of full-time workers (%)

Irrigation 20.590 15.333 4.263 17.910%* 3.753 16.540%*
(standardised) (13.714) (15.206) (6.550) (7.553) (5.754) (6.646)
Mean 69.712 46.877 73.839 53.745 74.823 54.572
SD 37.270 38.719 35.235 38.062 34.756 37.866
N 757 757 2287 2287 2800 2800

Notes: This table presents fuzzy RK estimates on the spatial distribution effect of irrigation on agricultural sector employment. These effects are measured
for the nearest neighbouring village without access to groundwater irrigation. Irrigation is measured as litres/ha/day and standardised. Panel A reports
results on the percentage share of the population employed, calculated as the ratio of those employed to the total working age population. Panel B reports
results on the percentage share of the workforce, calculated as the ratio of those employed to the total workforce. Panel C reports results on the percentage
share of full-time workers (those that work for more than 6 months of the year), calculated as the ratio of full-time workers to the total workforce. We consider
two specific occupational categories in agriculture: cultivators are those who cultivate their own land, and labourers are those who work for a daily wage.
All variables refer to total persons. The sample consists of villages without tube-wells in 2013 that are the nearest neighbour within 2km (Columns 1 to 2),
5km (Columns 3 to 4), and 10km (Columns 5 to 6) distance from our main sample of villages (villages with tube-wells in 2013 and groundwater depth within
the bandwidth (7 m) of the kink point, see Section 3 for details on variable construction and sample). Mean and standard deviation reported for the nearest
neighbour sample. The specification includes state dummies and covariates (see Section 4 for details). Heteroskedasticity robust standard errors are presented
in parenthesis. * significant at 10% ** significant at 5% *** significant at 1%.



8¢

Table A8: Impact of irrigation on the spatial distribution of agricultural production

Nearest neighbour within 2km  Nearest neighbour within 5km  Nearest neighbour within 10km

Monsoon/ Winter/ Monsoon/ Winter/ Monsoon/ Winter/
Kharif Rabi Kharif Rabi Kharif Rabi
(EVI max, In) (EVI max, In) (EVI max, In) (EVI max, In) (EVI max, In) (EVI max, In)

(1) (2) (3) (4) () (6)

Irrigation 0.076 -0.101 0.032 -0.006 0.045 0.000
(standardised) (0.063) (0.069) (0.034) (0.031) (0.032) (0.029)
Mean 4836.310 4745.177 4674.697 4854.239 4630.789 4852.024
SD 860.850 964.735 929.288 1005.832 948.541 1031.849
N 757 757 2287 2287 2800 2800

Notes: This table presents fuzzy RK estimates on the spatial distribution effect of irrigation on agricultural production. These effects are measured for
the nearest neighbouring village without access to groundwater irrigation. Irrigation is measured as litres/ha/day and standardised. Using EVI, an index
of vegetation cover from satellite imagery, we proxy for agricultural production by taking the maximum value of the index (log transformed) in both the
Monsoon/Kharif and the dry Winter/Rabi season of 2013. The sample consists of villages without tube-wells in 2013 that are the nearest neighbour within
2km (Columns 1 and 2), 5km (Columns 3 and 4), and 10km (Columns 5 and 6) distance from our main sample of villages (villages with tube-wells in 2013
and groundwater depth within the bandwidth (7 m) of the kink point, see Section 3 for details on variable construction and sample). Mean and standard
deviation reported on the level form of the variables for the nearest neighbour sample. The specification includes state dummies and covariates (see Section 4
for details). Heteroskedasticity robust standard errors are presented in parenthesis. * significant at 10% ** significant at 5% *** significant at 1%.



Table A9: Impact of irrigation on the village age distribution

1-10 11-20 21-30 31-40 41-50 51-60
(1) (2) (3) (4) (5) (6)
Panel A: Population (in)
Irrigation 0.481*%*  0.466**  0.441* 0.402%* 0.417* 0.420*
(standardised)  0.235 0.234 0.231 0.228 0.227 0.225
Mean 745.062 838.726 732.307 587.786 455.378 297.289
SD 791.092 863.973 749.017 604.844 478.806 327.405
Panel B: Share of the population (%)
Irrigation 0.007 0.004 0.000 -0.007 -0.002 -0.002
(standardised) 0.007 0.006 0.005 0.004 0.005 0.004
Mean 0.204 0.229 0.200 0.160 0.125 0.082
SD 0.046 0.033 0.024 0.021 0.026 0.022
N 2349 2349 2349 2349 2349 2349

Notes: This table presents fuzzy RK estimates on the effect of irrigation on the village age
distribution. The disaggregated information on age is obtained from micro data collected
by the Socio Economic Caste Census of 2012. Irrigation is measured as litres/ha/day and
standardised. Panel A presents results on the number of persons (log transformed). Panel B
reports estimates on the share of population. We consider six 10-year age brackets reported
in Columns 1 to 6 respectively. The sample consists of villages with tube-wells in 2013 and
groundwater depth within the bandwidth (7 m) of the kink point (see Section 3 for details
on variable construction and sample). Mean and standard deviation reported for the full
sample, and in the case of population on the level form of the variables. The specification
includes state dummies and covariates (see Section 4 for details). Heteroskedasticity robust
standard errors are presented in parenthesis. * significant at 10% ** significant at 5% ***

significant at 1%.
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Table A10: Impact of irrigation on the village economy; excluding covariates

Panel A: Agriculture

Monsoon/Kharif Winter/Rabi Agricultural Water Drought
production production land intensive tolerant
(EVI max, In) (EVI max, In) (%) (binary) (binary)
Irrigation 0.085%** 0.003 17.590%** 0.132%* -0.197**
(standardised) (0.030) (0.026) (4.474) (0.074) (0.080)
Panel B: Consumption
Household Night
assets light
(index) (In)
Irrigation 0.382* 0.090
(standardised) (0.207) (0.083)
Panel C: Labour
Population Cultivators Manual Education Manufacturing Services
employed labourers
(%) (%) (%) (In) (in) (In)
Irrigation -2.358%* -0.350 2.138 -0.069 0.489* 0.388
(standardised) (1.399) (2.906) (3.183) (0.231) (0.293) (0.270)
Panel D: Demographics
Population Male Child SC
density share share share
(In) (%) (%) (%)
Irrigation 0.403*** -0.252 0.749%* 7.792%**
(standardised) (0.128) (0.282) (0.442) (2.791)
N 3327 3327 3327 3327 3327 3327

Notes: This table presents fuzzy RK estimates on the effect of irrigation on our key outcomes when excluding covariates from the specifica-
tion. Irrigation is measured as litres/ha/day and standardised. Panel A reports results on the agricultural sector including: production in the
Monsoon/Kharif and Winter/Rabi season (EVI max log transformed), share of village area used for agriculture, whether the village grows water
intensive and drought tolerant crops. Panel B reports results on consumption including: household asset ownership index and log of average night
light luminosity. Panel C reports results on labour allocation, including: aggregate employment rate, share of the workforce in agriculture, and
number of persons employed in village industries (log transformed). Panel D reports results on village demographics including: log of population
density, population share of adults, children and Scheduled Castes. The sample consists of villages with tube-wells in 2013 and groundwater depth
within the bandwidth (7 m) of the kink point (see Section 3 for details on variable construction and sample). The specification includes only state

dummies and not covariates (see Section 4 for details). Heteroskedasticity robust standard errors are presented in parenthesis. * significant at 10%
** significant at 5% *** significant at 1%.
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Table A1l: Impact of irrigation on the village economy; excluding outliers

Panel A: Agriculture

Monsoon/Kharif Winter/Rabi Agricultural Water Drought
production production land intensive tolerant
(EVI max, In) (EVI max, In) (%) (binary) (binary)
Irrigation 0.085%** -0.014 20.638%** 0.125%* -0.196**
(standardised) (0.030) (0.026) (4.759) (0.074) (0.078)
Panel B: Consumption
Household Night
assets light
(index) (in)
Irrigation 0.598*** 0.136
(standardised) (0.212) (0.084)
Panel C: Labour
Population Cultivators Manual Education Manufacturing Services
employed labourers
(%) (%) (%) (In) (in) (In)
Irrigation -2.619% -0.854 1.095 -0.050 0.597** 0.403
(standardised) (1.451) (2.933) (3.189) (0.237) (0.303) (0.277)
Panel D: Demographics
Population Male Child SC
density share share share
(In) (%) (%) (%)
Trrigation 0.442%%* -0.274 0.964** T.4T9***
(standardised) (0.130) (0.289) (0.453) (2.853)
N 3092 3092 3092 3092 3092 3092

Notes: This table presents fuzzy RK estimates on the effect of irrigation on our key outcomes when excluding outliers. Outliers are captured

using fluctuation in the maximum groundwater depth over a decade (2000-2010). We remove villages in the bottom 10 percentile of the distribution
(corresponding to a drop in groundwater depth by more than 4 metres between 2000 and 2010). Irrigation is measured as litres/ha/day and
standardised. Panel A reports results on the agricultural sector including: production in the Monsoon/Kharif and Winter/Rabi season (EVI
max log transformed), share of village area used for agriculture, whether the village grows water intensive and drought tolerant crops. Panel B
reports results on consumption including: household asset ownership index and log of average night light luminosity. Panel C reports results on
labour allocation, including: aggregate employment rate, share of the workforce in agriculture, and number of persons employed in village industries
(log transformed). Panel D reports results on village demographics including: log of population density, population share of adults, children and
Scheduled Castes. The sample consists of villages with tube-wells in 2013, groundwater depth within the bandwidth (7 m) of the kink point, and a
maximum 4 metre drop in the decadal groundwater depth (see Section 3 for details on variable construction and sample). The specification includes
state dummies and covariates (see Section 4 for details). Heteroskedasticity robust standard errors are presented in parenthesis. * significant at
10% ** significant at 5% *** significant at 1%.
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Table A12: Impact of irrigation on the village economy; excluding high altitudes

Panel A: Agriculture

Monsoon/Kharif Winter/Rabi Agricultural Water Drought
production production land intensive tolerant
(EVI max, In) (EVI max, In) (%) (binary) (binary)
Irrigation 0.073** -0.001 21.912%** 0.175%* -0.208%*
(standardised) (0.032) (0.028) (5.170) (0.080) (0.084)

Panel B: Consumption

Household Night
assets light
(index) (In)
Irrigation 0.480** 0.119
(standardised) (0.223) (0.092)
Panel C: Labour
Population Cultivators Manual Education Manufacturing Services
employed labourers
(%) (%) (%) (In) (in) (In)
Irrigation -2.353 -0.325 2.415 0.038 0.601* 0.561*
(standardised) (1.492) (3.093) (3.373) (0.254) (0.324) (0.298)

Panel D: Demographics

Population Male Child SC
density share share share
(In) (%) (%) (%)
Irrigation 0.433%** -0.158 0.749 7.944%**
(standardised) (0.137) (0.298) (0.461) (2.907)
N 2999 2999 2999 2999 2999 2999

Notes: This table presents fuzzy RK estimates on the effect of irrigation on our key outcomes when excluding villages at high altitudes. We remove
villages in the top 10 percentile of the altitude distribution (corresponding to altitudes above 600 metres). Irrigation is measured as litres/ha/day
and standardised. Panel A reports results on the agricultural sector including: production in the Monsoon/Kharif and Winter/Rabi season (EVI
max log transformed), share of village area used for agriculture, whether the village grows water intensive and drought tolerant crops. Panel B
reports results on consumption including: household asset ownership index and log of average night light luminosity. Panel C reports results on
labour allocation, including: aggregate employment rate, share of the workforce in agriculture, and number of persons employed in village industries
(log transformed). Panel D reports results on village demographics including: log of population density, population share of adults, children and
Scheduled Castes. The sample consists of villages with tube-wells in 2013, groundwater depth within the bandwidth (7 m) of the kink point, and
less than 600 metres in altitude (see Section 3 for details on variable construction and sample). The specification includes state dummies and
covariates (see Section 4 for details). Heteroskedasticity robust standard errors are presented in parenthesis. * significant at 10% ** significant at
5% *** significant at 1%.
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B. Decision Making Framework

In this Appendix we introduce a simple decision making framework for the adoption
of different irrigation pumping technologies available to farmers. Consider a population
of N farmers indexed by ¢ € 1,..., N, living in a geographically diverse set of V villages
indexed by v € 1,...,V. Each village has a given groundwater depth A,. While there
are concerns of depleting aquifers in India, we show in Figure 1 that the annual average
maximum groundwater depth among our sample of villages between 1996 to 2013 (which
corresponds to the time period for which we also have records of tube-well construction)
is stable around 7.5 metres.3® Hence for ease of exposition we restrict the decision making
to a one time choice when faced with a fixed groundwater depth. In this context, farmer i
decides whether or not to invest in a single unit of irrigation when faced with his exogenous
groundwater depth. We assume that one unit of irrigation is sufficient to irrigate the entire
land endowment, [;, of the farmer. Consequently, farmers with the most land get the
highest returns from investment.

Based on Bernoulli’s principle of fluid dynamics, we know from Equation 2 that there
exists a maximum theoretical threshold from which water can be extracted with a centrifu-
gal pump, k.37 Deeper than this k threshold, no centrifugal pump can operate. Therefore
if the water table depth in a given village exceeds k, the farmer must incur the cost 7y
of a submersible pump if he chooses to irrigate. Conversely, when A, < k, a centrifugal
pump will operate and thus enter the farmers’ set of choices as a more cost effective tech-
nology since r. < rs. The functionality of a centrifugal pump however, will also depend
on its’ efficiency. This efficiency is random with known probability distribution G(.) (and
associated CDF g(.)) revealed to the farmer only at the time of purchase. Therefore, there
exists a groundwater depth efficiency specific threshold, e(\), below which a centrifugal
pump will not function. As such, there is a probability, g(e(),)), that a farmer purchases
a centrifugal pump which will not work.

When deciding on a technology, a farmer leverages all his current information. He also
considers his forward looking expectations, including pump efficiency, relative costs, and
yield increases from irrigation (which are assumed to be known to him). A risk neutral
farmer will choose an irrigation technology simply to maximise his profits. In doing so, he
compares the following profit functions — irrigating with a submersible pump (ﬂf; (py7s, 1)),
irrigating with a centrifugal pump (WZ-I;(AU, D, Te,1;)), or no irrigation (w2 (p,;)) — which can

36Note that when including villages outside our sample bandwidth, we do observe a drop in the annual
average maximum groundwater depth from 8 metres in 1996 to 10.5 metres in 2013.
37k corresponds to the difference in height outlined in Equation 2.
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be written as:

77115 = pY;Ili —Ts
e = (1= g(e(M) (Yl — re) + gle(ON) (pY Nl — 1) (5)
N = pY Nl

Where p, rs, and r. are the prices of output, a submersible pump, and a centrifugal pump
respectively. YZ-I denotes agricultural yields when irrigating and YZ-N is for yields under no
irrigation. As explained previously, a farmer is subject to a technology constraint such
that g(e(\y)) = 1if A\, > k.

Given this framework, we consider three representative case scenarios: (1) a farmer
whose liquidity constraint binds for both pump types, (2) a farmer who faces a liquidity
constraint only for the more expensive submersible pump type, and (3) a farmer that is
not liquidity constrained at all.

Case 1: Liquidity constrained for all irrigation technology. In this scenario, a
N

farmer cannot access either irrigation technology. He therefore receives 7;, regardless of

groundwater depth.

Case 2: Liquidity constrained for submersible pumps only. The farmer cannot
afford the more expensive submersible pump. Therefore, if A, > k, he cannot access any
irrigation technology. Alternatively, if A, < k, he will adopt a centrifugal pump when
712-15 > 77% . Expanding on these profit functions we show that:

(1= g(eOu)0Yi li —7e) + gle)) PVl — 1e) > YLy (6)

Rearranging Equation 6 demonstrates that a farmer will adopt a centrifugal pump if
the increase in revenue with irrigation multiplied by the probability of the centrifugal pump
working is larger than the cost of the pump:

(1= gle)) (il — pYNls) > re (7)

The probability of adoption therefore declines in g(e(\,)) up to the maximum theor-
etical threshold A, = k. Deeper than this threshold adoption is zero. Assuming G(.) is
uniformly distributed and the distribution of land holdings is orthogonal to A,, the decline
in probability of adoption will be linear with a kink in the slope marginally before the
maximum theoretical threshold.?® Furthermore, as previously noted, given their higher

38 Adoption will be zero when the largest farm is indifferent between adopting or not. That is, when:
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marginal returns, farmers with the largest landholdings are most likely to adopt even when

Ay — k is small.??

Figure B1: Illustrative diagram for the evolution of pump adoption with groundwater
depth
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Notes: This figure demonstrates the outcome of our decision making framework outlined in Section 2 for the adoption
of different irrigation pumping technologies available to farmers (the smallest farmers are indexed by min and the
largest by max). Y,iI denotes agricultural yields when irrigating and YiN is for yields under no irrigation. p, rg, and
re are the prices of output, a submersible pump, and a centrifugal pump respectively. A, is the exogenous village
groundwater depth. k is the maximum theoretical threshold below which no centrifugal pump can operate. A farmer
is subject to a technology constraint on centrifugal pumps such that g(e(Ay)) = 1if A, > k. It is the subset of
farmers that are liquidity constrained for submersible pumps only (Case 2) that generate a decline in centrifugal
pump adoption culminating in zero take-up at k.

Case 3: Not liquidity constrained. The farmer can purchase either of the irrigation
technologies. If A, > k a farmer will adopt a more expensive submersible pump when
WZI; > ﬂ'% — that is, when the increase in revenue from irrigation is greater than the cost
of a submersible pump. As a result adoption above the threshold is not dependent on

groundwater depth:
(pYi'ls = pYili) > 7 (8)

(1- g(e()‘v)))(pyrfbaxlmaz - pYn]wvaxlmaz) =Te
39This corresponds closely with the report from the Minor Irrigation Census of 2013 which finds that the
share of tube-wells owned by large farmers increases with the depth of the well (Rajan and Verma, 2017).
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If A, < k a farmer will adopt a submersible pump if 77{5 > 7TZ~I;

> WfX . Therefore, a
farmer who is not liquidity constrained and satisfies the condition in Equation 7 is now left
to consider whether the certainty in submersible pump functionality justifies the difference
in cost:

(1= 9O @Yl — pY 1) > 7y — 1 (9)

When the increase in revenue with irrigation multiplied by the probability of the centri-
fugal pump working is larger than the difference in cost between the two types of irrigation
technology, a farmer will adopt the submersible pump. This condition leads to a sub-
stitution from centrifugal to submersible pumps as groundwater depth increases and the
probability of the centrifugal pump working declines.

Figure B1 sketches how we expect adoption may evolve with groundwater depth within
our decision making framework. Specifically, it is the subset of farmers that can afford a
centrifugal pump but not a submersible (i.e. Case 2) that generates a decline in overall
pump adoption culminating in zero take-up at the maximum theoretical threshold k. In the
data we only observe what happens at aggregate when combining populations regardless of
their liquidity constraints. However, given that the price of the cheapest submersible pump
is half the average annual per capita consumption in our sample of villages, it is likely that
liquidity will be a binding constraint for many farmers. We can therefore expect to observe
a kink in the mapping of pump adoption and consequently irrigation with groundwater
depth at the exogenous maximum theoretical threshold. We empirically demonstrate the
presence and validity of this relationship in Section 4.
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C. Data
C1 Irrigation

According to a standard engineering formula, three main factors affect water extraction
from irrigation pumps — capacity, use, and well depth (Manring, 2013). We leverage data
collected by the Fifth Minor Irrigation (MI) Census in 2013 on irrigation practices to
calculate village-level indicators for pump capacity and usage.*’ Specifically, we measure
pump capacity as the average horse power of pumps in a village. Usage is measured as the
total number of pumping hours per day in a village.*! We use our assignment variable — the
maximum groundwater depth recorded at any point over a three year period (2010-2013)
as our measure for well depth.*? Using these three factors as outlined in Equation 10, we
are able to calculate our main variable for irrigation in terms of water input in litres:

P H;
D;

Wi(HiD;) = p (10)
where i denotes a village, P; is pump capacity, H; is usage, and D; is the depth from which
water is lifted. The physical constant p, is given by:

p=ct (11)

dg
where ¢ is a constant to correct units and account for friction, E is pump efficiency, d is
density of water, and g is the gravitational constant. Values for the constants used in the
calculation of p are provided below in Table C1.

Calculated in this manner, we obtain a litres/day measure of groundwater extraction for
irrigation. We then scale this by village size, generating a litres/ha/day variable. For the
purpose of all our regressions, we further standardise this variable such that all results can
be interpreted as the effect of a one standard deviation increase in irrigation.** To provide
some context, one standard deviation is approximately equivalent to 103 litres/ha/day.

49Background information on each Census (e.g. questionnaires and instruction manuals on data collec-
tion) as well as official reports and aggregated statistical tables can be found on the official website of the
MI Censuses at:http://micensus.gov.in. Village level data from each MI Census is publicly available in
excel format on the Government of India open data platform at:http://data.gov.in

“IData on usage is available disaggregated by season. This allows us to calculate water input independ-
ently for both the monsoon/Kharif and the winter/Rabi season. We obtain an annual measure by taking
an average across the seasons.

42For information on how this data is compiled, refer to the part on groundwater in Section 3.

43To standardise the variable we subtract the mean and divide by the standard deviation of the sample
for each observation.
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Table C1: Constants used in water input calculation

Variable Value Units Source
c 3.6 x 108 Ryan and Sudarshan (2022)
E 0.25 Ryan and Sudarshan (2022)
d 103 kg/m? Manring (2013)
g 9.81 m/s? Manring (2013)

Notes: The table shows the values of the constants used in the calculation of p
in Equation 11. While density of water (d) and the gravitational constant (g)
are standard in the literature (Manring, 2013), the values for pump efficiency (E)
and friction (c¢) were obtained by Ryan and Sudarshan (2022) from case studies
on irrigation pumping technology in India.

C2 Agricultural Production

Data on agricultural production based on direct field measurements is not available at
the village level in India. We therefore rely on measures of vegetation cover calculated from
satellite images as proxies for village agricultural yield. Specifically, we use data from the
Enhanced Vegetation Index (EVI) estimated by the United States Geological Survey from
images taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor
aboard NASA’s Terra satellite. EVI appears to be the preferred index leveraged by most
crop-mapping studies, as it accounts for atmospheric and background corrections (Gao et
al., 2000). Evidence suggests that EVI values obtained from MODIS predict land use, in
terms of classifying general crop types, with 90% accuracy (Wardlow and Egbert, 2010).
Furthermore, evidence from Kouadio et al. (2014) indicates that EVI can successfully
predict yield and demonstrates sensitivity to local variations in climate and geo-physical
factors.

In order to determine the spatial distribution of plants from satellite images, the ve-
getation indices exploit the natural strong differences in plant reflectance. Specifically, the
green photosynthetically active pigment in plant leaves — chlorophyll — strongly absorbs vis-
ible red light (RED). Conversely, the cell structure of leaves, strongly reflects near-infrared
light (NIR). As a result, healthy vegetation absorbs most of the visible light that hits it
and reflects a large portion of the near-infrared light. Therefore, in a given pixel, if there is
more reflected radiation in the near-infrared wavelengths than in the visible wavelengths,
we can concur that the vegetation cover is likely to be dense. For an in-depth review of the
literature and methods on calculating vegetation indices based on satellite imagery, refer
to Huete et al. (2002).

MODIS captures data in 36 spectral bands ranging in wavelength from 0.4 to 14.4 um.
The bands covering the wavelengths of interest for the purpose of capturing vegetation
cover are generated at a global scale and a resolution of 250 m. Each image represents
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a 16-day composite, such that the value of each pixel is optimised following an algorithm
which accounts for cloud cover obstruction, image quality, and viewing geometry. The
images are published by the IRI/LDEO Climate Data Library.4

As part of their research evaluating India’s national rural road expansion programme,
Asher and Novosad (2020) compiled data on the EVI at the village-level for the years
spanning 2000-2014. Specifically, the authors downloaded composite images for nine 16-
day periods from June to October so as to cover the monsoon/Kharif growing season,
and similarly from November to March so as to capture the winter/Rabi season. Each
composite image was then spatially averaged to village boundaries. This data is made
publicly available as part of the replication material of their published paper.*> We leverage
two proxies calculated from the index values in each growing season: (i) the maximum value
(Labus et al., 2002), and (ii) the difference between the maximum value and the early season
value (taken as the average of the first three 16 day periods) (Rasmussen, 1997). All proxies
are measured in 2013, as well as an average over a three-year (2012-2014) and five-year
(2011-2015) period. Finally, for more interpretable results, all proxies are log transformed.

As a validation test of these vegetation indices to proxy for agricultural production in
the case of Indian villages, Asher and Novosad (2020) provide correlation estimates between
the proxies and district level measures of agricultural output. Specifically, the authors ran
panel regressions (2000-2006) of the EVI proxies on agricultural output obtained from the
Planning Commission’s district-wise domestic product data. An R-squared of over 70%,
when using district-year fixed effects, suggests a strong correlation between the proxies and
district level estimates of agricultural output.

C3 Consumption

Most developing countries do not collect detailed information on income or consumption
as part of their censuses. As such, estimates of these economic indicators at a high geo-
graphic resolution are often unavailable at regular time intervals. Policy makers (especially
the World Bank) and researchers have therefore recently relied on a method developed by
Elbers et al. (2003) which uses an imputation rule derived from a household survey to
generate small-area estimates of consumption in census data (Bedi et al., 2007). In a
comparison of methods, McKenzie (2005) show that this prediction method through aux-
iliary surveys most accurately predicts non-durable consumption. Hentschel et al. (2000),
demonstrate that this method produces unbiased estimates of poverty.

“Information on MODIS and images for Asia can be found on the site of the IRI/LDEO Climate Data
Library:https://iridl.1ldeo.columbia.edu/index.html?Set-Language=en

45The paper by Asher and Novosad (2020) and its associated dataset is available at:https://www.aeaweb.
org/articles?id=10.1257/aer.20180268

69


https://iridl.ldeo.columbia.edu/index.html?Set-Language=en
https://www.aeaweb.org/articles?id=10.1257/aer.20180268
https://www.aeaweb.org/articles?id=10.1257/aer.20180268

Since the early 1990s the Government of India has conducted national socioeconomic
censuses collecting information at both the individual and household level on caste, occu-
pation, earnings, and assets, in order to determine the eligibility of households into various
welfare schemes (Alkire and Seth, 2013). In 2012, the fourth such Socio Economic Caste
Census (SECC) was implemented.*6 In that year, the India Human Development Survey-
IT (IHDS-II) was also conducted. It recorded direct measures of household consumption,
as well as equivalent questions to the SECC on household assets and earnings.*” Follow-
ing the methodology of Elbers et al. (2003), Asher et al. (2021) use the IHDS-II data to
predict household level consumption in the SECC dataset. Specifically, the researchers
first estimate regressions of total household consumption on dummy variables of assets
and earnings in the IHDS-11.*® Coefficients from these regressions are then used to impute
household level consumption values in the SECC. Finally, based on these household level
values the researchers generate village level statistics for mean predicted consumption per
capita and the share of the population below the poverty line.** Bootstrap estimates of
these village level indicators are made available by the research team on the Socioeconomic
High-resolution Rural-Urban Geographic (SHRUG, Version 1.5) open data platform for
India.’® We take these 1000 bootstrapped variables for predicted consumption per capita,
(for the purpose of the regression, these variables are log transformed) and share of the
population below the poverty line, and run an additional bootstrap process on our main
sample of villages when estimating the effect of access to irrigation on these indicators.
As outlined in the work of Elbers et al. (2003), this bootstrapping process is required to
obtain correct standard errors and p-values on our estimates.

Specific to our setting of Indian villages, Asher et al. (2021) provide three validation
tests for the bootstrap estimates of consumption used in our analysis. First, the distri-
bution of the consumption estimates at the village level matches broadly to that found in
two national surveys conducted at the same time and at the same geographic level (IHDS-
IT and the National Sample Survey-2012). Second, there is a strong covariance between

46Information on the census can be found on the SECC website:https://secc.gov.in/welcome. Though
the Government initially made the raw data public, only aggregated information is now available on the
website.

4"Information and data related to this survey can be found on the platform of Data Sharing for Demo-
graphic Research:https://www.icpsr.umich.edu/web/pages/DSDR/index . .html

48These are the exact same variables as those recorded in the SECC. They include: type of roof and wall
material, number of rooms, ownership of phone, house, vehicle, land, kisan credit card, and refrigerator, as
well as the highest individual income in the household.

4The official poverty line for rural India is set at Rs.27/day, based on the Planning Commission’s
Tendulkar Committee Report in 2014.

50For detailed information on consumption data using the SHRUG open data platform, please refer
to Asher et al. (2021). The dataset, including codebooks and references, can be found at:http://www.
devdatalab.org/shrug
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the district level predicted consumption estimates and those in the original household
survey (IHDS-II). Third, by identifying how each component used in the imputation rule
affects the difference in average consumption between the estimates and the original survey
(IHDS-II), the researchers find that the transformation of asset ownership to consumption
assumes a similar relationship across datasets. These findings provide confirmation that
the predicted consumption estimates are valid proxies of the direct survey measures.

C4 Night Light

As an additional proxy for consumption, we leverage remote sensing imagery on Night-
Time Light (NLT) at the village level across India. Initiated by the work of Henderson et
al. (2011), NTL has since become a widely used proxy for economic activity. Researchers
have adopted night-time luminosity to effectively capture GDP growth (Henderson et al.,
2011), cross-sectional GDP (Bleakley and Lin, 2012), urbanisation (Harari, 2020), public
expenditure (Hodler and Raschky, 2014), and employment (Mellander et al., 2015). In an
analysis of Indian villages, Asher et al. (2021) find that night light is a highly statistically
significant proxy for a range of development outcomes including - population, employment,
per capita consumption, and electrification.

Night-time luminosity data is made available by the U.S. National Oceanographic and
Atmospheric Administration (NOAA). The observations are assembled by the Operational
Linescan System (OLS) aboard the Defense Meteorological Satellite Program (DMSP)
satellites. A total luminosity value ranging from 0-63, is reported in grid cells covering a
resolution of 1km x lkm. A description of the satellite instrumentation, data collection,
and processing methods for NTL is detailed in the work of Elvidge et al. (1997). Asher
et al. (2021) leverage this data to verify the effectiveness of night-time luminosity as a
proxy for development indicators at the village level in India. As part of this work, the
researchers compile a panel of NTL from 1994 to 2013 matched and aggregated to villages
and towns across the country.”! This dataset is made available by the research team on the
Socioeconomic High-resolution Rural-Urban Geographic (SHRUG, Version 1.5) open data
platform for India.’? We make use of data on the maximum pixel luminosity at the village
level. This value is captured for 2013 and is log transformed for ease of interpretation.

5!The data is calibrated for consistent estimation across time, as suggested by Elvidge et al. (1997).

52For detailed information on NTL data using the SHRUG open data platform, please refer to Asher
et al. (2021). The dataset, including codebooks and references, can be found at:http://www.devdatalab.
org/shrug
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