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Abstract

Political rallies have formed a large part of U.S. electoral campaigns since the 19th century and

remain relevant today. This paper models candidates’ rally decisions as an empirical dynamic game

of electoral competition and applies it to estimate rally effectiveness for the 2012 and 2016 U.S. pres-

idential elections. The model supports three empirical patterns. As the election approaches, candi-

dates rally more, concentrate on tight state-level races, and within those tight races, they hold more

rallies in states with more electoral college votes. Model parameter estimates uncover that rallies

by presidential candidates were effective in increasing their poll margin lead over their opponent.

The estimates also reveal that a rally by a presidential candidate is more persuasive than a televi-

sion ad. I construct and execute model selection tests that infer whether candidates are strategic and

forward-looking to validate model assumptions. Counterfactual exercises show that Trump’s rallies

were electorally pivotal, while rallies by other candidates had no effect on their chances of winning.

The effects of short-term campaign silences (i.e., forbidding political campaigning) are limited since

candidates can gain sufficient support from the electorate before campaign silences begin.

*Department of Politics, Princeton University. Email: anubhavpcjha@gmail.com I am grateful and indebted to my PhD

advisors Francesco Trebbi, Matilde Bombardini, Vitor Farinha Luz and Paul Schrimpf for their constant support and guid-

ance. I would also like to thank the Dev/PE, Econometrics, and Theory group at Vancouver School of Economics, University

of British Columbia and the BPER lab at University of California Berkeley. In particular I thank Siwan Anderson, Ernesto Dal

Bo, Claudio Ferraz, Frederico Finan, Patrick Francois, Arkadev Ghosh, Sudipta Ghosh, Sam Hwang, Hiro Kasahara, Wei Li,

Andrew Little, Matt Lowe, Vadim Marmer, Adlai Newson, Nathan Nunn, Mike Peters, Juan Felipe Riaño, Federico Ricca, Ger-

ard Rolland, Sergei Severinov, Kevin Song and Munir Squires for useful suggestions and comments. All mistakes are my own.

Researcher’s own analyses calculated (or derived) based in part on data from The Nielsen Company (US), LLC and marketing

databases provided through the Nielsen Datasets at the Kilts Center for Marketing Data Center at The University of Chicago

Booth School of Business., The conclusions drawn from the Nielsen data are those of the researcher(s) and do not reflect the

views of Nielsen. Nielsen is not responsible for, had no role in, and was not involved in analyzing and preparing the results

reported herein.

1

https://anubhavpcjha.github.io/files/pol_rally_and_pop_draft.pdf


1 Introduction

Among all methods of persuasion used by politicians, few are as old as political rallies. Their origin can

be traced back to oratory and rhetoric in ancient democracies. Career politicians in the Roman Repub-

lic, such as Cicero, regularly performed oratories at contios1— informal public meetings where Roman

magistrates addressed the people (van der Blom, 2016). In ancient Greece, rhetorics were delivered at

special sites called bouleutêria2— Ancient Greek counterparts of massive auditoriums (Johnstone and

Graff, 2018). It was not until the late 19th century that political rallies became an important electioneer-

ing tool at a large-scale. William Jennings Bryan used the railway network to travel 18,000 miles across

the U.S. to give speeches and make other appearances to the public in 1896 (Buggle and Vlachos, 2022;

Bryan, 1909). This practice was later utilized by Harry Truman and Thomas Dewey in their 1948 U.S.

presidential campaigns (Heersink and Peterson, 2017; Donaldson, 1999).

In the internet age, Donald Trump’s rallies had an average attendance of 5,505 during the 2016 fall

campaign.3 Nine of these rallies had more than 10,000 attendees. In the fall campaigns of 2012 and 2016,

political rallies constituted 44.5%4 of all campaign activities involving presidential candidates (fundrais-

ers followed at 17.4%). Political rallies are also prevalent in the developing world. For instance, a rally

in the Indian city of Kolkata in South Asia had half a million attendees (Al Jazeera, 2019). In Tanza-

nia, rallies are a more commonly used campaigning instrument than canvassing (Paget, 2019). In Latin

America, specifically Ecuador and Argentina, rallies form essential features of campaigns (De la Torre

and Conaghan, 2009; Szwarcberg, 2012).

Even though rallies are a favored campaigning instrument and a direct form of political communi-

cation, systemic evidence on their importance is limited. The lack of evidence on political rallies dra-

matically contrasts with the work on the efficacy of political advertising (Gordon and Hartmann, 2013;

Hill et al., 2013; Gerber et al., 2011; Spenkuch et al., 2018), strategic advertising allocations (Erikson and

Palfrey, 2000; Gordon and Hartmann, 2016; Snyder, 1989), and also dynamic inter and intra-electoral

spending (Acharya et al., 2022; de Roos and Sarafidis, 2018; Kawai and Sunada, 2022). Empirical work

on political rallies has proven challenging due to endogenous rally decisions, measurement error, can-

didate level heterogeneity, and small sample sizes. These concerns are complex to address.5 Theoretical

1Of all oratorical occasions, these provided the most flexible access to the Roman citizenry, which had an ultimate say in

elections and legislation. For more details see van der Blom (2016).
2See Johnstone and Graff (2018) for images of 3D reconstruction and description of these historical sites. I would also like

to quote the article’s main results:

“. . . we are able to provide empirically grounded accounts of how various settings for boulê meetings actually functioned as

auditoriums . . . in most cases, Classical and Hellenistic bouleutêria served as excellent venues for oratorical performances before

audiences ranging from a few hundred to over a thousand."
3This figure is calculated using news reports on individual rallies from multiple news providers. Complete details on

sources of each Trump’s rally can be provided upon request.
4I used candidate calendars made available by Appleman (2012, 2016) for calculating this figure.
5For instance, Shaw and Gimpel (2012) randomized a gubernatorial candidate’s visit locations in Texas but not the op-

ponent’s visit locations. More recently, Snyder and Yousaf (2020) did an event study at the media market level by using

Cooperative Election Study surveys. The authors find significant effectiveness for Trump’s rallies but not for others. Due to a
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work is also challenging due to multiple equilibria arising from the finite time horizon in these settings.

This paper makes four contributions that improve our understanding of political rallies. The first

contribution is to provide an economic model of intra-electoral competition where politicians campaign

by holding rallies. In this model, campaigning effects decay over time, ensuring that earlier rallies are

less effective than those held closer to election day. The model supports a perfect information structure,

which implies that an equilibrium exists and it is essentially unique (i.e., multiplicity in the model is of

probability zero).

The second contribution is to provide estimates of rally effectiveness. The identification problem

at the core of most of the reduced-form literature is that the estimator of rally effectiveness may be

biased downward because candidates may be more likely to rally in states where they need to boost

their popularity. This selection would underbias estimates, making rallies appear ineffective, which is a

common finding in this literature. In this empirical game of dynamic electoral competition, factors like

the contemporaneous rally decision of opponents, net popularity gains due to candidates’ past choices,

time to the election, and the relative popularity of candidates across the different states, all enter the

rallying decisions of candidates. So, for example, popularity shocks and past actions in other regions

provide identifying variation for a candidate’s actions in a given state.

The third contribution of the paper is to estimate the electoral effects of political rallies by executing

counterfactual experiments that can uncover the effect of total rallying on vote shares and the winning

probability of a given candidate. The fourth contribution is to execute counterfactual experiments that

show government interventions, such as campaign silence laws, may not always succeed in regulating

the use of political rallies.

Constructing empirical games possessing a finite time horizon is challenging. One vital issue is the

existence of multiple equilibria.6 So far, most dynamic campaigning models have considered inter-

electoral (or infinite horizon) settings (Kawai and Sunada, 2022; Polborn and Yi, 2006; Gul and Pesendor-

fer, 2012), rather than intra-electoral settings. Models that consider campaigning within an election

have had to settle for a unique normalization over equilibrium strategies (Acharya et al., 2022), as a

unique equilibrium is harder to support. As a result, these models lack predictions of candidate-specific

strategies, which is critical for understanding candidate level differences and counterfactual analysis.

One of the main objectives of this paper is to construct an empirical game that is sufficiently tractable

to permit estimation and inference. Moreover, we are interested in studying each election separately,

and therefore we observe only one game. I deviate from the approaches used in firm entry/exit games

(Aguirregabiria and Mira, 2007; Arcidiacono et al., 2016)7 and use stage games as the unit of observation.

In this approach, the number of observations grows with the time horizon of the game.

To this end, this paper presents a dynamic game of perfect information with a finite time horizon.

low number of respondents in CES surveys at the day×media market level, their measures of intention to vote for a candidate

carry additional noise, thereby increasing the underlying variance, which is carried into their estimates. Moreover, SUTVA is

harder to maintain at media market level analysis as there can be geographical spillovers.
6For instance, Watanabe and Yamashita (2017) showed that to obtain a tractable set of Markov perfect equilibria, one

requires strict assumptions that are not feasible for a flexible empirical approach.
7Firm entry/exit games rely on many games for inference and are unsuitable for studying each election separately.
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In this game, office-seeking candidates are subject to electoral competition, while facing regional dif-

ferences and dynamic uncertainty in their popularity. Dynamic uncertainty accommodates unforeseen

circumstances in electoral races that lead to a candidate jumping ahead or falling behind his opponent.

Regional differences address state-specific factors, such as a state’s natural inclination towards a party

or a regional popularity shock. On election day, if a candidate’s popularity in a state is positive, they

receive a payoff proportional to the state’s electoral college votes. A candidate’s electoral payoff in the

election is the sum of these state-specific payoffs. In a given period, candidates can hold a rally in a state

and increase their current popularity in that state. This state-specific popularity, which I will call local

popularity, is modeled as an AR(1) process. The autocorrelation of this process allows current rallies to

affect future popularity. However, the effects of rallies dissipate over time, and the magnitude of this

dissipation (decay)8 maps one-to-one with the autocorrelation parameter, which I call persistence in

popularity.

In this game, rallies are costly indivisible goods, such that the costs of these goods vary across can-

didates and states to address heterogeneity along these two dimensions. In each period, I assume that

candidates move in a stochastic order and are equally likely to be the first or the second mover. The first

assumption provides a perfect information structure and gives us rally choice probabilities, which are

uniquely solvable using backward induction. The second assumption implies that no candidate has an

ex-ante first or second mover advantage.

The model provides comparative statics and the intuition for identifying model parameters. For in-

stance, an increase in persistence in popularity also increases the likelihood of earlier rallies by can-

didates. Intuitively, the induced lower decay rate allows campaigning effects to last longer (Hill et al.,

2013; Gerber et al., 2011; Acharya et al., 2022), which incentivizes candidates to hold a higher number

of initial rallies. An increase in the cost of rallies introduces a downward level shift in the probability of

rallying. The effectiveness parameter exhibits a non-monotonic relationship with probability of rallying.

With higher effectiveness, candidates can maintain a sufficient level of popularity with fewer rallies and,

therefore, optimally choose to reduce the number of rallies.

For my empirical application, I use two data sources. I use candidate calendars provided in Appleman

(2012) and Appleman (2016) for rally locations and dates. I use state-specific poll margins provided by

FiveThirtyEight for local popularity. I document that politicians increase political rallies in areas where

competition is neck and neck as elections approach. This pattern holds individually for all candidates. I

also show that within swing states, the correlation of rally choices with electoral college votes increases

as the election approaches. These two patterns highlight that candidates gradually prioritize electoral

size and poll margin leads while holding rallies. The model also supports these patterns.

To estimate the model parameters, I leverage the Markov Property obeyed by local popularity to prove

that daily rally decisions and poll margins must also obey the Markov Property. I further characterize

the transition density of daily observations. This transition density is time inhomogeneous (Pouzo et al.,

2022; Ailliot and Pene, 2015) because the equilibrium choice probabilities depend on the number of days

left before the election. The transition density provides the means to construct the likelihood function,

8Decay in campaigning effects has been documented by Hill et al. (2013); Gerber et al. (2011); Acharya et al. (2022).
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which is used in estimation.

This paper finds that Trump’s rallies increased his poll margin lead by 0.084 pp9 in a state, while

Clinton’s rallies increased her poll margin lead by 0.075 pp. For the 2012 election, I find that Romney

and Obama’s rallies increased poll margin lead by 0.073 pp, and 0.065 pp pp, respectively. I also find that

in both elections, the combined effect of rallies by both candidates is insignificant. This is an assumption

made in Strömberg (2008) for the 2000 and 2004 elections, which I confirm empirically for both the 2012

and 2016 elections. I also estimate the weekly decay rate and find it to be 28%. Which is higher than the

perceived decay rate in Acharya et al. (2022) and lower than decay rates in Hill et al. (2013) and Gerber

et al. (2011). I also find that Clinton had the highest rally cost, while Trump had the lowest.

I then compare the persuasive effects of political rallies with those of other tools of political persua-

sion. I discover that the persuasion rate of one rally far exceeds the persuasion rate of a T.V. ad. The

persuasion rate for a Trump’s rally is 0.167%, and that of a Republican T.V. ad was 0.01% (Spenkuch and

Toniatti, 2018). This implies that to compensate for one MAGA rally, Trump would have required 17
ad spots in a media market. However, since rallies are harder to scale,10 the cumulative effect of rallies

is lower than that of a T.V. ad.11 Rallies are less persuasive than slanted news (DellaVigna and Kaplan,

2007). In particular, I find that a republican presidential candidate would need 67 additional rallies to

compensate for the absence of Fox News in a media market.

I further validate the model and the estimated model parameters by executing three exercises. In the

first exercise, I analyze the out-of-sample performance of the model and find that the model correctly

predicts at least 76% rally decisions for all candidates in the validation sample. In the second exercise, I

show that estimated rally effects are robust after relaxing multiple model and data assumptions. In the

third exercise, I execute model selection tests to infer if candidates are strategic and forward-looking.

We fail to reject these two assumptions made about candidates in this paper.

Next, I execute two counterfactual experiments. The first counterfactual experiment focuses on the

cumulative effect of rallies on electoral outcomes. These differ from contemporaneous effects on popu-

larity due to decay. Furthermore, since candidates hold multiple rallies in the same location, there is also

cumulation. These two forces are in tension, and the effect on election results is ambiguous. To isolate

the effect of a candidate’s total rallies, I compare electoral outcomes under (i) “None Rally" with (ii)“Only

one candidate rallies". In this exercise, I find that Trump’s rallies increased his chances of winning by

40%. However, other candidates did not increase their chances of winning significantly.

There is little evidence that shows political rallies are an informative form of political communica-

tion. For instance, Snyder and Yousaf (2020) found that Trump and Clinton’s rallies did not change issue

salience and issue preference for the most critical issues in 2016.12 The authors also did not find any

9Percentage points of votes. Poll margins are constructed from FiveThirtyEight, which aggregates polls from various poll-

sters. Their objective is to predict vote shares; therefore, these numbers directly translate into vote shares.
10A candidate can be physically present at one location at a given time, while ads can be run at multiple locations simulta-

neously.
11I find that in 2016 and 2012, rallies changed the decision of 576.6K and 388K voters, while T.V. ads changed the decision

of 2.1M voters in 2012.
12Test of rallies on these outcomes provided only for 2016.
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change in voters’ perception of candidates’ valence post rally in 2012.13 The nature of rallies them-

selves is concerning. A rally, unlike presidential debates, provides the candidate with an uncontested

platform where leaders can make factually inaccurate claims. For instance, Former President Donald

Trump made 131 factually incorrect remarks at a rally in Wisconsin (New York Times, 2020).14

Motivated by these empirical findings and anecdotes, I explore whether government intervention

can regulate rallies. For this purpose, I execute a counterfactual experiment that uses campaign silence

as a government policy. Campaign silence, also known as election silence, is an intervention that bans

political campaigning for a given number of days and is generally imposed right before the election.

Campaign silence policies vary in length across countries. Some countries, such as France, impose a

campaign silence that lasts one day (Pickles, 1960), while countries such as Cyprus, Indonesia, and Brazil

impose campaign silences that last two or more days (Knews, 2022; IFES, 2012; Globo, 2020). It is unclear

what length of campaign silence effectively reduces the influence of campaigning on election results. I

provide the minimal effectual campaign silence length that can change electoral outcomes. For the 2012

election, campaign silence of any duration has no effect. In 2016, when Trump’s rallies were pivotal,

campaign silences would be effective if they lasted more than four days before the election. Any shorter

duration, does not substantially dissipate the effects of Trump’s rallies.

This paper contributes to different strands of literature stretching across several disciplines. Firstly,

the model contributes to the literature on political campaigning (Kawai and Sunada, 2022; Erikson

and Palfrey, 2000; de Roos and Sarafidis, 2018; Meirowitz, 2008; Polborn and Yi, 2006; Garcia-Jimeno

and Yildirim, 2017; Gul and Pesendorfer, 2012; Strömberg, 2008) by constructing a dynamic framework

where candidates choose to rally. Strömberg (2008) studies campaign state visits and builds a model

where candidates allocate time across states, but his model is static, has identical strategies, and does

not incorporate decay. I provide a dynamic model with candidate-specific strategies where campaign

effects decay. Acharya et al. (2022) study political spending within an election and identify the per-

ceived decay rate associated with campaigning. The authors characterize optimal spending ratios rather

than candidate-specific spending strategies due to multiple equilibria, while I use a perfect information

structure that allows one to study candidate-specific strategies. Kawai and Sunada (2022) study spend-

ing across elections, whereas I study rallying decisions within an election. Garcia-Jimeno and Yildirim

(2017) study strategic interaction between candidates in bipartisan races and media in the context of

U.S. Senate races. In their paper, there is only one location where candidates can campaign. I analyze

presidential races and allow for campaigning across multiple locations.

This paper also contributes to the literature on the effectiveness of political campaigning events

(Wood, 2016; Shaw, 1999; Shaw and Roberts, 2000; Shaw and Gimpel, 2012). I contribute to this liter-

ature by estimating effects of rallies on poll margins and also electoral outcomes. The literature finds

mixed evidence on effectiveness of rallies and related events on polls, vote shares, and other outcomes

of interest. Moreover, these estimates also vary with the identification strategy used by the authors. In

the past, authors have ignored the heterogeneity of effectiveness across candidates and attempted to

13Test of rallies on perceived candidate valence is provided only for 2012.
14Also see (Politico, 2020) and (New York Times, 2021).
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provide an average estimate. Recently, Snyder and Yousaf (2020) studied political rallies and showed

that Trump significantly affected intention to vote, while other non-populist candidates did not. Where

authors in this study used difference-in-difference specification at the media market level to address the

selection bias,15 I directly address the selection by modeling these decisions.

I also contribute to the literature on empirical dynamic games. Traditionally, empirical dynamic

games use a discrete choice set up to study firm entry/exit decisions (Aguirregabiria and Mira, 2007;

Arcidiacono et al., 2016). The estimation and inference procedures here rely on observing many games.

I contribute by constructing a framework where inference can be made by observing one game. For this

purpose, I exploit the use of stage games as a unit of observation and the Markovian dependence that

every consecutive stage game possesses to estimate and infer parameters.

Lastly, this paper touches the literature on analyzing and estimating stochastic goodwill models in

marketing and operations research (Kwon and Zhang, 2015; Grosset and Viscolani, 2004; Marinelli, 2007;

Doganoglu and Klapper, 2006; Chintagunta and Vilcassim, 1992) by extending the stochastic goodwill

framework to a dynamic discrete game framework. Traditionally these models have studied dynamic

advertising for firms that wish to maintain/increase their goodwill among their consumers. I provide

a model where the advertising level can only be 0 or 1 in a given market. Moreover, there is a period-

specific capacity constraint on the level of advertising where a marketeer can only advertise in one mar-

ket at a given time. The contribution here is the capability of the model to provide predictions on adver-

tising across multiple markets at once, that may or may not be horizontally differentiated. Moreover, the

time horizon is finite, and the model appeals to situations where the marketer faces a specified product

launch deadline.

The paper proceeds as follows, Section 2, discusses the model, equilibrium, and comparative stat-

ics. Section 3 discusses data sources, summary statistics, and the three empirical patterns. Section 4,

discusses parameterization and estimation procedure. Section 5, discusses the estimates, persuasion

rates, in-sample model fit, and out-of-sample model fit. Section 6 discusses robustness tests. Section 7,

discusses the model selection tests. Section 8, discusses counterfactual experiments. Finally, Section 9

concludes.

2 Model

The model analyzes the interaction between candidate rally choices and their popularity level. In this

model, we have K states, T + 1 periods, and two candidates, {R,D}. I assume one popularity measure

per state that holds information on the relative popularity of candidates. This popularity measure can

take values in R. Here popularity is interpreted as R’s poll margin lead over D. Naturally, if popularity

is positive, then R is leading in the polls in the state. If negative, then D is leading the polls. Popularity

follows an AR(1) process.

The game is played over T periods, and a sequential move stage game is played in each period. In this

15The assumption of SUTVA is more challenging to justify at this geographic level due to spontaneous news coverage of

rallies in geographically closer media markets.
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stage game, the order of play among the candidates is random. A candidate, at their turn, must choose

at most one state out of K states. The candidate can choose not to rally as well. If the candidate chooses

to rally, then they pay a cost.

The decision-making stops at period T, and in the election period T+1, every state chooses the popu-

lar candidate as the winner. The winning candidate in a state gains a payoff proportional to the number

of electoral college votes associated with the state. Their total payoff is the sum of payoffs received from

each state.

2.1 Preliminary

I denote the set of states and the number of states by K = {1, 2, . . . ,K}. An arbitrary candidate will be

denoted by i ∈ {R,D}. Arbitrary period is denoted by t ∈ {1, 2, . . . ,T}. Recall that decisions are made in

periods 1, 2, . . . ,T. Each state has a popularity measure pkt that denotes the relative popularity level of

R and D in state k. If the game ends with a candidate being popular in-state k, then they win all electoral

college votes.

Candidates can allocate a unit of perishable indivisible goods to at most one state at a given time. The

indivisible good is a political rally. This good can not be saved and has a constant candidate-specific cost

ci for candidate i.

Let aikt be a binary variable indicating if candidate i chose to rally in state k at period t or not. Recall

that the following holds
∑K

k=1 aikt ≤ 1, i.e., candidate i can hold at most one rally in a given period. Period

t + 1 popularity, pk,t+1, is given by the following AR(1) process:

pk,t+1 = αRaRk,t + αDaDk,t + ρpkt + δk + νk,t+1 (2.1)

Here, αi is defined as candidate i’s effectiveness in influencing popularity, where i ∈ {R,D}. The pa-

rameter ρ is the persistence in popularity and is one of the key parameters of the game that determines

the interplay of candidate choices and the popularity level. νk,t is a random variable indicating a generic

popularity shock. I make following assumption on popularity shocks across all states, (ν1t, ν2t, . . . , νKt).

Assumption 2.1 (Popularity Shocks) The popularity shocks
(
ν1,t, ν2,t, . . . , νK,t

)
are distributed according

to a multivariate normal distribution.

(ν1,t, ν2,t, . . . , νK,t) ∼ N(0, σ2
νIK) (2.2)

Note that σ2
νIK is a positive definite matrix.

The term σν is referred to as the volatility in popularity. For the baseline model, I assume that popu-

larity shocks are normally distributed and are uncorrelated across states. This assumption is relaxed in

Section 6, where two distinct types of correlations between the states are allowed.16

16See Assumption A.1 for a more generalized popularity shock distribution that can be supported.
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Let the density of popularity in period t+1 given period t primitives be denoted by f (pt+1|aR,t, aD,t, pt).

Here ps =
(
p1,s, p2,s, . . . , pK,s

)
and ait =

(
ai,1t, ai,2t, . . . , ai,Kt

)
for i ∈ {R,D}. Let δ = (δ1, δ2, . . . , δK) then by

assumption 2.1 this density is given by:

f (pt+1|aR,t, aD,t, pt) =
1
σK
ν

K∏
k=1

ϕ

(
pk,t+1 − αRaRk,t − αDaDk,t − ρpk,t − δk

σν

)
(2.3)

Where ϕ(.) denotes the p.d.f. of the standard normal distribution. This popularity evolution equa-

tion can also be statistically founded by considering a mean reverting process similar to Acharya et al.

(2022).17

Every state k has a payoff that is proportional to the number of electoral college votes, ek, the state has.

In period T + 1 if the game terminates with pk,T+1 > 0, candidate R receives ekE, where E denotes the

maximal payoff a candidate can receive. Candidate R’s total payoff will be aggregate of payoffs received

from each state and it is given by:

VR,T+1(pT+1) =
K∑

k=1

ekE × 1
{
pk,T+1 > 0

}
⇒ EpT+1

[
VR,T+1(pT+1)

∣∣∣pT, aRKT, aDKT

]
=

K∑
k=1

ekE × P
[
pk,T+1 > 0

∣∣∣pT, aRKT, aDKT

] (2.4)

WhereEpT+1 is an expectation operator, which takes expectation with respect to pT+1. The symbolP de-

notes the probability. For the baseline case P
[
pk,T+1 > 0

∣∣∣pT, aRKT, aDKT

]
= Φ

(
αRaRk,t+αDaDk,t+ρpk,t+δk

σν

)
, where

Φ(.) denotes the standard normal c.d.f.

For candidate D, their electoral payoff is defined as VD,T+1 = E−VR,T+1. Therefore, if R looses in a state

then D simultaneously wins there. Moreover, by using these payoffs, one can see that D’s popularity can

be denoted by −pk,t. Therefore, if R is popular (i.e. pk,T+1 > 0) then D is unpopular and vice-e-versa.

2.2 Timing of Decisions and Information

Game begins at period t = 1 and ends at t = T + 1, where decisions are only made in periods 1, 2, . . . ,T.

A stage game, as described in Figure 1, is played in each period t ∈ {1, 2, . . . ,T}. The timing of decisions

and revelation of information for the stage game played at period t (refer to Figure 1) are described in

sub-periods τ1, τ2, . . . , τ6. In sub-period τ1 popularity vector pt is observed. In sub-period τ2, nature

17Authors also micro-founded the mean reversion process by considering a set of impressionable voters (Andonie and

Diermeier, 2019) who vote on the basis of good will. In Marketing and Operations Research, Kwon and Zhang (2015) consider

market shares directly and model them as a general Brownian motion. If we have K = 1 then this is a special case of that

where we impose further restrictions to obtain a mean reverting nature in the process. Moreover, for this setting market share

is analogous to vote share or polls. I reduce the state variable by considering poll margin lead, and call it popularity. This

is a deviation from Doganoglu and Klapper (2006), who model the consumer behavior directly. A consumer’s utility in their

set up depend on a brand’s goodwill in addition to brand-specific characteristics. This set up can be extended to consider

general votes however presence of multiple states can make the model computationally infeasible.
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Nature

Figure 1: Stage Game

The stage game for each period t = 1, 2, . . . ,T is provided in this figure. In each period, both candidates observe the

popularity level pt. Then nature chooses a first mover and a second mover. Then cost shocks for the first mover are

drawn and are observed by both candidates. The first mover decides where to rally. Then cost shocks for the second

mover are drawn and observed by both candidates. Second mover makes their decision and then the game proceeds

to period t + 1.

chooses a first mover. In sub-period τ3, the first mover draws their cost shocks, and in sub-period τ4

they make their decision. In sub-period τ5 second mover cost shocks are drawn, and in sub-period τ6

second mover will make their decision. After this sub-period, the game proceeds to period t + 1. I give

more details on each sub-period below.

τ1 At sub-period τ1 the popularity level vector pt =
(
p1t, p2t, . . . , pKt

)
is realized and observed by the

candidates. Here pkt indicates the current popularity level of the candidates.

τ2 Nature makes a draw to choose a first mover and a second mover for the stage game. The proba-

bility i is chosen as the first mover is denoted by fi. Let fR = f and fD = 1 − f .

τ3 The first mover i’s cost shocks, ϵi f ,t =
(
ϵi f ,t,0, ϵi f ,t,1, . . . , ϵi f ,t,K

)
18, are realized in this sub-period. Here

ϵi f ,t,0 is the cost shock for not rallying, while ϵi f ,t,k is the cost shock for rallying in state k. Moreover,

they are realized immediately before a decision is made.

τ4 The first mover, i, in period t solves the following Bellman equation after observing the current

popularity pt and cost shocks ϵi f t = (ϵi f ,t,0, . . . , ϵi f ,t,K):

18These shocks are part of the random utility specification for the candidates. For more details please refer to McFadden

(1973) and McFadden (1978). The interpretation of these cost shocks is unforeseen events that may increase or decrease the

difficulty of rallying in a state. For instance, Hurricane Sandy made campaigning on the Atlantic seaboard very difficult in

the 2012 presidential election.
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Vi f t(pt, ϵi f ,t) = max
k∈{0,1,...,K}

{
− ci × 1{k , 0} − ϵi f ,t,k

+ β
K∑

l=0

Ep

[
Vi,t+1(p)

∣∣∣ait = k, a jt = l, pt

]
× σ js,t

(
l; k, pt

)} (2.5)

In order to choose option k, i must pay the cost ci if they choose to rally, and the random cost

shock ϵi f ,t,k. These two components form the flow costs for candidate i. Moreover, while making

this decision, i also considers the continuation value associated with each option. This continu-

ation value consists of a nested conditional expectation of i’s value in the next period. The inner

expectation is taken with respect to popularity in the next period given that action, ait = k, a jt = l
and current period popularity pt. The outer expectation is with respect to j’s actions given i chose

k and the current popularity pt. The probability of j choosing an action l is denoted by σ js,t
(
l; k, pt

)
and it is an equilibrium object. Let ai f t(pt, ϵi f ,t) be the associated policy function with Vi f t(pt, ϵi f ,t).

τ5 The second mover, denoted by s, draws cost shocks, ϵis,t =
(
ϵis,t,0, ϵis,t,1, . . . , ϵis,t,K

)
.

τ6 The second mover i’s decisions are made in this period. In addition to observing the popularity

level and their cost shock, the second mover also observes the decision made by the first mover.

Therefore, a j f ,t is also a state variable for the first mover. The second mover solves the following

interim Bellman equation after observing pt, first mover action a j f t = l and cost shocks ϵist :

Vist(l, pt, ϵis,t) = max
k∈{0,1,...,K}

{
− ci × 1{k , 0} − ϵis,t,k + βEp

[
Vi,t+1(p)

∣∣∣ait = k, a jt = l, pt

] }
(2.6)

Here ci and ϵis,t,k are the flow-costs from choosing option k. The continuation value is expectation

of i value in the next period given ait, a jt, pt. Let aist be the associated policy function.

Here I define the value function at popularity vector p prior to the order of play in period t:

Vi,t(pt) = fi × Eϵi f ,t

(
Vi f t(pt, ϵi f t)

)
+ (1 − fi)

K∑
k=0

[
σ j f t(k; pt) × Eϵis,t

(
Vist(k, pt, ϵist)

)]
(2.7)

The above Bellman equation uses the expected value i receives as the first mover and as the second

mover, given pt, to calculate the value of entering a period when popularity is pt. With probability fi,

i is chosen as the first mover and the term Eϵi f ,t

(
Vi f t(pt, ϵi f t)

)
is the value of i becoming the first mover

prior to the realizing of cost-shocks. The operator Eϵi f ,t is an expectation operator, which calculates the

expectation of Vi f t(pt, ϵi f t) with respect to the cost shocks ϵi f t. The second term is the expected payoff

of being the second mover. When i is the second mover, there are total K + 1 possibilities that can take

place, and each possibility corresponds to the decision made by j as the first mover. The expectation

is with respect to the conditional choice probability (CCPs from here on) with which j rallies in state k.

Once an action k is chosen the expected payoff of being the second mover when action k was chosen by

first mover is given by the termEϵis,t

(
Vist(k, pt, ϵist)

)
.
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2.3 Equilibrium

In this game, only one candidate decides at a time. Moreover, past actions, popularity levels, and cost

shocks are observed at the time of decision making. Candidates are forward looking and have a rational

expectation of future payoffs and actions. Therefore, the game at hand is a perfect information game,

and it can be solved using backward induction.

Below I state the first assumption on cost shocks

Assumption 2.2 (Independent Cost Shocks) The cost shocks are independent across all information nodes

and actions. That is the following holds:

ϵim,t,k|pt ⊥ ϵi′m′,t′,k′ |p′t′ ∀ (i,m, t, k, pt) , (i′,m′, t′, k′, p′t′) (2.8)

In the previous subsection, the Bellman equations assumed that current cost shocks are payoff rele-

vant, but past cost shocks were not. The above assumption, along with the definition of the popularity

process and the timing of the game, implies that the Bellman equations depend on current popularity

shocks, current cost shocks, and first mover decisions (in the case of the second mover). The same holds

for the associated policy functions or, in this case, the best responses of candidates.

I also assume that cost shocks are drawn from Type-1 Extreme Value distribution. The assumption is

stated below:

Assumption 2.3 (Distribution of Cost Shocks) Cost shocks are drawn from Type-1 Extreme Value distri-

bution:

ϵim,t,k|pt ∼ T1EV ∀ (i,m, t, k, pt) (2.9)

Assumptions 2.3 and 2.2 ensure that the Subgame Perfect Equilibrium will exists and it will be unique—

that is multiplicity will exist with probability zero.19

This provides us with unique candidate specific campaigning strategies in terms of conditional choice

probability (CCP, hereafter).20 This is one of the key contributions of this paper. Prior to this, researchers

working in structural electoral games have focused on static models, Strömberg (2008) and Gordon and

Hartmann (2016). The literature has also considered dynamic games that allow for a unique normal-

ization of candidate equilibrium strategies, Acharya et al. (2022). Here I provide a dynamic game of

19Since only one candidate makes a decision at a given time we do not need to search for any fixed point in order to find an

equilibrium. Therefore, the only way multiple equilibria would exist is when a candidate is indifferent between two actions.

However, under these assumptions the convolutions formed by adding ϵimtk to −ϵimtl for each i, m, t ,k, l is a continuous

random variable. Therefore these indifference equalities occurs with probability zero. Note that in order to support this

we do not truly need that the distribution is extreme value and cost shocks are always independent. In fact as long as such

convolutions are continuous random variables this form of uniqueness will take place. In section A.1, I provide a more

general set up that can incorporate correlated cost shocks or dependence on past actions.
20Another advantage of using type-1 extreme value distribution is to have lower computation burden while evaluating

CCPs. Moreover, the use of this distribution is very common in literature that relies on using Discrete Choice models, Dy-

namic Discrete Games and etc.
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electoral competition with a finite time horizon that can support unique equilibrium strategies in prob-

ability space.21

Under assumptions 2.2 and 2.3, we can show that best responses, in probability space, are func-

tions22 of current popularity, cost shocks, and, in the case of the second mover, first mover action. Now,

I characterize the equilibrium conditional choice probabilities. The Proposition 2.1 lays out this charac-

terization. If one knows electoral payoffs then it is possible to evaluate all period specific value functions

and CCPs of both candidates at each possible level of popularity. Eq. 2.4 defines electoral payoffs and

by using this equation, Proposition 2.1 uses backward induction to characterize period-specific value

functions and CCPs.

Proposition 2.1 (Characterization of Value Functions and CCPs) Given eq. 2.4, which defines electoral

payoff, Assumptions 2.2 and 2.3 the following holds for all t = 1, 2, ...,T

• The value function Vi,t takes the following functional form:

Vi,t(pt) = fi × ln
( K∑

k=0

exp
{
ui f ,t(k; pt)

})
+ (1 − fi) ×

K∑
k=0

[
σ j f ,t(k; pt) ln

( K∑
l=0

exp
{
uis,t(l; k, pt))

})]
(2.10)

• The expected probability of i choosing action k as the first mover is given by:

σi f ,t(k; pt) = P
(
k = a∗i f ,t(pt, ϵi f ,t)

)
=

exp
(
ui f ,t(k; pt) − ui f ,t(0; pt)

)
1 +

∑K
l=1 exp

(
ui f ,t(l; pt) − ui f ,t(0; pt)

) (2.11)

• The probability of i choosing action k as the second mover is given by:

σis,t(k; l, pt) = P
(
k = a∗is,t(a j f t = l, pt, ϵis,t)

)
=

exp
(
uis,t(k; l, pt) − uis,t(0; l, pt)

)
1 +

∑K
q=1 exp

(
uis,t(q; l, pt) − uis,t(0; l, pt)

) (2.12)

Where, the option specific value function, ui f ,t(k; pt), for i when they are the first mover at period t at

popularity level pt satisfies the following:

ui f ,t(k; pt) =
K∑

l=0

uis,t(k; l, pt) × σ js,t(l; k, pt) (2.13)

The option specific value function, uis,t(k; pt), for i when they are the second mover at period t at

popularity level pt and the first mover chose l satisfies the following eq. 2.14:

uis,t(k; l, pt) = − ci × 1{k , 0} + βE
[
Vi,t+1(p)

∣∣∣ ait = k, a jt = l, p′ = pt

]
(2.14)

21Similar to Milgrom and Weber (1985) and Aguirregabiria and Mira (2007), we can define the Subgame Perfect Nash Equi-

librium in probability space or distributional strategies. Authors focused on Markov strategies. In this paper, due the as-

sumptions A.1(or 2.1) and 2.2 the equilibrium strategies are also Markov. Therefore the Subgame Perfect Nash Equilibrium

and the Markov Perfect Equilibrium are the same in this game.
22These are functions and not best response correspondences because multiplicity is of probability zero and only the afore-

mentioned terms are part of relevant state variables.
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The proof for Proposition 2.1 is given in Section A.2. The proof involves an application of the gener-

alized model described and solved in Section A.1. The statement regarding observed choices have been

omitted here for brevity but nonetheless can easily be accommodated. The idea of the proof is quite

simple. Since the game is of perfect information one can show that the proposition holds for t = T. First

I show that the optimal actions given the cost shocks are unique for the second mover with probability 1.

Then I characterize its conditional choice probabilities and value function for the second mover. Given

this I move to the first mover and then repeat these steps. Then in the induction step I assume it holds

for a given t along with the characterization of conditional choice probabilities and show that it has to

hold for t − 1 by using the same steps as for period T.

The proposition recursively characterizes the equilibrium choice probabilities and value functions

for a candidate i. Within any stage game, the second mover value functions (uist(k; l, .) for all k, l =
0, 1, . . . ,K) directly depend on expectation of the next period value function. The first mover option

value functions (ui f t(k; .) for all k = 0, 1, . . . ,K) also depend on expectation of the next period value

function, as their values are given by second mover value functions. These first and second mover value

functions solely determine rallying probabilities in the model.

Given the recursive nature of equations in proposition 2.1, obtaining predictions over chosen actions

is not trivial. These equations do not have a reduced form due to the presence of multinomial logis-

tic choice probabilities. The logistic functional forms period by period introduce an additional layer of

complex relation between endogenous variables and the parameters that are hard to study using ana-

lytic methods. Therefore, I have to rely on simulations for analyzing equilibrium behavior. In order to

simulate the choice probabilities, I approximate the value functions as the state space is a continuum

here. I follow Judd et al. (2014) for constructing a sparse a grid and the accompanying Chebyshev poly-

nomial to approximate the value functions, which include the period level value function and also the

option specific value functions for each mover and player.23

2.4 Equilibrium Behavior

Studying and analyzing the first and second mover probabilities individually is a cumbersome task an-

alytically and computationally. A total of K + 1 + (K + 1)2 choice probabilities predict how a candidate

would rally given the appropriate information about state variables. We reduce the number of choice

probabilities by considering the probability of choosing k prior to the order of play. To derive these

probabilities first consider the probability of observing aRt = k and aDt = l given pt, i.e. probability of

23For computing the next period expectation I follow Judd et al. (2017) and compute integration only once. To calculate

these conditional expectations I use Konrad-Patterson quadrature (it can be obtained from http://www.sparse-grids.

de/). This is an accompanying website for Heiss and Winschel (2008). Appendix B provides every detail about the algorithm

that I construct and use for this purpose. I also assess and present the performance of numerical approximation by checking

residuals of equations in proposition 2.1 on empirically relevant24 non-collocation points (Judd, 1992). The mean of the

distribution errors of approximation are in the order of 10−5. The maximal error of approximation is obtained in the order of

10−2 with a very thin right tail (R’s first mover probability in the Figure 10).
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Figure 2: The figure plots the dynamic relationship a candidate’s probability of rallying in a state (σit(k, pt) defined in equation

2.16) and their popularity in that state (pt). The figure shows that candidates choose to rally more if competition is neck and

neck as the election approaches. This relationship holds irrespective of how many states we consider in the game. Here I show

the pattern holds for four states with no rally option case. The pattern also holds for one state and no rally option. Refer to

Figure 12.

observing action profile k, l given current popularity across states.

σt(k, l; pt) = f · σR f t(k; pt) · σDst(l; k, pt) + (1 − f ) · σD f t(l; pt) · σRst(k; l, pt) (2.15)

We can obtain choice probabilities prior to the order of play by considering the marginal distributions

of σt(k, l; pt). Here R’s choice probabilities are given by the marginal distribution corresponding to k,

and for D it is given by the marginal distribution of l.25 The following equation defines these choice

probabilities.

σRt(k; pt) =
K∑

l=0

σt(k, l; pt)

σDt(l; pt) =
K∑

k=0

σt(k, l; pt)

(2.16)

Three remarks are necessary regarding how σit(k; p1t, . . . , pkt, . . . , pKt) relates with pkt (refer to Figure

2 for an illustration).26 Firstly, the choice probabilities have a weak relationship with popularity in the

25Note, the choices are correlated and therefore the probability of an action profile is not the product of its marginals.
26This involves calculating simulated version of conditional choice probabilities, as defined in equation 2.16, across 1,000

possible popularity values in each period. For each draw of popularity I draw 1,000 cost shocks from extreme value distribu-

tion and pick the best option for each candidate given their respective state variables values. Then I divide the set of periods

into three bins and calculate average probability of rally for each popularity draw: (i) beginning of the election phase con-

sisting of periods 1-100 (or 75-51 days before election —periods are not the same as days as in the data candidates can visit

multiple days); (ii) middle of the election phase consisting of period 101-200 (or 50-26 days before the election); (iii) end of

election phase 201-300 (or 25-1 days before the election). The results of this exercise are depicted in the Figure 2.
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respective states in earlier periods. The explanation behind this hinges on two channels. The first chan-

nel is that of discounting. At any given period the corresponding value functions satisfy the following

inequality:(
1 − βT−t+1

) (
ln(1 + Ke−ci) + γ

)
1 − β

≤ Vit+1(pt) ≤

(
1 − βT−t+1

) (
ln(1 + Ke−ci) + γ

)
1 − β

+ βT−t−1
K∑

k=1

ekE (2.17)

The derivation of this inequality is provided in Section A.3. For earlier periods (i.e. small t), the upper

bound is closer to the lower one, therefore making Vit+1 independent of electoral payoffs. This implies

that the probability of rallying depends only on flow value, which is the cost of rallying, and not on

the continuation value. Note that the flow payoff is independent of current popularity in the model.

Therefore corresponding choice probabilities also reflect this nature.

The second channel is decay. In the initial periods, rallies will have negligible effects on election day

popularity because these effects decay exponentially with time. If a candidate rallies in a period t, then

its direct effect on pt+1+ j will be ρ jαR. Effect on election day popularity will be ρT−tαR.27 This term is

smaller for small t and higher for larger t. Therefore in the initial periods, return from a rally is small.

A second remark highlights what happens when we are closer to elections. There is a higher proba-

bility of a rally in states where a candidate’s popularity is close to zero. This is true because of the nature

of electoral payoffs at the state level. Recall that a candidate wins all electoral payoff from a state if they

are popular in that state. This ensures that the change in expected payoff due to a rally is maximal when

popularity is closer to zero. Areas with popularity far away from the cut-off are more challenging to

swing either way than areas closer to the cut-off. Therefore in equilibrium, candidates prioritize areas

that are easier to swing and allocate higher amounts of rallies in areas where popularity is closer to the

cut-off.

The third remark focuses on the transition shown in Figure 2. As elections approach, candidates

prioritize areas where competition is tight over where it is not. It is explained by the conjunction of

remarks 1 and 2. As elections approach, the decay and discounting channel weakens, making rallying a

more profitable option. From remark 2, recall that areas where competition is tight, are easier to swing

than areas where popularity is lopsided. Therefore, we see a higher gradual increase in rallies where

competition is neck and neck than in areas where it is not.

2.5 Comparative Statics

In this section, I will discuss four comparative statics concerning rally effectiveness, cost of rallying,

persistence, and volatility in popularity.

Increase in persistence in popularity, ρ ↑: One direct implication of an increase in persistence in pop-

ularity is a higher observed auto-correlation. However, persistence also has an interesting implication

for rally choices. With an increase in this parameter, earlier rallies have more lasting effects on future

27There is also an indirect effect as rally today will change tomorrow’s popularity, and hence it will change the behavior of

the candidate and their opponent.
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Figure 3: This figure illustrates how probability of rally changes when the key parameters ρ, αi and ci are increased. Panel

3a illustrates the comparative statics with respect to ρ. Panel 3b illustrates the comparative statics with respect to ci. Panel 3c

illustrates the comparative statics with respect to αi.

popularity values and, therefore, higher chances to swing election day results. This can be seen by con-

sidering the direct effect period t rally has on election day popularity. Recall this is given by ρT−tαi, which

increases with ρ. The higher ρ is, the higher would be the magnitude of this effect. This increases the

returns to rallying in period t and therefore incentivizes rallying in earlier periods. As a result, the proba-

bility of rallying in earlier periods will increase weakly with ρ.28 The comparative statics is demonstrated

28Another implication would be lower rallying in later periods, which is driven by the fact that past popularity has a higher

weight and can counter-act the effect of rallying.
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in the Figure 3a.

Increase in cost of rallying, ci ↑: An increase in the cost of a rally parameter decreases the probability

of rallying as it becomes a costlier option. One interesting feature is that the decrease in the probability

of rallying is similar to a level shift, particularly at the beginning of the election. Recall that returns from

rallying are negligible in the beginning due to the decay and intertemporal discounting channels. As

a result, the level of rallying is solely determined by the cost of rallying. To see this, consider proposi-

tion A.4. This proposition shows that the benefit from rallying in the early phase of the election is close

to zero. As a result, the probability of rallying only depends on its cost, which stays constant through-

out the election. Therefore, a change in cost induces a parallel shift in the probability of rallying. The

comparative static is demonstrated in the Figure 3b.

Increase in rally effectiveness, αi ↑: The probability of rallying has a non-monotonic relation with ef-

fectiveness. With moderate increases, the probability of a rally will naturally increase with effective-

ness. However, if there is a large increase in the effectiveness of rallies, then a lower level of rallying can

maintain a sufficient amount of popularity and save the cost of rallying later. This comparative static is

demonstrated in the Figure 3c.

Increase in volatility in popularity, σν ↑: An increase in volatility in popularity will lead to more uncer-

tainty in future popularity. This increase in uncertainty is detrimental to earlier campaigning, making

rallying a less attractive option in the initial phases of the campaign. This leads to a decrease in rallying

probability in each period t and in the popularity level pt.

3 Data

3.1 Sources

This paper uses two primary data sources. The first one is Democracy in Action, which provides me with

rally choices. The second source is FiveThirtyEight for obtaining state-specific poll margins (interpreta-

tion of popularity in the model).

Rally choices: The data on rally choices is obtained from Democracy in Action, a website created by

Eric M. Appleman. In particular for 2012 and 2016 presidential elections I used Appleman (2012) and

Appleman (2016) respectively. The website has information on the calendars of presidential candidates.

For each day, the website provides activities candidates undertook in chronological order.29 The website

provides information not only on rallies but also on various other activities. I classify these activities

into groups, one of which is political rallies. The calendar provides information on multiple phases of

29The events or activities that were performed at earlier times precede the ones which are undertaken later. This can be

seen by considering entries for which such information is provided. The earlier events precede later events in these entries.

For instance, consider Hilary R. Clinton’s schedule on November 7, 2016, the entry ’Afternoon Get out to vote rally... Grand

Rapids, MI.’ precedes the entry ’Final midnight "Get Out the Vote"... Raleigh, NC’. Consider Donald J. Trump’s schedule on

October 13, 2016, the entry ’Mid-day rally... Palm Beach, FL’ precedes the entry ’Evening rally... Cincinnati, OH’. The order is

consistent for each day where times of the day have been provided.
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the election. However, I use information from 100 days before the election. Therefore, everything on

and after July 29 and July 31 for the 2012 and 2016 elections, respectively.

The group of activities I am interested in involves a candidate (i) holding a rally, (ii) giving a speech,

or (iii) organizing a special event. I call these activities a political rally. In the model, candidates hold

one rally in a period, while in the data, candidates can hold multiple rallies in a day. I define periods of

the model as a quarter of a day and allocate these periods based on chronological information provided

in “Democracy In Action”. I also ignored rallies held in stronghold states and counted consecutive rallies

in a state as one to ensure that there were at most four rallies in a day. In Appendix C, I provide details

on data cleaning and allocation of periods to rally decisions.

Poll Margins: I use FiveThirtyEight’s poll repository for obtaining aggregate poll margins at the state

level. It is an organization that focuses on opinion poll analysis, economics, politics, and sports blog-

ging. Since its creation, FiveThirtyEight has focused on producing reliable forecasts for presidential

general elections, primaries, house elections, and gubernatorial elections. In 2016, the organization

produced one of the most accurate forecasts for the presidential general elections.

As a poll aggregator, FiveThirtyEight30 collects polls from multiple pollsters to generate reliable fore-

casts. It uses individual polls to produce polling averages after correcting for partisan biases that make

individual polls unsuitable for a comprehensive study. Their forecasts are probabilistic, allowing for

historical uncertainty that individuals’ polls do not report. Their forecast model prioritizes state-level

polls over national-level polls as the former are better predictors of results within the state. Moreover,

forecasts in one state utilize information from states similar to itself for better predictability. Their polls

are more conservative in early summer than closer to elections as individual poll fluctuations are more

informative towards the end than in the beginning.

3.2 Summary Statistics

Summary statistics for R’s poll margin lead across all states appear in the Figure 16. I have removed

District of Columbia, NE-1, NE-2, NE-3, ME-1, ME-2 for brevity. I also show the aggregate number of

activities in the raw data obtained after classifying the set of all activities. These aggregate numbers are

provided in Table 9. The table also shows how many rallies were removed specifically after the cleaning

process for each candidate. For 2016 I do drop a larger share of rallies than for 2012. This is because

various rallies are either in a stronghold state, which will not be part of the quantitative analysis of the

data and the model.

I provide a more detailed summary statistics for the states that had two or more rallies by a candidate

in Table 1. It should be noted that these states provide ample cross-sectional variation in a republican

candidate’s poll margin lead, ranging from −5.26 pp to 8.59 pp in 2012 and from −7.1 pp to 14.3 pp.

However, within-state variation in poll margins is smaller. Most standard errors are between 0.6 to 1.9,

30For more details on the methodology that Fivethirtyeight’s forecast model uses for general elections, visit the following:

https://fivethirtyeight.com/features/a-users-guide-to-fivethirtyeights-2016-general-election-

forecast/
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Table 1: Summary Statistics for Swing States

Rallies Per Day R’s Poll Margin
State Obama’12 Romney’12 Clinton’16 Trump’16 2012 2016 Electoral College Votes

Arizona 0 0 0 0.03 8.59 1.58 11
( 0 ) ( 0 ) ( 0 ) ( 0.171 ) ( 0.785 ) ( 1.1 )

Colorado 0.11 0.08 0 0.08 -0.394 -4.91 9
( 0.373 ) ( 0.339 ) ( 0 ) ( 0.339 ) ( 1.2 ) ( 1.5 )

Florida 0.06 0.2 0.15 0.23 -0.0386 -2.47 29
( 0.239 ) ( 0.55 ) ( 0.5 ) ( 0.548 ) ( 1.38 ) ( 0.977 )

Iowa 0.15 0.1 0.04 0.05 -1.32 1.16 6
( 0.5 ) ( 0.333 ) ( 0.243 ) ( 0.219 ) ( 1.23 ) ( 1.41 )

Michigan 0 0 0.04 0.05 -4.78 -7.17 16
( 0 ) ( 0 ) ( 0.197 ) ( 0.261 ) ( 1.82 ) ( 1.3 )

Nevada 0.06 0.04 0.04 0.04 -2.98 -0.731 6
( 0.239 ) ( 0.197 ) ( 0.197 ) ( 0.243 ) ( 0.755 ) ( 1.1 )

New Hampshire 0.06 0.03 0.02 0.08 -2.59 -5.91 4
( 0.278 ) ( 0.171 ) ( 0.141 ) ( 0.273 ) ( 1.4 ) ( 1.72 )

North Carolina 0 0.03 0.09 0.15 2.4 -1.66 15
( 0 ) ( 0.223 ) ( 0.379 ) ( 0.458 ) ( 1.06 ) ( 0.828 )

Ohio 0.2 0.26 0.1 0.13 -2.58 -0.849 18
( 0.532 ) ( 0.613 ) ( 0.389 ) ( 0.442 ) ( 1.2 ) ( 1.69 )

Pennsylvania 0 0.02 0.09 0.16 -5.26 -6.26 20
( 0 ) ( 0.141 ) ( 0.351 ) ( 0.443 ) ( 1.21 ) ( 1.09 )

Virginia 0.1 0.2 0 0.06 -0.996 -6.87 13
( 0.302 ) ( 0.586 ) ( 0 ) ( 0.239 ) ( 1.13 ) ( 1.91 )

Wisconsin 0.05 0 0 0.05 -3.88 -7.1 10
( 0.219 ) ( 0 ) ( 0 ) ( 0.219 ) ( 1.67 ) ( 1.62 )

*Standard deviations in parenthesis wherever applicable.
a Note: The table shows summary stats for number of rallies in a day across states that had two or more rallies. These statistics are
given for last 100 days before election. To obtain the total rallies in a state in a given election multiply the numbers by 100.

suggesting that within-state uncertainty faced by candidates while campaigning is moderate.

Summary statistics for average rallies per day are also provided in Table 1. States like Florida wit-

nessed a significant number of rallies consistently in both elections (26 in 2012 and 38 in 2016). States

like Arizona had no rallies in 2012, and in 2016 only 3 by Trump. Ohio is a state that witnessed a moder-

ately high number of rallies in both years, as it had an average of 0.28 rallies per day in 2012 and 0.23 in

2016. On the other hand, Pennsylvania had an average of 0.02 rallies per day in 2012 but 0.25 rallies per

day in 2016. Pennsylvania is an example of a state whose relative importance changed from one election

to another. This pattern is reversed for Virginia, which had 30 rallies in 2012 but only 6 in 2016.

3.3 Dynamic Patterns of Political Rallies

3.3.1 Rally Ramp-up

For each candidate, rally intensity increases as election day comes close. This pattern is provided in

Figure 4. To produce these plots, I consider daily rallies across all states. Then, I create 15-day bins for

90-1 days before the election and a 10-day bin for 100-91 days before an election and calculate average

rallies per day, standard deviation, and the corresponding 95% confidence interval.

The pattern in Figure 4 is similar to dynamic spending patterns documented and thoroughly studied

in Acharya et al. (2022) and, therefore, can be explained by the decay rate of the popularity process. In my

model, the persistence parameter has a one-to-one relation with the decay rate. The critical difference
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Figure 4: This Figure shows average rallies per day for 15 day bins (10 day bin for 100 − 91 days before election). For each

of these bins the corresponding confidence interval for average rallies per day is also provided. The Figure shows that for all

candidates rally intensity increases as one get closer to the election. Moreover, it is highest when there are only 15 days left before

election. This can be explained by the fact that later rallies have more lasting effect on election day popularity than earlier

rallies. Therefore, candidates invest more time on later rallies than earlier rallies.

here is the distinct ramp-up patterns corresponding to each candidate within an election. These can be

explained by critical parameters like the cost of rallying and rally effectiveness.31

3.3.2 Rallies and Poll Margin

Candidates rally in highly contested states as elections come close. This pattern relates to the qualitative

prediction discussed in Section 2.4(refer to the Figure 2). To document this pattern, I create 25-day bins

and analyze candidates’ rallies per day in a state against their lagged poll margin lead. In Figure 5, along

with a generalized additive model fit for 2012 and 2016 presidential election.

From Figure 5, it is evident that as the election comes close, candidates rally more intensely in states

where candidate polls are neck and neck. A cross-sectional pattern for television advertising and vote

share lead has been documented in Gordon and Hartmann (2016) and, for campaign activity in general,

Strömberg (2008). However, the gradual emergence of this bell-shaped relation, especially in the context

of rallies, is novel.
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Figure 5: This Figure shows a bin scatter of a candidate’s number of rallies in a day and poll margin lead along with a

generalized additive model fit. The points are bin scatter points. For each candidate, it can be seen that the fit transitions from

having a weak relationship, when there are 76-51 days are left before the election, to a bell-shaped relationship when there are

25-1 days left before the election.

Table 2: Estimates for Regression 3.1

Dependent Variable: Rally Count (Ai,d,k,y)
Full Sample Obama’12 Romney’12 Clinton’16 Trump’16

Model: (1) (2) (3) (4) (5)

Variables
1 {−100 ≤ d ≤ −76} × Ek 0.001 -0.005∗∗ 0.001 0.003 0.006∗∗

(0.002) (0.002) (0.003) (0.002) (0.003)
1 {−75 ≤ d ≤ −51} × Ek 0.001 -0.004∗ 0.006∗∗ 0.0006 0.002

(0.002) (0.002) (0.003) (0.002) (0.003)
1 {−50 ≤ d ≤ −26} × Ek 0.005∗∗ 0.002 0.007∗∗ 0.006∗∗∗ 0.007∗∗

(0.001) (0.002) (0.003) (0.002) (0.003)
1 {−25 ≤ d ≤ −1} × Ek 0.009∗∗ 0.002 0.008∗∗∗ 0.012∗∗∗ 0.013∗∗∗

(0.003) (0.002) (0.003) (0.002) (0.003)

Fixed-effects
i × y Yes - - - -
Day-Bin Yes Yes Yes Yes Yes

Fit statistics
Observations 4,800 1,200 1,200 1,200 1,200
R2 0.03063 0.01653 0.03032 0.04647 0.04728
Within R2 0.02790

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

3.3.3 Rallies and Electoral College Votes

Lastly, I document how rally intensity correlates with electoral college votes within the states where

competition is neck and neck. More specifically, I consider the states listed in Table 1 for this exercise.32

31In Acharya et al. (2022), these differences can not be thoroughly analyzed as the authors focus on spending ratios while I

use individual choices for identifying and estimating my model.
32These states for 2012 have more states than the swing states used in Snyder and Yousaf (2020). For 2016, if Maine is also

included, these states will be the same as the swing states used in Snyder and Yousaf (2020).
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Within this set of states, candidates prioritize states with higher electoral college votes as elections come

close over those with lower electoral college votes. To see this, I first divide the days into four bins. The

bins are given by B1(d) = 1{−100 ≤ d ≤ −76}, B2(d) = 1{−76 ≤ d ≤ −51}, B3(d) = 1{−50 ≤ d ≤ −26}
and B4(d) = 1{−25 ≤ d ≤ −1}. I estimate the following regression:

Ai,d,k,y =

4∑
s=1

β0,sBs(d) +
4∑

s=1

β1,sBs(d)Ek + γiy + ϵi,d,k,y (3.1)

In the above regression, Ai,d,k,y is number of political rallies candidate i held on day d in state k in

election y. The variable Ek denotes the electoral college votes state k has. Since we are interested in the

coefficient of Ek, the state-level fixed effects have been omitted, although we maintain candidate-level

fixed effects. This regression is estimated for the whole sample and each candidate separately. Table 2

presents the results.33

From Table 2, for all candidates, we see that β1,s increases as elections come close; that is, as the

election approaches, candidates prioritize states with a higher electorate when choosing within swing

states. The candidate level analysis reveals this pattern for Trump, Clinton, and Romney. In the case of

Obama, the coefficient β1,1 starts with a negative and significant value and gradually becomes positive,

but insignificant. Here the positive correlation still increases as elections come close.

4 Identification and Estimation

In this section I first discuss the parameterization for the model and the variation that helps to identify

each parameter. Then I proceed to derive the true but infeasible likelihood function. Lastly, I describe

the feasible likelihood, which is a simulated version of the infeasible likelihood function.

4.1 Parameterization and Identification

For the parameterization of rally cost parameters, I add state-level fixed costs to the existing candidate-

specific parameters, which allows for cost heterogeneity across states. The cost parameters are given by

cR, cD, c1, . . . , cK. Controlling for all state fixed effects along with the candidate specific cost of rallying

leads to a multicollinearity problem in this setting. To avoid this problem I normalize one state’s fixed

cost to 0. I choose cK = 0 and then the parameter cR is interpreted as R’s cost of rallying in state K.

Moreover, parameters cR and cD are identified by the initial level of rallying in state K.34 Similarly, ck is

identified by the average probability of rallying in state k for both candidates.

33I consider the swing states with at least two rallies by any candidate for this analysis. So the remaining set of states that we

have is Pennsylvania, Michigan, Wisconsin, Nevada, New Hampshire, Ohio, Iowa, Virginia, Colorado, Florida, North Carolina,

and Arizona.
34This is easy to see, the following equation can be derived using a similar inequality as in equation 2.17.

Vit(pt) =

(
1 − βT−t+1

) (
ln(1 +

∑K
k=1 e−ci+ck ) + γ

)
1 − β

+ o(T − t) = ∆ + o(T − t) (4.1)
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The second set of parameters that we are interested in is the set of parameters that govern the pop-

ularity process. These include αR, αD, ρ, σν, δ1, . . . , δK. The identification for αi relies on candidate i’s
strategy and the changes in popularity, Pikt, post a rally in state k at time t − 1. The parameter ρ is iden-

tified jointly by the auto-correlation in popularity data and the gradual increase in the level of rallying

with the approaching election day. The dispersion in popularity given the lagged period primitives and

similar to ρ, the gradual increase in rallies jointly help in identifying σν. State-specific drifts, δk are iden-

tified by long-run means of popularity once the rallies are controlled for and by the popularity value at

which the probability of rallying is highest given the period t and opponent strategy.

The data used in this paper cannot identify the parameters f , probability of R moving first, and E,

maximal electoral payoff. To identify f , one would need observations on who moved first, which is un-

available. I calibrate f to a value of 0.5, as this value eliminates any ex-ante first mover or second mover

advantage in the game. The parameter E, maximal electoral payoff, is not identified. Its identification

relies on differences in payoff from rallying in a state and not rallying. However, multiple parameters

influence this difference. Effectiveness, cost parameters, and also persistence parameter rely on this

variation. Due to this, parameter E can not be identified. I calibrate its value to 538, the total number of

electoral college votes in the United States. I also consider the alternative value of E = 157, which is the

total electoral college votes states used for estimation.

4.2 Likelihood

This subsection presents the log likelihood that I use to estimate the model. Given the assumptions 2.2,

2.3 and 2.1 (or A.1) we can characterize the transition density for random vectors X̃t = (At,Pt+1) for

t = 1, 2, . . . ,T. This definition of random vectors states that X̃t is the vector containing rally decisions in

period t and the popularity vector in the follow up period, which is indexed as t+1. The transition density

that governs the random vectors, X̃1, X̃2, . . . , X̃T, is instrumental in deriving the likelihood function. The

Lemma 4.1 defines this transition density for us.

Lemma 4.1 Given assumptions 2.2, 2.3 and 2.1 (or A.1) the random vectors X̃1, X̃2, . . . , X̃T obey the Markov

property. Moreover the transition densityψt(Xt|Xt−1) for t ≥ 1 is given by:

ψt(X̃t|X̃t−1) = f (Pt|AR,t,AD,t,Pt)σt (At; Pt) (4.3)

where σt(.; .) is defined in equation 2.15 and f (.|., ., .) is defined in equation 2.3 (or A.4).

The proof for Lemma 4.1 follows straight from the equilibrium choice probabilities and the popularity

process. This transition density would be the ideal choice of the likelihood construction if all popularity

values were observed. I have one observation for poll margins for a day, which limits us with one obser-

vation of poll margins for every four periods. I assume that poll margins I observe at d are realized at the

Given the above holds then the difference in payoffs of rallying in state K and not rallying is given by

uist(K; l, pt) − uist(0; l, pt) = ci + E
[
Vit(p)|K, l, pt

]
− E

[
Vit(p)|K, l, pt

]
= ci + δ − δ + o(T − t) ≈ ci (4.2)

The same also holds for the first mover choice probabilities. Note that this payoff difference directly maps to log of odds ratio

of rallying in state K with respect to not rallying at all.
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beginning of the day d + 1. In other words, the poll margin I observe on the day d is isomorphic to the

popularity candidates would observe in period t = 4d + 1, which one may also call the first sub period

of day d+ 1. The remaining popularity values for periods 4d+ 2, 4d+ 3 and 4d+ 4 are missing. The idea

behind this index is to map any period t with a pair (d, l), where d is a day, and l is a sub period of the

day. There will be four sub-periods in each day. Therefore, for any period t, there exists a day d and sub

period, l such that t = 4(d − 1) + l.35

Let Xd be the observations for day d. For a day d, I observe all chosen rally choices taken by candi-

dates. These choices are denoted by {A4d−3,A4d−2,A4d−1,A4d} where A4(d−1)+l = (AR,4(d−1)+l,AD,4(d−1)+l)
for l = 1, 2, 3, 4. Note that Ai,4(d−1)+l is the rally decision taken by candidate i on day d and sub pe-

riod l (or period 4(d − 1) + l). I also observe popularity, or poll margin, for day d, which I assume to

be realized in sub period 1. Therefore, for a given day d, P4d−3 is observed, but P4d−2, P4d−1 and P4d

are not. Moreover note that P4(d−1)+l = (P4(d−1)+l,1,P4(d−1)+l,2 . . . ,P4(d−1)+l,K) where P4(d−1)+l,k ∈ R. For

day d observation I consider d + 1 observed popularity. Hence for day d the observation is given by

Xd = {A4d−3,A4d−2,A4d−1,A4d,P4d+1}.

Proposition 4.1 shows that the random vectors {X1,X2, . . . ,XD̄} obey the Markov property and their

density for the day to day transitions of these observations, denoted by λθd (Xd|Xd−1), is also given

Proposition 4.1 Given assumptions 2.2, 2.3 and 2.1 (or A.1) the random vectors {X1,X2, . . . ,XD̄} obeys

the Markov property and its governed by the transition density λθd (Xd|Xd−1), which is given by:

λθd (Xd|Xd−1) =
∫

(p2,p3,p4)∈R3K

 4∏
l=1

σ4(d−1)+l(A4(d−1)+l; pl)

 ×
 4∏

l=1

f
(
pl+1|A4(d−1)+l, pl

) dp2dp3dp4 (4.4)

Where p1 = P4d−3 and p5 = P4d+1.

Proposition 4.1 is proved in appendix. The proof follows from applying Lemma 4.1 recursively. Based

on this proposition I can formulate the likelihood of observing X1,X2, . . . ,XD̄. Also, do note this Markov

process is not time homogeneous, as the densities vary with day d. The key driving factor for making this

density to vary with day d are the candidate’s equilibrium choice profiles. As seen in the data and also

the model predictions rally intensity increases as election comes close and therefore a Markov process

that is time homogeneous can not support these features.

Moreover, the integration in Proposition 4.1 is not feasible analytically and therefore I rely on Monte

Carlo methods, which are discussed in the next subsection. Note that it is a 3K dimensional integration,

and it imposes a dimensional constraint on us. We can use λθd (Xd|Xd−1) to find the log likelihood, which

is given by:

ℓℓ
(
θ; X1,X2, . . . ,XD̄

)
=

D̄∑
d=1

log
(
λθd

(
Xd

∣∣∣Xd−1

))
(4.5)

35The uniqueness of this guaranteed as any natural number t can be expressed as an expansion in the following sense.

t = 4 × (d − 1) + l where d − 1 is the quotient one would obtain when t is divided by 4 and l is the corresponding remainder

of this operation.
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4.3 Simulated Likelihood

In this section, I will briefly describe the procedure that I used to evaluate the log-likelihood.36 I will

assume that f (.|.) is given by equation 2.3. I use Quasi-Monte-Carlo method, in particular I generate

210
× 3K points from 3K dimensional Sobol sequence. Then I construct its probability integral trans-

form to obtain the corresponding standard normal shocks. Let these shocks be denoted by ζ = {ζm =

(ζm
1,1, . . . , ζ

m
1,K, . . . , ζ

m
3,1 . . . , ζ

m
3,K)}Mm=1. For each draw m and day d, I construct the corresponding popularity

path. Let this path be denoted by p̂m,d
1,k , p̂m,d

2,k , . . . , p̂m,d
4,k . We observe p̂m,d

1,k = Pd,1,k, which is the popularity

value realized at the beginning of day d. Then values p̂m,d
2,k , . . . , p̂m,d

4,k are not observed and therefore are

obtained by:

p̂m,d
l+1,k = αR1{AR,d,l == k} + αD1{AD,d,l == k} + α̃1{AR,d,l == k,AD,d,l == k} + ρp̂m,d

l,k + δk + σνζ
m
l,k (4.6)

Each paths gives me the mean for observed popularity the next day, as shown below:

p̂m,d
5,k = αR1{AR,d,4 == k} + αD1{AD,d,4 == k} + α̃1{AR,d,4l == k,AD,d,4 == k} + ρp̂m,d

4,k + δk (4.7)

I construct the set of popularity sequences, p̂m,d
1,k , p̂m,d

2,k , . . . , p̂m,d
5,k for all k and m. Let this set be denoted

asPd = {p̂m,d = (p̂m,d
1,1 , . . . , p̂

m,d
1,K , . . . , p̂

m,d
5,1 , . . . , p̂

m,d
5,K )}Mm=1.

Now, recall from Section 2 that the equilibrium does not provide a reduced form prediction and there-

fore I rely on numerical methods to approximate the equilibrium. Let σ̂t
(
aR, aD; p

)
be the approximated

probability that candidate R and D chose aR and aD conditional on current popularity p (formally de-

fined in equation B.15). Given these two objects, I construct the approximated transition density as

followed:

λθd
(
Xd

∣∣∣Xd−1

)
≈λ̂θd

(
Xd

∣∣∣Xd−1

)
≈

1
M

M∑
m=1


 4∏

l=1

σ̂4(d−1)+l

(
Ad,l; p̂m,d

l

) × 1
σK
ν

 K∏
k=1

ϕ

Pd+1,1,k − p̂m,d
5,k

σν



 (4.8)

The density λ̂θ
(
Xd

∣∣∣Xd−1

)
provides a close approximation of λθ

(
Xd

∣∣∣Xd−1

)
. If ζ were drawn from a

standard normal distribution instead, call this density (λ̂θ
(
Xd

∣∣∣Xd−1

)
) then it is not hard to see that

λ̂θ
(
Xd

∣∣∣Xd−1

)
→ λθ

(
Xd

∣∣∣Xd−1

)
as M → ∞. The error of this integral would vanish to zero with a rate

of
√

M. However, I am using QMC, which in practice is known to provide better convergence rate if the

variation of λθd (.|.) is finite. This is true under the condition σν > 1
∆

and 1 − ρ > 1
∆

for a large ∆ >> 0.

Therefore, the approximate log-likelihood is given by:

ℓℓ(θ; X0,X1, . . . ,XD̄) ≈ ℓ̂ℓ (θ; X0,X1, . . . ,XD̄) =
1
D̄

D̄∑
d=1

log
(
λ̂θd

(
Xd

∣∣∣Xd−1

))
(4.9)

I conduct an extensive set of Monte Carlo experiments to assess the finite sample bias that arises due

to the two layers of approximation that I use. The first layer refers to the equilibrium approximation,

and the second layer is the QMC procedure. For K = 2, I find that there is negligible bias. For K = 4,

the bias is still contained within 10% of the parameter value. These Monte Carlo results are shown in

Section D, specifically sub-section D.3.

36For a more detailed description of the numerical approximation of the equilibrium refer to Section B and for the estima-

tion procedure that uses this numerical approximation refer to Section D.
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Figure 6: The figure displays states considered in the analysis. The unlabeled states, which are omitted, had less than 2 rallies

by either candidates. The states considered in the analysis are swing states. To keep dimensionality of the model under control

I group these swing states into 4 groups.

Table 3: Summary Stats for States Groups

Rallies Per Day R’s Poll Margin
State Romney’12 Obama’12 Trump’16 Clinton’16 2012 2016 Electoral College Votes

South West 0.05 0.05 0.08 0.00 2.81 -1.18 26
(0.22) (0.22) (0.27) (0.00) (0.56) (0.96)

Mid West 0.06 0.07 0.07 0.04 -3.85 -5.52 32
(0.24) (0.25) (0.25) (0.19) (1.49) (1.36)

North East 0.17 0.14 0.18 0.11 -3.84 -3.84 42
(0.37) (0.34) (0.39) (0.31) (1.07) (1.28)

South East 0.18 0.09 0.21 0.15 0.40 -3.24 57
(0.39) (0.28) (0.41) (0.35) (1.11) (0.96)

*Standard deviations in parenthesis wherever applicable.
a Note: The table shows summary stats for number of daily rallies and average Republican poll margin lead across
states groups. These statistics are given for last 100 days before election. In 2012 Mid West and North East within
swing states were more Democrat leaning while South West states were Republican leaning. South East states,
however, were close to the margin. In 2016 most all states were Democrat leaning based on aggregate polls.

4.4 State Groups

Estimating the model on the whole set of U.S. states is infeasible, as it introduces roughly 50 state vari-

ables for the dynamic programming problem that each candidate solves. Even if one considers the states

with at least two rallies by a candidate, the achieved dimension reduction is not sufficient for reliable es-

timation. As a result, I construct groups of states that allow me to estimate the model with adequate

accuracy. I construct the same state groups across the two elections so that our estimates are compara-

ble across the two elections. Therefore, I will include states like Arizona in the 2012 estimation, which

had no rallies in 2012, but three rallies in 2016.

I create four groups of states, where each group is the intersection of a US region and the swing
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states37 in that region. For instance, this intersection is given by swing states Nevada, Arizona, and Col-

orado for the South West group. South East group consists of Florida, Virginia, and North Carolina. The

Mid West group consists of Michigan, Wisconsin, and Iowa. Finally, the group North East group consists

of New Hampshire, Pennsylvania, and Ohio. The misplaced state is Ohio as it is a Midwest state. This is

to obtain a state group with a similar number of electoral college votes as the southwest states.38

For calculating poll margin leads for each state group, I consider the weighted mean of poll mar-

gins for each state belonging to the group. The weights are a state’s proportional electoral college votes

within the state group. The summary statistics for rallies and final poll margins are provided in Table

3. For estimation I consider deviation of poll margins from the mean across all states and days, that is
1

DK

∑K
k=1

∑D
d=1 Pk,d where Pd,k is the weighted average poll margin within a state group.

5 Results

5.1 Estimates

Table 4 presents the results from the estimation exercise. Columns (1) and (2) correspond to the main

parameters. Columns (3) and (4) correspond to the fixed effects used in the model. I estimate that the

effectiveness of Trump’s rallies, αR, was 0.0838 pp in a state group, which is significantly larger than 0.

This estimate tells us that Trump’s rallies successfully gained support from the electorate. To be precise,

Trump gained a lead of 0.0838 percent of votes over Clinton after a rally. This discovery is in line with

what Snyder and Yousaf (2020) find in their event study regarding Trump’s rallies.

In addition to Trump’s rallies, I find that Clinton, Romney, and Obama rallies also successfully im-

proved their lead in the polls. The effectiveness estimates for their rallies are 0.0745 pp, 0.0732 pp, and

0.0653 pp, which are also significant.39 As mentioned before, the literature has found mixed evidence

on whether campaign visits increase support from the electorate (Shaw, 1999; Shaw and Roberts, 2000;

Shaw and Gimpel, 2012; Wood, 2016). The results in this paper support the claim that it does. This pa-

per’s findings qualitatively agree with articles that have considered candidate-specific effects (Shaw and

Gimpel, 2012) and/or allowed media coverage (Shaw and Roberts, 2000) as they document that candi-

date campaign visits effectively gain the electorate’s support.

The combined effect of both candidates rallying is indistinguishable from 0 for both presidential elec-

tions. This was particularly assumed and argued in Strömberg (2008) for the case of the 2004 and 2008

U.S. presidential elections. Strömberg (2008), did not estimate the effectiveness of state visits but as-

sumed it to be the same across both candidates. Here, I empirically show that simultaneous rallies held

by competing candidates in the 2012 and 2016 U.S. presidential elections canceled each other.

37Here, the swing states, for the lack of a better name, are defined as states with at least two rallies in either election.
38I consider two alternate definitions of states groups for robustness tests. One considers the states used in Snyder and

Yousaf (2020), and the other treats Florida as an individual state group by combining Virginia and North Carolina with the

North East group as Florida is geographically isolated. The results from this exercise are discussed in Section 6.
39Here I have dropped the signs, and the estimates are interpreted as effects of a candidate rally on their poll margin lead
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Table 4: Parameter Estimates

Main Parameters Fixed Effects

Parameters 2012 2016 Parameters 2012 2016

Popularity

αR 0.0732 0.0838 δ1 0.032 0.023
0.0176 0.0155 0.0097 0.008

αD -0.0653 -0.0745 δ2 -0.040 -0.02
0.0180 0.0152 0.0099 0.009

ρ 0.989 0.991 δ3 -0.035 -0.0069
0.002 0.001 0.0084 0.0073

σ 0.147 0.16 δ4 0.023 -0.0074
0.0141 0.0148 0.0063 0.0073

Costs

cR 2.68 2.36 c1 0.44 0.943
0.262 0.208 0.315 0.411

cD 2.89 3.26 c2 0.53 0.788
0.19 0.259 0.270 0.308

- - c3 0.094 -0.0447
- - 0.270 0.22

2012 2016
Observations 100 100

Log Likelihood -658.74 -654.54

a Note: The table shows estimates for the model parameters. Here the

standard errors have been computed by using observation wise gradient

and likelihood hessian. I use HAC estimates for this purpose to take care

of correlations in gradient values. For computing the gradient and hessian

I used Auto-differentiation in Julia.

The estimates of persistence in popularity are also provided in Table 4. The persistence is approxi-

mately 0.99 for both years. The weekly decay rate supported by the estimate of the persistence param-

eter is 28%.40 This decay rate lies in the far right tail of the perceived decay rate distribution estimated

in Acharya et al. (2022). However, the decay rate is lower than Hill et al. (2013), which is at 52.4%. The

third-degree lagged polynomial specification considered in Gerber et al. (2011) estimated a decay rate

of 25%, which is quite close to our estimate of 28%.

The cost estimates reflect the expected benefit threshold, measured in electoral college votes, be-

yond which a candidate chooses to rally in a state. The estimate of Trump’s threshold is significantly

lower than the estimated threshold for Clinton. These estimates reveal that Trump was more likely to

hold a rally even if it had a much smaller chance of contributing to his overall success. On the other

hand, Clinton was more cautious in holding rallies. In her case, a rally was held if it had a much larger

chance of contributing to her overall success. This estimate captures not only an asymmetry in observed

campaigning strategies between the opponents, despite having similar levels of campaign effectiveness,

40If λ is decay rate for ∆ periods then the following relation holds ρ = e−
λ
∆ . For weekly decay rate, ∆ = 7 × 4 and therefore

λ = −28 × log(ρ)
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Table 5: Persuasion Rates

2012 2016 Spenkuch and Toniatti (2018)

Romney Obama Trump Clinton Rep. Ads Dem. Ads

Pers. Rate of 1 Rally/T.V. ad (%) 0.147 0.130 0.167 0.150 0.01 0.03

0.0357 0.0361 0.031 0.030 0.005 0.004

Agg. Switched Decisions (in Millions) 0.388 0.577 2.2

0.057 0.097 -

a Note: This table compares persuasion rates of rallies with those of advertising. Here I am considering persuasion rate of one rally on

the election day with those estimated for advertising by Spenkuch and Toniatti (2018). Persuasion rates of a rally in my setting is defined

and given by equation 5.1. The standard errors are calculated using the delta method. The aggregate number of switched decisions for

rallies is given by changes in vote margins in the counterfactual regarding electoral effects of rallies. For T.V. ads the numbers are taken

from Spenkuch and Toniatti (2018).

but also the asymmetry in their attitudes towards risky investments.

Meanwhile, this asymmetry is not found for the 2012 election, as the cost estimates of rallies are not

significantly different for Obama and Romney.41 However, there are differences in voter attitudes across

states, specifically larger state groups. States groups such as the North East (Maine, Pennsylvania, and

Ohio) and Mid West (Iowa, Michigan, and Wisconsin) were more Obama-leaning while South West states

were Romney-leaning. MW and NE state groups (or SW state group) have considerable amount of elec-

toral college votes and therefore, their inclination towards D (or R) limits the dependence of electoral

success on candidate rallies, Section 8 demonstrates this.

To put rally effectiveness estimates into perspective, consider the Table 5. The table displays the per-

suasion rates for rallies and advertising. The persuasion rates on advertising, estimated in Spenkuch and

Toniatti (2018), are also provided. I follow the definition of persuasion rates in DellaVigna and Kaplan

(2007) and Spenkuch and Toniatti (2018), to derive these objects for this setting. The persuasion rate on

the election day is given in equation 5.1, where Vk denotes the proportion of the voting age population

in state group k.

f Rally
i =

2

100 + (−1)1{i=R}
∑K

k=1
δk∗Vk
1−ρ

×

∣∣∣∣∣∆Poll Margin

∆Rallies

∣∣∣∣∣ (5.1)

I use αi in place of ∆Poll Margin
∆Rallies to provide persuasion rate of a rally by a candidate. The persuasion

rate in this set measures the share of voters that changed their behavior in response to a political rally.

While comparing these rates with advertising, I find that rallies’ persuasion rates are higher than adver-

tising’s. Moreover, one would require 17 T.V. ad spots in each DMA of a state group to compensate for

one Trump’s rally. The same compensation ratio for Romney, Obama, and Clinton is given by 15, 4, and

5, respectively. This indicates that on average Republican rallies carried a much larger persuasive effect

41I acknowledge the existence of some asymmetry in campaigning strategies used by Obama and Romney, which the model

does not capture. This asymmetry is in the observed correlation between electoral college votes and the number of rallies on

a day within swing states. See Table 2
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than their T.V. ads.

The persuasion rates for rallies are still lower than that of T.V. news. For instance the same for FOX

News is f = 11.6 (DellaVigna and Kaplan, 2007). Assuming no decay, Trump would require to expose

a population with 67 MAGA rallies to compensate for the absence of FOX News. For advertising, this

trade-off amounts to 500 spots on cable T.V. (Spenkuch and Toniatti, 2018). Contrary to the hypothesis

that rallies are less important than T.V. ads in an election, these numbers do raise a fair bit of ambiguity

as to whether this is true or not.

While these numbers show that the persuasive effect of a rally far outweighs that of a T.V. ad, T.V. ads

possess scaling capabilities that political rallies lack. Recall that political rallies are naturally constrained

while, arguably, one can run T.V. ads across many media markets simultaneously.42 Therefore, the cu-

mulative effect of T.V. ads can outweigh that of rallies. For instance, the number of voters that switched

their decisions due to rallies in 2016 was 576.6 K and in 2012 was 387.6 K.43 For T.V. ads, the number of

voters is 2.2M, roughly 4 times what it was for rallies in 2016.44

5.2 Model Fit

In this section, I examine the in-sample and the out-of-sample performance of the model. The model

is capable of fitting the dynamic moments to a large degree. In Figure 17, I compare the model’s proba-

bility of rallying in a state for each candidate with that observed in the data. I also compare the average

number of daily rallies in a state between the model and the data. These comparisons are provided in

Table 16. The model’s predicted average number of daily rallies lies in the 95% confidence intervals of

the observed average number of daily rallies.

Table 16 also presents the correlation between rally decisions predicted by the model and observed

in the data. For Trump, this correlation is the lowest at 69% and the correlation is highest for Clinton at

84%. I also show the proportion of rally decisions that are correctly predicted by the model. Prediction

is defined as the rally decision that has the maximum probability. By comparing these predictions with

the observed decisions I find that the worst proportion of correct predictions is 73% for Trump. The

highest correct prediction is for Clinton at 86%.

The model supports the correlation pattern between electoral college votes and rally count, this was

the third pattern in Section 3.3. For this purpose, I divide the election periods into four bins, which

are 100-76 days before the election (denoted as -4), 75-51 days before the election (denoted as -3), 50-

26 days before the election (denoted as -2) and 25-1 days before the election (denoted as -1). For the

42Assuming prices do not change and candidates have deep pockets.
43For rallies I rely on the counterfactual experiment on the cumulative effect of rallies
44The number of rallies held in 2020 was much lower than in 2016. Due to the concern for covid-19 and voters practic-

ing social distancing, very few rallies were held by Democrats. However, at the same time, spending on T.V. ads was much

higher than ever. I conjecture that a significant proportion of this unforeseen increase in spending on Cable T.V. ads can be

explained by the decline in rallies. Exactly what proportion is explained by the decline in rallies will depend on the degree of

substitutability between these campaigning instruments. Estimating the trade-off between spending money on T.V. ads and

holding political rallies is an open question.
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Table 6: Out-of-Sample Fit

Panel (A): Comparison of Means

Romney Obama Trump Clinton

Model Data Model Data Model Data Model Data

South West 0.171 0.1 0.184 0.15 0.13 0.2 0.0639 0

0.14 0.18 0.2 0

Mid West 0.168 0.05 0.169 0.2 0.116 0.1 0.06 0.05

0.1 0.2 0.14 0.1

North East 0.271 0.15 0.238 0.1 0.309 0.45 0.156 0.25

0.18 0.14 0.29 0.22

South East 0.39 0.2 0.272 0.1 0.353 0.2 0.178 0.3

0.2 0.14 0.2 0.24

Panel (B): Measures of Fit

Romney Obama Trump Clinton

Correlation 0.8430 0.8320 0.7019 0.8162

Mean Squared Error 0.242 0.254 0.4061 0.2684

Correct Predictions 0.8750 0.8625 0.7625 0.8500

a This table shows the out-of-sample model fit. Here I divide the data into two parts, where I randomly se-

lect (without replacement) 20% of the observations, call this the validation sample. I estimate the model

on the remaining 80% of the data, the training sample, and then calculate model fit metrics on the valida-

tion sample. The model’s predicted average number of rallies in a day lie within 1 s.d. from the observed

counterparts in the validation sample. The worst correlation is 0.70. For each period, I define prediction

as the option with the highest probability of choosing. I compare these predictions with the data and

calculate the proportion of correct predictions. Using this metric for prediction I find that worst correct

predictions is 76%.

model’s prediction and the observed sample, I plot the fitted line with a bin scatter plot in Figure 19 for

each day bin. The increasing correlation as the election comes close is supported by the model.

I show the out-of-sample model fit in Table 6. For this purpose, I divide the data into two sub sam-

ples, training and validation. I randomly select (without replacement) 20% of the observations for the

validation sample. I estimate the model on the remaining 80% observations, the training sample, and

then calculate model fit metrics on the validation sample.

The majority of the average number of daily rallies predicted by the model (for each candidate and

state) lies within one standard deviation from its observed counterpart in the validation sample. The

worst correlation is 0.70 corresponding to Trump’s rally decisions. I also calculate the correct predictions

made by the model, which ranges from 76% for Trump to 87% for Romney.
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6 Robustness

In this section, I examine and show the robustness of parameter estimates from my main specification.

First, I consider an alternative definition of state groups and swing states. I isolate Florida as an indi-

vidual state group in the first alternative definition. In the second alternative definition, I consider the

swing states used in Snyder and Yousaf (2020). Then I allow for geographic serial correlation in popular-

ity shocks. I also consider aggregate shocks. I also test robustness to forecasting error in the polls. Apart

from these, additional robustness tests in Appendix E consider a wide range of concerns.45

6.1 Robustness to State Group Definitions

6.1.1 Florida as Individual State Group

Florida is farther from North Carolina and Virginia than Pennsylvania, Ohio, and New Hampshire. The

North East States are Pennsylvania, Ohio, New Hampshire, North Carolina, and Virginia in this test. For

the South East States, I only include Florida. I estimate the model, and the results from this exercise are

given in columns (1) and (2) in Table 7.

Here for 2016, I do not find significant differences in effectiveness estimates. For 2012, I find estimates

do decrease, but they remain significant at the 1% level of significance.

6.1.2 Swing States used in Snyder and Yousaf (2020)

In my baseline specification, I use states that had at least two rallies by a candidate. In this robustness

test, I use the swing states Snyder and Yousaf (2020) used in their event study of political rallies. I apply

the same rule of state groups as before. Here for 2012, the resultant South West states are Colorado

and Nevada; Mid West state group consists of Iowa and Wisconsin; North East state groups are New

Hampshire and Ohio. The South East state group is the same as the baseline. For 2016 this gives me the

same state groups as in the baseline for South West, Mid West, and South East. The North East states

have Maine in addition to the baseline states.

I estimate the model, and the results from this exercise are given in columns (3) and (4) in Table 7. I

do not find significant changes from the baseline effectiveness estimates for 2016. Estimates for 2012 do

decrease but remain significant.

6.2 Robustness to Correlated Popularity Shocks

In the baseline specification, I assume that popularity shocks are uncorrelated across states; however, it

could be the case that this is not true. I consider two model extensions and test how robust the base-
45Robustness to alternate modes of campaigning have been tested using Nielsen Ad Intel data from Kilts Center for Mar-

keting at University of Chicago Booth and the Weselyn Media Project from University of Wisconsin. The estimates do not

change significantly. These results will be released once the approval from Kilts Marketing Center has been obtained.
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line estimates are. Specifically, I consider spatial correlation and the presence of aggregate shocks and

estimate the model for both.

Correlated popularity shocks introduce few changes in equilibrium conditions, approximation algo-

rithm, and also the simulated likelihood. The first change is in the expectation operators in the Proposi-

tion 2.1. These operators now account for the resulting correlated structure of popularity and they gov-

ern under Assumption A.1. A second change is in the equilibrium approximation; here, I use Cholesky

factorization while evaluating expectations of value functions wherever applicable. The simulated log-

likelihood in this setting is given by:

ℓℓ(. . . ) ≈ ℓ̂ℓ (θ; X0,X1, . . . ,XD̄)

≈
1
D̄

D̄∑
d=1

log

 1
M

M∑
m=1


 4∏

l=1

σ̂4(d−1)+l

(
A4(d−1)+l; p̂m,d

l

) × exp
[
−

1
2

(
Pd+1,1,k − p̂m,d

5,k

)T
Ω−1

(
Pd+1,1,k − p̂m,d

5,k

)]
√

2πdet(Ω)




(6.1)

HereΩ is the resulting variance-covariance matrix. This matrix will differ for each case of spatial cor-

relation and aggregate shocks. I parameterizeΩ for each case and estimate the underlying parameters

ofΩ along with the baseline parameters.

6.2.1 Spatial Correlation

I examine how robust the estimates are if one accounts for spatial correlation. Geographically closer

state groups may exhibit a higher degree of correlation in popularity shocks than state groups farther

away. This can be supported by a variance-covariance matrix where off-diagonal elements are inversely

proportional to the distance between states representing the column and row. I assume variance across

the states is constant, and the proportionality constant for state pairs is also constant. The variation in

correlation across state pairs depends on the distance between the states constituting the pair.

To achieve spatial serial correlation, I introduce the following changes. First, the popularity equation

follows a similar equation given by:

pk,t+1 = αRaRkt + αDaDkt + ρpkt + δk + νkt+1 (6.2)

Except for the shocks, every other term in the equation is the same as the baseline specification. Here

the shocks
(
ν1,t+1, ν2,t+1, . . . , νK,t+1

)
follow:

ν1,t+1

ν2,t+1
...

νK,t+1

 ∼ N




0
0
...

0

 ,


σ2
ν

ρcov

D1,2
. . .

ρcov

D1,K
ρcov

D2,1
σ2
ν . . .

ρcov

D2,K
...

...
. . .

...
ρcov

DK,1

ρcov

DK,2
. . . σ2

ν




(6.3)

Here parameter σν accounts for standard deviation in state shocks. Parameter ρcorr accounts for the

degree of autocorrelation and Dk,l is the distance between state group centroid k and l in 1000 KMs. The

results from the estimation for this exercise are given in columns (7) and (8) in Table 7.
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Table 7: Robustness Tests

Alt. State Groups: Swing States in Aggregate Shocks Spatial Autocorrelation Polling Error

Isolate Florida Snyder and Yousaf (2020) σagg ρcov State-Wise

Parameters 2012 2016 2012 2016 2012 2016 2012 2016 2012 2016

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

αR 0.0271 0.0917 0.0428 0.0838 0.0932 0.0615 0.062 0.0416 0.0982 0.106

0.00459 0.0166 0.00788 0.0155 0.0193 0.0272 0.00891 0.0102 0.016 0.0212

αD -0.0211 -0.0567 -0.0295 -0.0745 -0.0415 -0.0559 -0.042 -0.0807 -0.05 -0.1

0.00428 0.0111 0.00671 0.0152 0.0127 0.0105 0.00674 0.015 0.0102 0.0171

ρ 0.991 0.99 0.987 0.991 0.99 0.991 0.988 0.991 0.99 0.994

0.001 0.002 0.003 0.001 0.002 0.001 0.002 0.001 0.002 0.001

σ 0.0611 0.156 0.0899 0.16 0.129 0.121 0.144 0.154 0.147 0.161

0.00729 0.0116 0.00623 0.0148 0.0115 0.00982 0.013 0.0124 0.014 0.0149

cR 3.33 2.73 2.82 2.36 2.9 2.37 2.77 2.22 2.84 2.37

0.27 0.233 0.292 0.208 0.29 0.211 0.275 0.2 0.286 0.191

cD 3.44 3.44 2.88 3.26 2.86 3.24 2.87 3.39 2.83 3.23

0.218 0.294 0.22 0.259 0.207 0.31 0.195 0.256 0.194 0.244

ρcorr - - - - - - 0.006 0.01 - -

- - - - - - 0.001 0.002 - -

σagg - - - - 0.068 0.104 - - - -

- - - - 0.0146 0.0133 - - - -

LL -285.56 -634.45 -465.89 -654.55 -645.68 -619.17 -642.47 -625.07 -658.38 -663.32

Observations 100 100 100 100 100 100 100 100 100 100

a Note: The table shows estimates for model parameters under 6 modifications. Columns (1) and (2) consider state groups where Florida constitutes South

Eastern states and North Carolina along with Virginia are considered to be a part of North East states. Columns (3) and (4) consider states that are used by

authors in Snyder and Yousaf (2020) for their event study. Columns (5) and (6) relax the assumption of uncorrelated popularity shocks and accommodates

spatial autocorrelation in popularity. Columns (7) and (8) relaxes the assumption of uncorrelated popularity shocks and accommodates aggregate shocks in

popularity. Columns (9) and (10) corrects for state-specific ex-post forecast error. Specifically, I correct for the difference between election day poll margin

and the observed vote shares for each state separately. Here the standard errors have been computed by using observation wise gradient and likelihood

hessian. I use HAC estimation for this purpose.
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I find that for the 2012 election, the estimates are not significantly different from the baseline. For

2016, I do find significant divergence. However, the rally effectiveness of both candidates is still signifi-

cant. Moreover, Vuong’s test reveals that for 2016 the model with aggregate popularity shocks explains

the data better. The correlation, I estimate, is likely an attempt to predict the variance in aggregate

shocks. Therefore, this model is not valid for 2016.

6.2.2 Aggregate Popularity Shocks

The presence of aggregate shocks can also lead to a correlation in popularity shocks. For this purpose, I

model the aggregate shocks and simplify the system of popularity equations to obtain the resulting vari-

ance and covariance matrix. Consider the baseline popularity equation with added popularity shocks.

pk,t+1 = αRaRkt + αDaDkt + ρpkt + ν̃k,t+1 (6.4)

Here ν̃k,t+1 = σννk,t+1 + σaggµt+1. The parameter σagg represents the standard deviation in aggregate

shocks, and µt+1 represents the shock itself. I assume that state-specific shocks νk,t+1 are orthogonal to

each other and also to µt+1. Note that the net shock ν̃k,t+1 is correlated across states despite assuming

orthogonality on νk,t+1. This implies that the vector of popularity shocks
(
ν̃1,t+1, ν̃2,t+1, . . . , νK,t+1

)
satisfy

the following: 
ν̃1,t+1

ν̃2,t+1
...

ν̃K,t+1

 ∼ N




0
0
...

0

 ,


σ2
ν + σ

2
agg σ2

agg . . . σ2
agg

σ2
agg σ2

ν + σ
2
agg . . . σ2

agg
...

...
. . .

...

σ2
agg σ2

agg . . . σ2
ν + σ

2
agg



 (6.5)

The estimates from this case are given in columns (5) and (6) of Table 7. I find that the estimates for

the 2012 and 2016 elections are not significantly different from the baseline. As mentioned, this model

provides a better fit than the spatial autocorrelation model for 2016. This is evident by comparing the

loglikelihood values, −625.07 for spatial autocorrelation and −619.17 for aggregate shocks.

6.3 Robustness to Polling Error

One of the key issues that were observed during the 2016 presidential elections was that polls failed

to predict that Trump would win the election. This essentially points out to substantial measurement

error in the polling data that I use for my empirical application. To test how robust my estimates are

if we account for polling errors, I calculate ex-post state-specific polling errors. This is calculated by

comparing election day R’s poll margin obtained from FiveThirtyEight with the R’s observed vote share

margin (election result). I calculate the differences for each state and correct for this error for each daily

poll. This corrected poll margin data is then used for estimation instead of the de-meaned polls margins

in the baseline specification. The results from this exercise are provided in columns (9) and (10) in Table

7. Note that the estimates do not change significantly.
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(b) 2016 Planning Horizon Test
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(c) 2012 Planning Horizon Test
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(d) 2016 Planning Horizon Test
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Test Statistic 90% Confidence Interval 95% Confidence Interval

Figure 7: This figure shows results from conducting Vuong’s closeness test and also the Corrected Clarke’s test (Brück et al.,

2022). Here I consider the comparisons between the ’Full Planning Horizon’ (baseline model) with models that have different

possible length of the planning horizon. A negative statistic indicates that the ’Full Planning Horizon’ model performs better

than the competing model. Here x-axis shows the potential values of the planning horizon that I compare with the full planning

horizon and the y-axis shows the corresponding Vuong’s Closeness Test statistic for each comparison.

7 Model Selection

This section tests the validity of behavioral assumptions made on candidates. The first assumption

is that candidates can execute backward induction flawlessly. This might be untrue if candidates are

myopic, if the voters are more attentive closer to the election, or if voters have limited memory spans

(i.e., they do not recall earlier rallies by candidates). I assume that candidates, while optimizing, take

into account these factors. Candidate behavior will be identical if any of the above is true. Therefore, for

the statistical test, it does not matter whether politicians are myopic or their target population is. The

second assumption is that candidates held rallies strategically. It could be the case that candidates do

not consider opponents’ rally decisions and only make their decisions based on a state’s electoral payoff

and their popularity in the state. I test whether this is true or not.

While researchers have considered strategic and myopic behavior in sequential voting settings, it has

not been studied in a setting where these behavioral features are separable. For instance, in Spenkuch
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et al. (2018), suppressing strategic behavior is identical to suppressing forward-looking behavior. There-

fore, whether candidates are myopic or non-strategic when they vote on bills is unclear. Here these

features are separable and can be individually tested. I discuss the results and the procedures for these

two tests in the following subsections.

7.1 Uncovering Planning Horizon

The model assumes that presidential candidates are rational and can indefinitely compute or forecast

future outcomes. In this section, I analyze the extent to which this assumption holds. I assume that

candidates may forecast potential outcomes up to D̃ days into the future. The payoffs candidates receive

beyond D̃ are assumed to be zero. For each planning horizon limit D̃, I re-estimate the model and then

carry out a 1) Vuong’s closeness test and also 2) Corrected Clarke’s Test (Brück et al., 2022). The results

of this exercise are in Figure 7.

In this setting, myopic candidates will exhibit two key features. Consider the period t̃ = 4(D− D̃)+ 1.

This is when election day enters the planning horizon of a candidate, who can backward induce up

to D̃ days. Before this period, candidates do not consider their electoral payoffs, so their campaigning

decisions do not relate to how popular they are in a state. However, once this period passes, the electoral

payoffs enter their optimization problem. Equilibrium rally decisions of a candidate, at all periods from

this point, exhibit a correlation with their relative popularity. This feature is absent if a candidate is not

myopic. There is also an increase in the probability of holding a rally for myopic candidates (irrespective

of their popularity) because there is a positive return to holding rallies, which is not the case in periods

before t̃.

Note that these patterns can also arise if voters have a limited memory span or if they are more at-

tentive towards politicians closer to the election. I assume that politicians consider these behavioral

features of voters when they campaign. Therefore, it does not matter whether politicians act myopically

because they are myopic or because their voters have the aforementioned behavioral features. Under

either of these cases, as econometricians, we must see campaigning with myopic features.

From Figure 7, it is evident that we fail to reject the full horizon model against models that support

planning horizon of less than 100 days. This reassures us that the data does not reject our assumption

about candidates’ forward-looking capacity or the fact that I ignore voters’ behavioral constraints.

Moreover, these tests can also be used to find the minimum planning horizon needed to explain the

data at the same level as the full horizon model. I find that for 2012, a 10 day planning horizon model

can also explain the data as good as the baseline (using corrected Clarke’s test), which indicates that

candidates had at least a 10 day planning horizon. I also find that for 2016, a 15 day planning horizon

model can also explain the data as good as the baseline, indicating that in 2016 candidates had at least

a 15 day planning horizon.46

46These planning horizons are not interpreted as "booking a rally 15 days in advance," but as how far can candidate com-

pute while campaigning. This is similar to what Spenkuch et al. (2018) studied for roll call voting.
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Table 8: Strategic Behavior Test

Election Year

2012 2016 Pool Both

Clarke’s Test 5 9∗ 14∗∗

90% CI [-8,8] [-8,8] [-12,12]

95% CI [-10,10] [-10,10] [-14,14]

Corrected Clarke 0.05 0.09∗ 0.07∗∗

(Brück et al., 2022) 0.05 0.049 0.035

Vuong’s Closeness Test 0.00133 0.00079 0.0083

0.038 0.0453 0.0243

Observations 100 100 200

a Note: The table shows the results from model selection tests between strate-

gic and non strategic model. For the non strategic model I assume that can-

didate do not observe nor anticipate opponent actions, they believe that the

opponent does not rally. I estimate the model with this assumption for 2012

and 2016 elections. I calculate model selection test statistics where positive

values indicate that strategic model performs better.

7.2 Strategic Campaigns

I test whether candidates chose rallies strategically or not. For this purpose, I construct a model of

irrational candidates who decide based on their current popularity and the electoral size of a state. Here

candidates do not anticipate nor observe opponent actions. They assume that the opponent does not

rally while making decisions. The conditional choice probabilities under these assumptions still exhibit

the pattern showed in Figure 2. However, these probabilities in equilibrium are now orthogonal across

candidates.

I estimate the model and carry out three model selection tests. Here positive values indicate that

the strategic model performs better than the non-strategic model. The first test I use is the Clarke’s

test, which shows that in 2016 the strategic model performed better at 90% level of significance. The

corrected version of the Clarke Test (Brück et al., 2022) also produces similar conclusions. For the 2012

election, however we fail to reject the strategic model. Moreover, by pooling both elections together, I

find strategic model performs better at 5% level of significance.

8 Counterfactual Experiments

I execute two main counterfactual experiments. The first counterfactual experiment estimates the cu-

mulative effect of political rallies. The success of a rally today may not translate wholly into electoral
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outcomes because, in this dynamic game, the effects of rallies decay with time. However, on the other

hand, candidates hold multiple rallies to cumulate these effects. The decay and cumulation formulate

the opposing channels that determine whether rallies significantly affect electoral outcomes. If a candi-

date does not rally sufficiently, then decay dominates, making rallies ineffective.

I also consider counterfactual experiments that analyze how effectively campaign silences regulate

elections. Campaign silence is also known as pre-election silence, where there is a partial to a complete

ban on campaigning. Along with such bans, some countries also ban on release of polls to the public.

Canen (2018) studied the complete ban feature and found that complete bans can reduce social welfare

by reducing the amount of information available to voters. However, as argued before, little evidence

shows rallies are truly informative (Snyder and Yousaf, 2020). Moreover, multiple anecdotes show that

a substantial amount of misinformation (New York Times, 2020; Politico, 2020; New York Times, 2021)

is released in rallies. Therefore, I see such intervention positively as it can limit the number of rallies (a

potential source of misinformation).

8.1 Cumulative Effect of Rallies

In this exercise, I compare electoral outcomes under two cases. In the first case, call it "Only one can-

didate rallies," we allow only one candidate to hold political rallies while the opponent does not. This

setup predicts the outcomes of one candidate’s campaigning efforts alone and removes the effect of the

opponent’s counter-campaigning. The second case, call it "None rally," considers electoral outcomes

when there are no rallies by any candidate. For this, we simulate the popularity regressions, defined in

equation 2.1, for all states and set rally decisions to 0 for all states and both candidates.

The difference between the outcomes obtained under the two cases isolates the effect of total ral-

lying by a candidate on election results, such as vote shares and winning probability. To calculate the

cumulative effect of total rallying on vote shares and winning probability, I simulate the model S times,

and for each simulation s, I calculate election day vote shares and whether the candidate won or lost the

election for each case of "Only one candidate rallies" and "None rally." The average differences between

these two cases give me the estimate of this cumulative effect. The following two equations define these

quantities.

Vote Margins ∆V =
1
S

S∑
s=1

K∑
k=1

{(
ps

T+1,k,iRallies − ps
T+1,k,None Rally

)
× Total Votes received by both in k

}
(8.1)

Winning Probability ∆W =
1
S

S∑
s=1

1

 K∑
k=1

1

{
ps

T+1,k,i Rallies > 0
}

Ek > 269 − EC votes in resp. stronghold


−

1
S

S∑
s=1

1

 K∑
k=1

1

{
ps

T+1,k,None Rally > 0
}

Ek > 269 − EC votes in resp. stronghold


(8.2)
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Figure 8: This figure shows the cumulative effect a candidate’s rallies had on their vote margin lead and winning probability. For each candidate, first I draw 400

draws parameter values from the asymptotic distribution of the model parameter estimates. Then for each draw I simulate the model outcomes for the cases of (i)

only the candidate rallies and (ii) none rally. Then I take the differences of these outcomes across (i) and (ii). The variance of the distribution of these differences

are used to formulate the confidence intervals.
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Note that for the case of vote margins, decay and cumulation are the sole channels determining the

effect of total rallying. In the case of winning probability, a state’s natural inclination is also a crucial

factor. The parameter δk determines how pivotal a state is in a given year.

For estimating the standard error of the counterfactual estimates, I generate a sample (of size M)

of parameter values from the asymptotic distribution of the estimated parameters.47 For each draw, I

calculate outcomes under the case of "None rally", call it ym
None rally, and "i Rallies", call it ym

i Rallies, following

the same procedure as before. The desired standard error are calculated by using the random variables{
∆ym : ∆ym = ym

i Rallies − ym
None rally

}M

m=1
.

The results from this exercise are given in Figure 8 and Table 17. It is important to note that all can-

didates significantly increased their vote shares. However, Trump’s cumulative effect dwarfs the effect

Clinton and Obama had. Further, the effect Trump had on winning probability is particularly large. It

amounts to a 40% increase in winning probability. The rallies by other candidates did not affect the win-

ning probability. This result shows that Trump’s rallies were pivotal, while other candidates’ rallies were

not.

This finding contributes to the age old question of "Do campaigns matter?" (Lazarsfeld et al., 1968;

Berelson et al., 1986; Jacobson, 2015). It highlights that in addition to frequently studied campaigning

instrument, T.V. ads, presidential candidates can also effectively use political rallies to win elections.

Moreover, political rallies in a competitive election can be electorally pivotal and secure a win. This

finding disagrees with previous research that concludes electoral results have minimal dependence on

presidential campaigns (Franz and Ridout, 2010; Huber and Arceneaux, 2007; Jacobson, 2015). It agrees

with the findings obtained in Political Economy and Quantitative Marketing that presidential campaigns

can have substantial effects on electoral results and voting decisions (Spenkuch and Toniatti, 2018; Gor-

don and Hartmann, 2013).

8.2 Campaign Silence

In this exercise, I introduce campaign silence for a fixed duration D̃ right before the election. When

campaign silences are imposed, candidates can not hold rallies from day D − D̃ + 1 to D. In terms

of periods, the candidate can not hold rallies between periods T − 4D̃ + 1 to period T. Imposing this

restriction alters the continuation values for candidates in periods where they can rally and therefore

alter their behavior.

In this setting, candidate responses vary from state to state. The total rallies held until the commence-

ment of the campaign silence determines the accumulated popularity. If the campaign silence is short,

the accumulated popularity will marginally decay. This will result in an ineffective campaign silence.

If it is long, then the decay in accumulated popularity will be substantial and electoral outcomes will

change significantly.

47The asymptotic distribution of the parameter values is the normal distribution with the mean given by the parameter

estimates. The variance-covariance matrix of this normal distribution is given by the consistent estimator of the parameter

estimate’s variance-covariance matrix
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Figure 9: Campaign Silence Duration and Election Day Poll Margin for 2012 Presidential Elections. This figure provides esti-

mates for changes in electoral outcomes when campaign silence of varying duration lengths are imposed. For each campaign

silence duration, I calculate the R’s probability of winning along with the corresponding confidence intervals for these proba-

bilities.

I consider a grid of campaign silence length in days, D̃, ranging from 1 day up to 8.48 For each cam-

paign silence length, I compare electoral outcomes with the case without any campaign silence. I use a

similar procedure to the previous subsection to estimate the expected change and the associated stan-

dard error.

I find campaign silences are ineffective if an election is completely lopsided. Campaign silences

can have an effect when elections are highly competitive. In the data, 2012 was a lopsided election

where Obama had massive support from voters, while 2016 was a competitive election where Trump

won marginally over Clinton.

More importantly, shorter campaign silence— even in a competitive election— are ineffective. This

can be seen by no effect on winning probability for campaign silences that last shorter than three days.

If campaign silence is sufficiently long, the candidate that relies more on campaigning will see a decline

in his/her chances of winning.

48This is for brevity, I initially considered up to 30 day campaign silence. The effect of campaign silence on change in

election result weakly increases for 2016 and stays roughly the same for 2012.
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9 Conclusion

This paper shows that political rallies can be persuasive, electorally pivotal, and hard to regulate, even

in a consolidated democracy. I show this in two steps. In the first step, the paper constructs a dynamic

game where politicians compete against each other to stay popular on election day. The game possesses

a finite time horizon and a perfect information structure. The combination of these features is sufficient

for applying backward induction to compute equilibrium conditional choice probabilities, which are

unique. In this model, stage games satisfy the Markov Property, which is used to formulate a likelihood

function and estimate model parameters. This model allows for estimation in settings where only one

game is observed by using the stage games as a unit of observation.

From the analysis of electoral effects, I find that Trump’s rallies were pivotal as they increased his

chances of winning by 40%. However, rallies had no advantageous effects for Romney, Clinton, and

Obama. I also analyze the persuasion rates (DellaVigna and Kaplan, 2007; Spenkuch and Toniatti, 2018)

of rallies and find that a single rally is more persuasive than a Television ad. However, due to scalability

constraints, cumulatively, rallies fall short as there are many more T.V. ads that candidates can use than

rallies.

Policy-relevant counterfactual experiments reveal that campaign silences that last less than four days

are ineffective. In many countries, campaign silence policies last only 1-2 days. However, these bans (as

shown in the paper) lack regulatory power due to their short duration. Short durations give highly ef-

fective candidates sufficient time to hold multiple rallies and cumulate popularity among the voters.

Ultimately, the induced decay by a short campaign silence law is insufficient to dissipate the accumu-

lated popularity among voters.

Direct campaign communication is more prevalent in developing countries (Bidwell et al., 2020;

Szwarcberg, 2012; De la Torre and Conaghan, 2009; Paget, 2019) such as India, Tanzania, and Siera-

Leone. Some of these instruments, such as political rallies, can provide populist leaders with an uncon-

tested platform where these leaders can make any claims. Less informative voters, especially those who

lack the means to verify the claims made by politicians, can be easily persuaded using rallies. The pro-

portion of such voters is higher in developing countries than in developed countries. Future research

should explore if the persuasive effects of rallies in a developing country are much higher than in a de-

veloped country.

During the 2019 Indian General Elections, Narendra Modi held 115 rallies and majority of these ral-

lies were held in states that once were INC’s49 stronghold. Massive rallies formed a significant part of

Narendra Modi’s electoral campaign in the 2014 Indian General Elections. Preliminary analysis shows

a positive correlation between Modi rallies and the share of votes received by the BJP in 2019.50 The

model in this paper can be applied to this setting with suitable modifications. The model will address

the selection bias Modi’s rallies had and uncover the persuasive effects of his rallies.

49Indian National Congress party.
50Based on my research on rallies in India.
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A Proofs

A.1 Generalization of Proposition 2.1

A.1.1 Generalization of the Model

Here I will describe a more general model that can support intertemporal correlations in costs. The timing of information

revelation and decision making remains the same. The game will remain a game of perfect information, as in the main text,

as we assume every candidate observes every nature realization in the prior periods. However, to allow for general correlation

structures the bellman equations need to be redefined.

History: First, I introduce another set of costs, ξimtk, that can be deterministic or random variables. These will allow for

various different types of correlations in costs. I will provide more details on these costs later in the section. Second I define

history for the game as followed. Start with h1 = p1 and ht for t = 2, 3, . . . ,T,T + 1 is defined as:

ht =
(
ht−1, ft−1, ξ ft−1, f ,t−1, ϵ ft−1, f ,t−1, a ft−1, f ,t−1, ξst−1,s,t−1, ϵ ft−1, f ,t−1, ast−1,s,t−1, νt, pt

)
(A.1)

Where ft denotes the first mover picked by nature in period t and st ∈ {R,D}/ ft denotes the second mover. Moreover, recall

that νt denotes popularity shocks. Here a ft−1, f ,t−1 denotes the action chosen by the first mover, similarly ast−1,s,t−1 is defined.

The idiosyncratic costs shocks ϵ ft−1, f ,t−1 and ϵst−1,s,t−1, and the costs ξ ft−1, f ,t−1 and ξst−1,s,t−1 follow the same nomenclature.

Popularity: Popularity follows the same definition as in the main text. It follows the following AR(1) process.

pk,t+1 = αRaRk,t + αDaDk,t + ρpkt + δk + νk,t+1 (A.2)

Here the order of play doesn’t matter. What matters is who chose what. That is why the subscripts f and s have been redacted

from this equation. All terms have the same definition as in the main text. νk,t is a random variable indicating a generic

popularity shock. Assumption A.1 states the assumption that allows for arbitrary correlation in νk,t across states.

Assumption A.1 (General Popularity Shocks) The popularity shocks (ν1, ν2, . . . , νK) are distributed according to a multivari-

ate normal distribution.

(ν1,t, ν2,t, . . . , νK,t) ∼ N(0,Ω) (A.3)

whereΩ is a positive definite matrix.

The popularity shock in period t for state k is governed by νk,t. The shock vector is distributed according to a multivariate

normal distribution with mean vector as the null vector and variance covariance matrix as the positive definite matrixΩ, i.e.

(ν1,t, ν2,t, . . . , νK,t) ∼ N(0,Ω)

Let the density of popularity in period t + 1 given period t primitives be denoted by f (pt+1|aR,t, aD,t, pt). Here ps =(
p1,s, p2,s, . . . , pK,s

)
and ait =

(
ai,1t, ai,2t, . . . , ai,Kt

)
for i ∈ {R,D}. Let δ = (δ1, δ2, . . . , δK) then by assumption A.1 this density

is given by:

f (pt+1|aR,t, aD,t, pt) =

1
√

2π |Ω|
exp

[
−

1
2
(
pt+1 − αRaRt − αDaDt − ρpt − δ

)′Ω−1 (
pt+1 − αRaRt − αDaDt − ρpt − δ

)] (A.4)

Here |.| denotes the determinant operator and x′ denotes the transpose of x.

Electoral Pay-offs: It follows the same definition as in equation 2.4.
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Second Mover Problem: The bell-man equation is quite different here. The option-specific value function is defined as

followed:

uis,t(k; l, ht, ξ j f t, ξist) = − ci × 1{k , 0} + βE
[
Vi,t+1(ht+1)

∣∣∣ ht, ft = j, ξ j f ,t, a j, f ,t = l, ξis,t, ai,s,t = k
]

Where ht+1 = (ht, ft = j, ξ j f ,t, a j, f ,t = l, ξis,t, ai,s,t = k, νt+1, pt+1)
(A.5)

Here, ξ j f t, ξist, νt+1 can determine the continuation value. The above function needs to be well defined, that is it takes finite

values inR for all possible values of (k, l, ht, ξ j f t, ξist). The bellman equation for the second mover is defined as followed:

Vis,t(l, ht, ξ j f t, ξist, ϵist) = max
k∈{0,1,...,K}

{
uis,t(k; l, ht, ξ j f t, ξist) − ϵistk − ξistk

}
(A.6)

Note that the term uis,t(k; l, ht, ξ j f t, ξist) − ϵistk − ξistk is not additively separable in ξist. It is only separable in the idiosyncratic

shocks ϵistk.

First Mover Problem: The bell-man equation is quite different here. The option-specific value function is defined as fol-

lowed:

ui f ,t(k; ht, ξi f t) = − ci × 1{k , 0}

+ βE

 K∑
l=0

{
Vi,t+1

(
ht, ft = i, ξi f ,t, ai, f ,t = k, ξ js,t, a j,s,t = l, νt+1, pt+1

)
× 1

{
a jst = l

}} ∣∣∣ ht, ft = i, ξi f t

 (A.7)

Here, ξi f t can determine the continuation value. The above function needs to be well defined, that it takes finite values inR

for all possible values of (k, ht, ξi f t). The bellman equation for the second mover is defined as followed:

Vi f ,t(ht, ξi f t, ϵi f t) = max
k∈{0,1,...,K}

{
uis,t(k; ht, ξi f t) − ϵi f tk − ξi f tk

}
(A.8)

Note that the term uis,t(k; ht, ξi f t)−ϵi f tk−ξi f tk is not additively separable in ξi f t. It is only separable in the idiosyncratic shocks

ϵi f tk.

Examples of ξimt: Here I provide two examples of ξimt that are also relevant to the setting. First allows dependence of cost of

a rally on previous period location in a spatial manner.

ξimtk =


c̄

Dait−1 ,k
with probability 1 ait−1 , k , k , 0 & ait−1 , 0

0 with probability 1 Otherwise
(A.9)

Here Dait−1,k is the distance between last rally location of i and the current potential rally location k. Here, the option of not

rallying is costless and if there was no rally in the previous period then that has no carryover cost in the current period. The

idea here is to test whether there is some traveling inertia in candidate’s movements from one location to another.

A second case is to allow costs to have increasing marginal costs within a specified time limit. The time limit could be a

group of periods. Let this time limit be t̄, and then define d and l such that t = t̄(d − 1) + l for l =∈ {1, 2, . . . , t̄}. Change the

indices of all variables using this notation and consider the following cost structure:

ξim,t̄(t−1)+l,k =

c̄1

(∑l−1
j=1 1

{
ai f ,t̄(t−1)+ j , 0

})
+ c̄2

(∑l−1
j=1 1{ai f ,t̄(t−1)+ j , 0}

)2
with probability 1 l ∈ {2, 3, . . . , t̄}

0 with probability 1 l = 1
(A.10)

Here c̄1 and c̄2 back out the cost function of rallies if marginal costs for rallies are increasing.

Note in both these case I have treated ξimt as deterministic functions. They can also be random. One can allow ξimt ∼

N(0,Ωξ) as well. As long as these costs, deterministic or random, have a finite second moment a unique equilibrium can be

supported. I will provide these assumptions, proposition and the proof in the next subsection.
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A.1.2 Assumptions and Equilibrium

I assume nature’s draw of first and second mover is independent across all histories. Moreover these draws are orthogonal to

any other random variable in the model.

Assumption A.2 (Independent First Mover Draws) First mover draw in any period t is independent of cost and popularity

shocks in any period. Moreover it is also independent of first mover draws in other periods.

For a unique equilibrium it is absolutely necessary that the idiosyncratic costs shock produce convolutions that are con-

tinuous random variables. If the convolutions are not continuous then there can be mass-points that can lead to indifference

with positive probabilities and therefore multiplicity will arise.

If these idiosyncratic costs shocks are correlated with future idiosyncratic costs shocks then there can be certain types of

correlations that can also produce indifference. Here— conditional on ξimt, ht, ξ jm′t and a j f t
51— the continuation values are

also random variables. The conditional convolutions of these continuation values with the idiosyncratic costs shocks can

also produce mass points.

In order to avoid these possibilities I assume that idiosyncratic costs shocks are independent across all histories and

actions and they are absolutely continuous random variables.

Assumption A.3 (Distribution of Idiosyncratic Cost Shocks) The random vectors ϵi f t and ϵist are absolutely continuous ran-

dom vectors with respect to Lebesgue measure. In addition to this, they are independently across all histories and actions.

I need second moments of the cost shocks to be bounded. This is required to ensure that the second mover and the first

mover’s problems are well-defined and the E max operators produce real numbers. This is a regularity condition which is

satisfied by many distributions used in practice.

Assumption A.4 (Cost Shocks Regularity) The cost shocks, ϵi,s,t,k have finite conditional 2nd order moments. That is there

exists C̄ such that

E
[
ϵ2

i, f ,t,k

]
,E

[
ξ2

i, f ,t,k

∣∣∣ht
]
< C̄ < ∞

E
[
ϵ2

i,s,t,k

]
,E

[
ξ2

i,s,t,k

∣∣∣ht, a j f t, ξ j f t

]
< C̄ < ∞

(A.11)

Below I state and prove the proposition for the general model.

Proposition A.1 (Equilibrium Under Weakest Assumptions) Given Assumptions A.2, A.3 and A.4, and VT+1 defined by equa-

tion 2.4. Then an equilibrium exists, it is essentially unique and is characterized as:

1. First mover, i’s, equilibrium chosen action given htt and the cost shocks ϵi f t0, . . . , ϵi f tK is unique with probability 1 and

is given by:

a∗i f t

(
ht, ξi f t, ϵi f t

)
= arg max

k=0,1,...,K

{
ui f ,t(k; ht) − ϵi, f ,t,k − ξi, f ,t,k

}
(A.12)

2. Second mover, i’s, equilibrium chosen action given ht, a j f t, and the cost shocks ϵist0, . . . , ϵistK is unique with probability

1 and is given by:

a∗ist

(
ht, a j f t, ξi f t, ξist, ϵist

)
= arg max

k=0,1,...,K

{
uis,t(k; ht, a j f t, ξi f t, ξist) − ϵi,s,t,k − ξi,s,t,k

}
(A.13)

The option specific value function, ui f ,t(k; ht), for i when he is the first mover at period t at popularity level pt satisfies

the following:

ui f ,t(k; ht, ξi f t) = − ci × 1{k , 0}

+ βE

 K∑
l=0

{
Vi,t+1

(
ht, ft = i, ξi f ,t, ai, f ,t = k, ξ js,t, a j,s,t = l, νt+1, pt+1

)
× 1

{
a jst = l

}} ∣∣∣ ht, ft = i, ξi f t


(A.14)

51If second mover is considered
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The option specific value function, uis,t(k; ht), for i when he is the second mover at period t at popularity level pt and the

first mover chose l satisfies the following eq. 2.14:

uis,t(k; l, ht, ξ j f t, ξist) = − ci × 1{k , 0} + βE
[
Vi,t+1(ht+1)

∣∣∣ ht, ft = j, ξ j f ,t, a j, f ,t = l, ξis,t, ai,s,t = k
]

Where ht+1 = (ht, ft = j, ξ j f ,t, a j, f ,t = l, ξis,t, ai,s,t = k, νt+1, pt+1)
(A.15)

Proof: This proposition is proven by using the Lemmas A.1, A.2, A.3, A.4, A.5, A.6 and A.7. First A.1 and A.3 show first and

second mover option specific value functions are bounded if the next period value function is bounded. Then Lemmas A.2

and A.4 show that the maximization problems of the first and the second mover are well defined and have a unique maximizer

with probability 1 if the first and second mover option specific value functions are bounded themselves.

Then Lemmas A.5 and A.6 show that the expected value function of a first mover and the second mover is bounded.

Finally A.7 will show that if the next period value function is bounded then the current value function is also bounded by

invoking lemmas A.1, A.3, A.5, and A.6. This final Lemma A.7 bridges connection between two periods allows for induction

to prove the whole proposition.

Then finally these Lemmas together can prove the Proposition A.1 if ViT+1 is bounded. This holds true by definition since

consider Vit which is given by:

Vi,t(ht) = ViT+1(pT+1) =
∑
k=0

ekE1{pkT+1 > 0}

⇒ ∞ < −E < Vi,t(ht) = ViT+1(pT+1) < E < ∞
(A.16)

Therefore choosing MT+1 = E and then repeated applications of these Lemmas for t = T,T − 1,T − 2, . . . , 1 proves the

Proposition.

Q.E.D.

Lemma A.1 Given Assumption A.2, A.3, and A.4, and suppose the following condition holds for all ht+1:

−∞ < −Mt+1 ≤ Vit+1(ht+1) ≤Mt+1 < ∞ (A.17)

Then the following holds

|uis,t(k; a j f t, ht, ξ j f t, ξist)| ≤ ci × 1{k , 0} + βMt+1 < ∞ (A.18)

For all ht.

Proof: Pick any arbitrary (ht, ft, ϵi f ,t, a ft, f ,t, ϵis,t, ast,s,t), for all i, s, k, l we have the following holding

uis,t(k; a j f t, ht, ξ j f t, ξist) = − ci × 1{k , 0} + βE
[
Vi,t+1(ht+1)

∣∣∣ ht, ft = j, ξ j f ,t, a j, f ,t, ξis,t, ai,s,t

]
≤ − ci × 1{k , 0} + βE

[
Mt+1

∣∣∣ ht, ft = j, ξ j f ,t, a j, f ,t, ξis,t, ai,s,t

]
≤ − ci × 1{k , 0} + βMt+1 < ci × 1{k , 0} + βMt+1 < ∞

(A.19)

The first inequality holds because Vi,t+1 is pointwise lower than Mt+1. Pick any arbitrary (ht, ft, ξi f ,t, a ft, f ,t, ξis,t, ast,s,t), for all

i, s, k, l we have the following holding

uis,t(k; a j f t, ht, ξ j f t, ξist) = − ci × 1{k , 0} + βE
[
Vi,t+1(ht+1)

∣∣∣ ht, ft = j, ξ j f ,t, a j, f ,t, ξis,t, ai,s,t

]
≥ − ci × 1{k , 0} − βE

[
Mt+1

∣∣∣ ht, ft = j, ξ j f ,t, a j, f ,t, ξis,t, ai,s,t

]
≥ − ci × 1{k , 0} − βMt+1 > −∞

(A.20)

The first inequality holds because Vi,t+1 is pointwise higher than Mt+1. Note given this for all |ξi,s,t| ∈ RK+1 we have ξistk < ∞

and |uist| < ∞.

Q.E.D.
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Lemma A.2 Given Assumption A.2, A.3, and A.4, and suppose the following condition holds for all (k, a j f t, ht, ξ j f t, ξist):

|uis,t(k; a j f t, ht, ξ j f t, ξist)| ≤ ci × 1{k , 0} + βMt+1 < ∞ (A.21)

Then for all (a j f t, ht, ξ j f t, ξist), maxk∈{0,1,...,K}

{
ui,s,t(k; l, ht, ϵ j f t, ϵist) − ϵist,k

}
is well-defined maximization problem. Moreover, a

unique maximizer exists with probability 1.

Proof: Pick an arbitrary (a j f t, ht, ξ j f t, ξist). Note the following holds for all k ∈ {0, 1, . . . ,K}, |uis,t(k; a j f t, ht, ξ j f t, ξist)| ≤ ci×1{k ,
0} + βMt+1 < ∞ then we must also have

−∞ < ui,s,t(k; l, ht, ξ j f t, ξist) − ξist,k < ∞ (A.22)

Since −∞ < ξist,k < ∞. Therefore, maxk∈{0,1,...,K}

{
ui,s,t(k; l, ht, ϵ j f t, ϵist) − ϵist,k

}
is well defined and exists. It is a maximum over

finite set of real numbers.

Moreover, note a∗ist(h
t, a j f t, ξist, ξ j f t, ϵist) is unique with probability 1 for any (ht, a j f t, ξist, ξ j f t).

Suppose not then there exists (ht, a j f t, ξist, ξ j f t) such that candidate i is indifferent between two actions k and l with posi-

tive probability. That is the following is true

P
(
uist,k − ξist,k − ϵist,k = uist,l − ξist,l − ϵist,l|ht, a j f t, ξist, ξ j f t

)
= P

(
ϵist,k − ϵist,l = uist,l − uist,k + ξist,k − ξist,k|ht, a j f t, ξist, ξ j f t

)
> 0

(A.23)

Note that conditional on (ht, a j f t, ξist, ξ j f t) the term uistl − uistk + ξistk − ξistl is deterministic and is equal to a real number.

Therefore, the above probability is zero by assumption A.3.

Q.E.D.

Lemma A.3 Given Assumption A.2, A.3, and A.4, and suppose the following condition holds for all ht+1:

−∞ < −Mt+1 ≤ Vit+1(ht+1) ≤Mt+1 < ∞ (A.24)

Then the following holds

|ui f ,t(k; ht, ξi f t)| ≤ ci × 1{k , 0} + βMt+1 < ∞ (A.25)

For all ht.

Proof: Pick an arbitrary (k, ht, ξi f t), then

ui f ,t(k; ht, ξi f t) = − ci × 1{k , 0} + βE

 K∑
l=0

{
Vi,t+1

(
ht, ft = i, ξi f ,t, ai, f ,t = k, ξ js,t, a j,s,t = l, νt+1, pt+1

)
× 1

{
a jst = l

}} ∣∣∣ ht, ft = i, ξi f t


≤ − ci × 1{k , 0} + βE

 K∑
l=0

Mt+1 × 1
{
a jst = l

} ∣∣∣ ht, ft = i, ξi f t


= − ci × 1{k , 0} + βMt+1 < ci × 1{k , 0} + βMt+1 < ∞

(A.26)

The first inequality holds because we showed uist is bounded above by −ci × 1{k , 0} + βMt+1. Similarly we can show

ui f ,t(k; ht, ξi f t) = − ci × 1{k , 0} + βE

 K∑
l=0

{
Vi,t+1

(
ht, ft = i, ξi f ,t, ai, f ,t = k, ξ js,t, a j,s,t = l, νt+1, pt+1

)
× 1

{
a jst = l

}} ∣∣∣ ht, ft = i, ξi f t


≥ − ci × 1{k , 0} − βE

 K∑
l=0

Mt+1 × 1
{
a jst = l

} ∣∣∣ ht, ft = i, ξi f t


= − ci × 1{k , 0} − βMt+1 > −∞

(A.27)
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Q.E.D.

Lemma A.4 Given Assumption A.2, A.3, and A.4, and suppose the following condition holds for all (ht, ξi f t):

|ui f ,t(k; ht, ξi f t)| ≤ ci × 1{k , 0} + βMt+1 < ∞ (A.28)

Then for all (a j f t, ht, ξ j f t, ξist), maxk∈{0,1,...,K}

{
ui,s,t(k; l, ht, ϵ j f t, ϵist) − ϵist,k

}
is well-defined maximization problem. Moreover, a

unique maximizer exists with probability 1.

Proof: Arguments similar to the case of Lemma A.2 proves the statement.

Q.E.D.

Lemma A.5 Given Assumption A.2, A.3, and A.4, and suppose the following condition holds for all (ht, ξi f t):

|ui f ,t(k; ht, ξi f t)| ≤ ci × 1{k , 0} + βMt+1 < ∞ (A.29)

Then for all ht the following inequality holds

−βMt+1 − 2
√

C̄ ≤ E
[

max
k∈{0,1,...,K}

{
ui f ,t(k; ht, ξi f t) − ϵi, f ,t,k − ξi, f ,t,k

} ∣∣∣∣∣ ht
]
≤ Kci + (K + 1)

(
βM + 2

√
C̄
)

(A.30)

Proof: Pick an arbitrary ht and consider the expected pay-off when i is the first mover

E
[

max
k∈{0,1,...,K}

{
ui f ,t(k; ht, ξi f t) − ϵi, f ,t,k − ξi, f ,t,k

} ∣∣∣∣∣ ht
]

≤ E

[
max

k∈{0,1,...,K}

{∣∣∣ui f ,t(k; ht, ξi f t) − ϵi, f ,t,k − ξi f t

∣∣∣} ∣∣∣∣∣ ht
]

∵ max{x0, x1, . . . , xK} ≤ max{|x0|, |x1|, . . . , |xK|}

≤ E

 ∑
k∈{0,1,...,K}

∣∣∣ui f ,t(k; ht, ξi f t) − ϵi, f ,t,k − ξi f t

∣∣∣ ∣∣∣∣∣ ht


∵ max{|x0|, |x1|, . . . , |xK|} ≤ |x0| + |x1| + · · · + |xK|

≤ E

 ∑
k∈{0,1,...,K}

∣∣∣ui f ,t(k; ht, ξi f t)
∣∣∣ + ∣∣∣ϵi, f ,t,k

∣∣∣ + ∣∣∣ξi f t

∣∣∣ ∣∣∣∣∣ ht


∵ Triangle Inequality

≤

∑
k∈{0,1,...,K}

(
E

[∣∣∣ui f ,t(k; ht, ξi f t)
∣∣∣ ∣∣∣∣∣ ht

]
+ E

[∣∣∣ϵi, f ,t,k

∣∣∣ ∣∣∣∣∣ ht
]
+ E

[∣∣∣ξi, f ,t,k

∣∣∣ ∣∣∣∣∣ ht
])

∵ Since expectation is a linear operator

≤

∑
k∈{0,1,...,K}

E [∣∣∣ui f ,t(k; ht, ξi f t)
∣∣∣ ∣∣∣∣∣ ht

]
+

√
E

[
ϵ2

i, f ,t,k

∣∣∣∣∣ ht
]
+

√
E

[
ξ2

i, f ,t,k

∣∣∣∣∣ ht
]

∵ E
[
ϵ2

i, f ,t,k

∣∣∣∣∣ ht
]
= E

[
ϵ2

i, f ,t,k

]
and Hölder Inequality

≤ Kci + (K + 1)
(
βMt+1 + 2

√
C̄
)

∵ Substituting the bounds for ui f t andE
[
ξ2

i, f ,t,k

∣∣∣∣∣ ht
]
,E

[
ξ2

i, f ,t,k

∣∣∣∣∣ ht
]
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For the lower bound ofE
[

maxk∈{0,1,...,K}

{
ui f ,t(k; ht) − ϵi, f ,t,k − ξi, f ,t,k

} ∣∣∣∣∣ ht
]

consider the following set of arguments:

E
[

max
k∈{0,1,...,K}

{
ui f ,t(k; ht, ξi f t)−ϵi, f ,t,k − ξi, f ,t,k

} ∣∣∣∣∣ ht
]

≥ E
[
ui f ,t(0; ht, ξi f t) − ϵi, f ,t,0 − ξi, f ,t,0

∣∣∣∣∣ ht
]

∵ max{x0, x1, . . . , xK} ≥ x0

≥ E
[
ui f ,t(0; ht, ξi f t)

]
− E

[
ϵi, f ,t,k

∣∣∣∣∣ ht
]
− E

[
ξi, f ,t,k

∣∣∣∣∣ ht
]

∵ E is a linear operator

≥ −βMt+1 − E
[∣∣∣ϵi, f ,t,k

∣∣∣ ∣∣∣∣∣ ht
]
− E

[∣∣∣ξi, f ,t,k

∣∣∣ ∣∣∣∣∣ ht
]

∵ E [x] ≤ E [|x|]

≥ −βMt+1 −

√
E

[∣∣∣ϵi, f ,t,k

∣∣∣2 ∣∣∣∣∣ ht
]
−

√
E

[∣∣∣ξi, f ,t,k

∣∣∣2 ∣∣∣∣∣ ht
]

∵ Hölder Inequality

≥ −βMt+1 − 2
√

C̄

∵ Substituting the bounds forEϵi, f ,t

[
ϵ2

i, f ,t,k

∣∣∣∣∣ ht
]

Therefore this gives us that

−βMt+1 − 2
√

C̄ ≤ E
[

max
k∈{0,1,...,K}

{
ui f ,t(k; ht, ξi f t) − ϵi, f ,t,k − ξi, f ,t,k

} ∣∣∣∣∣ ht
]
≤ Kci + (K + 1)

(
βM + 2

√
C̄
)

(A.31)

Q.E.D.

Lemma A.6 Given Assumption A.2, A.3, and A.4, and suppose the following condition holds for all (k, a j f t, ht, ξ j f t, ξist):

|uis,t(k; a j f t, ht, ξ j f t, ξist)| ≤ ci × 1{k , 0} + βMt+1 < ∞ (A.32)

Then for all (ht, a j f t, ξ j f t), maxk∈{0,1,...,K}

{
ui,s,t(k; l, ht, ϵ j f t, ϵist) − ϵist,k

}
is well-defined maximization problem. Moreover, a unique

maximizer exists with probability 1.

−βMt+1 − 2
√

C̄ ≤ E
[

max
l∈{0,1,...,K}

{
uis,t(l; a j f t, ht, ξ j f t, ξist) − ϵi,s,t,l − ξi,s,t,l

} ∣∣∣∣∣ ht, a j f t, ξ j f t

]
≤ Kci + (K + 1)

(
βM + 2

√
C̄
)

(A.33)

Proof: Similar set of arguments used in the proof of Lemma A.5 prove this lemma.

Q.E.D.

Lemma A.7 Given Assumption A.2, A.3, and A.4, and suppose the following condition holds for all ht+1:

−∞ < −Mt+1 ≤ Vit+1(ht+1) ≤Mt+1 < ∞ (A.34)

Then there exists Mt ∈ R+ such that

−∞ < −Mt ≤ Vit(ht) ≤ ci × 1{k , 0} + βMt+1 < ∞ (A.35)

Where Vit is period t value function and is given by:

Vi,t(ht)| = fi × E
[

max
k∈{0,1,...,K}

{
ui f ,t(k; ht, ξi f t) − ϵi, f ,t,k − ξi, f ,t,k

} ∣∣∣∣∣ ht
]

+ (1 − fi) ×
K∑

k=0

E

[
max

l∈{0,1,...,K}

{
uis,t(l; k, ht, ξ j f t, ξist) − ϵi,s,t,l − ξi,s,t,k

}
× 1{a j f t = k}

∣∣∣∣∣∣ ht
] (A.36)
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For all ht.

Proof: Pick an arbitrary ht and note that |ui f t(k, ht, ξi f t)| is bounded by ci × 1{k , 0} + βMt+1 by Lemma A.3 for all (k, ξi f t).

Therefore by Lemma A.5 we have the following:

−βMt+1 − 2
√

C̄ ≤ E
[

max
k∈{0,1,...,K}

{
ui f ,t(k; ht, ξi f t) − ϵi, f ,t,k − ξi, f ,t,k

} ∣∣∣∣∣ ht
]
≤ Kci + (K + 1)

(
βM + 2

√
C̄
)

(A.37)

Also note for any (k, a j f t, ξ j f t, ξist)52 the following holds |uis,t(k; a j f t, ht, ξ j f t, ξist)| ≤ ci × 1{k , 0} + βMt+1 < ∞ by Lemma

A.2. Therefore by Lemma A.6 we have the following holding true:

−βMt+1 − 2
√

C̄ ≤ E
[

max
l∈{0,1,...,K}

{
uis,t(l; a j f t, ht, ξ j f t, ξist) − ϵi,s,t,l − ξi,s,t,l

} ∣∣∣∣∣ ht, a j f t, ξ j f t

]
≤ Kci + (K + 1)

(
βM + 2

√
C̄
)

(A.38)

Note that Kci + (K + 1)
(
βM + 2

√

C̄
)
> βMt+1 + 2

√

C̄. Let Mt = maxi∈{R,D}

{
Kci + (K + 1)

(
βM +

√

C̄
)}

. This bounds both

conditional expectations. Now consider Vit(ht) given by:

|Vi,t(ht)| =

∣∣∣∣∣∣ fi × E
[

max
k∈{0,1,...,K}

{
ui f ,t(k; ht, ξi f t) − ϵi, f ,t,k − ξi, f ,t,k

} ∣∣∣∣∣ ht
]

+ (1 − fi) ×
K∑

k=0

E

[
max

l∈{0,1,...,K}

{
uis,t(l; k, ht, ξ j f t, ξist) − ϵi,s,t,l − ξi,s,t,k

}
× 1{a j f t = k}

∣∣∣∣∣∣ ht
] ∣∣∣∣∣∣

=

∣∣∣∣∣∣ fi × E
[

max
k∈{0,1,...,K}

{
ui f ,t(k; ht, ξi f t) − ϵi, f ,t,k − ξi, f ,t,k

} ∣∣∣∣∣ ht
]

+ (1 − fi) ×
K∑

k=0

E

[
E

[
max

l∈{0,1,...,K}

{
uis,t(l; k, ht, ξ j f t, ξist) − ϵi,s,t,l − ξi,s,t,k

} ∣∣∣∣∣ ht, a j f t = k, ϵ j f t

]
× 1{a j f t = k}

∣∣∣∣∣∣ ht
] ∣∣∣∣∣∣

∵ Iterative Law of Expectations

≤ fi ×

∣∣∣∣∣∣E
[

max
k∈{0,1,...,K}

{
ui f ,t(k; ht, ξi f t) − ϵi, f ,t,k − ξi, f ,t,k

} ∣∣∣∣∣ ht
] ∣∣∣∣∣∣

+ (1 − fi) ×
K∑

k=0

E

[∣∣∣∣∣E [
max

l∈{0,1,...,K}

{
uis,t(l; k, ht, ξ j f t, ξist) − ϵi,s,t,l − ξi,s,t,k

} ∣∣∣∣∣ ht, a j f t = k, ξ j f t

] ∣∣∣∣∣ × 1{a j f t = k}

∣∣∣∣∣∣ht
]

∵ Triangle Inequality followed by Cauchy-Schwarz Inequality for the second term.

≤ fi max
i∈{R,D}

{
Kci + (K + 1)

(
βMt+1 + 2

√
C̄
)}

+ (1 − fi) ×
K∑

k=0

E

[
max
i∈{R,D}

{
Kci + (K + 1)

(
βM + 2

√
C̄
)}
× 1{a j f t = k}

∣∣∣∣∣∣ht
]

∵ Due to bounds obtained in inequalities A.38 and A.31

= fi max
i∈{R,D}

{
Kci + (K + 1)

(
βMt+1 + 2

√
C̄
)}
+ (1 − fi) ×

K∑
k=0

(
max
i∈{R,D}

{
Kci + (K + 1)

(
βMt+1 + 2

√
C̄
)}
× σ j f ,t(k; ht)

)
∵ max

i∈{R,D}

{
Kci + (K + 1)

(
βMt+1 + 2

√
C̄
)}

is a deterministic constant andE[1{a j f t = k, ht
}|ht] = σ jst(k; ht)

= max
i∈{R,D}

{
Kci + (K + 1)

(
βMt+1 + 2

√
C̄
)}
=Mt < ∞

Q.E.D.

52ht has been picked here.
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A.2 Proof for Proposition 2.1

In this section I will prove proposition 2.1, however first I will restate the proposition with more details:

Proposition A.2 ( Value Functions and CCPs) Given assumptions A.2, 2.1 (or A.1) ,2.2, 2.3, and eq. 2.4, which defines electoral

pay-off Vi,T+1, the following holds for all t = 1, 2, ...,T

1. The value function Vi,t takes the following functional form:

Vi,t(pt) = fi × ln
( K∑

k=0

exp
{
ui f ,t(k; pt)

})
+ (1 − fi) ×

K∑
k=0

[
σ j f ,t(k; pt) ln

( K∑
l=0

exp
{
uis,t(l; k, pt))

})]
+ γ (A.39)

2. First mover, i’s, equilibrium chosen action given pt and the cost shocks ϵi f t0, . . . , ϵi f tK is unique with probability 1 and is

given by:

a∗i f t
(
pt, ϵist0, . . . , ϵistK

)
= arg max

k=0,1,...,K

{
ui f t(k; pt) + ϵi f tk

}
(A.40)

3. The expected probability of i choosing action k as the first mover is given by:

σi f ,t(k; pt) = P
(
k = a∗i f ,t(pt, ϵi f ,t)

)
=

exp
(
ui f ,t(k; pt) − ui f ,t(0; pt)

)
1 +

∑K
l=1 exp

(
ui f ,t(l; pt) − ui f ,t(0; pt)

) (A.41)

4. Second mover, i’s, equilibrium chosen action given a j f t, pt and the cost shocks ϵist0, . . . , ϵistK is unique with probability 1

and is given by:

a∗ist

(
a j f t, pt, ϵist0, . . . , ϵistK

)
= arg max

k=0,1,...,K

{
uist(k; a j f t, pt) + ϵistk

}
(A.42)

5. The probability of i choosing action k as the second mover is given by:

σis,t(k; l, pt) = P
(
k = a∗is,t(a j f t = l, pt, ϵis,t)

)
=

exp
(
uis,t(k; l, pt) − uis,t(0; l, pt)

)
1 +

∑K
q=1 exp

(
uis,t(q; l, pt) − uis,t(0; l, pt)

) (A.43)

Where, the option specific value function, ui f ,t(k; pt), for i when he is the first mover at period t at popularity level pt

satisfies the following:

ui f ,t(k; pt) =
K∑

l=0

uis,t(k; l, pt) × σ js,t(l; k, pt) (A.44)

The option specific value function, uis,t(k; pt), for i when he is the second mover at period t at popularity level pt and the

first mover chose l satisfies the following eq. 2.14:

uis,t(k; l, pt) = − ci × 1{k , 0} + βE
[
Vi,t+1(p)

∣∣∣ ait = k, a jt = l, p′ = pt

]
(A.45)

Proof : I use Proposition A.1 to prove the extended version of Proposition 2.1. First note under the Assumption 2.2 and the

Assumption 2.3, cost shocks satisfy the Assumption A.3. This is because ϵimtk and ϵimtl are two independently drawn T1EV

random variables and therefore ϵimtk − ϵimtl is a Logistic random variable which is also a continuously distributed random

variable. In the baseline set up P
(
ξi f tk = 0|ht

)
= 1 and P

(
ξistk = 0|ht, ξ j f t, a j f t

)
= 1. Which satisfies Assumption A.4.

Moreover, since ϵimtk ∼ T1EV and due to Assumption 2.2 we have the following holding:

E
[
ϵ2

i, f ,t,k

∣∣∣ht
]
= E

[
ϵ2

i, f ,t,k

]
= γ2 +

π2

6
< C̄ = γ2 +

π2

6
+ 1 < ∞

E
[
ϵ2

i,s,t,k

∣∣∣ht, a j f t, ϵ j f t

]
= E

[
ϵ2

i,s,t,k

]
= γ2 +

π2

6
< C̄ = γ2 +

π2

6
+ 1 < ∞

(A.46)
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Here γ = − ln (ln (2)) is the Euler–Mascheroni constant. Therefore Assumptions A.4 and A.3 hold here. Proposition A.1 can

be applied here. Therefore, equilibrium exists, it is essentially unique (multiplicity takes place with probability zero) and

equilibrium is characterized in the same fashion as in Proposition A.1.

Also note that under Assumptions 2.1 or A.1 there is no intertemporal dependence between νs and νt for any t , s.

Therefore past shocks νt−1, νt−2,. . .ν1 are not relevant state variables in period t. Also note under Assumption 2.2 past cost

shocks are not relevant either for any player or any mover. Under Assumption A.2 past mover order is also not a relevant state

variable. Therefore for the first mover the relevant state variables are pt and ϵi f t. Since ξimtk = 0 a.s. these can be dropped

from set of relevant state variables. For the second mover the relevant state variables are pt, a j f t and ϵist.

Now I will further simplify the proposition as followed. I start with second mover option specific value function, uist.

uis,t(k; l, ht, ξ j f t = 0, ξist = 0) = − ci × 1{k , 0} + βE
[
Vi,t+1(ht+1)

∣∣∣ ht, ft = j, ξ j f ,t = 0, a j, f ,t = l, ξis,t = 0, ai,s,t = k
]

⇒ uis,t(k; l, ht, ξ j f t = 0, ξist = 0) = uis,t(k; l, pt) = − ci × 1{k , 0} + βE
[
Vi,t+1(pt+1)

∣∣∣ pt, a j, f ,t = l, ai,s,t = k
]

where pt+1 is defined in Equation 2.1 component wise

(A.47)

The first equality holds because only pt+1 is a relevant state variable for Vi,t+1. Given this note a∗ist is defined as

a∗ist

(
ht, a j f t, ξ j f t = 0, ξist = 0, ϵist

)
= arg max

k=0,1,...,K

{
ui f ,t(k; ht, ξ j f t, a j f t) − ϵi,s,t,k − 0

}
⇒ a∗ist

(
ht, a j f t, ξ j f t = 0, ξist = 0, ϵist

)
= a∗ist

(
pt, a j f t, ϵist

)
= arg max

k=0,1,...,K

{
ui f ,t(k; a j f t, pt) − ϵi,s,t,k

} (A.48)

Given this, by Lemma 1 from McFadden (1973) we can see that the following holds:

σist
(
k; l, pt

)
= P

(
a∗ist(a j f t, pt, ϵist) = k

∣∣∣a j f t, pt

)
=

exp
(
uis,t(k; a j f t, pt) − uis,t(0; a j f t, pt)

)
1 +

∑K
q=1 exp

(
uis,T(q; a j f t, pt) − uis,t(0; a j f t, pt)

) (A.49)

Moreover, note if −ϵk ∼ T1EV and independent then maxk∈{0,1,...,K}{δ̃k − ϵi f tk} ∼ Gumbel( µ = ln
∑

k δ̃k, β = 1). Where µ

denotes the location parameter of a Gumbel Distribution and β denotes the scale parameter. Therefore we must have that

the following holds:

E

[
max

l∈{0,1,...,K}

{
uis,t(l; a j f t, pt) − ϵi,s,t,l

} ∣∣∣∣∣ pt, a j f t = k
]
= log

 K∑
l=0

exp
{
uist

(
l; k, pt

)} + γ (A.50)

Here note pt is the relevant state variable replacing ht.
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Consider the following set of arguments to attain a simplification of ui f t.

ui f ,t(k; ht, ξi f t = 0) = − ci × 1{k , 0}

+ βE

 K∑
l=0

{
Vi,t+1

(
ht, ft = i, ξi f ,t, ai, f ,t = k, ξ js,t, a j,s,t = l, νt+1, pt+1

)
× 1

{
a jst = l

}} ∣∣∣ ht, ft = i, ξi f t = 0, ai f t = k


By substituting for relevant state variables we obtain

⇒ ui f ,t(k; p) = − ci × 1{k , 0} + βE

 K∑
l=0

{
Vi,t+1

(
pt+1

)
× 1

{
a jst = l

}} ∣∣∣ pt = p, ai f t = k


Note that ci × 1{k , 0} is deterministic term, therefore

⇒ ui f ,t(k; p) =E

 K∑
l=0

{
−ci × 1{k , 0} + βVi,t+1

(
pt+1

)
× 1

{
a jst = l

}} ∣∣∣ pt = p, ai f t = k


Using the iterative law and linearity of expectations

⇒ ui f ,t(k; p) =E

 K∑
l=0

{
−ci × 1{k , 0} + βE

[
Vi,t+1

(
pt+1

)
|pt = p, ai f t = k, a jst = l

]
× 1

{
a jst = l

}} ∣∣∣ pt = p, ai f t = k


Substituting for uist from equation A.47

⇒ ui f ,t(k; p) =E

 K∑
l=0

{
uist

(
k; l, p

)
× 1

{
a jst = l

}} ∣∣∣ pt = p, ai f t = k


Note that uist

(
k; l, p

)
is a deterministic constant given the values k, l, p

⇒ ui f ,t(k; p) =
K∑

l=0

{
uist

(
k; l, p

)
× E

[
1

{
a jst = l

} ∣∣∣ pt = p, ai f t = k
]}

⇒ ui f ,t(k; p) =
K∑

l=0

uist
(
k; l, p

)
× σ jst

(
l; k, p

)
(A.51)

Given all this one can use (1) Lemma 1 of McFadden (1973) and (2) the fact that max of T1EV random variables is another

Gumbel random variable with a specific location parameter to show that the following two relations hold:

σi f ,t(k; pt) = P
(
k = a∗i f ,t(pt, ϵi f ,t)

)
=

exp
(
ui f ,t(k; pt) − ui f ,t(0; pt)

)
1 +

∑K
l=1 exp

(
ui f ,t(l; pt) − ui f ,t(0; pt)

)
E

[
max

k∈{0,1,...,K}

{
ui f ,t(k; pt) − ϵi, f ,t,k

} ∣∣∣∣∣ ht
]
= ln

( K∑
k=0

exp
{
ui f ,t(k; pt)

})
+ γ

(A.52)

Given that in the beginning of the period only pt is the relevant state variable, the value function for player i will be a function

of pt alone. Dropping all irrelevant state variables can also show that the following will hold.

Vi,t(pt) = fi × E
[

max
k∈{0,1,...,K}

{
ui f ,t(k; pt) − ϵi, f ,t,k

} ∣∣∣∣∣ ht
]
+ (1 − fi) × E

[
max

l∈{0,1,...,K}

{
uis,t(l; a j f t, pt) − ϵi,s,t,l

} ∣∣∣∣∣ ht, a j f t = k
]

⇒ Vi,t(pt) = fi × ln
( K∑

k=0

exp
{
ui f ,t(k; pt)

})
+ (1 − fi) ×

K∑
k=0

[
σ j f ,t(k; pt) ln

( K∑
l=0

exp
{
uis,t(l; k, pt))

})]
+ γ

(A.53)

Q.E.D.
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A.3 Estimation

A.3.1 Proof for Lemma 4.1

Recall X̃t = (At,Pt+1). Moreover, random vector At ∈ {0, 1, . . . ,K}2 and Pt+1 ∈ RK. In order to derive this density we consider

the following probability:

P
[
X̃t ∈ B|X̃t−1

]
=

∑
a∈{0,1,...,K}2

P [At = a,Pt+1 ∈ Ba|(At−1,Pt)] (A.54)

The above decomposition is well defined because At is a discrete random variable. Note that Pt+1 is contained in a set

and not equal to a point here. Therefore the above probability is not always zero. Moreover, B is a measurable subset of{
{0, 1, . . . ,K}2 ×RK

}
and Ba =

{
p ∈ RK : (a, p) ∈ B

}
. Also, in case ∄p ∈ RK s.t. (a, p) ∈ B then Ba = ∅, i.e. Ba is empty.

The corresponding probability will be 0. The sum appears because {0, 1, . . . ,K}2 is finite. Note by model assumption on the

popularity process the following holds:

P [Pt+1 ∈ Ba|(At = a,Pt)] =
∫

p∈Ba

f
(
p|At = a,Pt

)
dp (A.55)

Where f (.|.) is defined in equation 2.3. Also note that by equation 2.15 the following is also given to us:

P [At = a|Pt] = σt (At = a; Pt) (A.56)

Therefore, we can expressP
[
X̃t ∈ B|(At−1,Pt)

]
as followed:

P
[
X̃t ∈ B|X̃t−1

]
=

∑
a∈{0,1,...,K}2

P [At = a,Pt+1 ∈ Ba|(At−1,Pt)]

=
∑

a∈{0,1,...,K}2
P [Pt+1 ∈ Ba|(At = a,Pt,At−1)]P [At = a|Pt,At−1]

=
∑

a∈{0,1,...,K}2
P [Pt+1 ∈ Ba|(At = a,Pt)]P [At = a|Pt]

=
∑

a∈{0,1,...,K}2

(∫
p∈Ba

f
(
p|At = a,Pt

)
dp

)
σt (At = a; Pt)

=
∑

a∈{0,1,...,K}2

∫
p∈Ba

f
(
p|At = a,Pt

)
σt (At = a; Pt) dp

⇒

∫
x∈B
ψt(x|Xt−1)dx =

∫
(a,p)∈B

f
(
p|At = a,Pt

)
σt (At = a; Pt) d(a, p)

(A.57)

The second equality holds by law of total probability. This is well defined as At is a discrete random variable therefore

P[At = a|.] is not always zero. Since P
[
X̃t ∈ B|X̃t−1

]
is well-defined then P

[
X̃t ∈ B|X̃t−1, . . . , X̃0

]
= P

[
X̃t ∈ B|X̃t−1

]
. Hence

the Markov property is satisfied whereψt is the transition density.

Q.E.D.
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A.3.2 Proof for Proposition 4.1

Consider the following probability for a measurable set B ⊂
{
{0, 1, . . . ,K}8 ×R4K

}
:

P
[(

X̃4d, X̃4d−1, X̃4d−2, X̃4d−3

)
∈ B

∣∣∣∣∣X̃4d−4

]
=

∫
x1

P
[(

X̃4d, X̃4d−1, X̃4d−2

)
∈ Bx1 |X4d−3 = x1

]
ψ4d−3(x1|X̃4d−4)dx1

=

∫
x1,x2

P
[(

X̃4d, X̃4d−1

)
∈ Bx1,x2 , X̃4d−2 = x2|X̃4d−3 = x1

]
ψ4d−3(x1|X̃4d−4)d(x1, x2)

=

∫
x1,x2

P
[(

X̃4d, X̃4d−1

)
∈ Bx1,x2 |X̃4d−2 = x2

]
ψ4d−2(x2|x1)ψ4d−3(x1|X̃4d−4)d(x1, x2)

...

=

∫
x1,x2,x3,x4∈B

4∏
l=1

ψ4(d−1)+l (xl|xl−1)

∣∣∣∣∣∣
x0=X4d−4

d(x1, x2, x3, x4)

⇒ P
[(

X̃4d, X̃4d−1, X̃4d−2, X̃4d−3

)
∈ B

∣∣∣∣∣X̃4d−4

]
=

∫
(al,pl+1)l=1,...,4∈B

 4∏
l=1

σ4(d−1)+l(al; pl)

 ×
 4∏

l=1

f
(
pl+1|al, pl

) d
(
(al, pl+1)l=1,...,4

)
(A.58)

Where p1 = P3d−4. We wish to evaluate the following the probability, for an arbitrary measurable set C ⊂ {{0, 1, . . . ,K}8×RK
}.

Note that BC = C ×R3K is a measurable subset of
{
{0, 1, . . . ,K}8 ×R4K

}
and the following holds

P [Xd ∈ C|Xd−1] = P
[(

X̃4d, X̃4d−1, X̃4d−2, X̃4d−3

)
∈ BC

∣∣∣∣∣Xd−1

]
= P

[(
X̃4d, X̃4d−1, X̃4d−2, X̃4d−3

)
∈ BC
|(P4d−3,A4d−4)

]
= P

[(
X̃4d, X̃4d−1, X̃4d−2, X̃4d−3

)
∈ BC
|X̃4d−4

]
=

∫
(al,pl+1)l=1,...,4∈BC

 4∏
l=1

σ4(d−1)+l(al; pl)

 ×
 4∏

l=1

f
(
pl+1|al, pl

) d
(
(al, pl+1)l=1,...,4

)

=

∫
x∈C


∫

p2,p3,p4∈R3K

 4∏
l=1

σ4(d−1)+l(al; pl)

 ×
 4∏

l=1

f
(
pl+1|al, pl

) d(p1, p2, p3)

 d(x)

(A.59)

Where x = (a1, a2, a3, a4, p5) and p1 = P4d−3. The first equality holds by Chapman-Kolmogorov equation for this setting.

The second equality holds because Xd−1 has ˜X4d−4 as its component and the corresponding probability is well defined by

equation A.58. The following equality is substitution of the expression found in A.58. The last equality is a mere re-writing of

the preceding integral. The probability distribution of Xd ∈ C is nothing but the marginalization of
(
X̃4d, X̃4d−1, X̃4d−2, X̃4d−3

)
along the dimensions of P4d−2, P4d−1 and P4d.

Q.E.D.

A.4 Bounds

Lemma A.8 If E
[
Vit+1(pt)

∣∣∣aRt, aDt, pt

]
≤ Vt+1 for all aRt = 0, 1, . . . ,K, aDt = 0, 1, . . . ,K and pt ∈ RK then

Vit(pt) ≤ ln(1 + Ke−ci ) + γ + βVt+1 (A.60)

We have that E
[
Vit+1(pt)

∣∣∣aRt, aDt, pt

]
≤ Vt+1, then consider uist as given by proposition 2.1 we have:

uist(k; l, pt) = −ci1{k , 0} + βE
[
Vit+1(pt+1)

∣∣∣k, l, pt

]
≤ −ci1{k , 0} + βVt+1 (A.61)
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Similarly, ui f t, by proposition A.2 it is given by:

ui f t(k; l, pt) =
K∑

l=1

uist(k; l, pT)σ jst(l; k, pT) ≤
K∑

l=1

(
βVt+1

)
σi f t(l; k, pt) = −ci1{k , 0} + β

K∑
k=1

Ek (A.62)

Now, we can bound Vit(pt), note by proposition A.2 we have the following:

Vi,t(pt) = fi × ln
( K∑

k=0

exp
{
ui f ,t(k; pt)

})
+ (1 − fi) ×

K∑
k=0

[
σ j f ,t(k; pt) ln

( K∑
l=0

exp
{
uis,t(l; k, pt))

})]
+ γ

≤ fi × ln
(

exp
{
βVt+1

}
+ K × exp

{
− ci + βVt+1

})
+ (1 − fi) ×

K∑
k=0

[
σ j f ,t(k; pt) ln

(
exp

{
βVt+1

}
+ K × exp

{
− ci + βVt+1

})]
+ γ

= fi × ln
(

exp
{
βVt+1

}
+ K × exp

{
− ci + βVt+1

})
+ (1 − fi) ln

(
exp

{
βVt+1

}
+ K × exp

{
− ci + βVt+1

})
+ γ

(A.63)

The first inequality is implied by inequalities A.62 and A.61 and since exp {x} is an increasing function. The (K + 1) appears

because we are bounding K+1 terms with the same bound. The second equality holds due to the fact that σ j f ,t is a probability

mass function over k = 0, 1, . . . ,K. Further simplification yields

⇒ Vit(pt) ≤ ln
(

exp
{
βVt+1

}
+ K × exp

{
− ci + βVt+1

})
+ γ = ln(1 + Ke−ci ) + γ + βVt+1 (A.64)

Hence proved.

Lemma A.9 If E
[
Vit+1(pt)

∣∣∣aRt, aDt, pt

]
≥ Vt+1 for all aRt = 0, 1, . . . ,K, aDt = 0, 1, . . . ,K and pt ∈ RK then

Vit(pt) ≥ ln(1 + Ke−ci ) + γ + βVt+1 (A.65)

Consider period t, note the following holds:

Ept+1

[
VR,t+1(pt+1)

∣∣∣∣∣pt, aRKt, aDKt

]
≥ Vt+1 (A.66)

Consider uist as given by proposition A.2.

uisT(k; l, pT) = −ci1{k , 0} + βEpT+1

[
VR,T+1(pT+1)

∣∣∣∣∣pT, aRKT, aDKT

]
≥ −ci1{k , 0} + γ + βVt+1 (A.67)

Similar lemma A.8 it is possible to show the following holds:

ui f t(k; pt) ≥ −ci1{k , 0} + βVt+1 (A.68)

First consider the following log-sum-exp or smooth max:

ln
{
exp

(
βVt+1

)
+ K exp

(
−ci + βVt+1

)}
= ln

{
exp

(
βVt+1

) (
1 + Ke−ci

)}
= βVt+1 + ln(1 + Ke−ci )

(A.69)
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Going back to Vit(pt) note the following will hold

Vi,t(pt) = fi × ln
( K∑

k=0

exp
{
ui f ,t(k; pt)

})
+ (1 − fi) ×

K∑
k=0

[
σ j f ,t(k; pt) ln

( K∑
l=0

exp
{
uis,t(l; k, pt))

})]
+ γ

≥ fi × ln
{
exp

(
βVt+1

)
+ K exp

(
−ci + βVt+1

)}
+ (1 − fi) ×

K∑
k=0

[
σ j f ,t(k; pt) ln

{
exp

(
βVt+1

)
+ K exp

(
−ci + βVt+1

)} ]
+ γ

= fi × ln
{
exp

(
βVt+1

)
+ K exp

(
−ci + βVt+1

)}
+ (1 − fi) ln

{
exp

(
βVt+1

)
+ K exp

(
−ci + βVt+1

)}
+ γ

= ln
{
exp

(
βVt+1

)
+ K exp

(
−ci + βVt+1

)}
+ γ

= ln(1 + Ke−ci ) + γ + βVt+1

(A.70)

Hence proved.

Proposition A.3 The following inequality holds:(
1 − βT−t+1

) (
ln(1 + Ke−ci ) + γ

)
1 − β

≤ E
[
Vit+1(pt+1)

∣∣∣aRt, aDt, pt

]
≤

(
1 − βT−t+1

) (
ln(1 + Ke−ci ) + γ

)
1 − β

+ βT−t+1
K∑

k=1

Ek (A.71)

Proof: Notice, that given Vit(pt) ≤ ln(1 + Ke−ci ) + γ + βVt+1, one can easily show that E[Vit(pt)|aRt−1, aDt−1, pt−1] ≤ ln(1 +
Ke−ci ) + γ + βVt+1. I will use lemma A.8 to find the upper bound inA.3. Note, that the following holds:

EpT+1

[
VR,T+1(pT+1)

∣∣∣∣∣pT, aRKT, aDKT

]
=

K∑
k=1

EkΦ

(
αRaRk,t + αDaDk,t + α̃aRk,taDk,t + ρpkt + δk

σν

)
≤

K∑
k=1

Ek (A.72)

Clearly, we can choose VT+1 =
∑

k Ek and therefore VT = ln(1 + Ke−ci ) + γ + β
∑

k Ek. Given this note that the following

holds

E
[
ViT(pT)|aRT−1, aDT−1, pT−1

]
≤ ln(1 + Ke−ci ) + β

∑
k

Ek = VT (A.73)

Similarly, note that the candidate for VT−1 = ln(1+Ke−ci )+γ+βVT = ln(1+Ke−ci )+γ+β
(
ln(1 + Ke−ci ) + γ

)
+β2 ∑K

k=1 Ek.

Following this one can use this relation iteratively to construct the sequence:

VT−s =

s∑
j=0

β j
(

ln(1 + Ke−ci ) + γ
)
+ βs+1

K∑
k=1

Ek (A.74)

Then we can finally derive the upper bound

Vt = VT−(T−t) =

T−t∑
j=0

β j
(

ln(1 + Ke−ci ) + γ
)
+ βT−t+1Ek

=

(
1 − βT−t+1

) (
ln(1 + Ke−ci ) + γ

)
1 − β

+ βT−t+1Ek

(A.75)

Let t = T, then VT+1 = 0 as E[VT+1(pT+1)
∣∣∣aRT, aDT, pT] ≥ 0 then given Lemma A.9 VT = ln(1 + Ke−ci ) + γ. Applying the

lemma again VT−1 = ln(1 + Ke−ci ) + γ + β
(

ln(1 + Ke−ci ) + γ
)
, therefore for T − j we have

VT− j =

j∑
s=0

βs
(

ln
(
1 + Ke−ci

)
+ γ

)
=

(
1 − β j+1

) (
ln(1 + Ke−ci ) + γ

)
1 − β

(A.76)
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Then for a period t, we will have:

Vt = VT−(T−t) =

(
1 − βT−t+1

) (
ln(1 + Ke−ci ) + γ

)
1 − β

(A.77)

Hence proved.

Proposition A.4 For k > 0 let ∆kE(Vit) be defined as:

∆kE(Vit) = E
[
Vit+1(pt+1)

∣∣∣aRt = k, aDt, pt

]
− E

[
Vit+1(pt+1)

∣∣∣aRt = 0, aDt, pt

]
(A.78)

Then ∣∣∣∆kE(Vit)
∣∣∣ ≤ βT−t+1

K∑
k=1

Ek (A.79)

Proof : This is a direct implication of proposition A.3, as

∆kE(Vit) =E
[
Vit+1(pt+1)

∣∣∣aRt = k, aDt, pt

]
− E

[
Vit+1(pt+1)

∣∣∣aRt = 0, aDt, pt

]
≤

(
1 − βT−t+1

) (
ln(1 + Ke−ci ) + γ

)
1 − β

+ βT−t+1Ek − E
[
Vit+1(pt+1)

∣∣∣aRt = 0, aDt, pt

]
≤

(
1 − βT−t+1

) (
ln(1 + Ke−ci ) + γ

)
1 − β

+ βT−t+1Ek −

(
1 − βT−t+1

) (
ln(1 + Ke−ci ) + γ

)
1 − β

=βT−t+1
K∑

k=1

Ek

(A.80)

The first inequality is true because of the upper bound inequality in proposition A.3 and the second is true by the lower

bound inequality of A.3. Similarly,

∆kE(Vit) =E
[
Vit+1(pt+1)

∣∣∣aRt = k, aDt, pt

]
− E

[
Vit+1(pt+1)

∣∣∣aRt = 0, aDt, pt

]
≥

(
1 − βT−t+1

) (
ln(1 + Ke−ci ) + γ

)
1 − β

− E
[
Vit+1(pt+1)

∣∣∣aRt = 0, aDt, pt

]
≥

(
1 − βT−t+1

) (
ln(1 + Ke−ci ) + γ

)
1 − β

−

(
1 − βT−t+1

) (
ln(1 + Ke−ci ) + γ

)
1 − β

+ βT−t+1Ek

= − βT−t+1
K∑

k=1

Ek

(A.81)

The first inequality is true because of the lower bound inequality in proposition A.3 and the second is true by the upper

bound inequality of A.3. Hence proved.

Corollary A.1 For ∆kE(Vit) ≈ 0 for large T − t.

Proof : The proof follows from proposition A.4 and applying squeeze theorem.

−βT−t+1
K∑

k=1

Ek ≤ ∆kE(Vit) ≤ βT−t+1
K∑

k=1

Ek (A.82)

Since β < 1, βT−t+1
→ 0 as T− t→∞. Therefore upper and lower bounds both tend to 0, as a result∆kE(Vit). Hence proved.
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B Numerical Approximation

B.1 Primitives

Let P = {(pr
1, . . . ,p

r
K)}Rr=1 be the state variable grid. Let T(p) =

(
T1(p),T2(p), . . . ,TR(p)

)
be a vector collecting Chebyshev

polynomial terms corresponding to an arbitrary grid point p. The approximated values all value functions in the model take

for a p ∈ P be given by: {
ṼR,t(p), ṼD,t(p),

{
ũR, f ,t(k; p), ũD, f ,t(k; p), {ũR,s,t(k; l,p), ũD,s,t(k; l,p)}Kl=0

}K

k=0

}T

t=1

The approximated values all conditional choice probabilities in the model take for a p ∈ P be given by:{{
σ̃R, f ,t(k; p), σ̃D, f ,t(k; p), {σ̃R,s,t(k; l,p), σ̃D,s,t(k; l,p)}Kl=0

}K

k=0

}T

t=1

I approximate the value functions by Chebyshev polynomials. In order to interpolate a value functions I only need to

know the value of the coefficients of these polynomials. Let the coefficients of the polynomial terms approximating Vi,t(.) be

denoted by γV
i,t, ui, f ,t(k; .) be denoted by γ f

i,t,k and ui,s,t(k; l, .) by γs
i,t,k,l. Apart from these, I also need a Gaussian quadrature for

calculating conditional expectation. Let ν = {(νs
1, . . . , ν

s
K, ω

s)}Ss=1 be a Gaussian quadrature.

B.2 Last Period

For period T, we do not require coefficients in period T+1, nor the Gaussian quadrature because the conditional expectation

of the value function can be computed. The following equations describe how to evaluate all value function values over the

grid P. Note here the approximated values are equal to true values.

ũi,s,T(ai; a j,pr) = −ci(1 − ai,0) + β
K∑

k=1

EkΦ
(αiai,k + α ja j,k + α̃ai,kai,k + ρpr

k + δk

σν

)
(B.1)

σ̃i,s,T(a j; ai,pr) =
exp

(
ũi,s,T(ai; a j,pr) − ũi,s,T(0; a j,pr)

)
1 +

∑K
l=1 exp

(
ũi,s,T(l; a j,pr) − ũi,s,T(0; a j,pr)

) (B.2)

ũi, f ,T(ai; a j,pr) = −ci(1 − ai,0) + β
K∑

a j=0

K∑
k=1

EkΦ
(αiai,k + α ja j,k + α̃ai,kai,k + ρpr

k + δk

σν

)
× σ̃ j,s,T(a j; ai,pr) (B.3)

σ̃i, f ,T(a j; pr) =
exp

(
ũi, f ,T(ai; pr) − ũi,s,T(0; pr)

)
1 +

∑K
l=1 exp

(
ũi, f ,T(l; pr) − ũi,s,T(0; f pr)

) (B.4)

Ṽi,T(pr) = fi log
( K∑

ai=0

exp
(
ũi, f ,T(ai; pr)

))
+ (1 − fi)

K∑
a j=0

log
( K∑

ai=0

ũi,s,T(ai; a j,pr)
)
× σ̃ j,s,T(a j; ai,pr) (B.5)

Where ai,k = 1{ai = k} for all i ∈ {R,D} and k ∈ {0, 1, . . . ,K}.
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B.3 Period t : Interpolating Polynomials

In an arbitrary period t, suppose we have computed the values of the approximated value functions. Define T as the matrix

obtained by collecting transpose of all Chebyshev polynomial terms at each p ∈ P:

T =


T(p1)⊤

T(p2)⊤
...

T(pR)⊤


R×R

=


T1(p1) T2(p1) . . . TR(p1)
T1(p2) T2(p2) . . . TR(p2)
...

...
...

...

T1(pR) T2(pR) . . . TR(pR)


R×R

(B.6)

We can collect the approximated values of the value function Ṽi,t for each i as a vector and pre-multiply by T−1 to obtain

the interpolating polynomial coefficients specific to Ṽi,t.

γV
i,t = T−1


Ṽi,t(p1)
Ṽi,t(p2)

...

Ṽi,t(pR)

 i ∈ {R,D} (B.7)

Similarly collect the approximated values of the option specific value function for the first mover, ũi, f ,k,t, for each i, k as a

vector and pre-multiply by T−1 to obtain the interpolating polynomial coefficients specific to ũi, f ,k,t.

γ f
i,k,t = T−1


ũi, f ,t(k; p1)
ũi, f ,t(k; p2)

...

ũi, f ,t(k; pR)

 i ∈ {R,D}, k ∈ {0, 1, . . . ,K} (B.8)

Lastly, collect the approximated values of the option specific value function for the second mover, ũi,s,k,l,t, for each i, k, l as

a vector and pre-multiply by T−1 to obtain the interpolating polynomial coefficients specific to ũi,s,k,l,t.

γs
i,k,l,t = T−1


ũi,s,t(k; l,p1)
ũi,s,t(k; l,p2)

...

ũi,s,t(k; l,pR)

 i ∈ {R,D}, k ∈ {0, 1, . . . ,K}, l ∈ {0, 1, . . . ,K} (B.9)

Once, we have obtained these coefficients, it allows us to interpolate the value functions and conditional choice proba-

bilities at any given popularity standing p. The following expressions need to be evaluated for the interpolation exercise:

Vi,t(p) ≈ V̂i,t(p) =
R∑

r=1

γV
i,t;rTr(p) (B.10)

ui, f ,t(k; p) ≈ ûi, f ,t(k; p) =
R∑

r=1

γ f
i,k,t;rTr(p) (B.11)

ui,s,t(k; l, p) ≈ ûi,s,t(k; l, p) =
R∑

r=1

γs
i,k,l,t;rTr(p) (B.12)

Here, γV
i,t;r, γ f

i,k,t;r, γs
i,k,l,t;r are rth components of the vectors γV

i,t, γ
f
i,k,t, γ

s
i,k,l,t. Moreover, we can also evaluate conditional
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choice probabilities as followed:

σi,s,t(ai; a j, p) ≈ σ̂i,s,t(ai; a j, p) =
exp

(∑R
r2=1

(
γs

i,ai,a j,t;r
− γs

i,0,a j,t;r

)
Tr(p)

)
1 +

∑K
k=1 exp

(∑R
r2=1

(
γs

i,k,a j,t;r
− γs

i,0,a j,t;r

)
Tr(p)

) (B.13)

σi, f ,t(ai; p) ≈ σ̂i, f ,t(ai; p) =
exp

(∑R
r2=1

(
γ f

i,ai,t;r
− γ f

i,0,t;r

)
Tr(p)

)
1 +

∑K
k=1 exp

(∑R
r2=1

(
γ f

i,k,t;r − γ
f
i,0,t;r

)
Tr(p)

) (B.14)

Based on σ̂i,s,t(ai; a j, p) and σ̂i, f ,t(ai; p) we can define the approximation of σt(aR, aD; p) as followed:

σt(aR, aD; p) ≈ σ̂t(ai, a j; p)

= f σ̂R, f ,t
(
aR; p

)
σ̂D,s,t

(
aR; aD, p

)
+

(
1 − f

)
σ̂D, f ,t

(
aD; p

)
σ̂R,s,t

(
aD; aR, p

) (B.15)

This property will be used extensively in the next subsection.

B.4 Period t : Approximate Value Functions and CCPs on the grid

We can obtain period t + 1 interpolating polynomial coefficients by following steps in the previous subsection. Now we will

build over that in this subsection with the objective of obtaining period t values of the value functions over the grid P. First,

by following Judd et al. (2017), define vectors Ir,k,l for each r, k, l that collects the integrated Chebyshev polynomial terms as

followed:

Ir′
r,k,l =

S∑
s=1

Tr′



αR1{k == 1} + αD1{l == 1} + α̃1{k == 1, l == 1} + ρpr

1 + δ1 + σννs
1

...

αR1{k == K} + αD1{l == K} + α̃1{k == K, l == K} + ρpr
K + δK + σννs

K


ωs (B.16)

Here, νs
1, . . . , ν

s
K are Gaussian shocks and ws is the weight of these shocks. The choice of the Gaussian quadrature is

discussed later. Consequently define Ir,k,l = (I1
r,k,l, I

2
r,k,l, . . . , I

R
r,k,l). Note none of the terms used in this calculation depends

upon the period t and therefore this calculation needs to be done once outside the value iteration loop. The integrated

Chebyshev polynomial, Ir,k,l, can be used to calculate ũi,s,t as followed:

ũi,s,t(ai; a j,pr) = −ci(1 − ai,0) + β
R∑

r2=1

γV
i,t+1;r2

Ir2
r,ai,a j

(B.17)

Here γV
i,t+1;r2

is the coefficient of the rth
2 term of the polynomial interpolating Vi,t+1(). The sum "

∑R
r=1 γ

V
i,t+1,r2

Ir2
r,ai,a j

" approx-

imates E[Vi,t+1(p)|ai, a j,pr]. Moreover the choice of the Gaussian quadrature ensures that the error in this approximation

depends on the degree of the Chebyshev polynomial. The conditional choice probability for the second mover is given by:

σ̃i,s,t(ai; a j,pr) =
exp

(
− ci(1 − ai,0) + β

∑R
r2=1 γ

V
i,t+1,r2

(
Ir2
r,ai,a j
− Ir2

r,0,a j

))
1 +

∑K
k=1 exp

(
− ci + β

∑R
r2=1 γ

V
i,t+1,r2

(
Ir2
r,k,a j
− Ir2

r,0,a j

)) (B.18)

Provided the above we can calculate the first mover’s pay-offs as followed:

ũi, f ,t(ai; a j,pr) = −ci(1 − ai,0) + β
K∑

a j=0

( R∑
r2=1

γV
i,t+1;r2

Ir2
r,ai,a j

)
× σ̃ j,s,t(a j; ai,pr) (B.19)
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Here there are two expectations, the outer expectation is with respect to the opponent’s second mover conditional choice

probabilities. The inner expectation is over next period popularity. Provided this, it is possible to compute σ̃i, f ,t(ai; pr).

σ̃i, f ,t(ai; pr) =
exp

(
− ci(1 − ai,0) + β

∑R
r2=1 γ

V
i,t+1,r2

(∑K
a j=0(Ir2

r,ai,a j
σ̃ j,s,t(a j; ai,pr) − Ir2

r,0,a j
σ̃ j,s,t(a j; 0,pr)

))
1 +

∑K
k=1 exp

(
− ci + β

∑R
r2=1 γ

V
i,t+1,r2

(∑K
a j=0(Ir2

r,k,a j
σ̃ j,s,t(a j; k,pr) − Ir2

r,0,a j
σ̃ j,s,t(a j; 0,pr)

)) (B.20)

We can compute the approximated value function at period t for an arbitrary pr
∈ P as followed:

Ṽi,t(pr) = fi log
( K∑

ai=0

exp
(
ũi, f ,t(ai; pr)

))
+ (1 − fi)

K∑
a j=0

log
( K∑

ai=0

ũi,s,t(ai; a j,pr)
)
× σ̃ j,s,t(a j; ai,pr) (B.21)

B.5 Sparse Grid, Polynomial and Gaussian Quadrature

I follow Judd et al. (2014) for constructing a Smolyak Grid for approximation level µ and the corresponding Chebyshev poly-

nomial. I construct Smolyak Grid, U = {(ur
1, . . . ,u

r
K)}Rr=1 over [−1, 1]K and its corresponding Chebyshev polynomialΨ(u).

Then the grid P = {(pr
1, . . . ,p

r
K)}Rr=1 for a given set of parameters ρ, σν, δ1, . . . , δK is constructed as followed:

pr = pk + (p̄k − pk)
ur

k + 1

2

where p̄k =
δk

1 − ρ
+ λ

 αR

1 − ρ
+

3σν√
1 − ρ2


pk =

δk + αD

1 − ρ
+ λ

 αD

1 − ρ
−

3σν√
1 − ρ2


(B.22)

Hereλ is a tuning parameter which controls the size of the grid. I choseλ = 1 after conducting extensive Monte-Carlo Ex-

perimentsrefer to Section D. The value,λ = 1, provided me with the least bias and adequate MSE. The Chebyshev polynomial

T(p) = (T1(p),T2(p), . . . ,TR(p)) is defined as followed:

Tr(p) =Ψr

(
2
(p1 − p1

p̄1 − p1

)
− 1, 2

(p2 − p2

p̄2 + p2

)
− 1, . . . , 2

(pK − pK

p̄K + pK

)
− 1

)
(B.23)

Where Ψr(.) is the rth Chebyshev polynomial term. The Gaussian quadrature, denoted by ν = {(νs
1, . . . , ν

s
K, ω

s)}Ss=1, is

obtained from http://www.sparse-grids.de/. I choose KPN for K dimensions and degree 2µ + 1. This quadrature can

compute exact integral of a K−dimensional complete polynomial of maximal degree 2µ + 1.

B.6 Algorithm

Here I will describe the algorithm step-by-step using the equations discussed above. The algorithm will be defined for a given

parameter values, θPopularity =
{
αR, αD, α̃, ρ, σν, δ1, δ2, . . . , δK

}
and θCost = {cR, cD, c1, c2, . . . , cK} and the approximation level

µ.

Step 0 Generate the Smolyak pair, U,Ψ for K dimensions and approximation level µ by following Judd et al. (2014). Ob-

tain KPN Gaussian quadrature ν = {(νs
1, . . . , ν

s
K,w

s)}Ss=1 from http://www.sparse-grids.de/ for K dimensions and

approximation level 2µ + 1.

Step 1 Compute the parameter-specific P,T using equations B.22 and B.23.

Step 2 Pre-Compute integrals of Chebyshev terms contingent on current popularity and candidate decisions by equation

B.16.
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Figure 10: Residual Equation Errors
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Notes: The histograms report the residual equation errors in decimal log basis. The dashed line marks the mean

of residual euqation error.

Step 3 Approximate Backward Induction.

1 Carry-out the following two steps:

- Compute {Ṽi,T, ũi, f ,T, ũi,s,T, σ̃i, f ,T, σ̃i,s,T} for candidate i = R,D by following equations B.5, B.3, B.1,B.4, B.2

respectively.

- Obtain coefficients of the interpolating polynomials, {γV
i,T, γ

f
i,k,T, γ

s
i,k,l,T} for candidate i = R,D and k, l =

0, . . . ,K by following equations B.7, B.8 and B.9 for period t = T respectively.

2 For t = 1, 2, . . . ,T − 1 do the following:

- Compute {Ṽi,T−t, ũi, f ,T−t, ũi,s,T−t, σ̃i, f ,T−t, σ̃i,s,T−t} for candidate i = R,D by following equations B.21, B.19,

B.17,B.20, B.18 respectively.

- Obtain coefficients of the interpolating polynomials, {γV
i,T−t, γ

f
i,k,T−t, γ

s
i,k,l,T−t} for candidate i = R,D and

k, l = 0, . . . ,K by following equations B.7, B.8 and B.9 for period t = T respectively.

B.7 Accuracy of Numerical Approximation

I evaluate the accuracy of the numerical approximation by computing the errors of the residual equations (Judd, 1992). I sim-

ulate the model 400 times. This produce a set of popularity values,
{{(

p1,t,i, . . . , pK,t,m
)}T

t=1

}400

m=1
. For each pt,m = (p1,t,m, . . . , pK,t,m),
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Figure 11: Day-Specific Residual Equation Errors
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let Gpk,l(p) = E[pt+1|aR,t = k, aD,t = l, p] and define

ut+1
i,s,t(k; l, pt,m) = −ci

(
1 − ai,0

)
+ β

R∑
r=1

γV
i,t+1;r

 S∑
s=1

Tr
(
Gpk,l(pt,m + σνν

s)
)
ωs

 (B.24)

I calculate the residuals of equilibrium equation defining second mover value function,Ri,s,k,l,t(γ; pt,m) as followed:

Ri,s,k,l,t(γ; pt,m) = 1 −
ut+1

i,s,t(k; l, pt,m)

ûi,s,t(k; l, pt,m)
for all i, k, l, t (B.25)

Similarly define ut+1
f ,s,t as followed:

ut+1
i, f ,t(k; pt,m) =

k∑
l=1

ut+1
i,s,t(k; l, pm,t)

 exp
(
ut+1

j,s,t(l; k, pm,t) − ut+1
j,s,t(0; k, pm,t)

)
1 +

∑K
l′=1 exp

(
ut+1

j,s,t(l
′; k, pm,t) − ut+1

j,s,t(0; k, pm,t)
)  (B.26)

Then defineRi, f ,k,t(γ; pt,m)

Ri, f ,k,t(γ; pt,m) = 1 −
ut+1

i, f ,t(k; pt,m)

ûi, f ,t(k; pt,m)
for all i, k, l, t (B.27)

In similar fashion one can define Vt+1
i,t (pt,m) and then calculate the corresponding residuals, denoted byRi,t(γ; pt,m) for all

i, t. Note by construction these residual values are all zero at the collocation points P. These residual equations calculate the

discrepancy between value functions derived by the numerical algorithm (ûi, f ,t, ûi,s,t and V̂i,t) and the ones obtained from
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the equilibrium conditions (ut+1
i, f ,t, ut+1

i,s,t and Vt+1
i,t ) in points of the state space which are different from the collocation points. I

report the decimal log of absolute values of these residuals errors. In Figure 10 I show the histogram of those errors.

The average residual equation errors are in the order of−4.9,−4.73 for R and D’s value functions (resp.);−4.93 and−4.69
for R’s and D’s first mover value function; and −5.15 and −5.07 for R and D’s second mover value functions. Given the

complexity of the model these discrepancies are in a reasonable range.
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C Data Appendix

The group of activities I am interested in involves a candidate (i) holding a rally, (ii) giving a speech,

or (iii) organizing a special event. I call these activities a political rally. In various media reports, most

of these organized special events (such Focus events, Early Vote events, Get out Vote events, etc.) are

reported as rallies, or there is evidence that the candidate delivered a speech to voters. For instance,

consider 2004 elections— even though currently not part of my empirical application. There are events

called Focus Events used by George W. Bush’s presidential campaign. An example of such entry in the

calendar is regarding October 20, 2014, Rochester Airport rally. The entry in Democracy in Action is

given as ’GWB participates in a "Focus on the Economy with President Bush" event at Rochester Avia-

tion hanger in Rochester, MN ’. The same event was also reported as a rally http://news.minnesota.

publicradio.org/features/2004/10/20_ap_bushrochester/. Another example for a set of en-

tries that are akin to rallies but were entered as campaign events are Early Vote Events. Consider the

October 21 Early Vote Event in Cleveland, Ohio by Hilary R. Clinton. In the recording— link: https:

//www.youtube.com/watch?v=abbxQn-9DBY— of the event Hilary R. Clinton can be seen delivering a

speech to a large gathering of voters.

In the model, candidates can hold at most one rally in a given period, but empirically there are days

when candidates visit multiple states for holding rallies. Therefore, I define a period as a quarter of the

day and assign periods to observed rallies by using the chronological information for all activities. First,

every day is divided into 4 sub-periods. To achieve this, I need to make sure there are at most four rallies

in a day. I had to remove nine rallies for being a) late-night/post-midnight rally on the last day b) rallies

in the same state consecutively53. I also removed rallies from states where less than two rallies were held

at most. States with rare rallies are stronghold states. These rallies do not influence electoral outcomes

within those states.

Second I assign periods to each rally by carrying out the following steps. I calculate the total number

of appearances a candidate makes in a day (let us say n). If a rally was ith appearance made by the

candidate, then it received a score of i/n. Once all scores, then periods within a day are assigned in the

following manner: 1) If i/n ≤ 0.25, it is considered the first period within the day. 2) If 0.25 < i/n ≤ 0.5,

it is considered the second period within the day. 3) If 0.5 < i/n ≤ 0.75, it is considered the third period

within the day. 4) If 0.75 < i/n ≤ 1, it is considered the fourth period within that day. If two rallies

receive the same periods, the one with lower i/n receives a lower period if the lower period is available

otherwise the higher i/n receives a higher period. Whenever, such ties occurred one of the periods were

available. Finally the periods in the model are calculated as ‘model period’ = 4 · ‘days before election’ +

‘period within the day’.

Table 9 shows the total number of activities that were available for 120 days before the election. These
activities are categorized into groups. The category “Rally/Event/Speech” are of interest to this paper. The
number of rallies retained after removing stronghold state rallies and counting consecutive rallies in the
same state as one rally is also shown here.

53Not all such rallies were removed only four such rallies were removed to ensure at most four rallies in a day
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Table 9: Candidates Appearances

Romney Obama Trump Clinton

2012 2012 2016 2016

Address/Church Visit 13 15 17 17

Debate Related 12 9 8 8

Fundraiser 51 31 39 39

Interview/Meet/Discuss 12 12 34 12

Rally/Event/Speech 106 92 130 81

Stop/Tour 41 58 21 29

Travel 17 11 2 3

Number of Rallies retained 99 89 119 71

Number of Rallies dropped 7 3 11 10

Note: The table shows summary statistics for raw data obtained from

Democracy in Action. Here I show the categories into which candidate ap-

pearances were categorized. This data contains classification for last 120

days rather than 100 days. The category Rally/Event/Speech is the largest

category that I define as Rallies. I also show the number of rallies that were

dropped and retained.
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D Simulated Likelihood Procedure

D.1 Simulated Likelihood

In order to calculate λθd

(
Xd

∣∣∣Xd−1

)
we need to execute an integration over R3K. This exercise is not feasible analytically

and therefore we use a Quasi Monte-Carlo scheme that relies on Sobol sequence. We use M = 210
× K points to evalu-

ate λθd (Xd

∣∣∣Xd−1). Lets denote the set of probability integral transforms of 3K dimensional Sobol sequence, till M, by ζ ={
ζm = (ζm

1,1, . . . , ζ
m
1,K, . . . , ζ

m
3,1, . . . , ζ

m
3,K)

}M

m=1
54. Based on ζwe can define the following set of plausible popularity values:

p̂m,d
1,k = Pd,1,k (D.1)

Here Pd,1,k is the observed popularity on day d in state k. For l = 1, 2, 3 I define the following

p̂m,d
l+1,k = αR1{AR,d,l == k} + αD1{AD,d,l == k} + α̃1{AR,d,l == k,AD,d,l == k} + ρp̂m,d

l,k + δk + σνζ
m
l,k (D.2)

Lastly call p̂m,d
5,k as the predicted popularity on day d at sub period 1 for the Sobol draw m. For each draw m we can construct

a predicted popularity value conditioned on Pd,1,Ad,1, . . .Ad,4. This gives us a plausible mean for observed popularity on day

d + 1 sub-period 1. This predicted popularity is given by:

p̂m,d
5,k = αR1{AR,d,4 == k} + αD1{AD,d,4 == k} + α̃1{AR,d,4l == k,AD,d,4 == k} + ρp̂m,d

4,k + δk (D.3)

Therefore we have a set of plausible popularity values Pd =
{
p̂m,d = (p̂m,d

1,1 , . . . , p̂
m,d
1,K , . . . , p̂

m,d
5,1 , . . . , p̂

m,d
5,K )

}M

m=1
for each d and it

can be used to approximate λθd

(
Xd

∣∣∣Xd−1

)
as followed:

λθd
(
Xd

∣∣∣Xd−1

)
≈λ̂θd

(
Xd

∣∣∣Xd−1

)
≈

1
M

M∑
m=1


 4∏

l=1

σ̂4(d−1)+l

(
Ad,l; p̂m,d

l

) × 1
σK
ν

 K∏
k=1

ϕ

Pd+1,1,k − p̂m,d
5,k

σν



 (D.4)

Where p̂m,d
l = (p̂m,d

l,1 , . . . , p̂
m,d
l,K ), the function σ̂4(d−1)+l(Ad,l; p̂m,d

l ) has been defined in equation B.15 and ϕ(.) is the p.d.f. of

standard normal distribution. The density λ̂θ
(
Xd

∣∣∣Xd−1

)
provides a close approximation of λθ

(
Xd

∣∣∣Xd−1

)
. If ζ were drawn

from a standard normal distribution instead, call this density (λ̃θ
(
Xd

∣∣∣Xd−1

)
) then it is not hard to see that λ̃θ

(
Xd

∣∣∣Xd−1

)
→

λ̃θ
(
Xd

∣∣∣Xd−1

)
as M → ∞. The error of this integral would vanish to zero with a rate of

√
M. However, we are using QMC,

which in practice is known to provide better convergence rate as long as the variation of λθd (.|.) is finite. This will be true as

long as σν > 1
∆ and 1 − ρ > 1

∆ for a large ∆ >> 0. Therefore, the approximate log-likelihood is given by:

ℓℓ(θ; X0,X1, . . . ,XD̄) ≈ ℓ̂ℓ (θ; X0,X1, . . . ,XD̄)

≈
1
D̄

D̄∑
d=1

log

 1
M

M∑
m=1


 4∏

l=1

σ̂4(d−1)+l

(
Ad,l; p̂m,d

l

) × 1
σK
ν

 K∏
k=1

ϕ

Pd+1,1,k − p̂m,d
5,k

σν




 (D.5)

D.2 Algorithm

Here I will describe the algorithm used for computing ℓ̂ℓ (θ; X0,X1, . . . ,XD̄) step-by-step. We will use the equations discussed

above in sections B and D. The algorithm will be defined for a given parameter values,θ =
{
αR, αD, α̃, ρ, σν, δ1 . . . , δK, cR, cD, c1, . . . , cK

}
and the approximation level µ. The steps of the algorithm are below:

54Here ζm
l,k is Φ−1

(
um

Sobol,l,k

)
, where um

Sobol,l,k is the (3(l − 1) + k)th component of the mth point of 3K dimensional Sobol

sequence. Note thatΦ−1 is the probability integral transform for the standard normal distribution.
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Step 0 Generate the Smolyak pair, U,Ψ for K dimensions and approximation level µ by following Judd et al. (2014). Ob-

tain KPN Gaussian quadrature ν = {(νs
1, . . . , ν

s
K,w

s)}Ss=1 from http://www.sparse-grids.de/ for K dimensions and

approximation level 2µ + 1. Generate a 3K dimensional Sobol sequence upto M points, call this set ζ =
{
ζm

}M

m=1
55.

Step 1 Compute the parameter-specific P,T using equations B.22 and B.23.

Step 2 Pre-Compute integrals of Chebyshev terms contingent on current popularity and candidate decisions by equation

B.16.

Step 3 Approximate Backward Induction.

1 Carry-out the following two steps:

- Compute {Ṽi,T, ũi, f ,T, ũi,s,T, σ̃i, f ,T, σ̃i,s,T} for candidate i = R,D by following equations B.5, B.3, B.1,B.4, B.2

respectively.

- Obtain coefficients of the interpolating polynomials, {γV
i,T, γ

f
i,k,T, γ

s
i,k,l,T} for candidate i = R,D and k, l =

0, . . . ,K by following equations B.7, B.8 and B.9 for period t = T respectively.

2 For t = 1, 2, . . . ,T − 1 do the following:

- Compute {Ṽi,T−t, ũi, f ,T−t, ũi,s,T−t, σ̃i, f ,T−t, σ̃i,s,T−t} for candidate i = R,D by following equations B.21, B.19,

B.17,B.20, B.18 respectively.

- Obtain coefficients of the interpolating polynomials, {γV
i,T−t, γ

f
i,k,T−t, γ

s
i,k,l,T−t} for candidate i = R,D and

k, l = 0, . . . ,K by following equations B.7, B.8 and B.9 for period t = T respectively.

Step 4 For d = 1, 2, . . . , D̄ do the following:

- Calculate p̂m,d
l,k for k = 1, . . . ,K, l = 1, . . . , 5 and m = 1, . . . ,M using equations D.1, D.2 and D.2.

- For each m ∈ {1, 2, . . . ,M} and l ∈ {1, 2, . . . , 5} calculate σ̂4(d−1)+1(Ad,l; p̂m,d
l ), where p̂m,d

l = (p̂m,d
l,1 , . . . , p̂

m,d
l,K ), using

equation B.15.

- Calculate λ̂θd

(
Xd

∣∣∣Xd−1

)
using equation D.4.

Step 5 Calculate ℓ̂ℓ (θ; X0,X1,X2, . . . ,XD̄) using equation D.5.

D.3 Monte Carlo

This section demonstrates the Monte-Carlo performance of the estimator in the previous sub-section. Here I use the total

electoral college votes to be equal 540. For each exercise I generate the data while considering approximation level µdgp and

for the log likelihood the approximation level will be µll. This is to allow for poorer approximation by the likelihood than

the DGP which holds true in the real world. The electoral college votes are distributed similar to the real data wherever

applicable. I document bias, MSE, proportional bias and proportion MSE wherever possible

55Recall ζm = (ζm
1,1, . . . , ζ

m
1,K, . . . , ζ

m
3,1, . . . , ζ

m
3,K)
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Table 10: Monte Carlo for K = 2 when µdgp = 4 > µll = 3

Parameter value bias MSE bias
value

MSE
value2 µdgp

αR 0.0600 0.0002 0.0001 0.0027 0.0297 4

0.0600 -0.0001 0.0002 -0.0022 0.0443 5

αD -0.0600 -0.0017 0.0001 0.0278 0.0329 4

-0.0600 -0.0024 0.0002 0.0402 0.0529 5

ρ 0.9900 0.0089 0.0001 0.0090 0.0001 4

0.9900 0.0070 0.0001 0.0071 0.0001 5

cR 2.8000 0.1336 0.0745 0.0477 0.0095 4

2.8000 0.3818 0.1999 0.1364 0.0255 5

cD 2.8000 0.1582 0.0745 0.0565 0.0095 4

2.8000 0.4218 0.2318 0.1507 0.0296 5

σ 0.0600 -0.0009 0.0000 -0.0148 0.0027 4

0.0600 -0.0004 0.0000 -0.0067 0.0026 5

Notes: This accounts for bias arising due to numerical approximation since µdgp > µll. Number of Monte

Carlo simulations is 400.
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Table 11: Monte Carlo for K = 2 when µdgp = µll

Parameter value bias MSE bias
value

MSE
value2 Days

αR 0.06000 -0.00101 0.00010 -0.01680 0.02862 D=100

0.06000 -0.00035 0.00006 -0.00576 0.01535 D=200

αD -0.06000 0.00159 0.00011 -0.02657 0.03028 D=100

-0.06000 0.00074 0.00005 -0.01231 0.01461 D=200

ρ 0.99000 -0.00134 0.00001 -0.00136 0.00001 D=100

0.99000 -0.00100 0.00001 -0.00101 0.00001 D=200

cR 2.40000 0.02011 0.02827 0.00838 0.00491 D=100

2.40000 0.01388 0.01343 0.00578 0.00233 D=200

cD 2.40000 0.00616 0.02923 0.00257 0.00507 D=100

2.40000 0.00748 0.01159 0.00312 0.00201 D=200

σ 0.06000 0.00006 0.00001 0.00094 0.00264 D=100

0.06000 0.00028 0.00000 0.00470 0.00128 D=200

Notes: This doesn’t accounts for bias arising due to numerical approximation since µdgp = µll. Number of

Monte Carlo simulations is 400.
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Table 12: Monte Carlo for K = 4 when µdgp > µll

Parameter value bias MSE bias
value

MSE
value2

αR 0.0600 0.0057 0.0001 -0.0955 0.0417

αD -0.0600 -0.0056 0.0002 -0.0941 0.0432

ρ 0.9900 -0.0073 0.0001 0.0074 0.0001

cR 3.5000 -0.2660 0.1298 0.0760 0.0106

cD 3.5000 -0.2613 0.1283 0.0747 0.0105

σ 0.0600 0.0005 0.0000 -0.0085 0.0014

d1 -0.0010 -0.0016 0.0000 -1.6269 17.5230

d2 0.0010 0.0019 0.0000 -1.9447 15.8239

d3 0.0000 0.0001 0.0000 -Inf Inf

d4 0.0000 -0.0001 0.0000 Inf Inf

c1 0.3000 0.1202 0.1332 -0.4008 1.4797

c2 0.3000 0.1208 0.1339 -0.4027 1.4882

c3 0.3000 -0.0259 0.1044 0.0863 1.1599

Notes: This accounts for bias arising due to numerical approximation since µdgp > µll. Number of Monte

Carlo simulations is 400.
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Table 13: Monte Carlo Experiments for K = 2, D = 100 µdgp > µll

Interaction term specification

Parameter Configuration 1

Parameter Value Bias MSE Bias (prop.) MSE (prop.)

αD -0.060 0.004 0.000 0.062 0.083

αR 0.050 -0.009 0.000 0.188 0.145

α̃ 0.000 0.015 0.003 - -

cD 2.600 0.046 0.185 0.018 0.027

cR 2.600 0.120 0.140 0.046 0.021

ρ 0.990 0.003 0.000 0.003 0.000

σν 0.060 0.001 0.000 0.018 0.006

Parameter Configuration 2

Parameter Value Bias MSE Bias (prop.) MSE (prop.)

αD -0.040 -0.001 0.000 0.014 0.063

αR 0.050 0.001 0.000 0.017 0.026

α̃ -0.020 -0.006 0.000 0.321 0.285

cD 2.600 -0.005 0.063 0.002 0.009

cR 2.600 -0.140 0.124 0.054 0.018

ρ 0.990 0.004 0.000 0.004 0.000

σν 0.060 0.002 0.000 0.037 0.005

Parameter Configuration 3

Parameter Value Bias MSE Bias (prop.) MSE (prop.)

αD -0.020 0.004 0.000 0.176 0.183

αR 0.050 -0.005 0.000 0.102 0.075

α̃ -0.040 -0.003 0.000 0.063 0.169

cD 2.600 -0.174 0.097 0.067 0.014

cR 2.600 -0.168 0.123 0.065 0.018

ρ 0.990 0.003 0.000 0.003 0.000

σν 0.060 0.002 0.000 0.028 0.003

Notes: This accounts for bias arising due to numerical approximation since µdgp > µll. Number of Monte

Carlo simulations is 400. The specification includes the interaction term. The take-away from the table is

bad Monte-Carlo performance for the range of parameters that I find in the data when using this specifi-

cation
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E Additional Robustness Tests

E.1 Robustness to Popularity Definition and Calibrated Parameters

E.1.1 Raw Polls and E = 157

Here I estimate the model after relaxing two assumptions. A first assumption is that popularity is defined

as the deviation of poll margins from the aggregate mean of poll margins across all state groups and days.

I estimate the model by considering the raw polls directly. A second assumption is that the terminal pay-

offs are given by the total electoral college votes the U.S. has. I set the electoral pay-offs as 157 electoral

college votes. This is the total number of electoral college votes states in my sample have.

I display the results from this exercise in columns (1) and columns(2) in the Table 14. Here rally

effectiveness of all candidates is significant. The point estimates of effectiveness for rallies do not signif-

icantly change from the baseline.

E.1.2 De-meaned Polls and E = 157

Here I estimate the model by retaining the de-meaned poll margins, but I set the electoral pay-offs as 157

electoral college votes. This is the total number of electoral college votes states in my sample have. The

results from this exercise are shown in columns (3) and columns(4) in Table 14. Here rally effectiveness

of all candidates is significant. The point estimates of effectiveness for rallies do not significantly change

from the baseline.

E.2 First Mover Probability

I calibrate the f at 0.5 in the baseline specification. This choice is to ensure that both candidates have the

same informational advantage over each other. In this game a second mover observes the first mover’s

action and therefore makes a more informed decision. This implication ensures that the second mover

has a more advantageous position over the first mover exogenously. By choosing a value of f = 0.5, I

ensure that the game is ex-ante fair along this dimension to both the players.

Here, I test the sensitivity of my estimates to this assumption. For this purpose, I re-estimate the

model for the values of f = 0.33 and f = 0.67. In the first case, R has the informational advantage

over the second mover while in the second case D has an information advantage. From the estimation

exercise I find that my estimates of rally effectiveness do not change significantly. The results f = 0.33
are given in columns (5) and (6) of Table 14. The results for f = 0.67 are given in columns (7) and (8) of

Table 14.
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Table 14: Additional Robustness Tests

Raw Polls De-meaned Polls First Mover Prob First Mover Prob "Most Swing" State

E = 157 E = 157 f = 0.33 f = 0.67 Polls Within Group

Parameters 2012 2016 2012 2016 2012 2016 2012 2016 2012 2016

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

αR 0.106 0.0906 0.101 0.0867 0.0741 0.0835 0.0732 0.0841 0.105 0.0834

0.027 0.0197 0.0265 0.0228 0.0153 0.0154 0.0176 0.0155 0.0218 0.0145

αD -0.0231 -0.0776 -0.0354 -0.0768 -0.0506 -0.0743 -0.0652 -0.0748 -0.0613 -0.0809

0.0113 0.0165 0.013 0.0217 0.0144 0.0151 0.018 0.0153 0.0155 0.0129

ρ 0.991 0.989 0.99 0.988 0.988 0.991 0.989 0.991 0.983 0.991

0.002 0.003 0.002 0.002 0.002 0.001 0.002 0.001 0.003 0.001

σ 0.146 0.16 0.146 0.161 0.147 0.16 0.147 0.16 0.21 0.201

0.0142 0.0149 0.0143 0.0151 0.014 0.0148 0.0141 0.0148 0.0171 0.0166

cR 2.46 2.03 2.43 2.01 2.76 2.36 2.69 2.36 2.78 2.4

0.232 0.204 0.237 0.212 0.266 0.208 0.263 0.208 0.276 0.21

cD 2.59 2.86 2.59 2.85 2.86 3.26 2.9 3.26 2.84 3.28

0.174 0.248 0.175 0.251 0.194 0.259 0.191 0.259 0.198 0.264

Fixed Effects:

Cost

Poll Margins

LL -681.95 -676.93 -681.3 -678.44 -657.03 -654.57 -658.74 -654.53 -782.57 -745.64

Observations 100 100 100 100 100 100 100 100 100 100

a Note: The table shows estimates for model parameters under 6 modifications. Columns (1) and (2) consider raw poll margins as popularity

and E = 157 as electoral pay-off. Columns (3) and (4) consider de-meaned poll margins as popularity and E = 157 as electoral pay-off. Here

the standard errors have been computed by using observation wise gradient and likelihood hessian. I use HAC estimation for this purpose.

Columns (5) and (6) consider a different calibrated value for first mover probability, f = 0.33. This values gives R a second mover advantage

or information advantage over the opponent. Columns (7) and (8) consider a different calibrated value for first mover probability, f = 0.67.

This values gives R a first mover disadvantage or information disadvantage over D. Columns (9) and (10) consider an alternative definition

of state group popularity. Here candidates consider the most swing state’s polls instead of weighted average.
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E.3 Poll Aggregation Measure

I use a weighted mean for the aggregating the polls at the state level. One concern is that I am combining

a moderately R-leaning state with a moderately D-leaning state which essentially leads to creating a

group which appears more purple56 than it should be otherwise. To test how much of this aggregation

step may distort my estimates, I propose a different aggregation measure. Here I pick the polls of the

state which is consistently most purple within the group. Formally,

l̃k = arg min
l∈Gk

 1
D

D∑
d=1

(Pld)2

 (E.1)

Here the term Gk denotes the set of states in group k. The daily polls for state l are denoted by Pld.

The state l̃k will be the most purple state within each group. Then I define the state group poll-margin

as Pkd = Pl̃kd. The model is estimated after this step and the results from this exercise are reported in

columns (9) and (10) of Table 14.

56For the lack of a good term, I am using "purple". By this I mean the easiness of swinging the state/state group.
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F Additional Figures
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Figure 12: One state case: K = 1 This figure shows that the second empirical pattern is supported by the model even if there

is one state.
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Figure 13: The plot demonstrates increase in earlier rallies due to an increase in persistence parameter, ρ. The increase in

early rallies can be explained by the fact that at any given period t, rally effectiveness on election day popularity, ceteris paribus,

is given by ρT−tαR. This effectiveness increases with ρ, and therefore, returns from rallying has a higher effect.

cR=2 cR=3

0.25

0.50

0.75

1 T
Periods

P
(1

{a
R

t>
0}

)

0.4

0.5

0.6

0.7

0.8

0.9

1 T
Periods

P
(1

{a
D

t>
0}

)

−0.6

−0.3

0.0

0.3

0.6

1 T
Periods

E
[p

i1
t+

...
+

p i
K

t]

Figure 14: The plot demonstrates level shift in probability of rally, for both candidates and also changes in expected popularity

due to increase in cost of rallying, cR. The level shift can be expplained by proposition A.4 which shows that in earlier periods

the gain from rallying is negligible and therefore probability of rally is determined by cost of rallying alone. Higher cost leads to

a decrease in probability of rally. The change in expected popularity is due to decreased rallying by R.
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Figure 15: The plot demonstrates changes in probability of rally, for both candidates, and expected popularity due to increase

in rally effectiveness, αR. Higher effectiveness increases returns from rallying therefore rallying increase. The change in expected

popularity is in R’s favor as his rallies are more effective. The drop in rallying at the end can be explained by the fact that

popularity is less pivotal towards the end than in the case with symmetric effectiveness. Therefore, due to the bell-shaped

nature of rally probability curve, there is a drop in rallies.
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(b) 2016 R’s poll margin lead distribution across states

Figure 16: This Figure shows mean and standard deviation of R’s poll margin for all states. For this figure, I have removed

District of Columbia, NE-1, NE-2, NE-3, ME-1, ME-2. The means are shown on the y-axis and the standard deviation are

shown on top/bottom of the state specific bars.
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Figure 17: This figure shows the cumulative effect a candidate’s rallies had on their vote margin lead and winning probability. For each candidate, first I draw

400 draws parameter values from the asymptotic distribution of the model parameter estimates. Then for each draw I simulate the model outcomes for the cases of

(i) only the candidate rallies and (ii) none rally. Then I take the differences of these outcomes across (i) and (ii). The variance of the distribution of these differences

are used to formulate the confidence intervals.
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Figure 18: This figure plots the model performance within the sample. Here, I plot the predicted probability of rally for each

state group against observed probability of rally. The columns represent the model prediction, the solid points show observed

probability of rallies for these groups and error-bars represent the 95% confidence intervals. Most of the predicted values lie in

95% confidence intervals which gives a sense of model performance within sample fit.
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Figure 19: This figure presents that the model supports the increasing correlation between rallies and electoral college vote

pattern. The bin −4 corresponds to 100− 76, −3 corresponds to 75− 51, −2 corresponds to 50− 26, and finally −1 corresponds

to 25 − 1 days before election. For each candidate and each bin I provide a bin scatter plot along with a fitted line for the data

and the model. The blue line, circular points and the confidence regions correspond to the data and the black lines and the

triangle points correspond to the model.
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Figure 20: Blackout Duration and Electoral Outcome for 2012 Presidential Elections. This figure provides estimates for

changes in electoral outcomes when blackouts of varying duration lengths are imposed. For each blackout duration, I cal-

culate the R’s probability of winning along with the corresponding confidence intervals for these probabilities.
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Figure 21: Blackout Duration and Electoral Outcome for 2012 Presidential Elections. This figure provides estimates for

changes in electoral outcomes when blackouts of varying duration lengths are imposed. For each blackout duration, I cal-

culate the R’s probability of winning along with the corresponding confidence intervals for these probabilities.
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G Additional Tables

G.1 Reduced form evidence for rally and poll margin relation

Table 15: Estimates for Regression G.1

Dependent Variable: Ai,d,k,y
Full Sample Only Republican Only Democrat

Model: (1) (2) (3)

Variables
1 {−80 ≤ d ≤ −61} -0.010∗∗∗ -0.011∗∗ -0.009∗∗

(0.004) (0.005) (0.005)
1 {−60 ≤ d ≤ −41} 0.002 0.003 -0.002

(0.003) (0.004) (0.005)
1 {−40 ≤ d ≤ −21} 0.010∗∗ 0.012∗ 0.008

(0.004) (0.006) (0.005)
1 {−20 ≤ d ≤ −1} 0.043∗∗∗ 0.047∗∗∗ 0.039∗∗∗

(0.009) (0.013) (0.012)
Pi,d−1,k,y 6.92 × 10−5 0.002∗∗ -0.002∗∗

(0.0006) (0.0010) (0.0009)
P2

i,d−1,k,y 1.01 × 10−5
−9.94 × 10−6

−7.74 × 10−6

(1.1 × 10−5) (2.14 × 10−5) (1.86 × 10−5)
Pi,d−1,k,y × 1 {−80 ≤ d ≤ −61} 1.39 × 10−5 7.44 × 10−6 1.25 × 10−5

(5.71 × 10−5) (8.65 × 10−5) (6.53 × 10−5)
Pi,d−1,k,y × 1 {−60 ≤ d ≤ −41} −6.27 × 10−6

−2.7 × 10−5 4.21 × 10−5

(5.39 × 10−5) (9.05 × 10−5) (7.55 × 10−5)
Pi,d−1,k,y × 1 {−40 ≤ d ≤ −21} −4.54 × 10−5

−2.82 × 10−5
−4.44 × 10−5

(8.83 × 10−5) (0.0001) (0.0001)
Pi,d−1,k,y × 1 {−20 ≤ d ≤ −1} −4.1 × 10−5 -0.0002 0.0002

(0.0002) (0.0002) (0.0002)
P2

i,d−1,k,y × 1 {−80 ≤ d ≤ −61} 1.42 × 10−5∗∗∗ 1.67 × 10−5∗∗ 1.46 × 10−5∗∗

(5.35 × 10−6) (8.24 × 10−6) (7.23 × 10−6)
P2

i,d−1,k,y × 1 {−60 ≤ d ≤ −41} −2.26 × 10−6
−3.01 × 10−6 4.75 × 10−6

(5.01 × 10−6) (6.58 × 10−6) (7.08 × 10−6)
P2

i,d−1,k,y × 1 {−40 ≤ d ≤ −21} −2.09 × 10−5∗∗
−1.99 × 10−5

−1.43 × 10−5

(9.54 × 10−6) (1.27 × 10−5) (1.04 × 10−5)
P2

i,d−1,k,y × 1 {−20 ≤ d ≤ −1} −5.34 × 10−5∗∗∗
−5.32 × 10−5∗∗

−4.45 × 10−5∗∗

(1.48 × 10−5) (2.03 × 10−5) (1.86 × 10−5)

Fixed-effects
i × k × y Yes Yes Yes

Fit statistics
Observations 18,274 9,137 9,137
R2 0.09332 0.09614 0.09008
Within R2 0.00847 0.00922 0.00854

Clustered (i × k × y) standard-errors in parentheses
Significant Codes: ***: 0.01, **: 0.05, *: 0.1

Consider the following specification

Ai,d,k,y =

5∑
s=1

(
β0,sBs(d) + β1,sPi,d−1,k,yBs(d) + β2,sP2

i,d−1,k,yBs(d)
)
+ γi,k,y + ϵi,d,k,y (G.1)

Here, i is a candidate, d is day, k is a state and y is a year. Moreover, Bs(d) = 1 {−120 + 20s ≤ d ≤ −101 + 20s}.
Note for s = 1 this is 1 {−100 ≤ d ≤ −81}, for s = 5 this is 1 {−20 ≤ d ≤ −1}. Poll margin is denoted by
Pi,d,k,y and γi,k,y represent the candidate i, state k and year y fixed effect. Finally ϵi,d,k,y is the error term.
The estimates for this regression are given in the table G.1. In this table it important to note that the
coefficient on P2

i,d−1,k,y × Bs becomes more negative as s increases from 1 to 5. This supports the model

prediction for the hump shaped57 relation exists only close to election.

57bell shaped relation in the main body of the paper
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G.2 In-Sample Model Fit

Table 16: In Sample Model Fit

Panel (A): Comparison of Means

Romney Obama Trump Clinton

Model Data Model Data Model Data Model Data

South West 0.158 0.12 0.132 0.17 0.128 0.15 0.0625 0.04

0.069 0.081 0.076 0.04

Mid West 0.161 0.1 0.136 0.2 0.154 0.15 0.0748 0.08

0.063 0.088 0.076 0.056

North East 0.313 0.31 0.256 0.26 0.386 0.37 0.191 0.21

0.11 0.099 0.12 0.09

South East 0.329 0.43 0.264 0.16 0.447 0.44 0.235 0.24

0.12 0.079 0.13 0.096

Panel (B): Measures of Fit

Romney Obama Trump Clinton

Correlation 0.7076 0.7530 0.6950 0.8378

Mean Squared Error 0.3996 0.3466 0.4138 0.2385

Correct Predictions 0.7600 0.8025 0.7375 0.8600

a This table shows the in-sample model fit. The average number of rallies per day lie in 95% confidence

intervals of the observed in the data. The worst correlation is 0.69. For each period, I define prediction as

the option with the highest probability of choosing. I compare these predictions with the data and calculate

the proportion of correct predictions. Using this metric for prediction I find that worst correct predictions

is 73%.
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G.3 Cumulative Effect of Rallies: State-Wise Effects

Table 17: Effect of Rallies on Electoral Outcomes

2012 2016

Romney Obama Trump Clinton

Voter Share

National 294.525∗∗∗ 93.0554∗∗∗ 483.896∗∗∗ 92.6859∗∗∗

(67.125) (20.739) (94.296) (23.692)
South West 19.4427∗∗∗ 9.00424∗∗ 20.0117∗∗∗ 3.91761

(4.9946) (3.684) (6.2449) (2.9525)
Mid West 32.0433∗∗∗ 14.518∗∗∗ 33.2474∗∗∗ 9.62969∗∗

(9.6481) (5.1558) (11.221) (4.6813)
North East 87.055∗∗∗ 34.3326∗∗∗ 128.058∗∗∗ 43.5479∗∗∗

(27.028) (7.4425) (32.869) (9.4602)

South East 155.984∗∗∗ 35.2006∗∗∗ 302.58∗∗∗ 35.5907∗∗

(44.464) (12.289) (71.062) (14.467)

Probability of Winning

National 0.0065 5e-04 0.4025∗∗∗ 0.036
(0.0211) (0.0027) (0.118) (0.0458)

South West 0 0.002 0.0155 -0.002
(0.00856) (0.0043) (0.0176) (0.00864)

Mid West 0 0 0.05 0.0095

(0.00213) (0.000916) (0.0487) (0.0156)
North East 0.006 0.001 0.357∗∗∗ 0.0865∗∗

(0.0205) (0.00217) (0.0755) (0.0377)
South East 0.015 0.0135 0.4945∗∗∗ 0.051

(0.0307) (0.019) (0.0962) (0.0348)

a Note: This table shows the cumulative effect a candidate’s rallies had on their vote margin

lead and winning probability. For each candidate, first I draw 400 draws parameter values

from the asymptotic distribution of the model parameter estimates. Then for each draw

I simulate the model outcomes for the cases of (i) only the candidate rallies and (ii) none

rally. Then I take the differences of these outcomes across (i) and (ii). The variance of the

distribution of these differences are used to formulate the confidence intervals.
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