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Abstract

Can we use social ties to improve technology adoption? I examine this question

when the benefits from a new technology vary in the population, with such het-

erogeneity affecting the diffusion process. I develop a theoretical framework of

information diffusion in a network where initially uninformed agents engage in

DeGroot learning to decide whether or not to get fully informed about a new tech-

nology. Conditional on being fully informed, they then decide whether or not

to adopt the technology. The model exhibits the possibility of low information

equilibria where nobody adopts the new technology, even if it is the efficient choice

for some of them. The result highlights the need for network-based targeting for

information diffusion. My simulations suggest that the optimal targeting strategy in

such a scenario relies on the underlying heterogeneity in the population. If hetero-

geneity is low in the benefits of the technology, targeting based on centrality works

well. However, if the population is highly heterogeneous, centrality-based targeting

fails in reaching the population of interest. In such a scenario, targeting based on

the probability of adoption works better if the network is highly assortative in terms

of characteristics determining the heterogeneity. I test these predictions using data

from Malawi and provide evidence supporting my theoretical model. My results

suggest that population heterogeneity in benefits from a technology matters for the

success or failure of alternative targeting strategies that promote that technology.
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1 Introduction

Technology adoption in agriculture is a driving force of economic growth through

its effect on structural transformation (Bustos et al., 2016). However, the adoption of

modern technologies has been low in developing regions, especially in Sub-Saharan

Africa (Bold et al., 2017). Information constraints are one of the key reasons behind

such phenomenon (Magruder, 2018). How do we use existing social ties to improve the

adoption of a new technology? The literature argues that the answer depends on the

underlying diffusion process. If information diffuses only if a certain threshold of each

agent’s connections is informed, targeting based on existing social ties may be required

for widespread adoption. In such a scenario, the literature recommends targeting agents

central to the network (Beaman et al., 2021a). The recommendation, however, is based

on the underlying assumption that the diffusion only depends on the agents’ positions

in the network. What happens if the agents differ in terms of other characteristics that

affect the diffusion process?

This paper investigates network-based targeting strategies for improving technology

adoption. In particular, I focus on the situation where the new technology can be more

beneficial to some agents than others, with this heterogeneity in benefits affecting the

diffusion of information. The benefits can vary across agents due to several possible

reasons. The agents can differ in terms of their education, skills, and ability affecting

how much they can learn about a new technology and use it in practice. They can also

vary in terms of other characteristics, e.g., land quality (for agriculture), size of operation

(for both farm and firm households), access to infrastructure (such as road and irrigation

facilities), and access to other technologies. For my purpose, I consider heterogeneity

in benefits to reflect the existing network structure driven by agent sorting according

to their observable and unobservable characteristics. I explore whether the optimal

network-based targeting strategies vary with the extent of heterogeneity within the

network. More specifically, I concentrate on the relative performance of two targeting

strategies: targeting based on centrality and targeting based on probability of adoption.

I develop a theoretical framework where economic agents participate in a two-stage
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decision process. In the first stage, uninformed agents decide whether or not to get

fully informed about a new technology. Since information is costly, the agents engage

in DeGroot learning to make this decision.1 In the second stage, fully informed agents

decide whether or not to adopt the technology. This framework helps me formalize a

scenario where pessimism regarding the prospect of a new technology will lead to low

adoption, even if it is efficient for many agents to adopt.

Based on my theoretical model, I use simulations to evaluate the relative importance

of different targeting strategies and to generate testable hypotheses.2 I test these pre-

dictions by combining two different data sources from Malawi. The first one is the

replication data (Beaman et al., 2021b) from a randomized controlled trial (RCT) con-

ducted by Beaman, BenYishay, Magruder, and Mobarak (2021a) (henceforth, BBMM).

The second dataset is the Agricultural Extension Services and Technology Adoption

Survey (henceforth, AESTAS) data (IFPRI, 2021a,b) collected by International Food

Policy Research Institute (IFPRI). One of the reasons existing studies made simplifying

assumptions on the structure of heterogeneity in the population is the difficulty in

observing heterogeneity in benefits beforehand. As the benefits are only realized after

adoption, they cannot be factored into the targeting strategies. I attempt to solve this

issue by using AESTAS data to estimate adoption conditional on observable demo-

graphics. This way I can categorize the population in terms of their propensity to adopt

a new technology. I calculate households’ probability of adoption in the BBMM data

using estimates from the AESTAS sample. BBMM data is used as their experiment relies

on exploiting the centrality of seeds3 to improve the adoption of a technology suitable

for my analysis, thus including all other information that I need. I exploit both the

1DeGroot learning refers to a social learning process whereby agents form beliefs/ opinions as a
weighted average of the beliefs/ opinions of people they are linked to (including themselves). Here the
weights correspond to how much the agents are influenced by one another. It is a heuristic, as agents
do not account for the interdependence of beliefs between each of the people they are connected to
(Barnett-Howell and Mobarak, 2021). Chapter 8.3 of Jackson (2010) contains more information on this
type of learning.

2The use of simulations is not new to the network literature. For example, Bala and Goyal (1998) uses
simulations to generate spatial and temporal patterns of adoption when individuals learn from their
neighbors; Acemoglu et al. (2011) uses simulations to show that innovations might spread further across
networks with a smaller degree of clustering. Similar to Beaman et al. (2021a), I use them to understand
the effectiveness of targeting strategies a few periods down the line.

3In the network literature, information entry points are called seeds.
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village-level and experimental variations in the BBMM data to test my hypotheses.

My simulations indicate that the relative performance of different targeting strate-

gies depends on the degree of heterogeneity in a network. Centrality-based targeting

strategies should be less effective in settings where the agents vary significantly in

terms of their true benefits from adopting a technology. In such settings, targeting

based on the likelihood of adoption should perform better if the network is highly

assortative in terms of characteristics determining the benefits. The intuition behind

such a result lies in the characteristics of the central seeds in a network. Central seeds

are, by definition, the most well-connected people in a network. Thus, selecting them

would maximize the diffusion if diffusion depends only on the agents’ positions in the

network. If agents vary in terms of other characteristics that affect diffusion, we need to

consider this heterogeneity for effective diffusion. Centrality-based targeting fails to

consider this heterogeneity. In an assortative network, central seeds also represent the

average network characteristics. In a setting where a new technology applies to only a

certain sub-section of the population, targeting based on centrality becomes more likely

to fail in reaching the population of interest. Targeting the population of interest works

better in such a scenario.

Reduced form results show evidence in favor of my hypothesis. Exploring village-

level variations in the BBMM data, I show that the positive effect of seeds’ centrality on

the adoption of pit planting decrease with an increase in village-level heterogeneity in

terms of probability of adoption. Simultaneously, the negative effect of seeds’ probability

of adoption decreases with increased village-level heterogeneity. Weaker, but similar

results are found when I shift my focus to exploring experimental variations.

My study makes three contributions to the existing literature. First, I provide evidence

(both theoretical and empirical) that the success of network-based targeting strategies

depends on population-level heterogeneity. Diffusion of information via networks is the

key to increasing technology adoption (Besley and Case, 1993; Foster and Rosenzweig,

1995; Conley and Udry, 2010; Krishnan and Patnam, 2013). In recent years, several
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studies have focused on the role of networks in the diffusion of technologies.4 A grow-

ing proportion of these studies explore the most effective way to use social networks

to improve technology adoption (e.g., Banerjee et al., 2013; BenYishay and Mobarak,

2018). A few of these studies explore the role of the underlying diffusion process in

designing the most effective targeting policies (e.g., Beaman et al., 2021a; Akbarpour

et al., 2021). However, these studies assume existing network ties as the only factor

characterizing diffusion. Thus, for diffusion, households are assumed to be homoge-

neous in terms of other characteristics. In the current study, I consider the population

to be heterogeneous in terms of the benefits they get from the new technology, with

this heterogeneity directly affecting the effectiveness of targeting strategies. In such a

scenario, I show evidence that optimal targeting strategies may differ from the ones

prescribed in the existing literature. In particular, the effectiveness of a targeting policy

will vary depending on population-level heterogeneity in terms of the benefits of the

new technology. Considering population-level heterogeneity in social learning itself

is not new (e.g., Munshi, 2004; Bandiera and Rasul, 2006; Conley and Udry, 2010).5

However, to the best of my knowledge, the current study is the first to consider the

consequences of population-level heterogeneity on network-based targeting strategies.6

Second, my theoretical framework helps formalize the scenario where agents learn

from their network about a technology that is more beneficial to some of them than

others. Existing theories on the diffusion of information regarding a technology in

a network consider technologies equally beneficial to everyone. The adoption may

still differ due to heterogeneity in costs. But these heterogeneous costs are mostly

assumed to be known by the agents and thus do not require learning.7 Thus, simplifying

4See Cheng (2021) for a review of the existing literature.
5Using the data from Indian Green Revolution, Munshi (2004) finds that information flows are weaker

for rice growers than wheat growers as rice-growing regions are more heterogeneous. Bandiera and
Rasul (2006) observe network effects on technology adoption to vary based on the number of adopters in
the network for sunflower production in Mozambique. Conley and Udry (2010) finds that only novice
farmers learn from their veteran neighbors about the use of fertilizers for pineapple production in Ghana.

6Although de Janvry et al. (2022) document the consequences of village-level heterogeneity on farmer-
level adoption decisions, they do not focus on the consequences of their findings on the design of
network-based targeting strategies.

7For heterogeneous costs unknown to the agents, there is no possibility of learning from the network
as these costs do not correlate according to the network structure. There can still be a possibility of
learning by doing.
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assumptions are made such that the learning involves the characteristics that are similar

for all the agents and not the characteristics that differentiate them. This assumption

helps us to focus on a problem where the agents are collectively trying to uncover

some hidden characteristics of interest (e.g., in the theoretical models of Acemoglu

et al., 2008 and Golub and Jackson, 2010). More importantly, a consequence of this

assumption is that the diffusion of knowledge regarding the technology depends only

on the agent-level heterogeneity in network ties. In many scenarios, however, agents

face heterogeneous benefits in adopting a new technology (Suri, 2011). For example,

the performance of some agricultural practices may depend on land quality.8 Thus, the

benefits of some technologies may vary depending on the agent-specific characteristics

(Crane-Droesch, 2017). The consequences of this heterogeneity on the diffusion of

knowledge have not previously been modeled in the existing literature.

Finally, I provide policy directions for network-based targeting when the population

is heterogeneous. In particular, I argue in favor of targeting early adopter households

when the heterogeneity is high and if the network is highly assortative in terms of

characteristics determining the heterogeneity.9 On the contrary, I argue in favor of

targeting central households when the heterogeneity is low. This policy recommenda-

tion contributes to the literature that focuses on understanding the characteristics and

impact of opinion leaders in diffusing new knowledge. In this literature, studies like

Maertens (2017) and Miller and Mobarak (2015) show that learning is more effective

when the opinion leaders are in some way superior than their followers. On the other

hand, BenYishay and Mobarak (2018) show that communicators who share a group

identity with the farmers or face comparable agricultural conditions, do a better job

at convincing farmers to adopt a new technology. Feder and Savastano (2006) takes

a middle ground in arguing that the most effective opinion leaders are superior to

8In Munshi (2004), the adoption of new rice varieties is sensitive to growing conditions. Tjernström
(2017) shows that soil quality heterogeneity affects farmers’ ability to learn from their peer’s experimenta-
tion with the new technology. Pit planting studied in BenYishay and Mobarak (2018) and Beaman et al.
(2021a) requires flat land.

9I define early adopters as the households that are more likely to adopt a new technology given
homogeneous cost. This definition is similar to that of natural early adopters in Catalini and Tucker
(2017).
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their followers, but not excessively so. My study contributes to this debate from a

network-based targeting perspective.

The remainder of this article is organized as follows. In Section 2, I present the

theoretical framework of my analysis. Section 3 presents the simulations that help me

form the main hypotheses for this study. In Section 4, I discuss the hypotheses, my

empirical strategy for testing them, and the data I use in the process. Section 5 presents

and discusses my empirical results. Finally, in Section 6, I summarize my findings and

make concluding remarks.

2 Theoretical Framework

I consider a choice problem that requires learning in a social network. The problem

is that of technology adoption when the agents vary in terms of the benefits they get

from a new technology. In particular, the benefits are such that it is optimal to adopt

the new technology only for a sub-section of the population. However, the benefits

are initially unknown to the agents, who must get informed first before making the

adoption decision. As information is costly, agents rely on their social ties to determine

whether or not to seek information.

Similar to Golub and Jackson (2010), I consider agents to have an initial opinion

and involve in DeGroot learning (developed in DeGroot (1974) and DeMarzo et al.

(2003)).10 I focus on the scenario where the underlying state is time-varying, similar to

Acemoglu et al. (2008). Like Banerjee et al. (2021) my model considers both informed

and uninformed agents, where agents decide whether to get informed about the new

technology.11 In addition, I consider the possibility that agents are heterogeneous in

terms of their distribution of payoffs associated with the new technology.

10DeGroot learning is considered as it is used in all the canonical models of information aggregation in
the development literature. There is also empirical evidence in favor of it (see Chandrasekhar et al., 2020).

11In Banerjee et al. (2021), uninformed agents have empty beliefs, and informed agents can be partially
or fully informed. In contrast, I assume uninformed agents to have an initial opinion (this includes
partially informed agents) and informed agents to be fully informed.
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2.1 The Theoretical Model

Consider a two-stage decision process where risk-neutral and myopic households decide

whether or not to adopt a new technology. In the first stage, they decide whether or not

to learn about the technology. If they learn about the technology, in the second stage,

they decide whether to stick to a traditional technology or adopt the new technology.12

The traditional technology has a sure payoff of πT, whereas the new technology

provides a payoff of πN(ωit) that depends on the state of the world parameter ωit ∈ Ω.

The state of the world parameter ωit is drawn independently at each period t according

to the true distribution p∗i (ωit) for household i. Therefore, the draws are not correlated

over time within a household and between households.13 I assume that the true

distributions are positively correlated between households according to the existing

network structure (more details below). I also assume that ∀it, ∃ωit, ω′
it ∈ Ω such that

πN(ωit) ≥ πT ≥ πN(ω′
it); i.e., for each household i and period t, there exist states

of the world such that the payoff from the new technology is higher (lower) than

the old technology. Finally, ∃i, j ∈ I such that
∫

ωit∈Ω p∗i (ωit)π
N(ωit)− ci ≥ πT and∫

ωjt∈Ω p∗j (ωjt)π
N(ωjt)− cj ≤ πT, where I denote the set of all households and ci is the

cost of new technology for household i. The assumption implies that there is enough

heterogeneity in the population such that some households get positive net benefits

from adopting the new technology as opposed to the traditional technology, while

others do not. This last assumption ensures that the new technology is ‘better’ for only

a fraction of households in the population.

Households can be potentially uninformed about their true distribution for the state

of the world. The household i has beliefs pit(ωit) over the distribution of ωit at period t.

Every period, an uninformed household has the option to become informed by applying

effort eit ∈ {0, 1}.14 Households put effort only once, i.e., if eiτ = 1, eit = 1 ∀t ≥ τ.

12This two-step decision process is similar to the model presented in Chandrasekhar et al. (2018).
Which also forms the micro-foundation of Beaman et al. (2021a).

13The assumption of draws not being correlated over time within a household helps me abstract
away from learning-by-doing, where households observe the draws over time and update their beliefs
accordingly. The assumption of draws not being correlated over time between households constrains
how the households can learn from each other.

14I make no assumptions on the initial number of informed households. In reality, whether or not a
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If eit = 1, the household learns the true distribution p∗i (ωit) at cost ηi. Households

incur the cost of learning only once - the first time they get informed. Households

incur no effort cost if eit = 0, and they use DeGroot averaging to approximate the

true distribution. Let G denote the n × n weighted and non-negative influence matrix

(n = |I|), where Gij ≥ 0 represents the weight i places on j’s opinion (with ∑j∈I Gij = 1

and Gii ̸= 0). Then p̂it = ∑j∈I Gij pjt−1 denotes household i’s approximation based on

their aggregation of opinions following the DeGroot averaging.

I assume the networks to be assortative in terms of the probabilities, i.e., Gij ̸= 0

if |p∗i − p∗j | < δ, where δ is a small number. The rationale behind such an assump-

tion is twofold. First, it is well-recognized in the technology adoption literature that

connected agents share similar characteristics that help them benefit similarly from a

technology (Munshi, 2007). For example, focusing only on the geographic connections,

it is easy to argue that neighboring farmers share soil quality. As a result, they benefit

similarly from an agricultural technology whose outcomes depend on soil quality. For

network connections, the similarity extends beyond geographic characteristics. I expect

households to sort according to their socio-economic attributes. As the benefits from a

technology depend on these socio-economic attributes, connected households sharing

similar socio-economic attributes should benefit similarly from the technology.

In addition, the assortative property is necessary for the social ties to be informative

with varying p∗i s. To demonstrate this, consider Figure 1. Both the panels of this

figure present heterogeneous networks, with the colors representing benefits from

some technology. In both figures, Agents numbered 1 and 2 should not adopt the

technology as their benefits are low (represented by the color blue). Similarly, Agents

3 and 4 should adopt the technology as their benefits are high (represented by red).

Finally, Agent number 5 would benefit moderately from the technology (represented by

yellow). The figures differ, however, in the network ties (given by the arrows). Panel

A presents an assortative network. Here, uninformed agents can use their social ties

household is informed might depend on their education, skills, and abilities. As I will argue in the next
subsection, from a policy perspective, I am interested in the scenario where the majority (if not all) of the
households are uninformed about the new technology to begin with.
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to form a belief close to their true types. To see this, consider Agent 4, who should

adopt the technology if informed. If uninformed, she would seek information from

Agents 3 and 5. Agents 3 and 5 observe weakly higher than average benefits from the

technology if informed. Thus, informed agents 3 and 5 can influence agent 4 in making

the right choice regarding whether or not to get informed about the new technology.

Contrast this with the network in Panel B, which is a non-assortative network. Here,

if uninformed, Agent 4 would seek information from Agents 1 and 2. Both Agents 1

and 2 observe lower-than-average benefits from the technology if informed. Thus, if

Agent 4 is uninformed and seeks information from her informed network ties, she will

be influenced to make the wrong choice regarding whether or not to get informed about

the new technology. Thus, social learning will not help agents make the right choice for

the network in Panel B.15

Panel A: Assortative Panel B: Not Assortative

Figure 1: Networks with Heterogeneous Benefits

The belief of household i at period t is determined by the following process:

pit(ωit) = eit(p∗i (ωit)) + (1 − eit) p̂it(ωit). (1)

Thus, uninformed households use DeGroot averaging to approximate the true distribu-

tion with the help of their peers. On the other hand, informed households can observe

the true distribution and hence do not need to approximate it anymore. Their effort
15It is worth noting that if we assume p∗i = p∗ ∀i ∈ I the network ties become automatically helpful in

making the right choice.
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level determines whether they are informed or uninformed. In addition, I assume that

households need to be informed before they adopt. As seen below, this assumption

helps me explicitly capture the point when the households stop seeking information

from their peers.

As mentioned before, I assume the households to be risk-neutral and myopic. The

assumption of risk neutrality is for simplification purposes only, as it allows us to focus

solely on the expected values without considering the variation around them. As the

new technology is assumed to be riskier than the traditional technology here, risk-averse

households may find it less attractive. As such, the net benefit of the new technology

would be less than the one perceived by a model where the households are risk-neutral.

This can easily be accommodated in the current model by dividing the expected payoff

of the new technology by its variance. Such an exercise would not change the main

results of the model. The assumption of myopic households helps me focus on a static

model instead of a dynamic one. More importantly, if the households are not myopic,

they may wait until their peers get informed before deciding whether to get informed

themselves. This may lead to a more complicated scenario where everyone waits for

their peers to be informed first. Such a scenario is beyond the scope of this paper.

Under the above assumptions, a household’s adoption decision is a two-step process:

1. First, they decide whether or not to get informed based on the following rule:

eit =


1 i f

∫
ωit∈Ω p̂it(ωit)π

N(ωit)− ci − πT ≥ ηi

0 otherwise.
(2)

Only uninformed households make this decision.

2. Conditional on being informed, they decide whether or not to adopt the new

technology:

Adoptit =


1 i f

∫
ωit∈Ω p∗i (ωit)π

N(ωit)− ci ≥ πT

0 otherwise.
(3)
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Finally, I assume the following timeline of decision-making:

1. Every period, uninformed household i decides whether or not to get informed.

Informed households do not need to make this decision as they already know

their true probability distribution.

2. To decide, uninformed households collect information on beliefs from their peers

j ∈ I . These beliefs pjt−1 were formed in the last period (some informed, some

uninformed). Using their peers’ beliefs from the previous period, the uninformed

household i uses DeGroot averaging to calculate p̂it = ∑j∈I Gij pjt−1.

3. Based on p̂it, they decide whether or not to become informed.

4. If they do not get informed (eit = 0), their new belief is formed to be equal to

the DeGroot average (pit = p̂it), and next period they repeat from 1. If they get

informed (eit = 1), they now know their true probability distribution (p∗i ) and

make adoption decisions based on that. The true probability distribution also

becomes their belief from the next period onward (pis = p∗i ∀s ≥ t).

2.2 Implications of the Model

Consider the situation when there are only two states of the world: one where the

new technology has a higher payoff than the traditional one (denoted ωH), and the

other where the new technology has a lower payoff than the traditional one (denoted

ωL). Thus Ω = {ωH, ωL}. Let p∗iH := p∗i (ωH) denote the true probability that for

household i the new technology has a higher payoff than the traditional one. Suppose

pH
it := pit(ωH) is household i’s belief of p∗iH at period t. Then, following (1), pH

it is

equal to p∗iH if the household is informed, otherwise it is equal to p̂H
it := p̂it(ωH). Here

p̂H
it denotes the households’ approximation of p∗iH based on their network, following

DeGroot averaging. Under this simplified scenario, I can now solve the model following

backward induction.

In step 2, conditional on being informed, the household decides whether or not to
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adopt the new technology. The household will adopt the new technology if and only if:

p∗iHπN(ωH) + (1 − p∗iH)π
N(ωL)− ci ≥ πT

⇒ p∗iH ≥ ci + (πT − πN(ωL))

(πN(ωH)− πN(ωL))
=: p̄∗iH. (4)

That is, if and only if the true probability of success with the new technology (p∗iH)

is higher than the threshold (p̄∗iH), it is profitable for the household to adopt the new

technology. The threshold has the cost of switching to the new technology in the

numerator and the net benefit of success (compared to failure) with the same technology

at the denominator. The cost of switching to the new technology is the sum of direct cost

(ci) and the opportunity cost of switching to the technology only to realize a lower payoff

than the traditional technology (πT − πN(ωL)). Thus, if and only if the probability of

success with the new technology is higher than the cost of switching as a fraction of

associated benefits, it is optimal for the household to adopt the technology. Given this

condition for adoption in step 2, in step 1 the household i will choose to get informed at

time t if and only if:

pH
it πN(ωH) + (1 − pH

it )π
N(ωL)− ci − πT ≥ ηi

⇒ pH
it ≥ ci + (πT − πN(ωL))

(πN(ωH)− πN(ωL))
+

ηi

(πN(ωH)− πN(ωL))
=: p̄∗iH + η̄i. (5)

The condition (5) takes the cost of effort (ηi) into account. This is because the decision

in step 1 is regarding whether or not to get informed. From (4) and (5), it is clear that

if, for household i, pH
it is equal to p∗iH, and they choose to get informed in step 1, they

will also adopt the technology in step 2. Conversely, if (4) is not satisfied, then (5) is not

satisfied if the diffusion of information is efficient. In other words, under fully efficient

information diffusion, only those who would adopt the technology in step 2 would get

informed in step 1. Thus, for these households, the following condition must be true:

p∗iH ≥ p̄∗iH + η̄i. (6)
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Equation (6) implies that for households that end up adopting the technology, it must

be so that their true probability of success justifies the cost of seeking information (η̄i)

on top of their threshold probability of adoption (p̄∗iH). Suppose for household j, that

p̄∗jH + η̄j ≥ p∗jH ≥ p̄∗jH. Then even if pH
jt is equal to p∗jH, household j will end up not

getting informed about the technology. Hence they will not adopt the technology, even

if it is profitable for them to do so. This is due to the positive cost of learning (ηj). This

feature is similar to the models of Chandrasekhar et al. (2018) and Banerjee et al. (2018),

where the social stigma of information seeking can stop people from learning.

From the above discussion, it is clear that there are multiple possible equilibria for

this model. In particular, the equilibrium depends on the households’ initial beliefs. If

everyone except household i is informed, DeGroot averaging in this set-up will help

household i to make the right decision regarding seeking information. The problem,

however, arises when most households are uninformed. Of particular interest is the

situation when pH
it ≈ 0 ∀it. This situation occurs when everyone believes with certainty

that, for them, the new technology yields a lower payoff than the traditional one. In

such a scenario, nobody will adopt the new technology even though it may be efficient

for some to do so.

Network-based targeting can help in such a scenario. We can target some households

(seeds) to improve adoption. The targeted household i will get exogenously informed

about their p∗iH at period t. This will get household j to update their p̂H
jt+1 if j puts

positive weight on i’s opinion. Subsequently, this will lead household k to update

their p̂H
kt+2 if k puts positive weight on j’s opinion, and so on. The outcome of this

intervention in terms of technology adoption, a few periods down the line, will depend

on the initial targeting strategy. In other words, following the initial seeding strategy,

the outcomes will vary depending on the path of information diffusion. In such a

scenario, for any given targeting strategy, simulations help in attaining the outcomes.

These outcomes will then help in understanding the relative effectiveness of different

targeting strategies.

In the next section, I measure the relative performance of two types of such targeting
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strategies using simulations. In doing so, I consider the networks of households that

face the decision problem described in this section. I focus on the scenarios where

initially pH
it ≈ 0 ∀it, and thus the need for targeting. My simulations provide testable

implications that I take to the data in the subsequent sections.

3 Simulations

In this section, I consider households that vary in terms of their true probability dis-

tributions associated with a new technology. However, connected households are

comparable in observable and unobservable characteristics determining these probabil-

ity distributions. This similarity helps them seek information from their connections. I

first demonstrate the potential problem for a centrality-based targeting strategy with the

example of a specific network. Then I simulate multiple networks to analyze whether

the problem persists on average under different underlying assumptions and compare

the centrality-based targeting with a probability-based targeting strategy (defined be-

low). I observe that the relative performance of targeting strategies depends on the

level of heterogeneity in the population and whether the networks are assortative in

this heterogeneity.

3.1 An Illustrative Example

I start with the example of a specific network of 10 households. The households

are heterogeneous concerning their true probability of success associated with a new

technology (represented by the p∗iHs).16 These probabilities matter for the households

as the states of the world are drawn independently every period. The probabilities are

correlated according to the existing network structure. This correlation introduces the

possibility of learning from the network. The distribution of the true probabilities of

success is in Figure 2.

As we can see, this network has three types of households. Households with a high

16Here, similar to section 2.2, I am assuming two states of the world: either success or failure with the
new technology.
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probability of success (numbered 7-10), a low probability of success (numbered 1-4),

and a moderate probability of success (numbered 5 and 6). For the purpose of this

example, consider the threshold probability of learning (i.e. (p̄∗iH + η̄i) in (5)) to be 0.25

for every household. Thus, if the true success probability of a household is more than

25%, the household should get informed under full efficiency. Given the distribution of

true probabilities of success shown in Figure 2, it turns out that it is efficient for 6 out of

10 households to get informed in this network (numbered 5-10).

Figure 2: Distribution of True Probability within the network

Consider the scenario where, before any interventions, everyone believes their prob-

abilities of success with the new technology to be zero (pH
it = 0 ∀it). Under such a

scenario, households will not adopt the technology even if it is optimal for some of

them to do so. An intervention is then required to improve adoption. The objective

behind such an intervention is to ensure that the households that adopt the technology

under perfect information choose to adopt it. At the same time, for efficiency, we want

to ensure that the households that should not adopt the technology with perfect infor-

mation decide not to get informed about it. Thus, the efficiency of a targeting strategy κ

can be measured as:
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Efficiencyκ =
InformedT

κ

InformedT︸ ︷︷ ︸
Aκ

− InformedF
κ

UninformedT︸ ︷︷ ︸
Bκ

(7)

Here InformedT denotes the number of non-seed households that should get in-

formed as they would adopt the technology under perfect information (i.e., they satisfy

equation (6)). Additionally, InformedT
κ captures the number of non-seed households

that get informed within some periods of implementing the targeting strategy κ, among

those households in InformedT. Thus, the term Aκ represents the informed non-seed

households as a fraction of non-seed households that should have gotten informed

under perfect information, given the targeting strategy κ. Thus, a higher value of this

fraction indicates a more successful targeting strategy. The term Bκ, on the other hand,

represents the fraction of non-seed households that are mistargeted by the targeting

strategy κ. UninformedT denotes the number of non-seed households that should not

get informed, and InformedF
κ captures the number of non-seed households that end up

getting informed among those households given targeting strategy κ. Thus, a higher

value of Bκ indicates a less successful targeting strategy.

To understand the terms in the efficiency measure more clearly, consider the network

in Figure 2. If households numbered 5 and 6 are the seeds for the strategy κ, we are

interested in understanding the efficiency of κ for diffusing knowledge among the other

households. As four other households (numbered 7-10) should get informed under

efficient diffusion of information, InformedT = 4. Similarly, the other four households

(numbered 1-4) should not get informed with efficiency in information diffusion, imply-

ing UninformedT = 4. Now, consider the scenario where the households numbered 1,

8, 9, and 10 decided to get informed, given the same seeds for strategy κ. If that is true,

then InformedT
κ = 3 since 8, 9, and 10 are among the households that should get in-

formed. On the other hand, InformedF
κ = 1 as the household number 1 got mistargeted.

In this case, we would have Aκ = 3/4, Bκ = 1/4, and Efficiencyκ = 3/4 − 1/4 = 1/2.

For my analysis, I focus on two types of targeting strategies: centrality-based and
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probability-based. Similar to BBMM, I seed only two households per network. I

consider a centrality-based targeting strategy as the existing literature supports in favor

(Banerjee et al., 2013), and because BBMM recommends centrality-based targeting for

the diffusion process described here.17 I consider probability-based targeting as an

alternative to centrality-based targeting. The probability-based targeting strategy is

to seed households with the highest true expected benefits with the new technology

(i.e., the highest p∗iHs in the network). These households are more likely to adopt a

technology given a homogeneous cost of learning for everyone and hence are considered

to be the early adopters here (definition of early adopters similar to Catalini and Tucker,

2017). The rationale for considering probability-based targeting as an alternative to

centrality-based targeting is twofold. First, it is the extreme opposite of the centrality-

based targeting strategy. Whereas the centrality-based approach relies on households

similar to the average for diffusion, the probability-based strategy does the opposite by

focusing on the households more likely to adopt a technology than the average. Second,

there is a debate in the existing literature regarding whether opinion leaders should

be somewhat superior to their followers for the effective diffusion of new knowledge

(Feder and Savastano (2006); Miller and Mobarak (2015)). Through the lens of this

debate, probability-based targeting seems to be a natural alternative to centrality-based

targeting.

The centrality-based targeting strategy is to seed households central to the network.

For the particular example here and the subsequent analysis in this section, I consider

centrality in terms of the eigenvector centrality measure. The results of my analysis

are robust to a different measure of centrality (consult Appendix D for detailed re-

sults). Eigenvector-based centrality measures take into account the connectivity of a

household to other households and the importance of their connections in terms of

their respective connections. Formal definition of different centrality measures can be

17The diffusion process described in this paper falls under the category of complex diffusion. Complex
diffusion models assume that information diffuses to an agent if and only if a certain threshold of the
agent’s connections gets informed. A more detailed description of different models of diffusion and
their use in Development and Agricultural Economics literature can be found in Breza et al. (2019) and
Barnett-Howell and Mobarak (2021).
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found in Appendix A.18 I use the eigenvector centrality measure for two reasons. First,

there is evidence in the existing literature in favor of targeting using eigenvector-based

measures of centrality (e.g., Banerjee et al. (2013); Beaman et al. (2021a)). Second, for my

empirical analysis, I use eigenvector centrality as the primary measure of centrality.

Figure 3 captures the initial seeding for the network from Figure 2 when everyone

believes their probabilities of success with the new technology to be zero, thus the

need for network-based targeting. In Panel A, seeds are selected based on centrality.

Here I seed households numbered 5 and 6, i.e., I consider these households to be

informed about their true probabilities of success with the new technology in the first

period of policy intervention. Thus, the policy intervention exogenously makes the

seeded households aware of their average benefits with the technology. Households

5 and 6 are selected as the seeds because they are the most central households in this

network. We can verify that these households are the central-most in this network by

counting the number of connections per node. Households 5 and 6 are each connected

to five households, whereas every other household in this network has three links

each. Additionally, we can observe that both households have a moderate probability

of success with the new technology. This feature is not surprising given that central

households are the most connected in the network, and the network is highly assortative

in the probability distributions associated with the new technology. Thus, the central

households represent the average households in the network, not the ones with a high

probability of success with the new technology. This feature has consequences for the

final performance of this targeting strategy.

Panel B of Figure 3 capture seeding with probability-based targeting. The seeded

households are the ones numbered 8 and 9. These households are selected as they

have the highest true probabilities of success with the new technology among all the

households in this network. I can easily select these households in simulations, as I can

perfectly observe the households’ true probabilities of success here. In practice, however,

we may not have the information we need to identify these households. In section 4.4,

18For a more detailed description of network centrality measures, consult section 2.2.4 of Jackson (2010)
and Bloch et al. (2021).
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I discuss my strategy for estimating households’ true probabilities of success for my

empirical analysis. The households selected following a probability-based targeting are,

by definition, representing the early adopters in the network. Thus, these households

may not be well-connected in the network. This feature has consequences for the final

performance of the probability-based targeting strategy.

Panel A: Centrality-Based Panel B: Probability-Based

Figure 3: Initial Seeding based on Centrality and Probability

After the initial seeding, I let the diffusion occur over three periods, according to the

diffusion process described in the last section. The performance of both targeting strate-

gies at the end of the three periods is in Figure 4. In this particular scenario, probability-

based seeds perform better than their centrality-based counterparts. Centrality-based

seeds managed to convince no additional households to get informed. On the other

hand, probability-based seeds managed to convince everyone else that satisfies equation

(6) for this network to get informed. Using the efficiency measure defined in equation

(7), I can score centrality-based targeting 0, while probability-based targeting scores 1.

Therefore, the centrality-based targeting strategy fails in this scenario. It is also worth

noting that in both types of targeting, in this scenario, the term Bκ in (7) takes 0 as there

is no mistargeting.

In this particular example, the probability distributions are highly heterogeneous,

and the network connections are highly assortative in terms of these probabilities. In

what follows, I first study non-assortative networks and understand the consequences

of heterogeneity of probability distributions on the success of different targeting strate-
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gies. Then, I allow the networks to be perfectly assortative and vary the degree of

heterogeneity in p∗iHs. For these analyses, I simulate 200 networks with 30 households

to assess the effectiveness of different targeting strategies on average.19 As discussed

above, the main focus is on centrality-based and probability-based targeting strategies.

I also consider a randomized targeting strategy (where seeds are selected randomly) for

comparison.

Panel A: Centrality-Based Panel B: Probability-Based

Figure 4: Performance of seeds after three periods

3.2 Targeting Homogeneous vs. Heterogeneous Networks

What if a new technology is more beneficial to some households than others, with

this heterogeneity in benefits affecting the diffusion of information? In this section, let

me first focus on the consequences of this heterogeneity for different network-based

targeting strategies. Column (1) of Table 1 presents simulation results for networks

with homogeneous probabilities. These networks are non-assortative in terms of these

probabilities, i.e., network links are not formed based on the probabilities of success.20

As we can see, centrality-based targeting performs better than probability-based and

random targeting for these networks.

We should note a few things in this regard. First, in networks with homogeneous

probabilities, everyone should adopt or not adopt the technology given the same

threshold probability of adoption. For the results presented here, I assume this threshold

19Appendix D presents the robustness of my results with respect to networks with 20 and 40 households.
20For a homogeneous network, that will lead to everyone being connected to everyone else.
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to be 0.4 for all households (Appendix D includes robustness of my results concerning

change in this value). Thus, if the homogeneous probability of success is higher than 0.4,

everyone should adopt the technology under efficient diffusion of information. Thus

for a subsection of the simulated networks, no one should adopt the technology under

efficient information transmission. Therefore, for homogeneous networks, I cannot

use Efficiencyκ to measure the efficiency of the targeting strategy κ. Instead, I use the

first term (Aκ) of Efficiencyκ for that purpose. Since for a subsection of these simulated

networks, no one should adopt the technology under efficient information transmission,

using Aκ to measure the efficiency of targeting leads to dropping these networks from

the calculation of average efficiency scores. To ensure enough sample size, I increased

the number of simulated networks to 400 for homogeneous networks. Finally, since

everyone has the same probability of success in a homogeneous network, the probability-

based targeting reduces to systematically picking the first pair of households in the

networks as the seeds.

Table 1: Efficiency Scores for Simulations using Different Targeting Strategies

Homogeneous Heterogeneous

Non-Assortative Assortative

Targeting Strategy Statistic (1) (2) (3)

Eigenvector Centrality-Based Mean 0.455 -0.003 0.412

Variance 0.223 0.002 0.228

Probability-Based Mean 0.189 -0.040 0.956

Variance 0.125 0.023 0.004

Random Mean 0.000 0.000 0.438

Variance 0.000 0.000 0.228

Observations† 239 200 200

Notes:† Simulations are done for 400 networks with homogeneous probabilities and 200 networks with heteroge-
neous probabilities. Upon generation of the true probabilities, some networks are dropped as they contained 0% of
informed households under full efficiency. Columns (2) and (3) use the efficiency measure Efficiencyκ to measure
the efficiency of the targeting strategy κ. Column (1) uses the term Aκ of Efficiencyκ for that purpose. All networks
contain 30 households, and the threshold probability of learning is assumed to be 0.4 for all of them. For assortative
networks, each pair of households having a success probability difference of 0.1 or less is assumed to be connected.

In column (2) of Table 1, I allow the networks to be heterogeneous concerning their

probabilities of success while remaining non-assortative. The efficiency scores become

close to zero for all targeting strategies. The result is in line with what I predicted
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in Figure 1. It is due to the diffusion being dependent on the success probabilities

and the network ties not accounting for the heterogeneity in these probabilities. It is

worth noting that the result is due to a lower value of Aκ and a higher value of Bκ

for the measure in equation (7). Thus, targeting fails in reaching agents that should

adopt, and mistargeting increases. Keeping the heterogeneity at the same level, I

allow the networks to be assortative in the probabilities of success for column (3). The

effectiveness of all targeting strategies increases as a result. This result is because

network ties are based on heterogeneity in success probabilities. As a result, we always

reach agents having success probabilities similar to the initial seeds. Although seeds

vary in effectiveness depending on how they are selected, all types perform better than

they did for non-assortative networks.

More importantly, for column (3), probability-based seeds perform better than centrality-

based seeds. Both of them perform better than the random seeds. By design, probability-

based seeds target the population most likely to adopt due to the highest success

probabilities. On the contrary, centrality-based seeds target the most influential agents

in their connections. With a high level of heterogeneity in success probabilities (as for

columns (2) and (3)), assortative networks imply that centrality-based seeds represent

average agents in their success probabilities. Thus, these agents are not as effective as

probability-based seeds in reaching the agents having the highest likelihood of adop-

tion. In the following sub-section, I study assortative networks with varying degrees

of heterogeneity in success probabilities. The objective is to understand, for differ-

ent network-based strategies, the role of such heterogeneity for perfectly assortative

networks.

3.3 Targeting Assortative Networks with Varying Heterogeneity

I consider the agents to be connected for perfectly assortative networks if their success

probabilities are within a difference of 0.1. In terms of the notation used in Section 2,

this implies δ = 0.1. I present the robustness of my results for different values of δ in

Appendix D. Figure 5 presents the performance of different targeting strategies with
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assortative networks over varying degrees of heterogeneity in success probabilities.

Panel A of the figure presents the results in linear scale. Panel B presents the same

results in a logarithmic scale for better visualization of efficiency scores with lower

levels of heterogeneity.

As we can see, the performances of different targeting strategies improve with an

increase in heterogeneity. As heterogeneity approximates to zero (i.e., almost converges

to homogeneity), all targeting strategies approach an efficiency score of 0. The result is

not surprising. For low levels of heterogeneity, everyone is connected in an assortative

network. Thus, all three types of targeting reach everyone in the population, leading

to a high value of both Aκ and Bκ. Thus, the value of Efficiencyκ converges to zero for

all targeting strategies. As heterogeneity increases, we start observing the differences

between the performances of different targeting strategies.

For lower levels of heterogeneity, centrality-based and probability-based targeting

perform very similarly and slightly better than the random targeting strategy. Thus, for

low heterogeneity in success probabilities, centrality-based targeting does not suffer

(compared to other targeting strategies) for not accounting for this heterogeneity in its

design. However, as heterogeneity increases, the negative effect of such heterogene-

ity on the performance of centrality-based targeting becomes apparent. As a result,

probability-based targeting performs substantially better as heterogeneity increases than

its centrality-based counterpart. Beyond a certain level of heterogeneity, the simulated

networks converge to the maximum level of heterogeneity, and the average efficiency

scores also converge to their maximum value.

Let me take a step back to explain the results with the highest levels of heterogeneity.

As the heterogeneity approaches its peak, everyone in the networks has a success

probability of either 0 or 1. Given the assortative nature of these networks, everyone with

a success probability of 0 is connected. Similarly, everyone with a success probability of

1 is connected. Depending on the number of households with 0 and 1 success probability,

centrality-based targeting reaches either one of the groups. If there are more households

with a success probability of 1, centrality-based targeting reaches all households with a
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success probability of 1. Conversely, centrality-based targeting reaches all households

with a success probability of 0 if there are more households with a success probability

of 0. Either of these cases happens half of the time, given the random nature of the

simulations. Thus, centrality-based targeting converges to an efficiency score of around

50%.On the contrary, probability-based targeting always reaches households with a

success probability of 1, leading to its convergence to an efficiency score of around

100%.

Panel A: Linear Scale Panel B: Logarithmic Scale

Figure 5: Efficiency scores over increasing levels of heterogeneity (with assortative networks)

From these results, we learn that centrality-based targeting performs worse than

probability-based targeting in reaching households with the highest success probabilities

in networks assortative in these probabilities. However, the level of heterogeneity in

success probabilities matters in this comparison. For low levels of this heterogeneity,

both strategies perform similarly. The difference between them becomes prominent

only when the heterogeneity increases beyond a certain threshold.

4 Empirical Framework

My next objective is empirically testing the following set of hypotheses derived from

my theoretical framework using simulations.
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Hypotheses: As the level of heterogeneity in terms of the benefits of a new technology

increases:

1. central seeds perform worse in terms of diffusing that technology.

2. probability-based seeds perform better in terms of diffusing that technology.

I form Hypothesis 1 from the findings in section 3.2. The hypothesis does not require

networks to be highly assortative in terms of characteristics determining the hetero-

geneity in benefits. As I show in Table 1, even if the networks are not assortative, as

long as the heterogeneity affects the diffusion process, I expect the hypothesis to be

true. Thus, if Hypothesis 1 is true, it will shed light on the underlying condition for the

failure of centrality-based targeting even with a complex diffusion process. Hypothesis

2, on the other hand, require assortativity in the network in terms of characteristics

determining the heterogeneity in benefits. Under the assumption of perfectly assortative

networks, in section 3.3, I show that probability-based seeds perform better than their

centrality-based counterparts as heterogeneity increases. In reality, the networks are

less likely to be perfectly assortative and more likely to be probabilistically assortative

(i.e., when two agents with similar success probabilities are more likely to be connected).

Unfortunately, I do not observe network connections in the data I use in this study. As

a result, I cannot assess these networks’ degree of assortativity. However, accepting

Hypothesis 2 would mean the existence of some degree of assortativity in the networks

that we can use for policy purposes.

4.1 The Ideal Experiment

Before diving into the data and the description of identification strategies used in

this study to validate my theoretical findings, it is helpful to think about the ideal

experimental setup for the validation. In an experiment, I need to randomly allocate

regions/villages into three types of seeding strategies:

1. Centrality-based seeding
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2. Probability-based seeding

3. Random seeding (which will serve as a benchmark/ control group)

Then I can run the following reduced-form regression:

Yv = α0 + α1Centrality Basedv + α2Probability Basedv + α3Heterogeneityv (8)

+ α4Centrality Basedv × Heterogeneityv + α5Probability Basedv × Heterogeneityv + uv.

Here Yv denotes diffusion related outcome variable of interest for village v. The dum-

mies Centrality Basedv and Probability Basedv indicate whether the village got assigned

to either centrality or probability-based seeding strategy. Heterogeneityv is the village-

level Coefficient of Variation (CV) for the probability of adoption, capturing the village-

level heterogeneity in terms of the benefits of the new technology. Finally, uv is a random

error term in the regression. My hypotheses state that α4 < 0 and α5 > 0.

4.2 Data Sources

I do not have access to the data from the ideal experiment described above. Hence,

I use the replication data from BBMM together with the survey data from AESTAS

conducted by IFPRI. In this subsection, I describe these datasets before proceeding to

the description of my identification strategies in the next subsection.

4.2.1 Replication data of BBMM

BBMM conducted a Randomized Controlled Trial (RCT) to promote Pit Planting (PP)

for Maize farmers in Malawi.21 The researchers seeded 200 villages from 3 Malawian

districts with semi-arid climates (Machinga, Mwanza, and Nkhotakota) with 2 ‘seed’

farmers each. The objective was to induce widespread social learning of PP. The

intervention involved training the seed farmers on PP (and CRM), with the material of

21They also promoted Crop Residue Management (CRM). However, the sample on the use of CRM is
small. Thus, similar to the main analysis of BBMM, I focus on PP only. I also do not expect my predictions
to be valid for CRM, as CRM is not a new technology in the sampled areas. However, PP is a fairly new
technology there, so I expect my predictions to hold for PP.
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training remaining the same across different treatment arms. The villages were equally

divided into four experimental groups:

1. Complex Contagion: Seeding done assuming the underlying diffusion process

to be of complex diffusion. Under the assumption of this diffusion process, the

information diffuses only if a certain threshold of each household’s connections

gets informed. Under this assumption, both the optimally chosen seeds were

central in the network.

2. Simple Contagion: Seeding done assuming the underlying diffusion process to

be of simple diffusion. Under the assumption of this diffusion process, the infor-

mation diffuses with a random probability from one household to its connections.

Under this assumption, the optimal choice was to have one central seed household

and one seed household on the periphery.22

3. Geo: Villages were seeded solely based on geographic proximity. As a result, the

seed households were geographically located near each other but were not central

(in the network data).

4. Benchmark (control): Extension agents selected two seeds like they usually do.

It is important to note that this experimental set-up focuses on seeding households

solely based on their positions in the network (in terms of social ties or geographic

ties). Thus, the diffusion of information was assumed to be independent of other

household characteristics. On the contrary, I consider households to be heterogeneous

in their expected benefits from the new technology, with this heterogeneity affecting the

diffusion of information for a given seeding strategy.

The researchers first collected the social network census data in 2010-11, before any

intervention or household survey took place. The census elicited names of people each

respondent consults when making agricultural decisions, information on household

composition, socio-economic characteristics of the household, general agriculture infor-

mation, and workgroup membership information. They matched these responses with
22Households on the periphery of a network represent households that are not well connected in terms

of existing social ties.
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the village listing to identify links. They considered individuals linked if either party

named each other (undirected network) or if they are part of the same household. Based

on this network information, the researchers used simulations to identify seeds accord-

ing to the different diffusion processes to optimize diffusion after four periods. For each

of the 200 villages in their study, the researchers used the simulations to identify the

optimal choice of 2 seeds following complex diffusion, simple diffusion, and geographic

proximity. The villages were then randomly allocated to one of the four treatment

groups. Depending on the allocation, 2 seed households were selected per village. The

researchers asked extension agents to identify benchmark seeds only for the villages

allocated to the control group. The seed households then received training on PP (and

CRM). Once the training was complete, the researchers conducted household surveys

to collect data on farming techniques, input use, yields, assets, and other characteristics.

The researchers randomly surveyed a panel of approximately 30 households per

village, involving all the seed and shadow farmers, along with 22-24 other farmers.23

They collected information on approximately 5600 households from the 200 villages.

In 2 districts (Machinga and Mwanza) that consist of 141 study villages, they collected

three rounds of survey data in 2011, 2012, and 2013. Due to unanticipated delays in

project funding, in the third district (Nkhotakota), they could only start the operation in

2012. Hence, for the third district with 59 study villages, they collected only two rounds

of survey data (in 2012 and 2013). The first round of the survey was conducted a few

months after the training of the seed farmers. This round attempted to capture some

baseline characteristics and knowledge levels of the surveyed households regarding PP

(and CRM). Every survey round was conducted at the start of the agricultural season,

after the land preparation. As PP is used for land preparation, the households’ adoption

decision of PP was observed three times for Machinga and Mwanza, and twice for

Nkhotakota.24 For more details on the intervention and sampling of the study, please

23Shadow farmers are seed farmers chosen by the simulation, assuming some underlying diffusion
model. But they were not selected as seeds due to their villages getting assigned to receive seeding based
on a different diffusion model.

24Similarly, since CRM is used after harvest, the adoption of CRM was observed only twice for
Machinga and Mwanza, and once for Nkhotakota. Thus, the sample on the use of CRM is limited.
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consult BBMM.

The objective of BBMM is to assess the effectiveness of different centrality-based

targeting strategies on the adoption of pit planting. For that purpose, they collected

detailed data on household-level adoption decisions over multiple survey rounds. The

replication package also includes information on household-level measures of centrality

used to select seeds under different experimental interventions. The former helps me

calculate the dependent variables for my analysis, while the latter helps by providing

the information I require to assess the centrality of seed households in the experiment.

Additionally, I need the surveyed households’ ex-ante probability of adoption for my

analysis. This information is not available in the replication data as BBMM does not

consider the benefits of adoption to be different across households. For this purpose, I

turn to the AESTAS dataset.

4.2.2 AESTAS data

AESTAS is a nationally representative household survey conducted by International

Food Policy Research Institute (IFPRI). The objective of this survey was to monitor the

lead farmer (LF) program in Malawi.25 The survey covered all 29 districts of Malawi,

except Likoma.26 The data collection was done in two waves: wave 1 in 2016 and wave

2 in 2018. The publicly available version of the survey dataset contains information

from three different types of interviews:

1. Household Interviews: Ten households were randomly chosen for interview from

randomly selected sections within each district.27 Stratification was done based

on whether or not the household had a LF. Per section, up to two households

with LFs were selected. A total of around 299 sections were surveyed. The same

households were interviewed in the two waves with a small level of attrition

(around 4%). Around 3000 households were surveyed in wave 1, with 2880 among

them being re-surveyed in wave 2. For each household, both the household head
25Consult Khaila et al. (2015) for details on the lead farmer program.
26The survey considered the Mzimba district as divided into North and South, and the Lilongwe

district as divided into East and West.
27Sections are geographical units in Malawi that are one level lower than districts.
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and their spouses were interviewed. The survey collected data on technology

adoption and awareness, exposure to different technologies, access to extension

services, and socioeconomic and demographic characteristics.

2. Lead Farmer (LF) Interviews: Around 531 LF households were selected for house-

hold interviews. During the first wave of the household survey, these LF house-

holds were asked additional questions. These questions collected information

on the LF’s characteristics, activities, roles, expectations, incentives, challenges,

suggestions, any support they receive from agricultural extension development

officers (AEDOs) and other organizations, etc.

3. Community Interviews: In addition to the household surveys, 2-4 leaders per

village were surveyed in both waves. The objective was to collect community-

level information like the number of lead farmers, type of training they received,

number of projects, and other community characteristics.

More information on the survey and associated sampling can be found in Ragasa and

Niu (2017), Niu and Ragasa (2018), Ragasa (2020), and Ragasa et al. (2021).

For this study, I use the data collected through household interviews only. In particu-

lar, I am interested in the data on household-level technology adoption. Two types of

technology adoption information are available in the data:

1. Reported adoption for a list of pre-determined technologies and practices. This

list focuses on both agricultural and food processing practices.

2. Reported plot-level usage for a list of pre-determined agricultural technologies

and practices.

This information helps me calculate adoption indices crucial to my analysis (see Ap-

pendix C for details on the construction of these indices). I use these indices as proxies

for the probability of adoption.
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4.3 Identification Strategies

I now turn to discuss the identification strategies of my empirical analysis. The iden-

tification uses within and between treatment group variations in the BBMM sample.

The objective is to use the experimental setup of BBMM to test the predictions of my

simulations. Contrary to BBMM’s focus on comparing the effectiveness of different

centrality-based targeting strategies, I focus on assessing the efficacy of centrality-based

targeting vis-à-vis probability-based targeting for varying degrees of population hetero-

geneity.

In this subsection, I first discuss how I explore the overall village-level variations

in the data. These are non-experimental variations. Thus, identification using them

requires some assumptions. I discuss these assumptions in detail. Next, I focus on the

identification using experimental variations. Both identification strategies require the

calculation of the probability of adoption at the household level. For that purpose, I use

the survey data from AESTAS. The last subsection of this section provides details on

that.

4.3.1 Exploring village level variations

Given the selection of seeds in the BBMM experiment, I calculate the seeds’ average cen-

trality and probability of adoption. This information is used in the following regression:

Outcomevt = β0 + β1Centralityv + β2Probabilityv + β3Heterogeneityv (9)

+ β4Centralityv × Heterogeneityv + β5Probabilityv × Heterogeneityv + λXv + ζt + ϵvt.

Outcomevt denotes some adoption-related outcome for village v at time t. Like BBMM,

I focus on the outcomes in years 2 and 3. I discuss the outcome variables of my

analysis in the next section. Centralityv represents the average centrality of the seeds

for village v, at the baseline. I calculate this by using the eigenvector centrality of the

seed households at the baseline. The centrality measures are pre-calculated by BBMM

and available in their replication data. Probabilityv represents the average probability
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of adoption for the seeds in village v, at the baseline. I proxy for the probability of

adoption using predicted adoption and usage indices. I calculate these indices at the

baseline, conditional on some observable household demographics. The calculation

uses estimates from another regression, which I discuss in the next subsection. I use

the coefficient of variation of the same adoption and usage indices at the village level

to capture village-level heterogeneity in the benefits of a new technology. This is

represented by the Heterogeneityv variable in (9). It is important to note that both

the probability of adoption and the related coefficient of variation are proxied by

variables that are calculated conditional on observable demographics. These variables

are therefore not particular to any technology. Instead, they represent whether the

households are likely to adopt any new technology conditional on their observable

characteristics. Following my hypothesis, I expect β4 < 0 and β5 > 0. I control for

baseline village level characteristics (Xv), and year-fixed effects (ζt). The random error

of the regression is captured by ϵvt.

The calculation of outcome variables excludes the seeded households. BBMM use

the same outcome variables in their village-level analysis. I calculate Centralityv and

Probabilityv using the information on the seeded households. I assume that seed house-

hold characteristics are exogenous to the outcome variables. The assumption seems

reasonable as the village-level outcomes do not consider the seeded households. I as-

sume that, conditional on these village level controls, Heterogeneityv is also exogenous

in (9). In any case, my coefficients of interest are β4 and β5. As long as Centralityv and

Probabilityv remain exogenous, I do not need to take any stand regarding the exogeneity

of Heterogeneityv for identifying my coefficients of interest.

As defined above, Centralityv represents the average centrality of seed households

at the village level. Endogenous Centralityv in (9) implies unobserved village-level

characteristics correlating with the network positions of the seed households and the

village-level outcomes calculated excluding the seed households. For example, there

may be unobserved social learning correlating with the network positions of the seeds

and the adoption-related outcomes. However, this is more likely to be true for the
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household-level outcomes. At the village level, unless there is a village-level learning

process correlating with the seed households’ network positions, Centralityv should

be exogenous in (9). Similarly, the village-level unobserved characteristics affecting

adoption-related outcomes should not be related to the seed’s adoption probability.

As Probabilityv represents the average adoption probability of the seed households,

it should also be exogenous in (9).28 However, since I cannot verify these identifying

assumptions, I also use the experimental variations in the BBMM data that use weaker

identifying assumptions. The next subsection provides details on that.

Finally, not accounting for the treatment status in the regression can lead to omitted

variable bias if there is some measurement error in calculating Centralityv, as the

experimental design ensures that some villages will have more central seeds than the

other. In Appendix D, I check the robustness of my results by including the treatment

dummies. As my results remain almost the same, in the following section I present

them without the treatment dummies.

4.3.2 Exploring between treatment group variations

To explore between treatment group variations, I use the following specification:

Outcomevt = θ0 + θ1Centralityv + θ2Probabilityv + θ3Heterogeneityv (10)

+ ξbCentralityv × Heterogeneityv + ξcCentralityv × Heterogeneityv × Complexv

+ ξsCentralityv × Heterogeneityv × Simplev + ξgCentralityv × Heterogeneityv × Geov

+ ϕbProbabilityv × Heterogeneityv + ϕcProbabilityv × Heterogeneityv × Complexv

+ ϕsProbabilityv × Heterogeneityv × Simplev + ϕgProbabilityv × Heterogeneityv × Geov

+ γXv + ρt + ηvt.

Specification (10) is similar to specification (9), except the interactions of Centralityv ×

Heterogeneityv and Probabilityv × Heterogeneityv with treatment dummies. Here, ξb

28An example of a village-level unobserved learning process correlating with the seed households’ net-
work positions (or adoption probability) would be when the seeds with higher centrality (or probability)
are more likely to broadcast information to the masses affecting village-level adoption. Not controlling
for this information will make Centralityv (or Probabilityv) endogenous in (9).
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captures the interaction between seed centrality and village level heterogeneity for

the benchmark treatment group. ξc, ξs, and ξg captures how that interaction changes

compared to the benchmark for complex, simple, and geo treatment groups. Similarly,

ϕb captures the interaction between seed probability and village level heterogeneity for

the benchmark treatment group. ϕc, ϕs, and ϕg captures how that interaction changes

compared to the benchmark for complex, simple, and geo treatment groups. Thus,

for example for complex treatment group, the effect of Centralityv × Heterogeneityv

on the outcome variable is (ξb + ξc); the effect of Probabilityv × Heterogeneityv on the

outcome variable is (ϕb + ϕc). I expect the impact of Centralityv × Heterogeneityv to be

negative and the effect of Probabilityv × Heterogeneityv to be positive, within different

treatment groups. However, using this specification, I am more interested in exploring

between group variations. Thus, main coefficients of interest in this specification are:

ξ = {ξc, ξs, ξg} and ϕ = {ϕc, ϕs, ϕg}.

For a treatment group having the same level of heterogeneity as the benchmark, I

expect outcomes to be positively related to centrality and negatively related to probabil-

ity. Thus, given the population heterogeneity of a group and the adoption probability

of the seeds, moving to higher (lower) centrality seeds helps diffuse the technology

to more (less) households. Similarly, given the population heterogeneity of a group

and the centrality of the seeds, moving to higher (lower) probability seeds diffuse the

technology to fewer (more) households. I argue the same for (9) while exploring the

village-level non-experimental variations. Thus, I skip the reasoning of this argument

here.

If the treatment group is less heterogeneous than the benchmark, I expect seeds with

higher centrality to perform better and seeds with a higher adoption probability to

perform worse. From my simulations, I expect centrality-based targeting (or probability-

based targeting) to perform better (worse) with population homogeneity. If a treatment

group is less heterogeneous than the benchmark, it is more homogenous in its popu-

lation’s probability of adoption. Thus, I expect more central seeds to perform better

and seeds with higher adoption probability to perform worse. In this case, however,
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my theory does not have any prediction for seed households with lower centrality and

adoption probability. For treatment groups less heterogeneous than the benchmark, the

effect of having seeds with less centrality (or less adoption probability) depends on the

relative impacts of the population homogeneity and centrality (or adoption probability).

Hence, I have no specific predictions on the performance of such seeds. Similarly, for

treatment groups having higher population heterogeneity than the benchmark, I expect

the seed households with lower centrality to perform better and seeds with lower adop-

tion probability to perform worse. In this case, my theory does not have any prediction

for the seed households with more centrality and adoption probability.

As an example, let us consider the complex treatment group. If this group has the

same level of heterogeneity as the benchmark, I expect ξc to be positive (negative) if the

complex treatment group has more (less) central seeds than the benchmark. Similarly, I

expect ϕc to be negative (positive) if the complex treatment group has a higher (lower)

seed adoption probability than the benchmark. Now, if the complex treatment group is

less heterogeneous than the benchmark, I expect the following:

• If they have more central seeds than the benchmark: positive ξc; less central seeds

than benchmark: depends on the relative effects of the drop in centrality and

heterogeneity.

• If they have seeds with higher adoption probability than the benchmark: negative

ϕc; seeds with a lower adoption probability than benchmark: depends on the

relative effects of the drop in probability and heterogeneity.

Similarly, if the complex treatment group is more heterogeneous than the benchmark, I

expect:

• If they have less central seeds than the benchmark: positive ξc; more central seeds

than benchmark: depends on the relative effects of the increase in centrality and

heterogeneity.

• If they have seeds with a lower adoption probability than the benchmark: negative

ϕc; seeds with higher adoption probability than benchmark: depends on the

36



relative effects of the increase in probability and heterogeneity.

Like specification (9), I control for baseline village level characteristics and year-fixed

effects. As the coefficients of interest use interactions with the treatment dummies, I do

not need any additional assumption other than assuming the success of the random-

ization. Finally, it is important to note that I do not include the treatment dummies in

specification (10) as BBMM argues that the treatment status affects the outcome vari-

ables only through the centrality of the seeds. In Appendix D, I present the robustness

of my results by including the treatment dummies. My results remain robust.

4.4 Strategy for Approximating Probabilities of Adoption

For my regression specifications, I need to calculate the probability of adopting a

new technology for all households. The average of this probability measure for seed

households is Probabilityv in the regressions, while the coefficient of variation of this

measure at the village level is Heterogeneityv. However, BBMM did not collect any

information about these probabilities, as their micro-foundations assumed benefits from

the new technology to be the same across households. Hence, I need to approximate

these probabilities conditional on the observable characteristics of the households

surveyed in their study.

For this purpose, I use the data from AESTAS. The data contains information on tech-

nology adoption and household characteristics. It surveys a nationally representative

set of farmers in Malawi on a universe of technologies that includes the technologies

covered in BBMM. I use this information on the universe of technologies to calculate

adoption and usage indices. Appendix C contains details on the construction of these

indices. I use the following regression specification to estimate the mapping from

observable household characteristics to the adoption index:

Adoption Indexit = f (Xit; µit), (11)

where Xit are observable household characteristics. I consider only the characteristics
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observed in both AESTAS and BBMM data. I present the robustness of the regression

results in the next section to other household characteristics observable only in the

AESTAS data and not in the BBMM data. The term µit captures the random error in the

regression. In my preferred specification, I consider function f (·) to be linear (thus, the

estimation uses ordinary least square). However, I check the robustness of my results

to non-linear specifications. I present these in Appendix D. I use a similar regression

specification to estimate the mapping from observable household characteristics to the

usage index.

I use the estimations of this model to construct the adoption index (and the usage

index) conditional on the observable demographics in the BBMM dataset. I use this

variable to proxy for the households’ adoption probability. We should note that (11) gets

estimated with possible omitted variable bias. For example, there may be possible social

learning correlating with both the adoption index and observable demographics.29 Thus,

the coefficients estimated using (11) would represent a correlation, not causality. This

bias in estimating households’ adoption probabilities should not affect my coefficients

of interest in (10), as the identification uses experimental variations. However, we

must consider the consequences for (9). The bias in estimating households’ adoption

probabilities would lead to a biased Probabilityv in (9). However, this will only create a

problem in identifying the coefficient of interest β5 if this bias correlates with unobserved

village-level characteristics affecting adoption-related outcomes. This correlation is less

likely to be true because:

1. Household level bias should not correlate with village-level unobservables.

2. Bias in the estimates originating from the AESTAS sample should not correlate

with the unobserved village-level variations in the BBMM sample.

However, since I cannot verify these assumptions, specification (10) provides a better

alternative.
29More specifically, in the AESTAS data, the households having higher adoption index may adopt

more technologies due to being connected to the lead farmers. Not controlling for this regression will
over-estimate the adoption index for their demographics.
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5 Results and Discussion

In this section, I present the empirical results of my analysis. I start by discussing how

I approximate adoption probabilities using the AESTAS data. In doing so, I present

the associated regression results and the assumptions I need for using these results

for the rest of my analysis. The following subsection explores the main variations in

the BBMM data via descriptive statistics. In the final sub-section, I present the main

empirical results of this study.

5.1 Approximating Probabilities of Adoption

Table 2: Baseline Demographics Across Datasets

Variables

Dataset Statistic Adults Children Housing Livestock Assets

AESTAS Mean 2.14 3.00 -0.09 -0.03 -0.03
(SD) (1.00) (2.00) (0.98) (0.99) (1.00)

Median 2.00 3.00 -0.29 -0.40 -0.29

Observations 2820 2820 2803 2820 2820

BBMM Mean 2.36 2.77 -0.02 0.02 0.09
(SD) (0.95) (1.86) (0.99) (1.02) (1.03)

Median 2.00 3.00 -0.24 -0.31 -0.10

Observations 5384 5407 5382 5407 5407

Notes: The variables Adults and Children represent number of adults and children in a
household, respectively. The variables Housing, Livestock, and Assets were standardized first
principal components. For the AESTAS sample: Housing includes information on materials
walls are made of, roof materials, and floor materials. Each of the three variables are coded
to be 0- Traditional, 1- Modern. Assets includes the number of bicycles, radios and cell
phones the household owns. Livestock includes the number of sheep, goats, chickens, cows,
and pigs. For the BBMM sample: Housing includes information on materials walls are
made of, roof materials, floor materials and whether the household has a toilet. Assets
includes the number of bicycles, radios and cell phones the household owns. Livestock is an
index including the number of sheep, goats, chickens, cows, pigs, guinea fowl, and doves.
(footnote 1 from Table A5 of BBMM)

I start by comparing key baseline demographic information across datasets. This is

presented in Table 2. The comparison is important as it helps me understand how the
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results derived using the AESTAS data map into the BBMM data. The five variables

chosen are available in both AESTAS and BBMM data. In terms of the mean and

median, both datasets are similar in the number of adults and children in the household.

However, the BBMM sample is slightly richer than its AESTAS counterpart. We can see

this by comparing the mean and median of standardized housing, livestock, and assets

PCA (Principal Component Analysis) scores. This is not surprising given that AESTAS

focused on a nationally representative sample of farmers in Malawi, whereas BBMM

focused only on the Maize farmers.

Table 3: OLS Regression Results for Adoption and Usage Indices

Adoption Index Usage Index
Variables (1) (2) (3) (4) (5) (6)

Adults 0.008*** 0.008*** 0.005** 0.011*** 0.011*** 0.008***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Children 0.003*** 0.003*** 0.002 0.003*** 0.003*** 0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Housing 0.009*** 0.009*** 0.008*** 0.003 0.003 0.002
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Livestock 0.010*** 0.010*** 0.005* 0.014*** 0.014*** 0.009***
(0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

Assets 0.024*** 0.024*** 0.017*** 0.020*** 0.020*** 0.014***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Year Fixed-Effects No Yes Yes No Yes Yes

Household Controls No No Yes No No Yes

Observations 5610 5608 5604 5610 5608 5604

R-squared 0.096 0.096 0.150 0.085 0.131 0.169

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the section level are
in parentheses. All regressions use sample weights and include a constant term. The variables
Adults and Children represent number of adults and children in a household, respectively. The
variables Housing, Livestock, and Assets were standardized first principal components. Housing
includes information on materials walls are made of, roof materials, and floor materials. Assets
includes the number of bicycles, radios and cell phones the household owns. Livestock includes
the number of sheep, goats, chickens, cows, and pigs. Household Controls include: gender and
age of household head, activity of household head (0- Non-Farmer, 1- Farmer), whether the
household applied for a loan in the past, the households’ time and risk preferences, and whether
a household member is a lead farmer (LF).

Table 3 presents the main results for this subsection. Here, I estimate the adoption

and usage indices conditional on the demographics presented in Table 2. The estimation
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uses the AESTAS data. The first three columns present the results for the adoption index.

I observe a positive correlation between the households’ wealth level and their adoption

index.30 In addition, families with more adults and children report a higher adoption

index. The results remain almost identical when I control for the year fixed effects.

The magnitudes and significance levels vary, controlling for other household-level

characteristics. However, the signs remain the same. The remaining three columns of the

table present the results for the usage index. The results are qualitatively similar to that

of the adoption index. The most notable difference is that the coefficient corresponding

to the housing PCA score is statistically insignificant throughout specifications. The

main takeaway from these results is that the coefficients remain similar with or without

controlling for year fixed-effects and other household-level characteristics. Thus for

calculating the predicted adoption and usage indices, I use the estimates reported in

columns (1) and (4), respectively.

Panel A: Adoption Index Panel B: Usage Index

Figure 6: Actual and Predicted Adoption and Usage Indices

Figure 6 compares the actual and predicted indices for the AESTAS sample. The

estimates capture only a fraction of the actual variation. The actual adoption index

has a mean of 0.085 with a standard deviation of 0.120. In comparison, its predicted

counterpart has a mean of 0.086 with a standard deviation of 0.038. The numbers

are similar for the usage index in terms of prediction quality. The actual usage index

has a mean of 0.163 with a standard deviation of 0.122, whereas the predicted usage

30Here households’ wealth level is captured by their housing, assets, and livestock principal component
analysis scores. Details on these variables are in the footnote of the table.
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index has a mean of 0.162 and a standard deviation of 0.035. Thus, the predictions

are good at predicting the mean but only capture a third of the actual variation. This

is not surprising given that the predictions are made based on only a few observable

demographics.

To use the estimated mapping from the observable demographics to the adoption

and usage indices for predicting the probability of adoption in the BBMM data, I need

the following assumptions:

• Assumption 1: Adoption and Usage indices are good proxies for the probability

of adoption.

• Assumption 2: The variation in adoption and usage indices, conditional on the

demographics observable in both AESTAS and BBMM data, is sufficient for my

analysis.

• Assumption 3: The mapping of observable characteristics to the adoption proba-

bility is the same across the datasets I use in this study.

• Assumption 4: Any bias in the estimated relationship between adoption probabil-

ity and observable characteristics is independent of the unobserved village-level

learning in the BBMM sample.

The first three assumptions are necessary for extrapolating the AESTAS information

to the BBMM data. There is no formal way of testing these assumptions. I need the

fourth assumption to identify β5 in (9), as I already discussed in the last section.

5.2 Descriptive Statistics

Table 4 focuses on describing key baseline characteristics in the BBMM sample. The

last column of this table represents overall village-level non-experimental variations.

I exploit this variation in the regression specification (9). The first four columns of

the table represent the within treatment group variations. Regression specification

(10) uses the experimental variations between these four groups. The first two rows
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present the main outcome variables of my analysis. Adoption Rate (PP) captures the

proportion of typical farmers per village that adopted pit planting in each agricultural

season. Here, typical farmers correspond to the farmers that were not selected as seed or

shadow farmers in the experiment. Any Non-Seed Adopters (PP) is a dummy variable

that captures whether the villages had at least one non-seed farmer adopting pit planting

in an agricultural season. I focus on these two outcome variables as BBMM also uses

these variables as outcomes in their village-level analysis. The baseline data suggest

an adoption rate of around 2-3% across treatment arms. Also, only 30-42% villages

had at least one non-seed farmer adopting pit planting in the baseline. These numbers

suggest low adoption of pit planting in the baseline, providing an ideal setting to

test the predictions of my theoretical analysis. Through the lens of my theoretical

framework, the pessimism regarding the prospect of pit planting was responsible for

the low adoption of pit planting in the baseline. Hence, this is a setting that calls for

network-based targeting.

The next three rows of table 4 focus on presenting seed-level explanatory variables of

my analysis. I calculate these variables given the seeds chosen by BBMM. In particular,

the values represent an average for two seeds, whenever the information on both seed

households is available (for 138 villages). Otherwise, it represents the only seed for

which the data is available (for 53 villages). To calculate the Eigenvector Centrality

of Seeds, I use the eigenvector centrality values that are pre-calculated and available

in the BBMM replication dataset.31 By the design of the experiment, complex seeds

have the highest average centrality. BBMM argues that it is due to the optimality of

seeding only the most central households when the underlying diffusion process is

of complex contagion. Similarly, they expect the simple seeds to have relatively less

average centrality than complex seeds as it is optimal to seed one central and one

peripheral household when the underlying diffusion process is of simple contagion.

BBMM also argue that geo seeds should be less central as they have less than average

land by design (which is a measure of less than average wealth), and hence are less likely

31Formal definition of eigenvector centrality can be found in Appendix A.
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to be well connected. These patterns are indeed what I observe in the baseline. In terms

of the average eigenvector centrality of the seeds, the simple seeds are not statistically

different than the benchmark seeds. However, both complex and geo seeds are statically

different than the benchmark (at 1% and 5% level of significance, respectively).

Table 4: Baseline Village-level Sample Characteristics

Treatment Status
Variable Benchmark Complex Simple Geo Overall

Adoption Rate (PP) 0.018 0.030 0.029 0.029 0.026
(0.035) (0.063) ( 0.060) (0.077) (0.060)

Any Non-Seed Adopters (PP) 0.300 0.340 0.320 0.420 0.345
(0.463) (0.479) (0.471) (0.499) (0.477)

Eigenvector Centrality of Seeds† 0.178 0.235 0.187 0.129 0.182
(0.090) (0.077) (0.096) (0.090) (0.096)

Predicted Adoption Index of Seeds‡ 0.110 0.114 0.101 0.082 0.101
(0.034) (0.036) (0.041) (0.025) (0.036)

Predicted Usage Index of Seeds‡ 0.184 0.186 0.172 0.158 0.175
(0.031) (0.032) (0.042) (0.024) (0.035)

CV of Predicted Adoption Index 0.389 0.378 0.379 0.366 0.378
(0.069) (0.077) (0.075) (0.062) (0.071)

CV of Predicted Usage Index 0.193 0.188 0.185 0.180 0.187
(0.039) (0.040) (0.037) (0.033) (0.038)

Observations 50 50 50 50 200

Notes: † Contains 44 observations for the benchmark treatment group, 49 observations for the other treatment
groups. ‡ Contains 48 observations for the complex treatment group. Seed level measures are calculated
using the average of two seeds, whenever the information on both seeds are available. Otherwise they
reflect the information for one seed. Coefficient of Variations (CV) are calculated at the village level for
the whole village. Adoption Rate and Any Non-Seed Adopters are calculated excluding seed or shadow
farmers in a village.

I use predicted adoption and usage indices as proxies for the adoption probability.

Depending on the proxy, the adoption probabilities differ, but the ranking over different

treatment groups remains the same. Here, complex and benchmark seeds have the

highest adoption probabilities, followed by simple seeds. The geo seeds have the

lowest baseline probability of adoption. There are no statistically significant differences

between benchmark, complex, and simple seeds. However, geo seeds are statistically

different than their benchmark counterparts (at a 1% level of significance).

The final two rows of table 4 present the village-level heterogeneity in adoption prob-
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abilities. I measure these using the coefficient of variation (CV) of adoption probability

proxies at the village level. In terms of these measures, all other treatment villages have

lower heterogeneity in adoption probability than the benchmark villages. However,

the geo treatment group is the only one having significantly less heterogeneity than the

benchmark group (at the 10% level). The differences are statistically insignificant for

complex and simple treatment villages.

Panel A: Adoption Rate

Year=1 Year=2 Year=3

Panel B: Any Non-Seed Adopters

Year=1 Year=2 Year=3

Figure 7: Outcomes for Different Seeding Strategies with respect to Village Heterogeneity

Before proceeding to my main empirical results in the following sub-section, let me

focus on Figure 7. This figure presents the outcome variables over varying degrees

of village-level heterogeneity, where the village-level heterogeneity is proxied by the

CV of the predicted adoption index. Here, I categorized the seeding strategy based

on the seeds’ average centrality and adoption probability. For this figure, I define

centrality-based seeds as the seed household(s) with higher than the median average

eigenvector centrality at baseline. Similarly, probability-based seed households (s) are

defined to have higher than the median average adoption probability at baseline. Thus,

following this classification, seed household(s) selected in the BBMM experiment can
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fall under four categories: both centrality-based and probability-based, only centrality-

based, only probability-based, and none.32 Based on my simulations, I expect the

effectiveness of centrality-based seeds to decrease as village heterogeneity increases.

Similarly, I anticipate the performance of probability-based seeds to improve as village

heterogeneity increases. However, I expect these patterns to emerge only in the years 2

and 3 after the interventions. In the first year, after the seeds received training, there

was not enough time for diffusion for similar patterns to be evident.33

This pattern is what I observe. In years 2 and 3, as village-level heterogeneity increases,

the performance of centrality-based seeds decreases compared to their probability-based

counterpart. The opposite is true for probability-based seeds compared to centrality-

based seeds. On the contrary, I notice the opposite pattern in year 1 for the adoption

rate. However, for the percentage of villages with non-seed adopters, I observe that in

the first year, the gap between centrality-based and probability-based seeds is closing

with an increase in village-level heterogeneity. Although, the centrality-based seeds

remain the more successful for all levels of village heterogeneity.

Although informative, the descriptive figures do not account for village-level hetero-

geneity in other variables. In defining the centrality-based and probability-based seeds

as dummy variables, Figure 7 also fails to capture the entire village-level variations

of these seeds in terms of their centrality and probability measures. In the following

sub-section, I present the reduced form results of my analysis that test my hypotheses

more formally.

5.3 Reduced Form Results

Table 5 focuses on exploring village-level non-experimental variations. Subsequently,

Table 6 presents results exploring the experimental variations. For both these tables, I

32Average village level correlation between the households’ centrality and adoption probability, calcu-
lated at the baseline, is around 0.3. This is robust to using different centrality and adoption probability
measures. Thus, a centrality-based seeding strategy should lead to a different set of seed households
than a probability-based strategy.

33Training for the seed households took place just a few months before the household survey in year 1.
Thus, similar to BBMM, my regression results focus on the effect on the outcome variables from years 2
and 3.
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proxy for the probability of adoption using the predicted adoption index. The results

are similar using the predicted usage index as the proxy. Thus, I do not present them

here to avoid repetitions. These results are in Appendix D.

Table 5: Village level Regression 1 of Adoption Outcomes (Pit Planting)

Adoption Rate Any Non-Seed Adopters
Variables (1) (2) (3) (4)

Eigenvector Centrality of Seeds 1.173** 0.917* 1.181 1.235
(=Centralityv) (0.581) (0.467) (1.439) (1.332)

Predicted Adoption Index of Seeds -2.973** -2.140 -8.019** -3.344
(=Probabilityv) (1.467) (1.318) (3.257) (3.233)

CV of Predicted Adoption Index -0.296 -0.157 -0.928 0.506
(=Heterogeneityv) (0.208) (0.214) (1.079) (1.053)

Centralityv × Heterogeneityv -2.625** -2.131** -2.851 -3.299
(1.324) (1.066) (3.777) (3.562)

Probabilityv × Heterogeneityv 6.715** 4.762* 18.484*** 7.562
(3.131) (2.796) (6.997) (7.073)

Village-level Controls No Yes No Yes

Observations 324 324 324 324

R-squared 0.080 0.180 0.049 0.169

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All regressions
include a constant term and year fixed effects. Village-level controls include percentage of village
using pit planting at baseline, percentage of village using compost at baseline, percentage of village
using fertilizer at baseline, village size, the square of village size, and district fixed effects.

For Table 5, the main coefficients of interest are those corresponding to the interactions

of Heterogeneityv, with Centralityv and Probabilityv. As argued in the last section, I

expect the coefficient of Centralityv × Heterogeneityv to be negative and the coefficient

of Probabilityv × Heterogeneityv to be positive. Columns (1) and (2) present the results

for the adoption rate, with and without the village level controls. Here, both coefficients

of interest are of the desired sign and highly significant. The results show that for

a completely homogeneous village, a one standard deviation increase in eigenvector

centrality leads to a 9.17%-11.73% increase in the adoption rate. This is a 352.69%-

451.15% increase compared to the baseline mean adoption rate of 2.6%. However,

for villages with heterogeneity at the level of baseline mean, the effect drops to an
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increase of only 1.11%-1.81%. Which is a 42.69%-69.62% increase compared to the

baseline mean adoption rate. Similarly, one standard deviation increase in predicted

adoption decreases the adoption rate by 8.56%-11.89% for a homogeneous village. This

is a decrease of 329.23%-457.31%, compared to the mean adoption rate at the baseline.

However, for villages with heterogeneity at the level of baseline mean, the effect drops

to a decrease of 1.36%-1.74% only. This is a much smaller decrease of 52.31%-66.92%

compared to the baseline mean of adoption rate.

The results for Any Non-Seed Adopters are in columns (3) and (4), with and without

the village level controls. Although the coefficients of interest are of the desired sign,

they are mostly insignificant. The results show that for completely homogeneous

villages, one standard deviation increase in eigenvector centrality leads to an 11.81%-

12.35% increase in the probability of having at least one non-seed adopter. Compared to

the baseline mean of 34.5% for the variable Any Non-Seed Adopters, this is an increase

of 34.23%-35.80%. However, for villages with heterogeneity at the level of baseline

mean, the effect drops to being between a 0.12% decrease and a 1.03% increase. This

is between a drop of 0.35% and an increase of 2.99%, compared to the baseline mean

of the dependent variable. On the other hand, one standard deviation increase in

predicted adoption decreases the probability of having at least one non-seed adopter

by 13.38%-32.08% for a homogeneous village. Compared to the baseline mean of the

variable Any Non-Seed Adopters, this is a decrease of 38.78%-92.99%. For villages with

heterogeneity at the level of baseline mean, however, the effect drops to a probability

decrease of 1.94%-4.13% only. Which is a drop of only 5.62%-11.97% compared to the

baseline mean of the dependent variable.

Table 6 focuses on exploring between treatment group variations. Here, I am inter-

ested in the coefficients of Centralityv ×Heterogeneityv and Probabilityv ×Heterogeneityv,

across different treatment groups. Note that the sign of Centralityv × Heterogeneityv

is negative, and the sign of Probabilityv × Heterogeneityv is positive within different

treatment groups, in line with the results of table 5. Table 6 notes the differences in the

coefficients of Centralityv × Heterogeneityv and Probabilityv × Heterogeneityv, across
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different treatment groups. Some of these differences are statistically significant, while

others are not. However, the signs are all consistent with my discussion in the last

section.

Table 6: Village level Regression 2 of Adoption Outcomes (Pit Planting)

Adoption Rate Any Non-Seed Adopters
Variables (5) (6) (7) (8)

Eigenvector Centrality of Seeds 0.775* 0.633* 1.703 1.638
(=Centralityv) (0.423) (0.378) (1.660) (1.468)

Predicted Adoption Index of Seeds -2.362** -1.578 -10.419*** -5.947*
(=Probabilityv) (1.091) (1.024) (3.679) (3.566)

CV of Predicted Adoption Index -0.321 -0.150 -0.923 0.417
(=Heterogeneityv) (0.206) (0.200) (1.105) (1.073)

Centralityv × Heterogeneityv -2.423** -2.237** -6.692 -6.574
(1.093) (0.996) (4.503) (4.119)

Centralityv × Heterogeneityv × Complex 0.657** 0.664** 4.328** 3.756**
(0.306) (0.282) (1.775) (1.664)

Centralityv × Heterogeneityv × Simple 0.416 0.428 1.078 0.431
(0.337) (0.320) (2.060) (1.947)

Centralityv × Heterogeneityv × Geo 2.026** 1.942** 0.103 -0.070
(0.940) (0.839) (2.235) (2.098)

Probabilityv × Heterogeneityv 5.881** 4.104* 22.97*** 12.35
(2.437) (2.286) (7.720) (7.626)

Probabilityv × Heterogeneityv × Complex -0.155 -0.232 -1.275 -0.679
(0.520) (0.497) (2.765) (2.654)

Probabilityv × Heterogeneityv × Simple -0.121 -0.110 1.941 3.511
(0.642) (0.571) (3.572) (3.333)

Probabilityv × Heterogeneityv × Geo -2.588** -2.562** -0.391 0.538
(1.131) (1.039) (4.028) (3.618)

Village-level Controls No Yes No Yes

Observations 324 324 324 324

R-squared 0.133 0.224 0.113 0.222

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All regressions include a
constant term and year fixed effects. Village-level controls include percentage of village using pit planting
at baseline, percentage of village using compost at baseline, percentage of village using fertilizer at baseline,
village size, the square of village size, and district fixed effects.

Columns (5) and (6) present the results for Adoption Rate, with and without the

village level controls. The results show that for a completely homogeneous village, one

standard deviation increase in the centrality of seed households leads to a 6.33%-7.75%

49



improvement in the adoption rate. This is a 243.46%-298.08% increase compared to

the baseline mean adoption rate of 2.6%. However, for benchmark villages having

heterogeneity at the level of baseline benchmark mean, the effect drops to a decrease

of 1.68%-2.37%. Which is a 64.62%-91.15% decrease compared to the baseline mean

adoption rate. The negative effect of heterogeneity on the relationship between seeds’

centrality and the adoption rate is lower for the other treatment groups compared

to the benchmark. However, the difference is statistically significant only for the

complex and geo treatment groups. Similarly, one standard deviation increase in the

adoption probability of seed households decreases the adoption rate by 6.32%-9.45% for

a homogeneous village, which is a decrease of 243.08%-363.46% compared to the mean

adoption rate at the baseline. However, for benchmark villages having heterogeneity

at the level of baseline benchmark mean, the effect drops between a decrease of 0.30%

and an increase of 0.07%. This is a much smaller effect of between 11.54% decrease and

2.69% increase, compared to the baseline mean of adoption rate. The positive impact of

heterogeneity on the relationship between seeds’ adoption probability and the adoption

rate is lower for complex and simple treatment groups. However, these differences are

statistically insignificant. Only for the geo treatment group, the impact is significantly

lower compared to the benchmark.

The results for Any Non-Seed Adopters are in columns (7) and (8), with and without

the village level controls. For this outcome variable, the effects are also in the same

direction for all the treatment groups. The results show that for homogeneous villages,

one standard deviation increase in eigenvector centrality leads to a 16.38%-17.04%

improvement in the probability of having at least one non-seed adopter. Compared to

the baseline mean of 34.5% for the variable Any Non-Seed Adopters, this is an increase

of 47.48%-49.39%. But, for benchmark villages having heterogeneity at the level of

baseline benchmark mean, the effect drops to around a 9% decrease of probability,

which is a 26.09% drop compared to the baseline mean of the dependent variable.

The negative impact of heterogeneity on the relationship between seeds’ centrality

and the probability of having non-seed adopters is lower for the simple treatment
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group. It is different for the geo treatment group as well. However, only for the

complex treatment group, the effect is significantly lower compared to the benchmark.

On the other hand, one standard deviation increase in the predicted adoption index

decreases the probability of having at least one non-seed adopter by 23.79%-41.68% for

a homogeneous village. Compared to the baseline mean of the variable Any Non-Seed

Adopters, this is a decrease of 68.96%-120.81%. However, for benchmark villages having

heterogeneity at the level of baseline benchmark mean, the effect drops to a decrease of

4.57%-5.94%. This is a drop of only 13.25%-17.22% compared to the baseline mean of the

dependent variable. The positive impact of heterogeneity on the relationship between

seeds’ adoption probability and the probability of having non-seed adopters is lower for

the complex treatment group, higher for the simple treatment group, and different for

the geo treatment group. However, none of these differences are statistically significant.

These results show that for homogeneous villages seeding central households leads

to improvements in adoption. Existing literature recognizes the role played by central

agents in improving diffusion, and subsequent adoption of a product. BBMM uses the

same data to show that more central seeds cause higher adoption. Seeds’ centrality is

one of the main reasons for improved adoption of a microfinance product in India by

Banerjee et al. (2013), and improved take-up of an insurance product in China by Cai

et al. (2015). I add to this literature by providing evidence that the positive effect of

seeds’ centrality decreases as the target population becomes more heterogeneous. In

addition, I show evidence in favor of an alternative probability-based seeding strategy

to work better in such a scenario.

6 Summary and Concluding Remarks

I focus on network-based targeting strategies for improving technology adoption when

a new technology has more benefits to some agents than others. This heterogeneity

in benefits can be due to the agents differing in terms of their education, skills, and

ability, which affect how much they can learn about the new technology and use it
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in practice. We can also attribute the heterogeneity to the agents’ input choices and

their access to other technologies. In particular, I assume that this heterogeneity in

benefits directly impacts the diffusion of information regarding the benefits of the

new technology. This assumption deviates from the existing literature that considers

information diffusion to depend on existing social ties only. I present a model that helps

formalize such a scenario, adding to the theoretical literature that considers households

homogeneous in what they need to learn about new technologies. I use simulations,

building on the structure of my theoretical model, to generate testable hypotheses on

the performance of different network-based targeting strategies. I hypothesize that

the relative performance of different targeting strategies depends on the population

heterogeneity in terms of the expected benefits of adopting a technology. In particular, I

expect centrality-based targeting to perform worse as the heterogeneity increase but

targeting based on the adoption probability to perform better if the network is highly

assortative in terms of characteristics determining the benefits. To test these hypotheses,

I use the replication data of BBMM collected from Malawi. To generate variation in

the BBMM sample in the benefits of a new technology, I use the AESTAS dataset also

collected from Malawi. Reduced form results lend support in favor of my hypotheses.

Exploring non-experimental village-level variations, I show that the positive effect of

the seed households’ centrality on the adoption of pit planting decrease with an increase

in village-level heterogeneity in terms of adoption probability. Simultaneously, the

negative effect of the seed households’ adoption probability decreases with an increase

in village-level heterogeneity. Although weaker, I find similar results when I shift my

focus to exploring the experimental variations of BBMM.

The reduced form analysis uses a series of assumptions that I discuss in detail. The

main challenge in targeting based on the adoption probability is that the adoption

probabilities depend on the benefits realized only after the adoption. I attempt to

solve this issue by using additional data to predict adoption probability conditional on

observable demographics. A better approach would be to collect more information on

the same households making the adoption decisions. For that purpose, along with better
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identification, a randomized controlled trial that mimics the ideal experiment discussed

in this paper would be more suitable. A randomized controlled trial of such a nature

could also help me disentangle the effects of centrality and probability of seeds. These,

along with a more structural approach can help separately identify the performances of

targeting strategies discussed here. These are exciting avenues for future research.

For policy, my results suggest that network-based targeting may require more than

identifying central households within a social network. More specifically, I argue for the

need to understand possible population heterogeneity in benefits. This recommendation

adds to the existing literature that highlights the importance of central agents for

targeting policies (Beaman et al., 2021a) and focuses on cost-effectively identifying

these agents (Banerjee et al., 2019). This recommendation is applicable only if a new

technology is such that there can be sufficient population heterogeneity in terms of

its benefits. In practice, this demands more information than the requirement for just

identifying central households, increasing the cost of network-based targeting. This

increase in the cost of network-based targeting may make it more attractive to randomly

select more seed households following the approach proposed by Akbarpour et al.

(2021). We need a proper cost-benefit analysis for this purpose, which is beyond the

scope of this paper.
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Appendices

A Mathematical Definitions

The objective of this section is to formally define the network centrality measures used

in different parts of this paper. This section heavily draws from Chapter 2 of Jackson

(2010) and Chapter 7 of Newman (2010). More detailed descriptions along with some

applications can be found in these sources.

Let N = {1, 2, ...., n} be a set of agents (called nodes) involved in a network. The

tuple (N, g) defines a graph (or, network), where g is a real-valued n × n matrix (called

adjacency matrix) with gij representing the (possibly) weighted and/or directed relation

between i and j. 34 An edge (i, j) is defined as a link from i to j.35 Edge (i, j) exists if and

only if gij ̸= 0. A sequence of edges (i1, i2), (i2, i3), ....., (ik−1, ik) is called a walk. A path

between i and j is defined as a walk such that i1 = i and ik = j, with each node being

distinct in the walk. A geodesic path between two nodes i and j is defined as a path with

no more edges than any other paths between these nodes. In other words, geodesic

path(s) between i and j represent(s) the shortest distance from i to j.36

Degree Centrality:For an undirected and unweighted network (N, g), degree central-

ity of a node k is given by:

Dk(N, g) =
n

∑
i=1

gki,

which measures the number of nodes connected with node k. For a directed and

unweighted network (N, g), nodes have both in-degree and out-degree. Out-degree of

34Networks can be either weighted or unweighted. For a unweighted network, gij is either 0 or 1
representing whether i is connected to j or not. For weighted network, gij can take other non-negative
values. The weights represent the intensity of relationships. Networks can also be either directed
or undirected. For a directed network, I define gij to be representing a link from i to j, and gji to be
representing a link from j to i. In an undirected network, gij = gji ∀i, j ∈ N. Alternatively, in a directed
network, ∃i, j ∈ N, s.t. gij ̸= gji. For my theoretical model, I consider networks to be unweighted and
undirected. In the BBMM experiment, the networks were considered to be weighted and undirected.

35Which is the same as the edge (j, i) in an undirected network. Same may not be true for a directed
network.

36The calculation uses weights associated with the edges in the path(s).
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node k measures the number of nodes the node k connects to:

D out
k (N, g) =

n

∑
i=1

gki.

Similarly, in-degree of node k measures the number of nodes connected to node k:

D in
k (N, g) =

n

∑
i=1

gik.

For weighted networks, the same measure is termed as the strength of node k.

Betweenness Centrality: Let Pk
ij denote the number of geodesic paths from i to j that

passes through k, with Pij being the total number of geodesic paths from i to j. Then the

betweenness centrality of node k in network (N, g) is defined to be:

Bk(N, g) = ∑
∀i,j s.t.i ̸=j and k/∈{i,j}

(Pk
ij

Pij

)
,

with
Pk

ij
Pij

= 0 if Pij = 0.

Closeness Centrality: Let Lki denote the number of edges in the shortest path between

k and i. Then the closeness centrality of node k in network (N, g) is defined as:

Ck(N, g) =
(n − 1)
∑i ̸=k Lki

.

For an undirected graph, we consider distances between k and every other node. Alter-

natively, for a directed graph, the distances from every other node to k is considered.

Eigenvector Centrality: For an undirected network (N, g), the eigenvector centrality

Ek(N, g) of node k is defined as:

λEk(N, g) = ∑
∀i

gkiEi(N, g),

where E (N, g) = {E1(N, g), E2(N, g), ...., EN(N, g)} is an eigenvector of g with λ being

the corresponding eigenvalue. It is conventional to use the eigenvector associated with

60



the largest eigenvalue.

For a directed network (N, g), the adjacency matrix g is asymmetric. So, there are two

sets of eigenvectors: left eigenvectors (uses the connection of each nodes to other nodes)

and right eigenvectors (use the connection of other nodes to each nodes). Conventionally,

the right eigenvector is considered to be more important, which is a measure of how

many other nodes are pointing towards a node. For a directed network (N, g), the

right-eigenvector centrality E R
k (N, g) of node k can be defined as:

λRE R
k (N, g) = ∑

∀i
gikE

R
i (N, g),

where E R(N, g) = {E R
1 (N, g), E R

2 (N, g), ...., E R
N (N, g)} is a right-eigenvector of g with

λR being the corresponding eigenvalue. Again, it is conventional to use the eigenvector

associated with the largest eigenvalue.

It is important to note that a node having only outgoing edges will have a right

eigenvector centrality of zero in a directed network. The same is true for any node that

has incoming edges only from nodes that have only outgoing edges. In general, any

node whose all incoming connections can be traced back to node(s) with only outgoing

edges will have a right eigenvector centrality of zero in a directed network. This is a

problematic property for eigenvector centrality in a directed network. Since I consider

only undirected networks, I do not need to worry about this.

B Details on the Simulation Method

For the simulations presented in this paper, I simulated three different categories

of networks. These are homogeneous non-assortative networks, heterogeneous non-

assortative networks, and heterogeneous assortative networks. In this section, I describe

the methodology used for these simulations.
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B.1 Simulating Homogeneous Networks

Step 1: Generating networks of households

The first step in simulating homogeneous non-assortative undirected networks is to

randomly generate symmetric adjacency matrix g with elements 0 or 1 such that gij = gji,

and gii = 0, ∀i, j ∈ I . Then I generate the influence matrix G by normalizing each

row of g.37 Remember that Gij ≥ 0 represents the weight i places on j’s opinion (with

∑j∈I Gij = 1 and Gii ̸= 0). This procedure is repeated to generate 200 village networks.

Step 2: Generating true probabilities of success

The next step is to generate p∗iHs for the networks. For homogeneous networks p∗iH =

p∗H, ∀i ∈ I . I draw one value of p∗H for each of the 200 networks from the uniform

distribution U(0, 1).

Step 3: Selecting seeding strategy

Once I generate 200 villages with corresponding G and p∗iHs, the next step is to study

the effectiveness of different seeding strategies. For a given network, I consider the

initial beliefs to be equal to 0 for all households: p̂H
i0 = 0. The seeded households then

get informed. Consider node k to be one of the seeds, then I exogenously set p̂H
k0 = p∗kH.

I choose two seed households per village, in line with the experimental framework

of BBMM. The policy question is: which two households should we select in a given

village? I consider three different targeting strategies:

• Centrality-based: Select two households that have maximum average centrality

in a network.

• Probability-based: Select two households that have maximum average p∗iHs in a

network.

• Random: Randomly select two households in a network.

For the homogeneous networks, the probability-based strategy will systematically

37Following convention, I assume the diagonal elements of the adjacency matrix (gii) to be zero.
However, I set gii = 1 before calculating the influence matrix G to allow for Gii ̸= 0 (for all networks in
my simulation exercise, irrespective of whether they are homogeneous or heterogeneous). For calculating
centrality measures (description below), the adjacency matrix g with gii = 0 is used.
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select the first two households in a network, as all pairs of households have the same

average p∗iHs.

Step 4: Diffusion

Given the seeding strategy in a network, I let the diffusion take place for 10 periods.

In each of these periods, each uninformed node (the nodes that do not know their

p∗iHs) makes a decision of whether or not to get informed based on their p̂H
it . For that,

each period t, they compare p̂H
it with a threshold p̄H

i := p̄∗iH + η̄i. I set the threshold

p̄H
i = p̄H = 0.4, for all households in different networks. If for any period t, p̂H

it > p̄H,

the household is considered informed next period onward (p̂H
is = p∗iH∀s > t).

Step 5: Evaluation

In a set of 200 networks, I evaluate the targeting efficiency on average. Targeting

efficiency of strategy κ is measured by the following equation in each network:

Efficiencyκ =
InformedT

κ

InformedT︸ ︷︷ ︸
Aκ

− InformedF
κ

UninformedT︸ ︷︷ ︸
Bκ

Here InformedT denotes the number of non-seed households that should get informed

as they would adopt the technology under perfect information. Additionally, InformedT
κ

captures the number of non-seed households that get informed within 10 periods

of implementing the targeting strategy κ, among those households in InformedT.

UninformedT denotes the number of non-seed households that should not get informed,

and InformedF
κ captures the number of non-seed households that end up getting in-

formed among those households given targeting strategy κ.

Step 6: Comparison

The evaluation is done for different seeding strategies. The results are then compared.

B.2 Simulating Heterogeneous Non-Assortative Networks

For heterogeneous non-assortative networks, step 1 and steps 3-6 remain the same. The

only difference is in step 2, where p∗iHs (different for each households in heterogeneous

networks) are drawn for each household i ∈ I independently from the normal distribu-
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tion N(0.5, 10). The draws are then truncated such that p∗iH ≥ 1 is truncated to 1, and

p∗iH ≤ 0 is truncated to 0.

B.3 Simulating Heterogeneous Assortative Networks

Compared to homogeneous non-assortative networks, heterogeneous assortative net-

works differ in steps 1 and 2. The rest of the steps remain the same.

Step 1: Generating true probabilities of success

For heterogeneous assortative networks, the first step is to generate p∗iHs for a network.

For that purpose, I randomly draw p∗iHs for each household in a network from the

normal distribution N(0.5, σ). The draws are then truncated, if necessary, such that

p∗iH ≥ 1 is truncated to 1, and p∗iH ≤ 0 is truncated to 0. If I set σ to be large enough, it

would lead all p∗iHs to be either 0 or 1. On the other hand, lower values of σ keep p∗iHs

more within 0 and 1. So, I can vary σ to control the degree of heterogeneity in terms

of p∗iHs. This procedure is repeated 200 times for each σ to generate 200 villages with

differing levels of heterogeneity in terms of p∗iHs, independent from each other. For

Table 1 and its robustness checks σ = 10, to make it comparable with the heterogeneous

non-assortative networks whose p∗iHs are drawn from the normal distribution N(0.5, 10).

For Figure 5 and its robustness checks, σ takes a wider range of values within 0.1 and

100 (both inclusive).

Step 2: Generating networks of households

Once the p∗iHs are generated, the next task is to generate networks assorted in terms

of these p∗iHs. For that purpose, I generate adjacency matrix g such that ∀i ̸= j, gij = 1

if |p∗iH − p∗jH| < 0.1 and 0 otherwise, and gii = 0. I then generate the influence matrix

G by normalizing each row of g (following the same methodology described for the

homogeneous networks above). This procedure is repeated to generate 200 village

networks for each value of σ.
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C Construction of Adoption and Usage Indices

To calculate the adoption index in the AESTAS data, I use the self-reported adoption

for a list of pre-determined technologies and practices. This includes the following 13

agricultural practices:

1. Soil cover

2. Zero or minimum tillage

3. Crop rotation

4. Intercropping

5. Crop residue incorporation

6. Composting pits or piles

7. Composting toilets

8. Agroforestry

9. Bunds or ridges

10. Pit planting

11. Planting vetivar grass

12. Water harvesting in pits or swales or dug outs

13. Manure or fertilizer making

As well as the following 5 food processing practices:

1. Including multiple food groups (dietary diversity) in each meal

2. Consuming iron-rich foods

3. Using iodized salt in food preparation

4. Washing hands before preparing and consuming food
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5. Food, health and nutrition

The adoption variables are available in the data as a set of dummy variables (1 implies

adoption, 0 implies no adoption). I take the average of these set of 18 dummy variables

to calculate the adoption index.

To calculate the usage index, I use the self-reported plot-level usage for the following

list of 19 agricultural technologies:

1. Contour bunds

2. Box ridges

3. Field leveling

4. Soil cover

5. Mulching

6. Zero or minimum tillage

7. Plowing with power tiller or animal tractor

8. Herbicide before planting

9. Herbicide after planting

10. Transplanting the seedlings

11. Rain water harvesting, water retention or water management practice

12. Proper plant spacing

13. Pesticide

14. Putting crop residue on top of the soil (without soil disturbance)

15. Crop residue incorporation (with soil disturbance)

16. Getting soil sample to have it tested by soil experts
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17. Asking advice from plant clinic or plant doctors

18. Pit planting

19. Row planting

The usage variables are available in the data, for both dry and rainy seasons, as a set

of dummy variables (1 implies usage, 0 implies no usage). First, I take the max of these

dummy variable per technology, for each year. Then I take the average of a set of 19

dummy variables to calculate the usage index.

D Robustness Checks

Table D.7: Simulation Robustness (w.r.t different centrality measure)

Homogeneous Heterogeneous

Non-Assortative Assortative

Targeting Strategy Statistic (1) (2) (3)

Betweenness Centrality-Based Mean 0.463 -0.010 0.635

Variance 0.225 0.002 0.210

Probability-Based Mean 0.189 -0.040 0.956

Variance 0.125 0.023 0.004

Random Mean 0.000 0.000 0.438

Variance 0.000 0.000 0.228

Observations† 239 200 200

Notes:† Simulations are done for 400 networks with homogeneous probabilities and 200 networks with heterogeneous
probabilities. Upon generation of the true probabilities, some networks are dropped as they contained 0% of informed
households under full efficiency. Columns (2) and (3) use the efficiency measure Efficiencyκ to measure the efficiency
of the targeting strategy κ. Column (1) uses the term Aκ of Efficiencyκ for that purpose. All networks contain 30
households, and the threshold probability of learning is assumed to be 0.4 for all of them. For assortative networks,
each pair of households having a success probability difference of 0.1 or less is assumed to be connected.
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Table D.8: Simulation Robustness (w.r.t p̄H
i = 0.5, instead of p̄H

i = 0.4)

Homogeneous Heterogeneous

Non-Assortative Assortative

Targeting Strategy Statistic (1) (2) (3)

Eigenvector Centrality-Based Mean 0.197 -0.007 0.414

Variance 0.136 0.006 0.230

Probability-Based Mean 0.017 -0.009 0.965

Variance 0.008 0.012 0.003

Random Mean 0.000 0.000 0.161

Variance 0.000 0.000 0.129

Observations† 197 200 200

Notes:† Simulations are done for 400 networks with homogeneous probabilities and 200 networks with heteroge-
neous probabilities. Upon generation of the true probabilities, some networks are dropped as they contained 0% of
informed households under full efficiency. Columns (2) and (3) use the efficiency measure Efficiencyκ to measure
the efficiency of the targeting strategy κ. Column (1) uses the term Aκ of Efficiencyκ for that purpose. All networks
contain 30 households, and the threshold probability of learning is assumed to be 0.5 for all of them. For assortative
networks, each pair of households having a success probability difference of 0.1 or less is assumed to be connected.

Table D.9: Simulation Robustness (w.r.t p̄H
i = 0.3, instead of p̄H

i = 0.4)

Homogeneous Heterogeneous

Non-Assortative Assortative

Targeting Strategy Statistic (1) (2) (3)

Eigenvector Centrality-Based Mean 0.642 -0.004 0.409

Variance 0.218 0.008 0.224

Probability-Based Mean 0.481 -0.031 0.948

Variance 0.236 0.012 0.004

Random Mean 0.018 0.003 0.469

Variance 0.010 0.003 0.227

Observations† 281 200 200

Notes:† Simulations are done for 400 networks with homogeneous probabilities and 200 networks with heteroge-
neous probabilities. Upon generation of the true probabilities, some networks are dropped as they contained 0% of
informed households under full efficiency. Columns (2) and (3) use the efficiency measure Efficiencyκ to measure
the efficiency of the targeting strategy κ. Column (1) uses the term Aκ of Efficiencyκ for that purpose. All networks
contain 30 households, and the threshold probability of learning is assumed to be 0.3 for all of them. For assortative
networks, each pair of households having a success probability difference of 0.1 or less is assumed to be connected.
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Table D.10: Simulation Robustness (w.r.t 20 households, instead of 30, per network)

Homogeneous Heterogeneous

Non-Assortative Assortative

Targeting Strategy Statistic (1) (2) (3)

Eigenvector Centrality-Based Mean 0.724 -0.029 0.464

Variance 0.184 0.018 0.236

Probability-Based Mean 0.504 -0.072 0.947

Variance 0.226 0.031 0.008

Random Mean 0.025 -0.014 0.447

Variance 0.015 0.012 0.233

Observations† 230 200 200

Notes:† Simulations are done for 400 networks with homogeneous probabilities and 200 networks with heteroge-
neous probabilities. Upon generation of the true probabilities, some networks are dropped as they contained 0% of
informed households under full efficiency. Columns (2) and (3) use the efficiency measure Efficiencyκ to measure
the efficiency of the targeting strategy κ. Column (1) uses the term Aκ of Efficiencyκ for that purpose. All networks
contain 20 households, and the threshold probability of learning is assumed to be 0.4 for all of them. For assortative
networks, each pair of households having a success probability difference of 0.1 or less is assumed to be connected.

Table D.11: Simulation Robustness (w.r.t 40 households, instead of 30, per network)

Homogeneous Heterogeneous

Non-Assortative Assortative

Targeting Strategy Statistic (1) (2) (3)

Eigenvector Centrality-Based Mean 0.184 -0.002 0.504

Variance 0.125 0.002 0.232

Probability-Based Mean 0.013 -0.009 0.955

Variance 0.009 0.009 0.003

Random Mean 0.000 0.000 0.103

Variance 0.000 0.000 0.086

Observations† 241 200 200

Notes:† Simulations are done for 400 networks with homogeneous probabilities and 200 networks with heteroge-
neous probabilities. Upon generation of the true probabilities, some networks are dropped as they contained 0% of
informed households under full efficiency. Columns (2) and (3) use the efficiency measure Efficiencyκ to measure
the efficiency of the targeting strategy κ. Column (1) uses the term Aκ of Efficiencyκ for that purpose. All networks
contain 40 households, and the threshold probability of learning is assumed to be 0.4 for all of them. For assortative
networks, each pair of households having a success probability difference of 0.1 or less is assumed to be connected.
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Panel A: Linear Scale Panel B: Logarithmic Scale

Figure 8: Efficiency scores over increasing levels of heterogeneity (with assortative
networks) w.r.t betweenness centrality (instead of eigenvector centrality)

Panel A: Linear Scale Panel B: Logarithmic Scale

Figure 9: Efficiency scores over increasing levels of heterogeneity (with assortative
networks w.r.t δ = 0.2 instead of δ = 0.1)
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Panel A: Linear Scale Panel B: Logarithmic Scale

Figure 10: Efficiency scores over increasing levels of heterogeneity (with assortative
networks w.r.t δ = 0.05 instead of δ = 0.1)

Panel A: Linear Scale Panel B: Logarithmic Scale

Figure 11: Efficiency scores over increasing levels of heterogeneity (w.r.t p̄H
i = 0.5,

instead of p̄H
i = 0.4)
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Panel A: Linear Scale Panel B: Logarithmic Scale

Figure 12: Efficiency scores over increasing levels of heterogeneity (w.r.t p̄H
i = 0.3,

instead of p̄H
i = 0.4)

Panel A: Linear Scale Panel B: Logarithmic Scale

Figure 13: Efficiency scores over increasing levels of heterogeneity (w.r.t 20 households,
instead of 30, per network)
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Panel A: Linear Scale Panel B: Logarithmic Scale

Figure 14: Efficiency scores over increasing levels of heterogeneity (w.r.t 40 households,
instead of 30, per network)

Panel A: Linear Scale Panel B: Logarithmic Scale

Figure 15: Efficiency scores over increasing levels of heterogeneity (with non-assortative
networks)
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Table D.12: OLS Results for Adoption and Usage (Pooled vs. Individual Years)

Adoption Index Usage Index
Variables (1) (2) (3) (4) (5) (6)

Adults 0.008*** 0.009*** 0.006** 0.011*** 0.013*** 0.008***
(0.002) (0.003) (0.003) (0.002) (0.002) (0.002)

Children 0.003*** 0.004** 0.003** 0.003*** 0.001 0.005***
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001)

Housing 0.009*** 0.013*** 0.005* 0.003 0.003 0.003
(0.002) (0.003) (0.003) (0.002) (0.003) (0.003)

Livestock 0.010*** 0.014*** 0.007* 0.014*** 0.020*** 0.007**
(0.003) (0.004) (0.004) (0.002) (0.003) (0.003)

Assets 0.024*** 0.014*** 0.034*** 0.020*** 0.011*** 0.029***
(0.002) (0.003) (0.003) (0.002) (0.003) (0.003)

Year Pooled 2016 2018 Pooled 2016 2018

Observations 5610 2803 2805 5610 2803 2805

R-squared 0.096 0.082 0.125 0.085 0.088 0.103

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the section
level are in parentheses. All regressions use sample weights and include a constant
term. Household controls are not included. The variables Adults and Children represent
number of adults and children in a household, respectively. The variables Housing,
Livestock, and Assets were standardized first principal components.

74



Ta
bl

e
D

.1
3:

N
on

-L
in

ea
r

R
eg

re
ss

io
n

R
es

ul
ts

fo
r

A
do

pt
io

n
an

d
U

sa
ge

To
bi

t
N

eg
at

iv
e

Bi
no

m
ia

l

A
do

pt
io

n
In

de
x

U
sa

ge
In

de
x

A
do

pt
io

n
Su

m
U

sa
ge

Su
m

V
ar

ia
bl

es
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)

A
du

lt
s

0.
01

6*
**

0.
01

2*
**

0.
01

2*
**

0.
00

9*
**

0.
10

2*
**

0.
07

8*
**

0.
06

2*
**

0.
04

6*
**

(0
.0

04
)

(0
.0

04
)

(0
.0

02
)

(0
.0

02
)

(0
.0

26
)

(0
.0

26
)

(0
.0

10
)

(0
.0

10
)

C
hi

ld
re

n
0.

00
6*

**
0.

00
4*

*
0.

00
4*

**
0.

00
2*

**
0.

04
2*

**
0.

02
5*

*
0.

02
0*

**
0.

01
3*

**
(0

.0
02

)
(0

.0
02

)
(0

.0
01

)
(0

.0
01

)
(0

.0
12

)
(0

.0
11

)
(0

.0
05

)
(0

.0
05

)

H
ou

si
ng

0.
01

7*
**

0.
01

5*
**

0.
00

3
0.

00
2

0.
10

1*
**

0.
10

2*
**

0.
02

0
0.

01
7

(0
.0

04
)

(0
.0

04
)

(0
.0

02
)

(0
.0

02
)

(0
.0

24
)

(0
.0

24
)

(0
.0

12
)

(0
.0

12
)

Li
ve

st
oc

k
0.

01
6*

**
0.

00
7*

*
0.

01
5*

**
0.

01
0*

**
0.

10
4*

**
0.

04
9*

*
0.

06
9*

**
0.

04
5*

**
(0

.0
04

)
(0

.0
04

)
(0

.0
02

)
(0

.0
02

)
(0

.0
24

)
(0

.0
23

)
(0

.0
11

)
(0

.0
10

)

A
ss

et
s

0.
04

8*
**

0.
03

4*
**

0.
02

2*
**

0.
01

6*
**

0.
29

5*
**

0.
21

6*
**

0.
12

5*
**

0.
08

6*
**

(0
.0

04
)

(0
.0

04
)

(0
.0

02
)

(0
.0

02
)

(0
.0

24
)

(0
.0

25
)

(0
.0

12
)

(0
.0

13
)

Ba
se

lin
e

M
ea

n
0.

08
4

0.
08

4
0.

13
8

0.
13

8
1.

51
0

1.
51

0
2.

61
5

2.
61

5
(S

ta
nd

ar
d

D
ev

ia
ti

on
)

(0
.1

23
)

(0
.1

23
)

(0
.1

15
)

(0
.1

15
)

(2
.2

15
)

(2
.2

15
)

(2
.1

92
)

(2
.1

92
)

H
ou

se
ho

ld
C

on
tr

ol
s

N
o

Ye
s

N
o

Ye
s

N
o

Ye
s

N
o

Ye
s

O
bs

er
va

ti
on

s
56

08
56

04
56

08
56

04
56

08
56

04
56

08
56

04

ps
eu

do
R

-s
qu

ar
ed

0.
24

8
0.

36
0

-0
.1

68
-0

.2
19

0.
02

7
0.

03
9

0.
03

2
0.

04
2

N
ot

es
:*

p<
0.

10
,*

*p
<0

.0
5,

**
*p

<0
.0

1.
R

ob
us

ts
ta

nd
ar

d
er

ro
rs

cl
us

te
re

d
at

th
e

se
ct

io
n

le
ve

la
re

in
pa

re
nt

he
se

s.
A

ll
re

gr
es

si
on

s
us

e
sa

m
pl

e
w

ei
gh

ts
an

d
in

cl
ud

e
a

co
ns

ta
nt

te
rm

.T
he

va
ri

ab
le

s
A

du
lts

an
d

C
hi

ld
re

n
re

pr
es

en
tn

um
be

ro
fa

du
lts

an
d

ch
ild

re
n

in
a

ho
us

eh
ol

d
,r

es
pe

ct
iv

el
y.

T
he

va
ri

ab
le

s
H

ou
si

ng
,L

iv
es

to
ck

,a
nd

A
ss

et
s

w
er

e
st

an
d

ar
d

iz
ed

fi
rs

tp
ri

nc
ip

al
co

m
po

ne
nt

s.
H

ou
se

ho
ld

C
on

tr
ol

s
in

cl
ud

e:
ge

nd
er

an
d

ag
e

of
ho

us
eh

ol
d

he
ad

,a
ct

iv
it

y
of

ho
us

eh
ol

d
he

ad
(0

-N
on

-F
ar

m
er

,1
-F

ar
m

er
),

w
he

th
er

th
e

ho
us

eh
ol

d
ap

pl
ie

d
fo

r
a

lo
an

in
th

e
pa

st
,t

he
ho

us
eh

ol
ds

’t
im

e
an

d
ri

sk
pr

ef
er

en
ce

s,
an

d
w

he
th

er
a

ho
us

eh
ol

d
m

em
be

r
is

a
le

ad
fa

rm
er

(L
F)

.

75



Ta
bl

e
D

.1
4:

R
ob

us
tn

es
s

of
V

ill
ag

e
le

ve
lR

eg
re

ss
io

n
1

w
it

h
re

sp
ec

tt
o

di
ff

er
en

ts
et

of
co

nt
ro

ls

A
do

pt
io

n
R

at
e

A
ny

N
on

-S
ee

d
A

do
pt

er
s

V
ar

ia
bl

es
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)

Ei
ge

nv
ec

to
r

C
en

tr
al

it
y

of
Se

ed
s

1.
17

3*
*

1.
25

0*
0.

91
7*

0.
98

1*
1.

18
1

1.
15

0
1.

23
5

1.
21

0
(=

C
en

tr
al

it
y v)

(0
.5

81
)

(0
.6

35
)

(0
.4

67
)

(0
.5

17
)

(1
.4

39
)

(1
.4

77
)

(1
.3

32
)

(1
.3

96
)

Pr
ed

ic
te

d
A

do
pt

io
n

In
de

x
of

Se
ed

s
-2

.9
73

**
-2

.8
80

**
-2

.1
40

-2
.0

87
*

-8
.0

19
**

-8
.6

45
**

-3
.3

44
-3

.8
32

(=
Pr

ob
ab

ili
ty

v)
(1

.4
67

)
(1

.3
31

)
(1

.3
18

)
(1

.2
26

)
(3

.2
57

)
(3

.3
79

)
(3

.2
33

)
(3

.3
37

)

C
V

of
Pr

ed
ic

te
d

A
do

pt
io

n
In

de
x

-0
.2

96
-0

.2
23

-0
.1

57
-0

.0
92

-0
.9

28
-0

.8
06

0.
50

6
0.

66
9

(=
H

et
er

og
en

ei
ty

v)
(0

.2
08

)
(0

.1
84

)
(0

.2
14

)
(0

.1
94

)
(1

.0
79

)
(1

.1
08

)
(1

.0
53

)
(1

.0
96

)

C
en

tr
al

it
y v

×
H

et
er

og
en

ei
ty

v
-2

.6
25

**
-2

.8
57

**
-2

.1
31

**
-2

.3
65

**
-2

.8
51

-3
.6

36
-3

.2
99

-4
.2

18
(1

.3
24

)
(1

.4
07

)
(1

.0
66

)
(1

.1
58

)
(3

.7
77

)
(3

.8
35

)
(3

.5
62

)
(3

.7
14

)

Pr
ob

ab
ili

ty
v
×

H
et

er
og

en
ei

ty
v

6.
71

5*
*

6.
62

8*
*

4.
76

2*
4.

77
9*

18
.4

84
**

*
19

.6
67

**
*

7.
56

2
8.

92
1

(3
.1

31
)

(2
.9

12
)

(2
.7

96
)

(2
.6

44
)

(6
.9

97
)

(7
.1

26
)

(7
.0

73
)

(7
.1

97
)

V
ill

ag
e-

le
ve

lC
on

tr
ol

s
N

o
N

o
Ye

s
Ye

s
N

o
N

o
Ye

s
Ye

s

Tr
ea

tm
en

tD
um

m
ie

s
N

o
Ye

s
N

o
Ye

s
N

o
Ye

s
N

o
Ye

s

O
bs

er
va

ti
on

s
32

4
32

4
32

4
32

4
32

4
32

4
32

4
32

4

R
-s

qu
ar

ed
0.

08
0

0.
09

2
0.

18
0

0.
19

0
0.

04
9

0.
09

4
0.

16
9

0.
21

0

N
ot

es
:*

p<
0.

10
,*

*
p<

0.
05

,*
**

p<
0.

01
.R

ob
u

st
st

an
d

ar
d

er
ro

rs
ar

e
in

pa
re

nt
he

se
s.

A
ll

re
gr

es
si

on
s

in
cl

u
d

e
a

co
ns

ta
nt

te
rm

an
d

ye
ar

fi
xe

d
ef

fe
ct

s.
V

ill
ag

e-
le

ve
lc

on
tr

ol
s

in
cl

ud
e

pe
rc

en
ta

ge
of

vi
lla

ge
us

in
g

pi
tp

la
nt

in
g

at
ba

se
lin

e,
pe

rc
en

ta
ge

of
vi

lla
ge

us
in

g
co

m
po

st
at

ba
se

lin
e,

pe
rc

en
ta

ge
of

vi
lla

ge
us

in
g

fe
rt

ili
ze

r
at

ba
se

lin
e,

vi
lla

ge
si

ze
,t

he
sq

ua
re

of
vi

lla
ge

si
ze

,a
nd

di
st

ri
ct

fix
ed

ef
fe

ct
s.

76



Ta
bl

e
D

.1
5:

R
ob

us
tn

es
s

of
V

ill
ag

e
le

ve
lR

eg
re

ss
io

n
2

w
it

h
re

sp
ec

tt
o

di
ff

er
en

ts
et

of
co

nt
ro

ls

A
do

pt
io

n
R

at
e

A
ny

N
on

-S
ee

d
A

do
pt

er
s

V
ar

ia
bl

es
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)

Ei
ge

nv
ec

to
r

C
en

tr
al

it
y

of
Se

ed
s

0.
77

5*
0.

95
0*

0.
63

3*
0.

75
5

1.
70

3
3.

65
5*

*
1.

63
8

3.
10

1*
*

(=
C

en
tr

al
it

y v)
(0

.4
23

)
(0

.5
18

)
(0

.3
78

)
(0

.4
69

)
(1

.6
60

)
(1

.7
95

)
(1

.4
68

)
(1

.5
61

)

Pr
ed

ic
te

d
A

do
pt

io
n

In
de

x
of

Se
ed

s
-2

.3
62

**
-1

.7
86

-1
.5

78
-1

.1
14

-1
0.

41
9*

**
-6

.3
56

-5
.9

47
*

-2
.8

64
(=

Pr
ob

ab
ili

ty
v)

(1
.0

91
)

(1
.1

39
)

(1
.0

24
)

(1
.0

76
)

(3
.6

79
)

(3
.9

90
)

(3
.5

66
)

(3
.8

28
)

C
V

of
Pr

ed
ic

te
d

A
do

pt
io

n
In

de
x

-0
.3

21
-0

.1
02

-0
.1

50
0.

01
6

-0
.9

23
1.

07
0

0.
41

7
1.

95
5*

(=
H

et
er

og
en

ei
ty

v)
(0

.2
06

)
(0

.2
19

)
(0

.2
00

)
(0

.2
06

)
(1

.1
05

)
(1

.2
29

)
(1

.0
73

)
(1

.1
61

)

C
en

tr
al

it
y v

×
H

et
er

og
en

ei
ty

v
-2

.4
23

**
-2

.7
84

**
-2

.2
37

**
-2

.4
88

**
-6

.6
92

-1
0.

78
7*

*
-6

.5
74

-9
.4

34
**

(1
.0

93
)

(1
.3

65
)

(0
.9

96
)

(1
.2

49
)

(4
.5

03
)

(5
.0

01
)

(4
.1

19
)

(4
.4

64
)

C
en

tr
al

it
y v

×
H

et
er

og
en

ei
ty

v
×

C
om

pl
ex

0.
65

7*
*

0.
82

1*
*

0.
66

4*
*

0.
81

6*
*

4.
32

8*
*

4.
36

1*
3.

75
6*

*
3.

32
9

(0
.3

06
)

(0
.3

62
)

(0
.2

82
)

(0
.3

56
)

(1
.7

75
)

(2
.3

69
)

(1
.6

64
)

(2
.1

92
)

C
en

tr
al

it
y v

×
H

et
er

og
en

ei
ty

v
×

Si
m

pl
e

0.
41

6
0.

36
9

0.
42

8
0.

39
0

1.
07

8
0.

77
5

0.
43

1
0.

12
2

(0
.3

37
)

(0
.3

89
)

(0
.3

20
)

(0
.3

62
)

(2
.0

60
)

(2
.2

85
)

(1
.9

47
)

(2
.1

38
)

C
en

tr
al

it
y v

×
H

et
er

og
en

ei
ty

v
×

G
eo

2.
02

6*
*

1.
68

5*
1.

94
2*

*
1.

66
8*

*
0.

10
3

-3
.7

16
-0

.0
70

-3
.6

51
(0

.9
40

)
(0

.9
03

)
(0

.8
39

)
(0

.7
94

)
(2

.2
35

)
(2

.2
97

)
(2

.0
98

)
(2

.2
80

)

Pr
ob

ab
ili

ty
v
×

H
et

er
og

en
ei

ty
v

5.
88

1*
*

4.
90

8*
*

4.
10

4*
3.

35
9

22
.9

73
**

*
16

.5
91

**
12

.3
47

8.
01

0
(2

.4
37

)
(2

.4
88

)
(2

.2
86

)
(2

.3
45

)
(7

.7
20

)
(8

.0
21

)
(7

.6
26

)
(7

.7
85

)

Pr
ob

ab
ili

ty
v
×

H
et

er
og

en
ei

ty
v
×

C
om

pl
ex

-0
.1

55
-0

.1
76

-0
.2

32
-0

.2
74

-1
.2

75
-2

.4
98

-0
.6

79
-2

.4
00

(0
.5

20
)

(0
.5

94
)

(0
.4

97
)

(0
.5

67
)

(2
.7

65
)

(2
.6

49
)

(2
.6

54
)

(2
.6

12
)

Pr
ob

ab
ili

ty
v
×

H
et

er
og

en
ei

ty
v
×

Si
m

pl
e

-0
.1

21
-0

.6
23

-0
.1

10
-0

.6
24

1.
94

1
-0

.0
97

3.
51

1
1.

27
4

(0
.6

42
)

(0
.7

79
)

(0
.5

71
)

(0
.7

61
)

(3
.5

72
)

(4
.2

31
)

(3
.3

33
)

(4
.0

91
)

Pr
ob

ab
ili

ty
v
×

H
et

er
og

en
ei

ty
v
×

G
eo

-2
.5

88
**

-4
.3

35
**

-2
.5

62
**

-3
.9

52
**

-0
.3

91
-1

8.
53

6*
**

0.
53

8
-1

4.
54

9*
**

(1
.1

31
)

(1
.7

19
)

(1
.0

39
)

(1
.6

69
)

(4
.0

28
)

(5
.6

67
)

(3
.6

18
)

(5
.2

40
)

V
ill

ag
e-

le
ve

lC
on

tr
ol

s
N

o
N

o
Ye

s
Ye

s
N

o
N

o
Ye

s
Ye

s

Tr
ea

tm
en

tD
um

m
ie

s
N

o
Ye

s
N

o
Ye

s
N

o
Ye

s
N

o
Ye

s

O
bs

er
va

ti
on

s
32

4
32

4
32

4
32

4
32

4
32

4
32

4
32

4

R
-s

qu
ar

ed
0.

13
3

0.
14

1
0.

22
4

0.
22

9
0.

11
3

0.
15

4
0.

22
2

0.
24

9

N
ot

es
:*

p<
0.

10
,*

*p
<0

.0
5,

**
*p

<0
.0

1.
R

ob
us

ts
ta

nd
ar

d
er

ro
rs

ar
e

in
pa

re
nt

he
se

s.
A

ll
re

gr
es

si
on

s
in

cl
ud

e
a

co
ns

ta
nt

te
rm

an
d

ye
ar

fix
ed

ef
fe

ct
s.

V
ill

ag
e-

le
ve

l
co

nt
ro

ls
in

cl
ud

e
pe

rc
en

ta
ge

of
vi

lla
ge

us
in

g
pi

tp
la

nt
in

g
at

ba
se

lin
e,

pe
rc

en
ta

ge
of

vi
lla

ge
us

in
g

co
m

po
st

at
ba

se
lin

e,
pe

rc
en

ta
ge

of
vi

lla
ge

us
in

g
fe

rt
ili

ze
r

at
ba

se
lin

e,
vi

lla
ge

si
ze

,t
he

sq
ua

re
of

vi
lla

ge
si

ze
,a

nd
di

st
ri

ct
fix

ed
ef

fe
ct

s.

77



Table D.16: Village level Regression 1 with Different Measure of Probability

Adoption Rate Any Non-Seed Adopters
Variables (1) (2) (3) (4)

Eigenvector Centrality of Seeds 0.999* 0.817* 0.984 1.067
(=Centralityv) (0.565) (0.480) (1.303) (1.191)

Predicted Usage Index of Seeds -2.174 -1.511 -4.599 -0.084
(=Probabilityv) (1.410) (1.279) (3.317) (3.053)

CV of Predicted Usage Index -1.091 -0.631 -2.549 2.142
(=Heterogeneityv) (0.805) (0.779) (2.905) (2.823)

Centralityv × Heterogeneityv -4.481* -3.936* -4.874 -5.907
(2.623) (2.281) (6.889) (6.437)

Probabilityv × Heterogeneityv 10.325* 7.276 23.126 0.889
(6.160) (5.623) (14.187) (13.397)

Village-level Controls No Yes No Yes

Observations 324 324 324 324

R-squared 0.063 0.174 0.037 0.164

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All
regressions include a constant term and year fixed effects. Village-level controls include
percentage of village using pit planting at baseline, percentage of village using compost at
baseline, percentage of village using fertilizer at baseline, village size, the square of village
size, and district fixed effects.
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Table D.17: Village level Regression 2 with Different Measure of Probability

Adoption Rate Any Non-Seed Adopters
Variables (5) (6) (7) (8)

Eigenvector Centrality of Seeds 0.730 0.644 1.525 1.482
(=Centralityv) (0.471) (0.446) (1.528) (1.337)

Predicted Usage Index of Seeds -1.975 -1.400 -7.027* -2.854
(=Probabilityv) (1.200) (1.148) (3.982) (3.619)

CV of Predicted Usage Index -1.203 -0.727 -3.640 0.546
(=Heterogeneityv) (0.755) (0.731) (3.203) (3.116)

Centralityv × Heterogeneityv -4.619* -4.617* -12.422 -12.190
(2.549) (2.473) (8.555) (7.660)

Centralityv × Heterogeneityv × Complex 1.432* 1.595** 9.431** 8.099**
(0.749) (0.720) (4.323) (3.996)

Centralityv × Heterogeneityv × Simple 0.492 0.576 3.308 1.958
(0.860) (0.831) (4.665) (4.340)

Centralityv × Heterogeneityv × Geo 3.957* 3.711** -1.692 -2.661
(2.057) (1.785) (4.676) (4.495)

Probabilityv × Heterogeneityv 10.265* 7.702 33.705* 13.412
(5.561) (5.378) (17.388) (16.257)

Probabilityv × Heterogeneityv × Complex -0.316 -0.589 -2.606 -1.839
(0.762) (0.778) (4.577) (4.315)

Probabilityv × Heterogeneityv × Simple 0.428 0.416 1.355 3.119
(0.984) (0.866) (5.269) (4.868)

Probabilityv × Heterogeneityv × Geo -2.468* -2.409** 2.565 3.786
(1.377) (1.217) (4.925) (4.505)

Village-level Controls No Yes No Yes

Observations 324 324 324 324

R-squared 0.114 0.212 0.100 0.215

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All regressions include a
constant term and year fixed effects. Village-level controls include percentage of village using pit planting
at baseline, percentage of village using compost at baseline, percentage of village using fertilizer at baseline,
village size, the square of village size, and district fixed effects.
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Table D.18: Village level Regression 1 with Different Measure of Centrality

Adoption Rate Any Non-Seed Adopters
Variables (1) (2) (3) (4)

Closeness Centrality of Seeds 0.609** 0.454* 0.571 0.617
(=Centralityv) (0.306) (0.234) (0.709) (0.659)

Predicted Adoption Index of Seeds -2.438** -1.709 -7.555** -2.904
(=Probabilityv) (1.230) (1.134) (3.201) (3.152)

CV of Predicted Adoption Index -0.077 -0.007 -0.677 0.887
(=Heterogeneityv) (0.214) (0.202) (1.196) (1.158)

Centralityv × Heterogeneityv -1.325* -1.020* -1.552 -1.997
(0.716) (0.558) (1.896) (1.823)

Probabilityv × Heterogeneityv 5.610** 3.814 17.554** 6.849
(2.660) (2.439) (6.873) (6.939)

Village-level Controls No Yes No Yes

Observations 324 324 324 324

R-squared 0.087 0.179 0.048 0.170

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All regressions
include a constant term and year fixed effects. Village-level controls include percentage of village
using pit planting at baseline, percentage of village using compost at baseline, percentage of
village using fertilizer at baseline, village size, the square of village size, and district fixed effects.
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Table D.19: Village level Regression 2 with Different Measure of Centrality

Adoption Rate Any Non-Seed Adopters
Variables (5) (6) (7) (8)

Closeness Centrality of Seeds 0.497** 0.336* 0.603 0.727
(=Centralityv) (0.242) (0.183) (0.713) (0.707)

Predicted Adoption Index of Seeds -1.734 -1.077 -9.416** -5.382
(=Probabilityv) (1.056) (0.986) (3.663) (3.520)

CV of Predicted Adoption Index 0.001 0.059 -0.627 0.912
(=Heterogeneityv) (0.216) (0.213) (1.228) (1.205)

Centralityv × Heterogeneityv -1.457** -1.181** -2.508 -3.114
(0.591) (0.478) (1.935) (1.939)

Centralityv × Heterogeneityv × Complex 0.307** 0.304** 1.446* 1.355*
(0.137) (0.140) (0.838) (0.810)

Centralityv × Heterogeneityv × Simple 0.364** 0.395*** -0.401 -0.498
(0.157) (0.152) (0.934) (0.917)

Centralityv × Heterogeneityv × Geo 0.679** 0.667** 0.517 0.140
(0.267) (0.262) (0.988) (0.914)

Probabilityv × Heterogeneityv 4.791** 3.306 19.312*** 9.942
(2.281) (2.166) (7.105) (6.963)

Probabilityv × Heterogeneityv × Complex -0.351 -0.419 0.056 0.189
(0.632) (0.637) (3.155) (3.031)

Probabilityv × Heterogeneityv × Simple -1.125* -1.235* 4.299 5.406
(0.664) (0.629) (3.876) (3.727)

Probabilityv × Heterogeneityv × Geo -2.855** -2.864** -2.748 0.060
(1.200) (1.187) (4.867) (4.398)

Village-level Controls No Yes No Yes

Observations 324 324 324 324

R-squared 0.121 0.209 0.109 0.223

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All regressions include a
constant term and year fixed effects. Village-level controls include percentage of village using pit planting
at baseline, percentage of village using compost at baseline, percentage of village using fertilizer at baseline,
village size, the square of village size, and district fixed effects.
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