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Abstract 

 

Soil erosion is a significant problem in rain-fed areas in India. The study attempts to evaluate 

the causal effects of on-farm soil and water conservation (SWC) measures on farm profit and 

yield. The study uses the inverse-probability-weighted regression adjustment (IPWRA) method 

to assess the causal impact of SWC measures on agriculture output while controlling 

socioeconomic, institutional, and village-level characteristics. The results suggest a significant 

difference in overall agricultural profit, crop-wise profit, and crop-wise yields among the 

adopters and non-adopters of the SWC measures. The study highlights that there is a 

complementarity between the causal impact of community-level SWC measures and individual 

SWC measures on agricultural outcomes. Further, the neighbor’s adoption of SWC measures 

plays a pivotal role on farmer’s agricultural profits. The study highlights that farmer’s profit 

for rainfed crops such as maize further increases if their adjacent neighbors also undertake 

SWC measures. Such complementary effects, however, are not observed in case of irrigated 

crops such as paddy.  
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1. Introduction  

A healthy land ecosystem is the backbone for the rural livelihoods in developing countries. 

Over the last few decades, unsustainable land management practices have led to extensive land 

degradation worldwide (MEA, 2005; Brevik et al., 2015; Tesfayohannes et al., 2022). 

Regarding on-site impacts, it is widely acknowledged that soil erosion will reduce agricultural 

yield and productivity and pose a significant challenge in India (Kumar et al., 2019; Dayakar, 

2021). Moreover, beyond a certain threshold, soil erosion can make the soil cover regeneration 

process difficult and affects future livelihood options. Therefore, the link between on-farm soil 

erosion and agricultural productivity has intra-generational and intergenerational implications. 

Soil erosion also leads to significant negative externalities such as water pollution, soil water 

carrying capacity reduction, and disturbs hydrological cycles (Somanathan, 1991; Mbaga-

Semgalawe & Folmer, 2000).  

 

In economic terms, India’s land degradation cost is estimated to range from 0.25% to 2.54% 

of GDP in 2019 (Mythili & Goedecke, 2016; TERI, 2018; Dayakar, 2021). Within India, 

Telangana is one of the states that witnessed significant land degradation over the years. 

According to the Desertification and Land Degradation Atlas of India (SAC, 2016), Telangana 

ranked 4th among major Indian states, with 25% of the total geographic area (TGA) classified 

as degraded. Soil erosion is a significant contributor to cropland degradation in Telangana and 

accounts for US$ 835 million in the cost of degradation (Dayakar, 2021). Biswas et al. (2015) 

show that Telangana witnesses moderate soil erosion rate of around 5-10 Mg ha-1 yr-1. With 

rainfed agriculture being Telangana’s dominant mode of cultivation, the state is vulnerable to 

soil erosion and declining agricultural productivity. 

 

However, the soil erosion problem can be addressed through proper on-site and off-site soil 

and water conservation (SWC) measures. Over the past four decades, successive governments 

have undertaken several SWC measures at the sub-watershed or community level to prevent 

land degradation caused by soil erosion in India. The growing body of literature suggests that 

farmers are the main stakeholders of soil conservation and undertake on-site SWC measures 

based on their perceived level of soil erosion on their plots2 (Dayakar and Kavi Kumar, 2021). 

 
2 The literature on farm-level conservation measures adopted by the farmers to prevent soil erosion refers to such 

measures interchangeably as ‘soil conservation measures’ and ‘soil and water conservation measures’, given the 

close linkages between conservation of soil and water resources. Keeping this in view, the present study refers to 

farm-level conservation measures as soil and water conservation measures.  
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Similar to SWC measures undertaken at the community level, the conservation practices 

adopted by the individual farmers could benefit their neighbors and lead to significant positive 

externalities. The SWC measures provide benefits ranging from local (crop yield 

improvement), and regional (flood control) to global level (carbon sequestration) and can be 

both short-term and long term in nature (Lal et al., 2001; Bouma et al., 2007).  

Against this background, the present study attempts to analyze the causal impact of SWC 

measures on agriculture output in rainfed areas of Telangana in India. The analysis is based on 

data collected through a primary survey undertaken in two sub-watershed areas of Siddipet 

district in Telangana, India. The rest of the paper is organized as follows: A brief literature 

review is provided in the next section. Section 3 provides details about the study area and data 

collection. The methodological framework is discussed in section 4. Section 5 provides the 

data description and summary statistics. The following section discusses the results. Finally, 

section 7 concludes the paper. 

2. Review of Literature 

A large body of literature acknowledges that adopting SWC measures improves crop revenues 

across the globe (Abebe and Bekele, 2014; Datta, 2015; Meaza et al., 2016; Singha. C, 2019; 

Siraw et al., 2020; Suresh Kumar, 2020; Tesfayohannes et a., 2022; Adere et al., 2022; Abrham 

Belay, 2023; Adebayo Isaiah Ogunniyi et al., 2023). Theoretically, farmers implement SWC 

measures by comparing the cost of SWC investment with the benefits of avoiding soil erosion 

losses. The profitability of SWC measures is site-specific and depends on adopted 

technologies, input costs, and output prices. Lutz et al. (1994) argue that the farmers’ choice 

can be viewed as a choice between two different agricultural practices– for instance, practicing 

a traditional agricultural system where conservation practices are limited or choosing an 

alternative system, which involves a greater number of SWC measures. From the farmer’s 

perspective, higher profits under the new agricultural system than those under traditional 

agricultural practices would justify incurring additional costs of implementing SWC measures.  

 

Investing in appropriate technologies to prevent soil erosion will improve soil fertility and 

agricultural outcomes. Bizoza and Graaff (2012) conducted a study in hilly areas of Rwanda to 

examine whether adopting bench terracing improves productivity in agriculture and found that 

bench terracing improves soil fertility and increases net benefits at the farm level. Kumar et al. 

(2020) conducted a study in the semi-arid tropics of India to examine whether adopting soil 

bunds improves farmers’ profitability in agriculture and found that soil bunds improve crop 
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revenue and reduce the chances of downside risk. Singha C (2019) highlighted that vegetative 

soil conservation practices (afforestation/bamboo planting) improved farm profit and reduced 

variable cost in the Darjeeling district of West Bengal, India. Ogunniyi et al. (2023) in a study 

based in Nigeria argued that SWC practices improved crop productivity and household welfare 

respectively, by 28 and 38 percent. Similarly, Tesfayohannes et al. (2023) found that adoption 

of SWC practices increased average household income by 422 ETB in southern Ethiopia. 

Further, Meena et al. (2020) found that adopting SWC measures not only improves farm 

income, but also helps in enhancing water use efficiency, soil fertility, and biological regime. 

The impact of onsite SWC measures may have differential effects on different crops, which 

the studies based on aggregate outcomes often fail to capture.  

 

Empirical literature has identified that predominant factors, including plot-level and household 

characteristics, community level, and neighbors’ activities, influence farmers’ decisions to 

adopt SWC measures. The impact of SWC measures on agriculture productivity may also differ 

in the presence of community (i.e., watershed) level conservation activities (Datta N, 2015; 

Nyssen et al., 2015; Yaebiyo et al., 2015; Gebregziabher et al., 2016; and Meaza et al., 2016; 

Singha C, 2019; Siraw et al., 2020).   Agricultural crop yields depend on various localized 

factors, including soil type, soil quality, and land topography (Dayakar & Kavi Kumar, 2021). 

The SWC practices are also location specific, with some SWC practices more suitable for 

certain land categories. Thus, farmers operating on adjacent fields may exhibit similar behavior 

regarding adoption of SWC measures (Holloway & Lapar, 2007; Singha C, 2019; Dayakar & 

Kavi Kumar, 2021). However, neighborhood influence is often not measured, resulting in 

biased estimations. A set of empirical works explored the role of neighborhood conservation 

practices on farm level agricultural outcomes. These studies largely analyzed the role of 

neighbors on farmer’s decisions to adopt a given technology by using statistical techniques 

(Abdul B.A. et al., 2011; Wang et al., 2013; Teklewold et al., 2014; Lapple & Kelly, 2015; 

Singha C, 2019; Xu-Chao Zhu et al., 2019). However, empirical literature did not 

comprehensively address the extent of influence the neighborhood SWC practices would have 

on agricultural outcomes.  

 

Keeping these aspects in view, the present study attempts to assess the impact of SWC 

measures on crop profit and yield. It explores the role of community interventions and 

neighbors’ conservation practices on agricultural outcomes. The inverse-probability-weighted 

regression adjustment (IPWRA) approach is adopted to measure the impact of SWC measures 
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on farm-level agricultural profit and crop-wise profit and yield. These objectives are analyzed 

using the data sourced from a primary survey of farmers in the rainfed watershed areas of 

Telangana, India.  

 

3. Study Area and Data Collection 

31. Study Area3 

The study was undertaken in two mandals of Siddipet district in Telangana, India (see Fig. 1). 

The selected area falls within the region highly vulnerable to drought with annual average 

rainfall of 650 mm, over 80% of which is received during the monsoon months June to 

September (Government of Telangana, 2015). The area is the part of Godavari River basin with 

moderate level of soil erosion reported based on satellite data (Bhuvan & Department of Land 

Resources, 2017). Purposive sampling method was followed to select study area and villages, 

to account for wide variation across villages in terms of soil and water conservation technology 

experience, soil erosion status and socio-economic heterogeneity. Twelve villages were 

selected from two mandals4 (viz., Chinnakodur and Dubbak) of Siddipet district for the field 

study; six villages are located in the sub-watershed area of these mandals and are part of 

integrated watershed management program (IWMP)5. Other six villages are also located in the 

same sub-watershed areas, but not covered by the IWMP program. Biophysical, topographical, 

and hydrological conditions are broadly similar among selected villages. Selected villages are 

dominated by red loamy, red sand loamy, saline, and black soils. Paddy, maize, cotton, red 

gram, and vegetables are major crops cultivated in the area. 

 

Soil erosion leads to nutrient loss, which ultimately reduces agriculture productivity and yield. 

Therefore, farmers traditionally practice SWC measures to control their perceived level of soil 

erosion (Kumar et. al, 2015). Field level observations in the study area reveal that farmers adopt 

contour ploughing, grass bunds, soil bunds, drainage ditches, silt application (i.e., collected 

from tanks) and plantations (example, woody vegetation) to prevent soil erosion. 

 
3 More details on the study area and data collection process are provided in Dayakar and Kavi Kumar (2020, 

2021). 
4 Mandals are administrative subdivision of district in a state. 
5 Under IWMP program numerous activities are undertaken to restore the ecological balance by harnessing, 

conserving, and developing degraded natural sources such as soil, vegetation cover and water. 
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Figure 1: Location of Study villages in Telangana 

 

3.2. Data sampling  

 

The data used in the study came from household and plot level surveys of around 400 farmers 

in two mandals of Siddipet district in Telangana. The survey was conducted during January-

March 2018. The Census data (2011) showed that the geographical and population 

characteristics differ across the villages. The number of households selected for survey in the 

villages is based on the proportion of households in each village to the aggregate number of 

households across all the selected villages. Thus, the total number of sampled households from 

the villages ranged between 13 and 67. In each village the list of households has been compiled 

from revenue and agricultural departmental data sets. Once the number of households was 

determined, the specific survey households were selected based on simple random sampling. 

The final sample consists of 206 households from the IWMP-covered villages, and 197 

households from non-IWMP villages. 

4. Methodological Framework  

Farmers’ decision to adopt SWC measures can be assessed using a random utility framework 

followed in earlier studies (e.g., Becerril & Abdulai, 2010; Kassie et al., 2015; Khonje et al., 
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2015; Zheng et al., 2021). The “fundamental problem of causal inference is that it is not 

possible to observe each individual having received the treatment and not having received the 

treatment from the observational data, and only one of the two potential outcomes is observed 

at any given time” (Holland, 1986). The randomized control trails (RCT) approach is the best 

suited framework for causal inference analysis, in which SWC measures are assigned randomly 

to a group of farmers while a control group of farmers cultivate without those specific 

interventions. Despite being the most appropriate approach, RCT is rarely implemented in 

practice in the context of SWC practices (Holland, 1986). In the absence of randomization in 

the observational data, empirical literature often employs the Propensity Score Matching 

(PSM) and Inverse-Probability-Weighted Regression Adjustment IWPRA methods (Singha C, 

2019; Dayakar, 2021; Zheng et al., 2021). The present study adopts IPWRA approach to deal 

with the missing counterfactual problem. The main components of IPWRA are individuals (i.e., 

farmers here), potential outcome and treatment effect. Here, adopters are specified as those 

who have undertaken at least one SWC measure among seven possible measures6. In the case 

of binary framework treatment is specified as follows:  

𝑇𝑖 = 1 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑎𝑟𝑚𝑒𝑟 ′𝑖′𝑖𝑠 𝑎𝑛 𝑎𝑑𝑜𝑝𝑡𝑒𝑟 𝑜𝑓 𝑆𝑊𝐶 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 

𝑇𝑖 = 0 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑎𝑟𝑚𝑒𝑟 ′𝑖′𝑖𝑠 𝑛𝑜𝑛 𝑎𝑑𝑜𝑝𝑡𝑒𝑟 𝑜𝑓 𝑆𝑊𝐶 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 

The treatment effect for adopter i can be written as: 

Ti= Yi (1) – Yi (0) ……… (1) 

The only potential outcome is the differential between Yi (1) – Yi (0). However, here we observe 

only potential outcome for adopter i. The counterfactual outcome comes from unobserved non-

adopter i. The individual treatment effect is not possible here. The average treatment effects 

are the difference between expected farm outcomes between adopters and non-adopters.  

𝐴𝑇𝐸 = 𝐸[(𝑌i(1)|Ti = 1)] − 𝐸[(𝑌i(0)|Ti = 0)] … … … (2) 

where 𝑌i is the outcome variable of farmer, i.e., aggregate farm profit, crop wise profit and crop 

wise yield. Adoption of SWC and the realization of outcome variables may get influenced by 

several explanatory variables (Heckman et al., 1999; Caliendo and Kopeinig, 2008; Zheng et 

al., 2021). Therefore, the estimation based on equation 2 leads to biased results. Ideally, 

outcomes on farms with SWC measures do not represent the outcomes on farms without SWC 

measures due to the non-random and voluntary nature of adoption and which leads to selection 

 
6 Through focus group discussions, it was observed that in the field study area farmers have been practicing eight 

SWC measures including, contour ploughing, silt application, construction of grass bunds and stone bunds, 

drainage ditch, farm ponds, slope leveling, and growing woody perennials. Since most of the farmers (more than 

58 percent) practice counter ploughing, it has been excluded from the set of SWC measures considered for the 

analysis. 
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bias (Caliendo and Kopeinig, 2008). The matching approach is one possible way to overcome 

selection bias. The adoption decisions based on observables, once accounted for makes it 

possible to construct for each adopter of SWC measures a comparable group of non-adopters 

who have similar characteristics. The IPWRA method relies on conditional independence 

assumption (CIA), or stable unit treatment value assumption (SUTVA), and common support 

assumption in estimating the treatment effects (Caliendo and Kopeinig, 2008). The probability 

of adoption lies between ‘0’ and ‘1’ for both adopters and non-adopters. The common support 

assumption ensures that the farmer with the same observable covariates, can be both adopter 

and non-adopter with a positive probability.  The implication of above assumptions are that no 

unobservable factors influence adoption and agricultural outcomes (viz., farm profit and crop 

wise yield) (Caliendo and Kopeinig, 2008). Another implication is that one farmer’s adoption 

of SWC measures does not exclusively depend on another farmer’s adoption. Once these 

assumptions are satisfied, the matching technique can be used to match adopters and non-

adopters and create counterfactuals. The Average Treatment on Treated Approach (ATT) is 

written as:  

𝐴𝑇𝑇 = 𝐸[(𝑌i(1)|Ti = 1, 𝑋)] − 𝐸[(𝑌i(0)|Ti = 1, 𝑋)] … … … (3) 

However, since there are a large set of covariates, matching on covariates could be difficult 

and it can be resolved with the use of propensity scores (Hahn, 2010). The IPWRA estimator 

for ATT can be specified as follows: 

𝐴𝑇𝑇 = 𝐸[(𝑌𝑖(1)|𝑇𝑖 = 1, 𝑃(𝑋)] − 𝐸[(𝑌𝑖(0)|𝑇𝑖 = 0, 𝑃(𝑋)] … … … (4) 

where, 𝑃(𝑋) = 𝑃(Ti = 1|𝑋) is the propensity score, i.e., the conditional probability for a 

farmer to adopt SWC measures given his observed covariates ‘X’. Due to large number of 

observed covariates, the problem arises while matching. The literature refers to this as “the 

curse of dimensionality” (Caliendo and Kopeinig, 2008; Hahn, 2010). This can be resolved “if 

we can control scalar value function of observable covariates, namely, propensity score” which 

is generated from all covariates in vector X, to create counterfactual (Hahn, 2010). Here the 

propensity score is a function of plot level, socio-economic, village and community level 

characteristics. Therefore, ATT is the mean difference of agricultural outcome (i.e., aggregate 

profit, crop wise net profit and crop wise yields) between adopters and non-adopters. 

4.1. Estimation Method 

The study utilized an inverse-probability-weighted regression adjustment (IPWRA) approach 

to analyze the causal impact of SWC measures on agricultural aggregate profit (i.e., profit 

accrued through cultivation of major crops paddy, maize, and cotton), crop-wise profit (i.e., 
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profit obtained by cultivating paddy, maize and cotton separately) and crop-wise yields. The 

IPWRA approach utilizes weighted regression coefficients to estimate treatment effect, in 

which the “weights are the estimated inverse probabilities of treatment” (Wooldridge, 2010). 

The IPWRA approach involves three steps while estimating treatment effects. First, the 

probability of adopting SWC practice (i.e., the treatment model) is estimated using a simple 

logit regression model. The predicted probabilities are utilized in estimating the inverse-

probability weights. The potential predictors are based on detailed review of the literature, and 

these include (a detailed description is provided below) plot level, household socio-economic, 

village level characteristics, and market and institutional variables (i.e., watershed activities). 

Second, the model used kernel matching technique to compare adopters and non-adopters 

(Caliendo and Kopeinig, 2008; Crump et al., 2009). Finally, the average outcomes for adopters 

and non-adopters are estimated, and the difference between these average outcomes provides 

the estimate of the treatment effects. The ‘IPWRA’ estimators combine models for the outcome 

and treatment status and ‘IPWRA’ estimators emerge naturally from a robust approach to 

missing-data methods. The ‘IPWRA’ estimators are also known as double-robust estimators 

(Wooldridge, 2007; Wooldridge, 2010).  

5. Data and Descriptive Statistics 

As shown in Table 1, paddy, maize, and cotton are the main crops cultivated in both rainy 

season and non-rainy seasons. Though the farmers in the study area cultivated redgram and 

vegetables also, due to paucity of data on these crops the study focused on paddy, maize, and 

cotton crops for the analysis. Further, the analysis is restricted only to Kharif (rainy) season 

due to a thin sample data representation in Rabi (non-rainy) season. As can be seen from Table 

1, the mean value of profit significantly differs among adopters and non-adopters of SWC 

measures during the Kharif season for all principal crops. 

5.1. Explanatory Variables 

The explanatory variables used to generate the propensity score (i.e., the probability of SWC 

adoption) include, (a) plot-level characteristics such as area of the plot, soil type, level of 

erosion, irrigation, crop intensity (i.e., the ratio of gross cropped area to net cropped area), 

and crop diversity (Herfindahl index)7, connectivity factors including distance of the plot to the 

dwelling, road connectivity, and distance between the plot and the market;  

 
7 The Herfindahl index (HHI) represents “crop diversification and is estimated as the summation of all squared 

area shares occupied by crop/s in total cropped area. The value of this index varies from zero to one. It takes the 

value of one when there is full specialization and approaches to zero when there is full diversification”. The 

detailed description of the index provided in Datta (2015).  
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Table 1: Summary Statistics of Crops Yield and Profits across Adaptors and Non-

Adaptors 

Crop 

season 

Variable 
Full 

sample 
Adopters 

Non-

adopters 

Mean difference 

(Adopters-Non- 

adopters per acre) 

Number of observations 

All crops 403 206 197 

 

Rainy 

season 

Paddy 263 135 128 

Maize 236 136 100 

Cotton 115 56 59 

Per acre profit (in INR) 

All crops 24412 27147 21552 5594*** 

Paddy 17611 18783 16375 2408** 

Maize 10422 12135 8091 4044 *** 

Cotton 15691 16160 14566 914* 

Non-rainy 

season 

Number of observations 

Paddy 141 48 93 

 Maize 16 11 5 

Soybeans 16 12 4 

Per acre profit (in rupees) 

Paddy 20871 25182 18645 6537*** 

Maize 20275 23381 13440 9941 

Soybeans 18668 20308 13750 6558 

 

Source: Author’s own calculations based on field study data; ***, **, *Significant at 1%, 5%, 

and 10% probability level, respectively 

b) socioeconomic characteristics including experience of household head, sex of household 

head, formal years of education of the household head, household size and social status; and 

(c) village level characteristics such as community level SWC measures implemented through 

IWMP programme, extent of barren land, pastures, and current fallow land in the village where 

the plot is located. 
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Table 2: Summary of Explanatory Variables of Adopters and Non-Adopters 

 

Adopters 

Non-

Adopters Total Sample 

N=204 N=199 N=403 

Variable Definition of the variable Mean 

Std. 

Dev. Mean 

Std. 

Dev. Mean 

Std. 

Dev. 

Plot level characteristics  

Area of the 
plot  Cultivated area (in acres)  3.83 2.76 2.91 2.08 

 
3.37 

 
2.48 

Crop 

intensity  Crop intensity index  6.47 1.95 6.64 2.12 6.55 2.03 

Crop 
diversity  Crop diversity index  0.55 0.18 0.43 0.25 0.49 0.23 

Socio economic variables  

Sex  
Gender of the household 
(1=Male; 2=female)  1.09 0.29 1.14 0.34 

 
1.11 

 
0.32 

Education  

Years of education of 

household head (in years)  4.92 5.39 5.67 5.75 

 

5.29 

 

5.57 

Years of 
experience  

Years of farming experience 
(in years) 32.28 15.6 31.61 14.11 

 
31.95 

 
14.87 

Household 

size  

Size of the household (in 

numbers)  4.62 1.98 4.42 1.87 4.52 1.93 

Market access variables  

Distance  Distance to dwell (in km) 2.24 0.46 2.21 0.48 2.22 0.47 

Market 

distance  Distance to market (in km) 8.33 9.09 7.99 9.85 

 

8.16 

 

9.46 

Village level characteristics 

Intervention  

Watershed intervention 

(1=Yes; 0=No) 0.73 0.45 0.29 0.46 

 

0.51 

 

0.50 

Barren  

Barren uncultivable land at the 

village level (in %) 3.71 3.41 3.20 2.44 

 

3.46 

 

2.98 

Pastures  

Permanent pasture lands at the 

village level (in %) 0.77 1.30 0.56 0.84 

 

0.67 

 

1.10 

Current  

Current fallow lands at the 

village level (in %) 7.58 6.13 6.79 6.09 

 

7.19 

 

6.12 

Other  
Other fallow lands at the 
village level (in %) 10.79 5.92 8.88 5.22 

 
9.84 

 
5.66 

Source: Author’s own calculations based on field study data 

Table 2 provides a summary of explanatory variables described above among the ‘adopters’ 

and ‘non-adopters’. More than 80% of household heads are male among both adopters and 

non-adopters. Overall, farmers who adopt SWC measures are less educated (with mean of 4.9 

years) compared to non-adopters (with mean of 5.67 years). The average years of farming 

experience of adopters is slightly higher (32.28 years) than non-adopters (31.61 years). The 

average family size is similar across the adopters and non-adopters. The average area of the 

plot is 3.83 acres for adopters and 2.91acres for non-adopters. Farmers who adopt SWC 

measures perceive greater soil erosion of their plots than the non-adopters. The average crop 
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intensity on SWC adopting farms is lower (6.47) than non-adopting farms (6.64). The farmers 

implementing SWC measures have on average greater crop diversity on their farms compared 

to those who have not implemented SWC measures. The average distance of the plot to 

farmer’s dwelling is more than 2 km among households in the study area. The mean distance 

of the farms to the market is nearly 8 km. The percentage of barren, pasture, current fallow and 

other fallow is 2.9%, 1%, 6.12% and 5.66%, respectively across the villages in the study area. 

5.2. Neighborhood Data 

The adoption of on-site SWC measures by the neighboring farmers could influence a farmer’s 

decision to implement SWC measures and hence her agricultural outcome. The detailed 

information about the SWC activities in all the adjacent neighboring plots (for each of the 

farmer/plot surveyed) has been collected through primary survey. The adjacent neighbors of a 

farmer are defined as those whose plots share boundary with the plot of the surveyed farmer. 

The neighborhood variable was generated in two levels - first, if more than 50% of neighboring 

plots adopt a specific SWC measure, then the neighbors of the respondent are considered to 

have adopted that specific SWC measure (and coded as 1), and otherwise not adopted (and 

coded as 0). Second, if neighbors adopt more than one specific SWC measure then neighbors 

are considered to have undertaken SWC measures, otherwise not8. The neighborhood data is 

used to analyze scope for complementarity between SWC measures adopted by farmers and 

those adopted by his/her neighbors.  

5.3. Outcome Variables 

Two outcome variables, namely profit and yield per acre during the monsoon season are 

considered as relevant outcome variables in this study. Profit is estimated at aggregate level 

(i.e., over the crops paddy, maize, and cotton) and at individual crop level. Aggregate level 

profit equals the revenue from the three major crops cultivated in the study area minus crop 

wise input cost and annualized implementation cost of SWC measures9. The implementation 

costs of SWC measures have not been accounted for in the crop-wise profit calculations, due 

to difficulty in attribution of SWC measure to individual crops. Though data for the non-rainy 

season has also been collected, as already mentioned, the analysis is restricted to monsoon 

season only due to data limitations.  

 
8 We have collected the data on neighbor’s SWC activities from surveyed farmers based on their observation 

about neighbors on-site SWC adoption activities. The detailed description of neighborhood data is provided 

Dayakar and Kavi Kumar (2021) which utilized the same data set. 
9 Aggregate agricultural profit = [{{(total revnuepaddy-input costpaddy) + (total revnuemaize-input costmaize) + (total 

revnuecotton-input costcotton)} – annualized SWC implementation cost}/total cultivated area]. The annualized 

implementation costs of SWC measures have been assessed based on the methodology suggested by Das (2015).  
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6. Results and Discussion  

6.1. Neighborhood Influence on Crops Yield – Preliminary Results 

Table 3 highlights the unadjusted impact of neighborhood influence on maize and paddy crops 

yields. A simple specification (Model 1) is followed wherein the outcome variable 

(paddy/maize yield) is explained through various combinations of SWC adoption among the 

farmers and their neighbors. Two additional variants (Model 2 and Model 3) are also specified 

with the inclusion of community level intervention, and control variables (e.g., soil type) as 

explanatory variables.  

Table 3: Neighborhood Influence on Maize and Paddy Yields  

Outcome variables  Maize yield Paddy yield 

 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

 (1) (2) (3) (4) (5) (6) 

Farmer and 

Neighbor both adopt 

SWC 

7.127*** 

(0.005) 

5.456** 

(0.035) 

5.305** 

(0.049) 

0.756 

(0.771) 

-0.793 

(0.773) 

-0.735 

(0.789) 

Farmer adopts SWC, 

but neighbor does 

not adopt SWC  

2.665** 

(0.020) 

1.355 

(0.247) 

1.088 

(0.362) 

0.381 

(0.724) 

-0.735 

(0.548) 

-0.669 

(0.581) 

Farmer does not 

adopt SWC, but 

neighbor adopts 

SWC   

-0.473 

(0.863) 

-0.971 

(0.700) 

-1.656 

(0.491) 

5.090* 

(0.063) 

4.799 

(0.117) 

4.662 

(0.137) 

Community level 

intervention  
   - 

2.933*** 

(0.002) 

3.025*** 

(0.002) 
     - 

2.518** 

(0.016) 

2.525** 

(0.019) 

Control Variables 

included  
   -     - Yes      -      - Yes 

Constant 
13.87*** 

(0.000) 

12.61*** 

(0.000) 

10.33*** 

(0.000) 

19.24*** 

(0.000) 

18.28*** 

(0.000) 

16.00*** 

(0.000) 

Observations 238 238 238 260 260 260 
Note: p-values in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01; irrigation and soil type covariates are 

controlled in Model 3.  

The results suggest that adoption of SWC measures by both farmer and her neighbors 

significantly increase the maize yields in the study area. Column 1 in Table 3 shows that 

compared to the base category of both the farmer and her neighbors not adopting SWC 

measures, maize yields increase by 7.1 quintals if both undertake SWC measures, and the yield 

increases by 2.7 quintals if only farmer adopts SWC measures, and her neighbors does not 

undertake such measures. This highlights the complementarity in SWC measures between 

farmers and their neighbors, in case of rainfed crops such as maize. Models 2 and 3 results 

suggest that the influence of neighborhood effect becomes weak as other covariates partial out 
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net effect, but the complementarity in SWC measures is still evident. On the other hand, in the 

case of paddy crop neighborhood influence is negligible at the farm level. This discrepancy can 

be attributed to the fact that maize crops in the study area are typically rainfed and rely on 

natural water sources, making SWC adoption more prevalent and impactful for these crops 

than paddy cultivation. Further, it is important to note that these adoptions of SWC measures 

and their resulting impact are closely tied to the specific location and the topography of the 

soil. As a result, we observe complementary neighborhood effects that are more pronounced 

for maize than paddy cultivation. Overall, the unadjusted estimates reported in Table 3 suggest 

that the adoption of SWC measures by the farmers and their neighbors’ influences rainfed crops 

like maize and cotton is more due to its nature of cultivation compared to irrigated crops like 

paddy. The next section explores these results further to rigorously estimate the causal effects.  

 

6.2 IPWRA Model Results  

As mentioned above, IPWRA approach is employed to analyze the causal impact of on-site 

SWC measures on agricultural outcomes, viz., aggregate profit, crop-wise profit, and crop-wise 

yield per acre10. The probability of adopting SWC practice (i.e., the treatment model) is 

estimated using simple logit regression model. The predicted probabilities are utilized in 

estimating the inverse-probability weights. Plot level, socioeconomic, market access and 

village level characteristics are used to estimate matching score.  

 

To check the robustness of treatment effect on treated (ATT) models, the conditional 

independence and covariate balance are tested (using ‘tebalanceoverid’ and ‘teffects overlap’ 

user written commands in Stata). The results suggest that the assumption of conditional 

independence is not violated (see Table A.1).  

 

 

 

 
10 Inverse-Probability-Weighted Regression Adjustment (IPWRA) and Endogenous Switching Regression (ESR) 

models are common approaches to correct selection bias problem while analyzing causal inferences. IPWRA 
model estimates based on observable parameters and do not account for unobservable heterogeneity. The ESR 

model corrects selection bias and the problem of unobservable heterogeneity as well. We employed IPWRA 

models for causal inference analysis and offered the discussion on estimated results. However, we also estimated 

ESR model for robustness check and found both IPWRA and ESR models estimated ATT values are reasonably 

close. This is taken to suggest that the influence of unobserved factors is negligible in the present study. The 

estimates based on ESR model are reported in Table A.3.  
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Level 1 

All crops profit Paddy profit Paddy yield Maize profit 

    

Maize yield Cotton profit Cotton yield  

   

 

Level 2 

All crops profit Paddy profit Paddy yield Maize profit 

    
Maize yield Cotton profit Cotton yield  

   

 

Level 3 

Aggregate profit Paddy profit Paddy yield Maize profit 

    
Maize yield Cotton profit Cotton yield  

   

 

Figure 1: Kernel Density Distribution Showing Overlap between Adopters and Non-

Adopters of SWC Measures at Different Levels of SWC Adoption 

Note: Kernel Density Distribution is a propensity score distribution and common support region for 

propensity score estimation. The graph displays the estimated density of the predicted probabilities that 

an adapter is a nonadopter, and the estimated density of the predicted probabilities that a non-adopter 
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is an adopter. Level 1 indicates the impact of the adoption of SWC measures on agricultural output 

without accounting for community intervention and neighborhood effects; Level 2 accounts for 

community intervention; Level 3 accounts for both community intervention and neighborhood adoption 

of SWC measures.  

 

The results from ‘teffects overlap’ tests presented in Figure 2 show the overlap in distribution 

of propensity scores and satisfy the common support condition. Kernel matching approach is 

used while testing common support condition assumption. After ensuring matching of the 

covariates between the adopters and non-adopters, causal impact of SWC measures on 

aggregate profit, crop-wise profit and crop-wise yields has been estimated11. The results 

suggest that there is a significant difference in total profit, crop-wise profit and crop-wise yields 

between the adopters and non-adopters during the monsoon season in the study area. 

 

Columns 1&2 in Table 4 report the estimated results for impact of SWC measures on 

agricultural outcomes. The findings show that the difference between the adopters and non-

adopters in total profit attributable to SWC measures is about INR 2110 (at the 5% level of 

significance) in the study area. Crop wise effect of SWC measures for paddy, maize and cotton 

are estimated as INR 3500, INR 2910 and INR 5000, respectively, which are 23%, 34% and 

39%, respectively of the corresponding baseline profit reported by the non-adopters of SWC 

measures. The model results show significant crop-wise ATT for yields as 3.26, 2.86 and 1.06 

quintals of paddy, maize and cotton, respectively. These ATT are respectively, 19%, 22%, and 

20% of the mean value of crop-wise yield of non-adopters’ group (see Table 4 & column 2). 

Further, the results show that model estimated ATT of profit values are more sensitive than 

those estimated for yields. Maize and cotton crops are more sensitive than paddy according to 

the estimated ATT values, mostly due to possible extended irrigation facility to crops.   

 

The community level intervention dummy is introduced to check complementarity between 

community level and individual level SWC measures and its causal impact on agricultural 

outcome. These results are reported in Columns 3&4 in Table 4. The difference between the 

adopters and non-adopters in total profit attributable to SWC measures is about INR 2150 (at 

 
11 As suggested in the literature, the ATT of multiple SWC interventions has also been estimated, however, 

discussion on the same is not provided here. Low, moderate and high levels of adoption of SWC measures are 

defined as such interventions when farmer implements at least one measure, 2 to 3 measures, and more than 3 

measures, respectively. In case of multiple SWC interventions, comparison is made between adoption of low vs. 

moderate, low vs. high, and moderate vs. high SWC measures. The results pertaining to multiple SWC 

interventions are reported in Table A.2 and the overlap test results are reported in Figure A.1. 
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the 10% level of significance) in the study area, which is around 17% of the baseline profit of 

the non-adopter group. Crop wise effect of SWC measures for paddy, maize and cotton are 

estimated as INR 2280, INR 4730 and INR 4400, respectively. These treatment effects on the 

treated are 14%, 69% and 33% respectively of the mean value of crop-wise profit of the non-

adopters group. The estimated results significantly attribute the crop wise ATT for yields at 

3.10, 3.63 and 1.24 quintals of paddy, maize and cotton, respectively. These ATT are 18%, 

29%, and 25% respectively of the mean value of crop-wise yield of non-adopters’ group (Table 

4). The overall impact of SWC measures is high in the presence of community level 

interventions through watershed management programme. The estimated ATT results suggest 

that the benefits of community level soil conservation measures are greater in maize and cotton 

farming. However, the results suggest community level interventions are negative on paddy 

yield and profits, driven perhaps by the irrigated nature of paddy cultivation in the study area. 

 

Further, there is a possibility of positive/negative effect of adjacent farmers’ SWC activities on 

agricultural outcome. Therefore, a neighborhood dummy was introduced to control the 

neighbors’ on-site SWC measures along with the community level intervention dummy. The 

results are reported in Columns 5&6 in Table 4. The estimated ATT results suggest that 

neighborhood impact is significant and positive in overall agricultural profit. However, the 

impact of neighbors’ adoption activities differs from crop to crop in the study area. The 

difference between the ‘adopters’ and ‘non-adopters’ in total profit attributable to SWC 

measures is about INR 2080 (at the 10% level of significance). Crop wise effect of SWC 

measures for paddy, maize and cotton are estimated at INR 2490, INR 4590 and INR 4900, 

respectively. The treatment effects on the treated are 16%, 15% and 66% percent, respectively 

of the mean value of crop-wise profit of the non-adopters group. It is also important to note 

that the above estimates may be overestimated due to the attribution of benefits from SWC 

measures exclusively to land degradation remediation. The estimated results show significant 

crop wise ATT for yields as 3.38, 3.48 and 1.35 quintals of paddy, maize and cotton, 

respectively. These ATT are 20%, 28%, and 27% percent respectively of the mean value of 

crop-wise yield of non-adopters’ group. Further, estimated results suggests that the impact of 

adoption of SWC measures on rainfed crops is more due to its nature cultivation compared to 

irrigated crops like paddy. 

 

It may be noted that owing to the changing base, percentage improvement in profit/yield across 

different ‘Levels’ of SWC adoption reported in Table 4 are not strictly comparable. For 
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instance, in case of maize crop, the results reported in Table 4 indicate that compared to non-

adopters, the profits are 35 percent higher for the adopters. This further increases to 69 and 66 

percent, respectively when community level intervention and neighbor’s adoption of SWC 

measures are also accounted for in the impact estimation. Since the non-adopters group changes 

based on different levels at which SWC measures are undertaken, the percentage improvements 

reported are not directly comparable. The direction of improvement, however, remains same 

even when a static baseline profit is considered. Using the baseline maize profits among the 

non-adopters reported in Table 1, the comparable improvements in maize profits under 

different levels at which SWC measure implementation is considered works out as 35, 58 and 

56 percent, respectively.  

Table 4 Impact of Adoption of SWC Measures on Profit and Yield 

Outcome Level 1 Level 2 Level 3 

ATT  

(in ₹) 

Profit 

(in%) 

ATT  

(in ₹) 

Profit 

(in%) 

ATT  

(in ₹) 

Profit 

(in%) 

 (1) (2) (3) (4) (5) (6) 

Aggregate Level 

Profit 

2110** 

(0.03) 

16 

 

2150* 

(0.08) 

17 2080* 

(0.08) 

16 

Paddy (Profit) 3500** 

(0.04) 

23 2280 

(0.32) 

14 2490 

(0.27) 

15 

Paddy (Yield) 3.26*** 

(0.01) 

19 3.10** 

(0.05) 

18 3.38** 

(0.03) 

20 

Maize (Profit) 2910** 

(0.03) 

34 4730*** 

(0.00) 

69 4590*** 

(0.00) 

66 

Maize (Yield) 2.86*** 

(0.00) 

22 3.63*** 

(0.00) 

29 3.48*** 

(0.00) 

28 

Cotton (Profit) 5000* 

(0.06) 

39 4400 

(0.28) 

33 4900 

(0.22) 

38 

Cotton (Yield) 1.06* 

(0.08) 

20 1.24 

(0.19) 

25 1.35 

(0.15) 

27 

 

Note:  p-values are in parenthesis; ***, **, * are significant at 1%, 5%, and 10% probability levels, 

respectively: Level 1 indicates the impact of the adoption of SWC measures on agricultural output 

without accounting for community intervention and neighborhood effects; Level 2 accounts for 

community intervention; Level 3 accounts for both community intervention and neighborhood 

adoption.  

 

The on-site SWC measures can serve multiple benefits including prevention of soil erosion, 

rainwater harvesting, and ground water improvement through infiltration. The empirical 

literature tends to accredit the benefits of on-site conservation measures to soil erosion 

prevention only (Kerr et al., 2002; Singha C, 2019). Due to the nature of practice, it is difficult 
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to differentiate the benefits of SWC measures accruing separately to soil health and water 

levels. 

Therefore, there could be an overlap between measures aimed at soil conservation alone and 

measures focusing on SWC. Thus, the results presented in this study may overestimate the 

benefits of soil conservation measures. On the other hand, the estimates may also provide an 

underestimate by considering the implementation of conservation measures to result in 

improvement of provisioning services only, ignoring regulating, supporting and cultural 

services from the land ecosystem. The net effect of these biases on the model estimates 

necessitates further study and provides scope for future research.  

7. Conclusions  

This study estimated the impact of the adoption of soil conservation measures using a survey 

of farmers in sub-watershed areas of Telangana. To estimate the causal impact of the adoption 

of SWC measures, a counterfactual comparison group using matching techniques was created, 

assuming that it is possible to capture the factors that influence the farmers’ decision to adopt 

SWC measures on their farms. Following this, propensity scores were generated using a logit 

model to balance the observed covariates. The underlying assumption is that it is possible to 

capture the factors which influence the farmers’ decisions to adopt different category of SWC 

measures on their own. The matching of both the groups were carried out using the IPWRA 

method. In addition to assessing the causal impact of farmer’s own adoption of SWC measures 

on agricultural outcomes, the study also estimated the additional benefits emanating from 

community level conservation measures, and SWC measures implemented by the neighbors of 

the farmers.  

Results suggest that adoption of SWC measures leads to significant improvements in the 

outcomes at aggregate level as well as across crops. The percentage improvement of outcome 

(between the adopters over the non-adopters) is higher in case of profit compared to the yield 

for all crops. There is complementarity between farmer’s own conservation measures and 

community level interventions (such as those undertaken through programs such as IWMP), as 

well as conservation measures implemented by neighboring farmers. The influence of 

community level conservation activities and neighborhood SWC practices is more pronounced 

in the case of rainfed crops (such as maize) compared to the irrigated crops (such as paddy).  

 

Long-lasting technological intervention including contour bunding, afforestation and slope-

leveling are necessary to arrest and prevent future erosion. Especially, Peer learning can be 
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crucial in incentivizing SWC adoption by adjacent farms. Policymakers should tailor their 

approach and support the location specific SWC needs to improve agricultural outcomes. In 

sum, the adoption of multiple SWC measures may be essential for farming in rainfed 

ecosystems. The government investment in developing infrastructure to neutralize soil erosion 

through watershed programme complements the farmers’ adoption of conservation measures. 

Implementing multiple farm level SWC measures through sustainable agricultural practices 

not only improves farmer’s income but also helps in sustaining the agricultural ecosystem. 
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Appendix 

Table A.1: Over Identification Test for Covariate Balance 

Outcome 

Level 1 Level 2 Level 3 

Chi-square 

value 

P-

Value 

Chi-square 

value 

P-

Value 

Chi-square 

value 

P-

Value 

Aggregate 

Level Profit 
11.7946 0.9230 9.95639 0.9867 11.0034 0.9832 

Paddy (Profit) 10.049 0.9303 16.5657 0.6193 12.4623 0.8992 

Paddy (Yield) 10.1663 0.9263 17.1309 0.5810 12.8582 0.8834 

Maize (Profit) 5.21656 0.9992 14.4772 0.8055 13.2823 0.8984 

Maize (Yield) 6.28662 0.9985 13.9169 0.8731 13.4586 0.9196 

Cotton (Profit) 8.1164 0.7760 10.1402 0.7519 7.84516 0.8972 

Cotton (Yield) 8.1164 0.7760 10.1403 0.7519 7.84516 0.8972 

Note: Null Hypothesis - Covariates are balanced: Level 1 indicates the impact of the adoption of 

SWC measures on agricultural output without accounting for community intervention and 

neighborhood effects; Level 2 accounts for community intervention; Level 3 accounts for both 

community intervention and neighborhood adoption.  
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Table A.2: Impact of Adoption of Soil Conservation Practices on Profit and Yield 

Outcome Moderate vs Low High vs Low High vs Moderate 

ATT  

(in ₹) 

Profit 

(in%) 

ATT  

(in ₹) 

Profit 

(in%) 

ATT  

(in ₹) 

Profit 

(in%) 

 (1) (2) (3) (4) (5) (6) 

Aggregate Level 

Profit 

1570 

(0.18) 

12 

 
4370* 
(0.08) 

34 2800 

(0.22) 

19 

Paddy (Profit) 3560* 

(0.09) 

05 860 

(0.80) 

22 -2690 

(0.39) 

-13 

Paddy (Yield) 2.23* 
(0.10) 

12 3.27 * 

(0.06) 

18 1.03 

(0.52) 

05 

Maize (Profit) 2570 

(0.12) 

26 6770* 

(0.09) 

74 4180 

(0.20) 

38 

Maize (Yield) 2.1* 

(0.10) 

15 07*** 

(0.00) 

52 05** (0.02) 32 

***, **,*Significant at 1%, 5%, and 10% probability level, respectively. Note: we did not estimate 

for the cotton crop due to the insufficient covariates.  These estimations also did not include 

watershed intervention and neighborhood dummies due to the same reason
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Table A.3: Endogenous Switching Regression Model Estimated Parameters 

 Endogenous switching regression model 

 First stage Second stage (Net revenue/Per acre) 

 
SWC Adoption 

(1/0) 
SWC Adopters 

SWC Non-

Adopters 

Variable Coef.  
P-

Value  
Coef.  P-Value  Coef.  

P-

Value  

Plot level characteristics  

Area of the plot .018 0.440 -.026 0.284 .033 0.191 

Soil type of the 

plot  
-.101 0.154 .124* 0.072 .089* 0.062 

Soil stoniness  .150** 0.021 -.125* 0.093 -.041 0.398 

Slope of the plot .220** 0.022 -.102 0.284 -.035 0.692 

Soil erosion level  .198 0.011 -.092 0.188 .109 0.144 

Access to irrigation .147*** 0.009 -.032 0.586 .010 0.831 

Crop 

diversification  
1.500*** 0.000 -1.324*** 0.002  -.291 0.277 

Crop intensity  -.047 0.173 .092*** 0.009 .126*** 0.000 

Socio economic characteristics  

Sex of the 

household head  
-.126 0.576 .367 0.197 .035 0.789 

Caste of household  -.030 0.776 -.017 0.857 .164* 0.084 

Household head 

education 
-.002 0.827 .001 0.937 .007 0.491 

Years of 

experience 
.000 0.823 -.001 0.795 .005 0.154 

Household size  .046 0.160 -.043 0.177 -.081***  0.008 

Market access variables  

Distance from the 

dwell  
-.051 0.688 -.112 0.338 .000 0.999 

Access to road .022 0.800 -.017 0.833 -.004 0.953 

Village level characteristics’  

Forest  .020*** 0.015     

Barren land  .007* 0.091     

Permanent pasture  .107** 0.039     

Model statistics        

Constant  -2.256*** 0.003 11.265*** 0.000 7.812*** 0.000 

𝝈𝒊   .693* .056 .693* .056 

𝝆𝒊   -.975*** .015 -.053 .339 

Number of 

observations  
373  373  373  

SWC Impact  

   
SWC 

Adopters 

SWC Non-

Adopters 

ATT-

value 

P-

value  

   13641 10694 2948*** 0.00 

Note: ***p < 0.01, **p < 0.05, *p < 0.1. 
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Figure A.1: Kernel Density Distribution Showing Overlap between Adopters and Non-

Adopters of SWC Measure 

Impact of SWC Adoption Measures on Farm Profit 

All crops profit 

(Low vs moderate and high) 

Paddy profit 

(Moderate vs moderate and high) 
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