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Abstract

We measure the impact of air pollution on daily labor productivity in call centers in five Indian
cities. A one standard deviation increase in PM2.5, a pollutant that has been widely studied in
the literature, decreases intensive margin productivity by 0.15σ. The equivalent impacts for
carbon monoxide and ozone, however, are 0.14σ and .09σ, respectively. Furthermore, carbon
monoxide is responsible for more than half of the total productivity lost from pollution in our
sample. We consider the potential productivity impacts of a national policy in India that targets
PM2.5 alongside a counterfactual policy that targets a broader range of pollutants.
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1 Introduction

Ambient air pollution has serious and well-documented impacts on human health. Even short-term
pollution exposure has been linked to significantly reduced respiratory, cardiac and neurological
function (Aguilar-Gomez et al., 2022). Thus, understanding the impact of pollution on economic
outcomes such as productivity has become an important question for research and policy. Mea-
suring the full effect of pollution on productivity is particularly relevant in developing countries
such as India, where low productivity is likely a significant barrier to economic growth and high
pollution levels are a major policy concern (Hsieh and Klenow, 2009; Damania et al., 2023).

This paper examines both the individual and combined effects of three components of air pollution:
two key gaseous compounds, carbon monoxide (CO) and ozone (O3), as well as particulate matter
of less than 2.5 micrometers (PM2.5). Thus, it more fully captures the impacts of air pollution
on productivity, rather than relying on particulate matter as a proxy for all ambient air quality.
Our analysis relies on daily pollution and productivity data from five cities across India, with
the worker-level productivity data coming from two call center companies. This study has broad
relevance as call centers are a major source of private sector employment in India, employing 4.47
million people (Ministry of Electronics and IT, 2021).

This setting is conducive to identifying the causal impacts of ambient air pollutants on productivity
for a few reasons. First, call centers are not a major contributor to pollution, thus, we do not expect
changing productivity in call centers to drive changes in pollution. Second, we are exploiting the
variation in daily data. This data, combined with date and worker fixed effects, allows us to abstract
away from the selection effects of any sectoral shifts driven by pollution. Third, it is unlikely that
productivity and pollution are moving jointly due to some third factor. In particular, the call centers
in our study handle calls to and from wide geographic areas, so changes in productivity are unlikely
to be systematically driven by changes in the behavior of people on the other end of the phone lines
from the call center employees. Finally, we find significant isolated variation in the levels of the
three pollutants, allowing us to separately identify their effects.

Our first results examine the impact of the three pollutants on the extensive margin of productivity,
which we define as being available for work. Thus, we include two extensive margin measures:
being at work on a given day and net login time per day. The impact of pollution on the extensive
margin is theoretically ambiguous. On the one hand, there could be a reduction in days worked or
hours worked due to pollution-related health effects. On the other hand, there could be an increase
in the time spent at work on more polluted days if workers value leisure more on days with better
air quality. Given this ambiguity, it is not surprising that we do not find meaningful or significant
effects on the extensive productivity margin.
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We also examine the impact of the pollutants on the intensive margin of productivity and find
substantial and significant results.1 Our analysis focuses on an intensive margin productivity index
which includes two measures of efficiency of calls handled. In our main results, which examine
the linear average effect of each pollutant separately, we find that a one standard deviation increase
in PM2.5 induces a 0.145σ reduction in intensive margin productivity.2 Notably, the impact of CO
on pollution is similar at −0.142σ. In addition, the impact of O3 is −0.086σ. These three results
are each statistically significant at the 1% level, but the coefficients on the three pollutants are not
statistically different from one another. For a one standard deviation increase in PM2.5, CO and O3,
these effects translate to declines in productivity of 11.8%, 10.8% and 6.0% respectively.

We then measure the combined effects of the three pollutants as well as the relative importance
of each pollutant in contributing to lower worker productivity. The combined effect of these three
components of air pollution on productivity is −0.38σ. Furthermore, since the share of days with
high CO levels is relatively larger than for the other pollutants in our sample, CO is responsible
for 58% of the pollution-driven reductions in productivity. Thus, is the single most important
pollutant we examine. In contrast, PM2.5 and O3 each contribute 21% of the productivity lost from
pollution.

We extend our analysis to a stylized illustration of the potential impact on productivity of policies
that only target PM2.5 compared to those that target multiple pollutants. Specifically, we consider
the potential impact on worker-level call center productivity of a recent policy, India’s National
Clean Air Programme (NCAP), that sets PM2.5 reduction targets compared to a hypothetical policy
that directly targets all three pollutants with a similar reduction target. Accounting for observed
within-sample correlations in pollutants, we find a policy such as NCAP is likely to reduce the
overall productivity loss from pollution by 12% relative to a setting without NCAP. In contrast, a
hypothetical policy that targets all three pollutants would instead reduce the productivity loss from
pollution by 24%. Whether policies controlling for all three pollutants are cost-effective, is a topic
for future research.

This study is the first to examine the effect of multiple pollutants on labor productivity in an office
setting or a developing country. The growing literature on pollution and labor productivity has
focused on the impacts of single pollutants, and generally found negative effects.3 Specifically,

1The lack of impact on the extensive margin allows the interpretation of the intensive margin effects to be relatively
straightforward.

2We also consider flexible functional forms and interactions of these pollutants but find no evidence of non-linear
or interactive effects.

3This work is also related to a broader literature on pollution and performance, which includes studies on the impact
of pollution on academic (Lavy, Ebenstein and Roth, 2014; Zhang, Chen and Zhang, 2018) as well as athletic perfor-
mance (Beavan et al., 2023; Cusick, Rowland and DeFelice, 2023; Mullins, 2018). Studies on academic/cognitive and
athletic performance which have considered the impacts of multiple pollutants have generally found negative effects.
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most papers have focused on the impact of PM2.5 in physically demanding factory work (Adhvaryu,
Kala and Nyshadham, 2022; He, Liu and Salvo, 2019). Other studies focus on the productivity
impacts of O3 in outdoor occupations (Graff Zivin and Neidell, 2012; Wang, Lin and Qiu, 2022).
One study that, like this one, examines the productivity of office workers is Chang et al. (2019),
which measures the impact of an Air Pollution Index (API) in call centers in China. The API index
in their setting is defined primarily by PM10 levels, thus our study builds on that work by examining
multiple pollutants and considering levels of fine particulates (PM2.5). Although it is difficult to
compare across study settings directly, we also find larger effects of particulate matter.

Few studies have examined the impact of multiple pollutants in a workplace setting, and those
that have focused on physical or outdoor work. Chang et al. (2016) examine the impact of PM2.5

and O3 on pear-packers in the U.S. and only find effects for PM2.5. Only Archsmith, Heyes and
Saberian (2018), who study umpires’ decisions in American baseball, also measures the impacts
of the three pollutants examined in this study. They find impacts for PM2.5 and CO, but not O3.
This study is therefore the first to document the impacts of CO and O3 in an indoor workplace. It
also uniquely considers the combined effects of multiple pollutants in a workplace setting that is
representative of a broad section of the economy in the world’s most populous country. India is an
emerging economy in which pollution is high, and office-based service work is seen as critical to
future economic development.

2 Context

2.1 Pollution and health

This study measures the impact of air pollution on labor productivity with the health impacts of
those pollutants being the likely mediator. Fine particulate matter, PM2.5, is known to penetrate in-
doors (Thatcher and Layton, 1995) and its harmful health effects are well-established (Brunekreef
and Holgate, 2002). In particular, PM2.5 can cause serious health issues by impairing cardiovas-
cular and lung functioning (Liu et al., 2017; Pope III and Dockery, 2006), or cause daily allergies
resulting in nose and throat irritation and mild headaches (Bernstein et al., 2008; Ghio, Kim and
Devlin, 2000). Thus, PM2.5 can potentially hamper an individual’s productivity indirectly through
changes in health, and may also be able to do so directly through reductions in cognitive perfor-
mance (Sakhvidi et al., 2022; Ebenstein, Lavy and Roth, 2016; Ye et al., 2023).

Carbon monoxide is an odorless gas, which also has established negative health effects (Wang
et al., 2019; Bell et al., 2009; Liu et al., 2018). The main sources of CO pollution include automo-
tive fumes and industrial combustion emissions. When inhaled, it reduces oxygen flow within the
body (Raphael et al., 1989). The immediate symptoms of inhaling CO include headache, dizzi-
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ness, confusion, and disorientation, while in the longer term (2 to 28 days), it can lead to a rise
in hypertension, lethal arrythmia, electrocardiographic changes and neuropsychiatric impairment
(Raub et al., 2000). A U.S. based study documenting the pollution impacts of living in proximity
to airports found that the CO from airplane fumes was associated with a rise in hospitalization rates
and costs (Schlenker and Walker, 2016).

Exposure to O3 in both the short- and long-term can also impact human health. In the short-term, it
can cause breathing difficulties, including shortness of breath and pain when taking a deep breath,
irritation to the eye and nose, coughing and sore or scratchy throat and inflammation of airways
(Zhang, Wei and Fang, 2019). Long-term exposure to O3 increases the risk of lung infections and
aggravates lung diseases such as asthma, emphysema, and chronic bronchitis (McDonnell et al.,
1999; Zhang, Wei and Fang, 2019).

Ambient, outdoor O3 readily penetrates buildings (Salonen, Salthammer and Morawska, 2018; Ma
et al., 2022), but indoor exposure to O3 was previously considered less impactful because O3 breaks
down relatively quickly in indoor environments (Chang et al., 2016). We include O3 levels in our
analyses, however, since recent studies suggest that substantial shares, 25% to 60%, of daily ozone
intake still occur indoors (Nazaroff and Weschler, 2022; Weschler, 2006) and workers are exposed
to outdoor conditions during commuting.

2.2 Work in call centers

Call centers are part of the business process outsourcing (BPO) industry, which is a major source
of employment in India (Ministry of Electronics and IT, 2021). The two call center companies in
this study organize their work around individual contracts to provide voice support for companies
that need such services. Each of these contracts leads to the establishment of a process or group
of employees engaged in handling the same type of calls. Processes are typically categorized as
inbound or outbound. Inbound processes receive calls for customer service, from industries such
as food delivery, retail and telecommunication. In contrast, outbound processes require agents
to make calls, to sell products or to conduct surveys. Our study includes ten processes (five in-
bound and five outbound), spread across five Indian cities (states): Noida (Uttar Pradesh), Mumbai
(Maharashtra), Patna (Bihar), Hubli (Karnataka), and Udaipur (Rajasthan).

The processes rely on entry-level employees, known as agents, who handle the voice support.
Agents are organized into teams of 20 to 25, each of which is managed by a team leader. Agents
are expected to work six days a week with staggered schedules. Call center work is a common first
job for young people, and there is significant churn in the workforce (Jensen, 2012).
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3 Identification Strategy

Our identification strategy relies on the increasingly common approach in this literature of exploit-
ing relatively high-frequency variation in pollution and productivity.4 The high-frequency aspect
of our data is most important in allowing us to isolate the impact of pollution on productivity from
selection or composition effects in the workforce. In particular, daily variation in pollution allows
us to abstract away from seasonal or long-term shifts in the composition of the workforce of the
type that is the focus of another thread of research.5

Identification strategies that use high-frequency pollution measurement also rely on the assumption
that there is no other causal relationship that primarily explains the co-movement of daily pollution
and productivity levels. In particular, we do not expect that productivity would determine pollution
levels, since the call center industry is not a significant contributor to pollution.6 We also do
not expect that pollution is indirectly affecting productivity through a third factor. Perhaps the
most likely potential third factor is that pollution could reduce incoming calls to the call center if
customers are affected by pollution. In this case, however, both inbound and outbound calls are
targeting a wide geographic area in our sample. Thus, customers and employees are not in general
exposed to the same pollution levels.

Finally, we note that this study is designed to identify the total impact of daily pollutant levels on
productivity, that is, the joint effect of exposure to pollution during a worker’s commute and the
effect of indoor air pollution during the day. This effect is important in measuring the overall harms
of pollution. Furthermore, any policy efforts to reduce ambient air pollution can address both these
potential channels by addressing outdoor air pollution.7

4Adhvaryu, Kala and Nyshadham (2022) use hourly variation in pollution, Archsmith, Heyes and Saberian (2018)
use three-hour variation for CO and a 12-hour/daily variation for O3 and PM2.5, Graff Zivin and Neidell (2012) and
Chang et al. (2019) use daily variation in pollution. In the literature on athletic performance, Lichter, Pestel and
Sommer (2017) use hourly variation in PM10 and O3 and, Beavan et al. (2023) consider daily variation in PM10,
O3 and NO2 to study the performance of professional soccer players. Similarly, for academic performance related
outcomes, La Nauze and Severnini (2021) use daily variations in PM2.5 and, Zhang, Chen and Zhang (2018) use daily
variations in PM10, SO2 and NO2 to study cognitive skills in adults.

5See for example, Khanna et al. (2021), Chen et al. (2013) and He, Xie and Zhang (2020).
6Furthermore, in industries that are major contributors to pollution, we typically expect to find that increased

productivity would cause increased pollution, which is the opposite of what we find here.
7Of course, if harmful effects are driven by indoor pollution, employers can potentially mitigate directly with air

purification. We will examine the role of indoor air pollution in future research.
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3.1 Data and variable construction

All outcome measures in this study rely on data that is collected automatically by technology-
based monitoring systems in the call centers.8 We use data from 2,777 workers, for a total of
138,337 observations. Our extensive margin of productivity includes two approaches to measuring
that employees are available for work: attendance and net login time. Attendance is simply an
indicator of whether an employee comes to work on a given day. Net login time captures the
amount of time that an employee is logged into the computer system and available to work. Thus,
this measure captures the time spent actually working and excludes the time spent on breaks.9

For the intensive margin of productivity, we consider two measures of the intensity of time spent
conditional on being at work: calls per shift and calls per hour. These are distinct measures that
account for the intensive margin in two different ways. Calls per shift is the number of calls made
in a day, irrespective of the time at work, while calls per hour is based on calls conditional on total
time at work. It is important to measure both as they allow us to understand the nature of intensive
margin effects more precisely in the event that we also observe extensive margin effects. We index
both the intensive and extensive margin measures in order to have a single, standardized outcome
measure for each.

For air pollution data in the main analysis, we rely on measures maintained by the World Air
Quality Index Project WAQI (2021).10 The data itself comes from monitors managed by the Central
Pollution Control Board of India (CPCB). Specifically, we use daily data from the closest monitor
to each of the five call-center offices in the productivity data.

We report our results using two types of units for the pollutants in our sample. First, we bench-
mark the pollutants using within-sample standard deviations of those pollutants. Since the refer-
ence point for pollution should be zero (rather than the potentially harmful mean level of pollution
in a given environment), we simply divide the pollutants by their standard deviations. We also
report our results using concentrations, which are internationally comparable and objective mea-
sures.

8Our data begins in 2018 and ends before the COVID-19 pandemic begins in early 2020. For more details on this
data, see Section SA1.2.

9Hence, it is zero if the employee does not come to work. We note that Chang et al. (2019) have two measures of
time spent at work, all time spent at work and net login time. They assign the first of these to the extensive margin and
the second to the intensive margin. In our setting, it is more natural to categorize time spent at work as an extensive
margin measure and intensity of work measures, conditional on time spent, as informative regarding the intensive
margin.

10See Section SA1.1 for further details on the pollution and weather data. Our results are robust to alternative
pollution measures and sources as indicated in Section SA2.
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3.2 Distributions of observed pollutants

In order to better understand the implications of our results, we first examine the distribution of
the three pollutants in our sample.11 Pollution levels are exceptionally high compared to the global
average. For example, the mean concentration of PM2.5 across all of the city-worker-day observa-
tions in our sample is 66.54 µg/m3 (s.d. 68.28 µg/m3). These concentrations of PM2.5 are at least
10 times the WHO guideline for safe exposure, which is 5 µg/m3 average per year (WHO, 2021).
PM2.5 levels in our sample are also far above the global average for cities, which was 27 µg/m3

in 2018 (WHO, 2022). They are fairly representative of the yearly average for all cities in India,
however, which had a mean of 61.41µg/m3 in 2018.12 In addition, such concentrations are also
highly relevant for hundreds of millions of people living in cities across Sub-Saharan Africa and
South Asia, in particular. For example, in 2018, the average PM2.5 level in cities in Nigeria was
55.13 µg/m3, while for cities in Pakistan, it was 59.51 µg/m3 (WHO, 2022).

Unlike PM2.5, CO and O3 concentration averages in our sample do not exceed the WHO recom-
mended guidelines.13 Specifically, the mean CO concentration observed in our sample is 1.05
mg/m3 (s.d. 0.62 mg/m3), and the 99th percentile level is 3.04 mg/m3. In contrast, the WHO daily
average guideline for the 99th percentile of daily averages is 4 mg/m3.14 The average O3 level in
our sample is 51.57 µg/m3 (s.d. 30.77 µg/m3), which does not exceed the WHO guideline of an
average of 60 µg/m3 during peak season.15 The 90th percentile date-worker observation in our
sample, however, is 107.8 µg/m3, which does exceed the WHO day-level maximum guideline of
100 µg/m3. Thus, for at least 10% of the worker-date observations in our sample, O3 is above the
recommended levels. In general, however, we will be assessing the impacts of CO and O3 at lev-
els below those at which the WHO has thus far recognized as important for public health (WHO,
2021).

Our identification strategy relies on short-term variation in pollution measures. Thus, we examine
the extent of the granular variation in our sample both within and across individual pollutants. One
concern that may arise is whether these three pollutants are highly correlated in the short term,
and thus move in lock-step. This would make it challenging to separately identify the effects of
these three pollutants. We find evidence, however, of rich variation across the levels of the different
pollutants even within a single day. In addition, we examine variation within each pollutant from

11See Table SA1 for summary statistics and Figure SA1 for histograms of the three pollutants.
12For more on the representativeness of our data to India, see Section SA1.3.
13Despite issuing these guidelines, WHO does not track CO and O3, thus it is more difficult to benchmark these

measures in our sample to global averages.
14Note that CO measures are in milligrams per cubic meter rather than µg/m3.
15The WHO defines the peak season as the six months of the year during which O3 is at its highest levels.
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one day to the next, and find it to be meaningful as well.16

3.3 Estimation

Our estimation strategy relies on measuring the impact of daily variation in city-specific pollution
on worker-level outcomes. Thus, our main estimating equation,

Outcomeit = β0 + β1

∑
k

βk Pollutantct + Xt + αi + δt + εit (1)

includes controls as well as both worker-level and date fixed effects.17 The controls include at-
mospheric variables that can influence pollution, including temperature, precipitation, dew point
and cloud cover. The worker fixed effects in our model account for any differences in workers that
could be correlated with different pollution levels. Furthermore, the date fixed effects account for
differences in productivity across days that could also be correlated with pollution. For example,
if weekends have lower pollution, but workers tend to be less productive on weekends, the date
fixed effects would account for such patterns. Since these are date rather than day-of-the-week
fixed effects, they also account for a similar pattern for any holidays in our sample. Of course,
that particular pattern would actually work against the identification of significant effects. We also
account for autocorrelation in the error term over time (within worker) and on a given day across
workers using two-way clustering by worker and date.18

Our outcome measures include standardized indices for the intensive and extensive margin as well
as their unadjusted components. Although three of the four component measures of productivity
take on only positive values (net login time, calls per hour, and calls per shift), taking logs of these
measures does not generate the preferred specification in this setting. First, the residuals of the
regressions of the unadjusted measures are largely normally distributed.19 It is the distribution of
the residuals that is relevant to implementing a linear model, as opposed to the distribution of the

16See histograms of within-day pairwise variation across the individual pollutants (Figure SA4) and within-pollutant
variation across days (Figure SA5).

17Two-way fixed effect models have come under significant criticism in recent years in the context of difference-in-
difference framework (Roth et al., 2022). We do not think our setting, however, directly maps into those frameworks,
since we rely on different identifying assumptions, and thus do not rely on the parallel trends assumption. Furthermore,
this literature does not in general allow for a continuous treatment measure. An exception is Callaway, Goodman-
Bacon and Sant’Anna (2021), but that model does assume a pre-period in which to test parallel trends, and that set-up
is not relevant to our context.

18Our approach to clustering aligns with Chang et al. (2019), who have similarly structured data.
19See Figure SA6. Although there are a few outliers, the mass of the distribution is centered. Thus, this is more

appropriately addressed by winsorizing rather than taking logs. We confirm our results are robust to winsorizing in
Section SA2.
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dependent variable. Second, we cannot reject linearity of the relationship between pollution and
productivity.20 Thus, it is preferred to analyze the unadjusted outcome in this case as opposed to
a non-linear transformation of that outcome which imposes additional functional form assump-
tions.

4 Results

4.1 Mean impact of the pollutants

First, we examine the impact of pollution on the extensive margin index and rule out meaningful
impacts (Table 1, Panel A). The measured coefficients for each of the three pollutants are close to
zero, not statistically significant, and relatively precisely estimated. Specifically, focusing on the
estimates in which the pollutants are measured in standard deviations, the coefficient on PM2.5 is
approximately 0.039σ with a standard error of 0.028σ. Meanwhile, the coefficients on CO and O3

are only 0.004σ (s.e. 0.021) and 0.003σ (s.e. 0.017), respectively. The pattern of these findings
also holds for both the sub-components of the extensive margin index: whether someone comes to
work at all on a given day, and daily net login time. We thus do not find evidence that pollution
affects the extensive margin of productivity in our context.

Next, we examine the impact of the three pollutants on the intensive margin of productivity and
find meaningful and statistically significant reductions in productivity across all three pollutants
(Table 1, Panel A). We first measure these impacts in terms of standard deviations of observed
pollution concentrations in our sample. PM2.5 and CO have similar average impacts on intensive
margin productivity. A one standard deviation increase in PM2.5 or CO reduces the intensive mar-
gin productivity index by 0.145σ or 0.142σ, respectively. O3 has a smaller average impact of
−0.086σ, but that estimate is not statistically significantly different from those for PM2.5 and O3.
All three coefficients are significant at the 1% level, and the estimates are similar across the two
sub-components of the index.

We also report these results using concentrations to understand the objective impact of the pollu-
tants along an internationally comparable measure (Table 1, Panel B). The impact of an increase
of a single µg/m3 of PM2.5 on the intensive margin of productivity is −0.00213σ, while the ef-
fects of a 1 mg/m3 increase in CO and a 1 µg/m3 increase in O3 are −0.23014σ and −0.00281σ
respectively. Although the effects of the three pollutants have similar magnitudes when they are
measured in standard deviations, when measured in concentrations, the results for CO are two or-

20We present evidence for linearity in two ways. We plot a linear predictor along with semi-parametric distributional
impacts in Section 4.3. We also plot the predictors against the residuals. That the residuals are centered around a flat
line is consistent with the assumption of linearity (see Figure SA7).

9



ders of magnitude larger. This is because ambient concentrations of CO are measured in different
units to account for the typically higher observed concentrations of CO.

See Section SA2 for robustness checks, including winsorizing, alternative pollution measures, and
lagged pollution effects.

4.2 Main results in context

We examine an unadjusted component measure of the intensive margin productivity index, in order
to simplify comparisons with the literature. Focusing on calls per shift, a one standard deviation
increase in PM2.5 decreases calls per shift by 12.95 calls or 11.8%.21 In addition, a one standard
deviation increase in CO or O3 reduces calls per shift by 10.8% or 6.0% respectively. The paper
most closely related to this one is Chang et al. (2019), and in fact, they use calls per shift as their
main outcome. Still, it is difficult to directly compare our results to theirs, since they use an API-
based measure of PM10 as their sole measure of pollution. They find that a 10-point increase in that
API, which is 24.1% of a standard deviation in their setting, decreases calls per shift by 0.35%.
Thus, a one standard deviation increase in pollution in their setting should reduce calls per shift by
1.45%. That said, the standard deviation of API in their setting is a smaller percentage of its mean
compared to the most closely analogous measure of pollution in our setting, PM2.5. Thus, these
standard deviations are not directly comparable.

Nonetheless, it is likely that we observe larger effects in this study, even when only considering
the effect of PM2.5, rather than the combined effect of all three pollutants. This is perhaps not
surprising since in contrast to Chang et al. (2019), we are able to measure the relevant form of
particulate matter more directly through a concentration-based measure of PM2.5. As they indicate,
PM2.5 is the form of particulate matter that is most likely to affect productivity in these types of
workplaces, and thus in the context of this research question, PM10 is a weakened proxy measure
for it. Furthermore, API is not an immutable, scientific measure such as concentration, but a
subjective assessment of harm from a given concentration based on existing research (See Section
SA1.1). In addition, it is possible that either workers or managers are less able to adapt to pollution
in our setting relative to Chang et al. (2019)’s call center setting (Adhvaryu, Kala and Nyshadham,
2022).

Finally, we note that we find that CO has a meaningful impact on productivity despite the fact that
CO levels in our setting are generally below the recommended WHO guidelines. These results,
however, are generally aligned with other recent work on the effects of CO pollution in the U.S.,

21It is not possible to calculate these percentages for the index since the mean is zero. Since the relative magnitude
of the results for calls per shift and calls per hour are similar, this analysis could be done for either.
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although such studies benchmark to EPA rather than WHO guidelines. In particular, Schlenker
and Walker (2016) and Archsmith, Heyes and Saberian (2018) identify harmful effects of ambient
CO on overall health and the productivity of umpires, respectively, at levels well below relevant
guidelines.

4.2.1 Validity of the intensive margin results

A potentially important consideration in examining the intensive margin effects in this setting is
whether there may be selection into the intensive margin sample. Specifically, if employees who
show up on high pollution days are either more or less productive than the employees who show
up on low pollution days, that could have important implications in interpreting the results. This
type of selection does not appear to be a significant issue in this setting. In particular, there are no
impacts on the extensive margin here, which means that the same percentage of employees show
up and spend the same amount of time working regardless of pollution levels. Thus, under the
common assumption of monotonicity of selection, this would be sufficient to determine that we do
not observe selection on this margin.22

4.3 Distributional impact of pollutants

To better understand the role of pollution in reducing productivity, we examine the distributional
impact of the three pollutants on productivity. First, we examine impacts from binned measures
of the pollutants denominated in within-sample standard deviations, relative to a reference bin,
which includes pollution levels that are less than or equal to one standard deviation above zero

pollution levels. This exercise allows us to make an initial assessment about whether the effects
are concentrated in one part of the distribution and whether there are differences in the impacts
across the three pollutants. We confirm that even when examining the entire distribution, we do
not find any meaningful or consistent effects of pollution on the extensive margin (Figure 1, Panel
A). Along the intensive margin, we find what appear to be increasing effects across the distribution
for all three pollutants (Figure 1, Panel B). In addition, we do not find evidence that the impact of
the three pollutants on productivity differs at any point across the distribution.23

We also examine the distributional effects of the concentration-based measures of pollution on the

22For example, the bounding approach proposed by Lee (2009), a widely-used selection correction, relies on this
assumption. Since there are no meaningful differences in the extensive margin across the distribution of pollution
here, the upper and lower Lee bounds would be approximately equivalent to each other and the treatment estimate
of interest. In addition, our treatment variable is continuous, so it would not be straightforward to implement such
bounds.

23Although the standard errors in the graph overlap, it does not necessarily imply that we cannot reject that coeffi-
cients are the same. Instead, we conduct pairwise F-tests across the coefficients on the pollutants within each bin and
do not reject the null hypothesis that these coefficients are the same (not reported).
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intensive margin productivity index in order to further comparisons across settings and examine the
linearity of response curves (Figure 2). Here, the first non-omitted bin for each pollutant includes
the median and the remaining bins are designed to particularly examine the upper half of each
distribution. We do not reject that the effects are linear for any of the three pollutants, even though
the highest bin for each pollutant was chosen to isolate relatively extreme days and thus is likely
to identify non-linearities.24 If the effects are in fact linear, the bin in which the effects become
significant is simply driven by statistical power.

4.4 Overall impacts and policy application

Next, we measure the combined effects of the three pollutants in our sample. The overall average
reduction in productivity attributable to pollution exposure is -0.38σ (Figure 3). This is estimated
by relying on the combinations of pollutants and their frequency as observed in our data. This total
productivity loss due to pollution is largely driven by carbon monoxide at 58% of the total, with
the remaining damages allocated equally to PM2.5 and O3 (21% each). Although the magnitude of
the effects on productivity from PM2.5 and CO are similar across their respective distributions, days
with relatively high levels of CO are more common than days with relatively high levels of PM2.5

in our data.25 This suggests that policies that aim to reduce CO directly could have meaningful
impacts.

Thus, we consider the implications of our results for policies and regulations designed to reduce
the harm from air pollution. In particular, some major policy initiatives focus explicitly on PM2.5,
while our findings indicate the importance of CO and O3 in reducing productivity. An example of
such an initiative that is highly relevant to our context is India’s National Clean Air Programme
(NCAP). Launched in 2019, it identified more than 100 cities in India as being in “non-attainment,”
and forced each to undertake a series of actions to quantify and ameliorate local air quality, and
specifically reduce PM2.5 levels by 20-30% by 2024 relative to 2017 levels (Ganguly, Selvaraj and
Guttikunda, 2020).

We consider the implications of NCAP for reducing the impact of pollution on productivity relative
to a similar policy that aims to reduce all three pollutants by 20% (Figure 3).26 We conduct this
simple exercise by estimating a counterfactual level of productivity lost to pollution in a setting

24There is less than 8% of the sample in that bin for each of the pollutants.
25See Section SA1.3 for a discussion of the representativeness of our data.
26All pollutant reductions are simulated as equal percentage reductions for every day in the sample. Given that our

estimates suggest linearity, alternative approaches are unlikely to substantially change the main spirit of our results,
and reduction approaches that focused specifically on high-pollution days would lead to even larger advantages for
programs that targeted CO and O3 in addition to PM2.5, as these pollutants have more relatively high-pollution days
for which percentage reductions would lead to larger reductions in absolute levels.
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in which the NCAP had been implemented before our study period began, and PM2.5 was 20%
lower each day of our sample. As a benchmark, we consider the counterfactual setting in which
reductions in pollution driven by the NCAP only affect PM2.5, and the policy has no spillover
effects. In that estimate, the negative impact of pollution on productivity is modestly reduced to
-0.36σ from a baseline level -0.38σ. Of course, reducing PM2.5 is likely to lead to some spillover
reductions in CO and O3. Thus, we next estimate those potential spillovers using the correlation in
the three pollutants observed within our data.27 After accounting for potential beneficial spillovers
to CO and O3 using this approach, we estimate that NCAP could reduce the damages to production
by a total of -0.34σ, a 12% reduction relative to the baseline without NCAP.

If NCAP instead required that PM2.5, CO, and O3 were all reduced by 20%, then the impact of
pollution on productivity would be reduced to -0.29σ, a 24% reduction relative to the baseline.
Whether this additional reduction would be cost-effective is beyond the scope of this paper. That
calculation would depend on any additional abatement or enforcement costs from adding these two
pollutants to the policy compared to the returns to increasing productivity estimated here as well
as any additional health benefits that are specific to reductions in CO and O3.

5 Conclusion

This paper contributes to the emerging and important literature on the impact of pollution on pro-
ductivity. We exploit daily variation in pollution and productivity across five Indian cities to esti-
mate the individual and combined effects of PM2.5, CO and O3 on both the extensive and intensive
margins of productivity. We find no effects on the extensive margin and substantial effects on the
intensive margin of productivity. Specifically, a one standard deviation increase in PM2.5, CO and
O3 leads to significant reductions in intensive margin productivity of 0.145σ, 0.142σ and 0.086σ,
respectively. Our analysis of the combined effects of the pollutants finds that CO is responsible for
58%, and PM2.5 and O3 each for 21%, of the pollution-driven reductions in productivity in our sam-
ple. Since the call center industry is one of the largest private employers in India and contributes
significantly to the national income, these productivity effects are likely to be highly relevant to the
overall economy and the well-being of workers.

Our findings suggest that the overall impact of pollution on productivity is substantially larger
than previously shown in the literature and is driven by multiple pollutants. These results have
broad policy implications for the design and implementation of environmental protection laws,
particularly in developing countries. Existing environmental policies and programs may be focus-

27Of course these correlations across pollutants are not known to be determined by changes in pollution policy, so
it is not entirely clear if they would be replicated under NCAP.
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ing disproportionately on particulate matter, and underweighting or ignoring the damaging effects
of other pollutants. This study indicates that strengthening local regulations on multi-pollutants,
particularly carbon monoxide, should be carefully considered.
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Figure 1: Semi-parametric effects in standard deviations

(a) Panel A: Extensive margin

(b) Panel B: Intensive margin

Notes: Estimates in each panel are from a single, separate regression (see Table SA7). Units of the outcome
and pollution variables are standard deviations in the extensive margin sample. For the extensive margin
index n=138,337. For the intensive margin index n=94,679. Dots indicate point estimates of the coefficient
on the indicator for the daily average pollutant level falling in the indicated bin. Each of the bins has a
width of one standard deviation for that pollutant. All estimates are based on specifications which also
include quadratic controls for temperature, precipitation, humidity, and cloud cover, as well as worker and
date fixed effects. Whiskers indicate 95% confidence intervals based on robust standard errors two-way
clustered by worker and date.
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Figure 2: Semi-parametric effects in concentrations on intensive margin index

Notes: Estimates in three plots are from a single regression, n=94,679 (see Table SA8). The outcome mea-
sure is the intensive margin productivity index. Dots indicate point estimates of indicator for the pollutant
measure falling in the indicated bin. The lowest bin is omitted for each pollutant, so all estimates are rel-
ative to the lowest concentration category for the pollutant. Estimates are based on the main model which
also includes quadratic controls for temperature, precipitation, humidity, and cloud cover, as well as worker
and date fixed effects. Shading indicates 95% confidence intervals based on robust standard errors two-way
clustered by worker and date. The additional line on each panel has the slope of the linear estimated effect
from the main specification reported in Column 4 Panel B of Table 1 and passes through the point (0,0).
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Figure 3: Damages by regulatory approach

Notes: Damage estimates are averages based on pollution coefficients from our main binned specification
using the intensive margin productivity index as the outcome variable as reported in Figure 2. The baseline
case represents the observed exposure levels in our data. "w/ NCAP" reduces observed exposure levels of
PM2.5 by 20% for every observation in our sample. "w/ NCAP & Spillovers" represents exposures equiv-
alent to an across-the-board 20% reduction in PM2.5, and reductions in CO and O3 equal to the expected
reductions in these pollutants given the 20% reduction in PM2.5 based on the correlations of pollutant levels
in our sample: 0.3612 for CO and 0.1478 for O3. The "w/ Multi-Pollutant NCAP" is a scenario in which
each observed level of all three pollutants is assumed to have been reduced by 20% relative to the observed
level in our data. Damages are not reduced proportionally to the reduction in exposure levels because the
binned specification allows for non-linear relationships between exposure levels and damages.
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Table 1: Average effects of pollutants on productivity

Extensive margin Intensive margin

(1) (2) (3) (4) (5) (6)

EM index At work
Net login

time
IM index

Calls per
shift

Calls per
hour

Panel A: Pollutants in standard deviations

PM2.5 (SD) 0.039 0.019 8.559 -0.145 -12.950 -1.268
(0.028) (0.012) (6.846) (0.034) (2.941) (0.310)

CO (SD) -0.004 -0.004 0.292 -0.142 -11.843 -1.323
(0.021) (0.009) (5.148) (0.036) (3.007) (0.340)

O3 (SD) 0.003 -0.005 4.283 -0.086 -6.599 -0.872
(0.017) (0.008) (4.245) (0.029) (2.489) (0.266)

p-value: βPM = βCO 0.264 0.188 0.385 0.945 0.801 0.910
p-value: βO3 = βCO 0.801 0.931 0.561 0.219 0.167 0.284

Panel B: Pollutants in concentrations

PM2.5 (µg/m3) 0.00057 0.00027 0.12536 -0.00213 -0.18966 -0.01858
(0.00041) (0.00018) (0.10026) (0.00050) (0.04308) (0.00453)

CO (mg/m3) -0.00690 -0.00696 0.47441 -0.23014 -19.2388 -2.14862
(0.03403) (0.01512) (8.36261) (0.05848) (4.88507) (0.55221)

O3 (µg/m3) 0.00010 -0.00018 0.13920 -0.00281 -0.21449 -0.02836
(0.00057) (0.00026) (0.13798) (0.00094) (0.08089) (0.00866)

Mean Dep. Var. 0 0.70973 334.502 0 109.661 12.777
SD Dep. Var. 1 0.45389 242.377 1 86.308 9.281

N 138,337 138,337 138,337 94,679 94,679 94,679

Notes: All regressions include worker and date fixed effects. Standard errors that are two-way clustered by worker and date are reported in
parentheses. Indexed outcomes are standardized such that the in-sample mean is zero and standard deviation is one. Pollutants in the top panel
are measured in standard deviations relative to zero pollution levels. All estimates include quadratic controls for temperature, precipitation,
humidity, and cloud cover.
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More than particulate matters:
Pollution and productivity in Indian call centers
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Supplemental Appendix for Online Publication

SA1 Data

SA1.1 Pollution and weather data

Our pollution data comes from monitors that are maintained by the Central Pollution Control Board
of India (CPCB), though our main specifications use measures maintained by the World Air Quality
Index (WAQI) Project and accessed from the Air Quality Historical Data Platform. Pollution levels
are assigned from the closest monitor to each of the five call-center offices in the productivity
data.28 We rely on the WAQI data since it has been cleaned.29 We demonstrate that our results are
robust to alternative pollutants, including the raw CPCB data, in Section SA2 below.

We use concentration measures for PM2.5, CO and O3 because ambient concentrations are an ob-
jective, scientific measure of pollution.30 In contrast, pollutant-specific AQI measures are scaled
based on a subjective assessment of the harm caused by different concentration levels of a given
pollutant. Thus, different AQI measures can be constructed by different agencies, and rely on
different research. They can have a nonlinear relationship to concentrations given agencies’ as-
sumptions and calibration methods. Even within agencies, AQI measures can change as they are
updated based on new research. Furthermore, since we are continuing to learn more about the
impacts of pollution, it is not possible to have a fully accurate AQI at this point.

Weather data comes from the ERA5 (cloud cover) and ERA5-Land (all other weather variables)
data sets, which are maintained by the European Centre for Medium-Range Weather Forecasts
(ECMWF) (Hersbach, 2023; Muñoz Sabater, 2019). These are hourly, gridded datasets (0.25°x
0.25°for ERA5 and 0.1°x 0.1°for ERA5-Land), and we assign daily average weather conditions to
each call center office based on the closest grid-point to each.

28The five pollution monitors from which data are used for this project are: i) IGSC Planetarium Complex, Patna -
BSPCB (Bihar), ii) Ashok Nagar, Udaipur - RSPCB (Rajasthan) iii) Deshpande Nagar, Hubli - KSPCB (Karnataka),
iv) Bandra, Mumbai - MPCB (Maharashtra) v) Sector 62, Noida - IMD (Uttar Pradesh).

29See https://aqicn.org/faq/2015-03-15/air-quality-nowcast-a-beginners-guide/ for details.
30We obtain these concentrations by converting from air quality index (AQI) values to concentration measures based

on the guidance in U.S. EPA technical documents (EPA, 2018).
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SA1.2 Call center data

We worked with two business process outsourcing companies (BPO) companies, called Call-2-
Connect and Five Splash. The individual processes included in this study were originally selected
for a field experiment on gender peer effects in the workplace (Batheja, 2019). That said, this
dataset includes almost three times the number of workers as the experimental dataset. This is
because we have pre- and post-experiment data from some processes for several months and there
is turnover within processes. In other cases, however, the processes were short term, and thus, we
do not have additional data. In addition, the experiment had a staggered launch, and began in one
call center firm later than the other. Thus, we do not have data on all cities across the same range
of months.31 Nonetheless, there is substantial evidence that this data is broadly representative as
discussed below (see Section SA1.3.)

The experiment randomized the gender composition of teams within processes. Thus, processes
were selected into the experiment that met the requirements of the experimental design. In par-
ticular, the experiment design required constructing at least three teams (two mixed and one same
gender team). So, only large processes with a size of at least 60 workers were selected for the
experiment and therefore this analysis.

We included all the data available from all experiment processes from the beginning of the time
we worked with these two companies up until March 1, 2020. We never analyzed data collected
after this date, since we prefer to avoid analyzing data collected during the pandemic. We expect
that this data would have substantial issues as the call centers abruptly shifted to work from home.
Furthermore, the relationship between pollution and productivity may change, and overall pollu-
tion is expected to be much lower during this period. Our full sample for this study includes 2,777
workers across Hubli (17.72%), Mumbai (10.84%), Noida (20.38%), Patna (16.78%) and Udaipur
(34.28%).

SA1.3 Representativeness of the data

Although we do not have productivity data for all dates in all cities (Figure SA2), the available
indications suggest that our sample is largely representative of pollution levels in India, and thus

31In the first phase, between December 2018 to April 2019, Call-2-Connect employees (from Mumbai, Noida and
Patna) were randomly allocated into teams using a matched pair randomization method based on past productivity data.
In the second phase, between May 2019 and September 2019, employees from FiveS Digital (from Udaipur and Hubli)
were made part of the experiment. The only exception is a process in Patna from Call-2-Connect, which was included
in the experiment between May and August in 2019. To conduct the randomization, pre-experiment productivity data
was collected and used. Therefore, we include the additional data collected as part of the randomization process
in this analysis, along with the data used in the experiment. For some of the processes, we could access data for
post-experiment additional months, especially from processes in FiveS Digital.
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captures its likely overall impact on the BPO sector in India. As discussed in the main text, the
average level of PM2.5 across all of the city-worker-day observations in our sample is 66.54 µg/m3.
This is similar to the yearly average for all cities in India, which had a mean of 61.41 µg/m3 in
2018 and 55.57 µg/m3 in 2019. The distance between these means is small compared to their
distance from the global average, which was 27 µg/m3 in 2018 (WHO, 2022).32 Unfortunately,
the WHO data does not include the same global averages for the other pollutants of interest in this
study or for additional moments of the data.

Thus, we also compare our own pollution measures for the city-day observations for which we
have productivity data to those measures for all day-level observations across the entire period of
our study (2018 through February 2020) for the cities in our study. The comparison of these two
distributions indicates that the pollution levels captured by the days in our sample are remarkably
similar to the full distribution of days in those cities (Figure SA3). Although these distributions
do indicate that there is a small handful of very high CO and O3 that are not captured in our
sample, having productivity data for these few outlier days would be unlikely to substantively
change our results. Furthermore, we find in this study that PM2.5 contributes a relatively modest
share of the pollution damages in our sample due to the high concentration of low to moderate
PM2.5 days. These distributions suggest that, if anything, we may be undercounting such days.
Thus, the comparison of these distributions further confirms our results regarding the importance
of CO to the share of damages.

SA2 Robustness Analysis

SA2.1 Additional analysis for main pollutant outcomes

Table SA2 presents results which provide additional context for the main results presented in Ta-
ble 1. In particular, these robustness checks confirm the independence of the impacts driven by
the three pollutants in two ways. In particular, Panel A presents a specification that only includes
PM2.5 and does not include the other pollutants. This is to provide a comparison with other work
in the literature that only examines the impact of PM2.5 on productivity. We find that this speci-
fication does not change the estimated effect of PM2.5 on productivity relative to our main results
(reproduced in Panel B for convenient comparison).

In Panel C, we include the pairwise interaction effects of the pollutants in the main results from
Table 1. We do not find meaningful evidence of interactions among the three pollutants, as none of

32Data for 2020 is not available, and it is a small portion of our sample. It is not surprising that our average is
slightly higher than the average for India, since Noida (near Delhi) is 20% of our sample and has higher pollution
levels than many Indian cities.
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the interactions are significant or have coefficients of meaningful size. Furthermore, adding these
interactions does not have a substantive effect on the magnitude of the pollutant coefficients relative
to the original estimates. While the coefficients on O3 do lose some significance, the coefficients
on PM2.5 and CO maintain their statistical significance (as well as their magnitudes).

Table SA3 reports the main specification including three days of lagged pollutant levels. We do
not find any consistent pattern of lagged effects for any of the three pollutants.

SA2.2 Alternative pollution measures

Table SA4 presents three robustness checks on our pollution measures. In Panel A, we present
our results using the data downloaded directly from the CPCB. These data are much noisier than
our main data, since the WAQI data are cleaned and processed. Thus, the WAQI data presents a
more coherent picture of pollutant levels than do the raw data directly from CPCB (CPCB, n.d.).
Nevertheless, our main results are comparable, though somewhat attenuated, when estimates are
based on pollutant measures obtained directly from CPCB. We also consider specifications with
PM2.5 data from Berkeley Earth, while keeping our main measures of CO and O3 from WAQI
(Panel B). Notably, these results are remarkably similar to our original estimates.

Finally, we confirm that our results are not being driven by any outliers. The maximum values
for each pollutant are substantially higher than the 99th percentile values (Table SA1). Thus, in
Panel C, we report the main results from Table 1, but with all three pollutants winsorized at the
99th percentile. We find that the coefficients on the winsorized regressions are remarkably similar
to our main specifications, suggesting our results are not primarily driven by outliers. This is not
surprising, given that we find effects across the distribution in our non-parametric results.

SA2.3 Disaggregated results

We consider two sets of disaggregated results. Table SA5 presents the results disaggregated by
city. This analysis splits our sample five ways and thus statistical power is substantially attenuated.
Furthermore, we cannot use date fixed effects in this analysis since we are not able to exploit within
date variation for this analysis. Thus, the purpose of this analysis is not to separately estimate
effects for each city, since these specifications are not well-suited for such estimations.

Thus, this analysis is simply to confirm that the patterns of impacts are broadly similar across
locations even though we expect significant noise and even some sign changes given the limits of
identification in this approach. In that sense, this analysis is reassuring in that we do not find that
a single city is entirely driving our overall results. In addition, the coefficients are generally the
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expected sign. Of the sixteen statistically significant coefficients on the intensive margin outcomes,
for example, only one is positive, and it is only marginally significant.

We also analyze the results separately for inbound and outbound processes (Table SA6). Of course,
given that we are splitting our sample, statistical power is attenuated and not all results are statisti-
cally significant. Nonetheless, we confirm with this analysis that there are pollution effects on both
process types.

SA2.4 Joint impact of the pollutants

Finally, we consider the total impact of pollution and the contribution of each pollutant to produc-
tivity loss (Figure SA8). To calculate the combined impact of the pollutants observed in our data,
we add together the binned non-parametric estimates of the impacts of the pollutants for each of
the observed combinations of the three pollutants in our data at the city-date level.33 Since a high
pollution day for one pollutant is not necessarily a high pollution for another (see Section 3.2), we
report these results framed separately by the distribution of each pollutant.

Examining these three distributions demonstrates the significant damage to productivity induced
by the combined effect of these three pollutants. It is not surprising that on days that are in the
upper tail of the distribution for a given pollutant that pollutant contributes a relatively large share
of the lost productivity.34 Overall the distributions of productivity loss for the three pollutants are
broadly similar. In the bins including the median day for each of the pollutants, the total damages
range from -0.32σ to -0.46σ, while for a day in the bin that includes the 80th percentile day for each
of the pollutants, the total damages range from -0.56σ to -0.76σ. These impacts are substantive
from a policy perspective.

33The impacts of pollutants are estimated in Figure 2. We do not find interaction effects across the pollutants as
indicated in Section SA2.

34Because our specification omits the lowest bin for each pollutant, there is no estimated damage from each pollutant
at the low end of its owndistribution.
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Figure SA1: Pollutant histograms

Notes: Histograms represent counts of the number of worker-days that are observed in the full at a given
pollution level in the data. Histogram bin widths are 8, 100, and 5 µg/m3 for PM2.5, CO, and O3 graphs,
respectively.

Figure SA2: Sample dates by city

Notes: Bars indicate dates of observations used in the main sample. Short gaps are due to missing pollutant
values.
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Figure SA3: Pollutant distributions for analytic and full samples

(a) Histograms

(b) K-densities

Notes: Depicts densities of pollution levels for city-days in our analytic sample and days in the five cities
we study over the full period of our sample from 2018 to February 2020. Panel A depicts histograms of
bin widths are 20 µg/m3, 1 mg/m3, and 20 µg/m3 for PM2.5, CO, and O3 graphs, respectively. Panel B
represents k-densities.
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Figure SA4: Differences in same-day pollutant levels

Notes: Each graph represents the differences between the measures of the two indicated pollutants ex-
perienced by a worker on a date in the full sample. Pollutants are measured in standard deviations and
winsorized at the 99th percentile before differencing.
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Figure SA5: Differences across contemporaneous and one-day lag pollution levels

Notes: Each graph represents the differences between the measures of the contemporaneous and one-day-
lag levels of the indicated pollutant experienced by a worker on a day in our extensive margin sample.
Pollutants are measured in standard deviations and winsorized at the 99th percentile before differencing.
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Figure SA6: Residuals from the main specification by intensive margin outcome

Notes: Each graph represents the distribution of the residuals that result from estimates in Columns 4-6 of
Panel B of Table 1 for the indicated outcome variable.
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Figure SA7: Residuals graphed against pollutant predictors

Notes: Each panel represents the distribution of the residuals that result from estimates in Columns 4-6 of
Panel B of Table 1 for the indicated outcome variable. Each point is plotted with 2% opacity. Orange lines
denote the best linear fit of the data in each panel.
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Figure SA8: Combined productivity losses from PM2.5, CO, and O3

Notes: Productivity losses are estimated using the intensive margin productivity index and the binned specifi-
cation from Figure 2. Estimates include quadratic controls for temperature, precipitation, humidity, and cloud
cover, as well as worker and date fixed effects. The total productivity losses are estimated as the average of
the dot product between the vector of pollutant coefficient estimates and the corresponding vector of variable
values for each worker-day observed in our data. A12



Table SA1: Summary statistics

Mean SD Min p10 Median p90 p99 Max

Pollutants
PM2.5 (µg/m3) 66.54 68.28 5.04 21.61 43.22 163.62 307.01 474.66
CO (mg/m3) 1.05 0.62 0.10 0.30 0.91 1.72 3.04 4.96
O3 (µg/m3) 51.57 30.77 2.12 19.05 44.45 107.8 127.6 222.65

Weather controls
Avg. Daily Temp. (◦C) 24 5.62 11.85 15 25.09 30.23 35.66 38.98
Total Daily Precip. (m) 0.03 0.08 0 0 0 0.11 0.33 0.95
Dew Point (◦C) 16.82 6.1 0.52 8.2 17.1 24.05 26.86 28.14
Cloud Cover (%) 0.42 0.36 0 0 0.32 0.98 1 1

City-Days: 1,224 Workers: 2,777 Worker-Days: 138,337
Notes: Extensive Margin Sample includes non-work days as long as they are both preceded and followed by work days

and are not part of a stretch of non-work days that is 6 days or longer. Only observations for which local measures of
temperature, PM2.5, CO, and O3 are available are included in the analysis.
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Table SA2: Individual and interacted pollutant measures

Extensive margin Intensive margin

(1) (2) (3) (4) (5) (6)

EM index At work
Net login

time
IM index

Calls per
shift

Calls per
hour

Panel A: Model with only PM2.5

PM2.5 (µg/m3) 0.00055 0.00031 0.10810 -0.00238 -0.20436 -0.01913
(0.00039) (0.00015) (0.08395) (0.00049) (0.03617) (0.00389)

N 138,337 138,337 138,337 94,679 94,679 94,679

Panel B: Main Estimates Repeated for Ease of Comparison

PM2.5 (µg/m3) 0.00057 0.00027 0.12536 -0.00213 -0.18966 -0.01858
(0.00041) (0.00018) (0.10026) (0.00050) (0.04308) (0.00453)

CO (mg/m3) -0.00690 -0.00696 0.47441 -0.23014 -19.2389 -2.14862
(0.03403) (0.01512) (8.36261) (0.05848) (4.88507) (0.55221)

O3 (µg/m3) 0.00010 -0.00018 0.13920 -0.00281 -0.21449 -0.02836
(0.00057) (0.00026) (0.13798) (0.00094) (0.08089) (0.00866)

N 138,337 138,337 138,337 94,679 94,679 94,679

Panel C: Pollutants interacted

PM2.5 (µg/m3) 0.00117 0.00054 0.25758 -0.00298 -0.26380 -0.02630
(0.00076) (0.00035) (0.17799) (0.00093) (0.08144) (0.00839)

CO (mg/m3) -0.04836 -0.01508 -14.69258 -0.27782 -24.4150 -2.46563
(0.07466) (0.03310) (18.30665) (0.11104) (9.34961) (1.04075)

O3 (µg/m3) 0.00065 0.00015 0.22603 -0.00318 -0.23279 -0.03327
(0.00124) (0.00060) (0.28216) (0.00201) (0.16751) (0.01901)

PM2.5 (µg/m3)× CO (mg/m3) 0.00009 0.00001 0.03641 0.00037 0.03858 0.00258
(0.00031) (0.00014) (0.07619) (0.00041) (0.03497) (0.00384)

PM2.5 (µg/m3)× O3 (µg/m3) -0.00001 -0.00000 -0.00293 0.00000 0.00020 0.00005
(0.00001) (0.00000) (0.00162) (0.00001) (0.00091) (0.00010)

CO (mg/m3) × O3 (µg/m3) 0.00045 0.00010 0.15568 -0.00005 -0.00311 -0.00059
(0.00072) (0.00033) (0.17165) (0.00127) (0.10645) (0.01191)

N 138,337 138,337 138,337 94,679 94,679 94,679

Notes: All regressions include worker and date fixed effects. Standard errors clustered by worker and date are reported in parentheses. Index outcomes are
standardized such that the in-sample mean is zero and the standard deviation is one. All estimates include quadratic controls for temperature, precipitation,
humidity, and cloud cover.

A14



Table SA3: Main estimates with lagged pollution

Extensive margin Intensive margin

(1) (2) (3) (4) (5) (6)

EM index At work
Net login

time
IM index

Calls per
shift

Calls per
hour

PM2.5 (µg/m3)
Day -3 0.00081 0.00035 0.19468 0.00065 0.05845 0.00569

(0.00055) (0.00026) (0.12805) (0.00048) (0.04026) (0.00450)
Day -2 -0.00081 -0.00032 -0.21423 -0.00075 -0.06589 -0.00671

(0.00055) (0.00024) (0.13683) (0.00084) (0.07052) (0.00799)
Day -1 -0.00031 -0.00015 -0.06391 0.00010 0.00299 0.00152

(0.00056) (0.00025) (0.14143) (0.00095) (0.08250) (0.00862)
Day 0 0.00060 0.00024 0.15604 -0.00172 -0.15018 -0.01532

(0.00058) (0.00026) (0.14679) (0.00071) (0.06182) (0.00649)

CO (mg/m3)
Day -3 0.03914 0.00713 14.59895 -0.15303 -12.27600 -1.48426

(0.04603) (0.02096) (11.44398) (0.06829) (5.78086) (0.64080)
Day -2 -0.01136 -0.00315 -3.65905 -0.10881 -8.92320 -1.03435

(0.04954) (0.02394) (11.35266) (0.09155) (7.73923) (0.85292)
Day -1 -0.02814 -0.00656 -9.73490 -0.09474 -7.99692 -0.87624

(0.06535) (0.03041) (15.45230) (0.09195) (8.05455) (0.83643)
Day 0 0.01720 0.00513 5.35152 -0.12015 -10.38409 -1.08512

(0.04400) (0.01948) (11.02443) (0.05761) (4.74511) (0.55715)

O3 (µg/m3)
Day -3 0.00054 0.00025 0.11939 -0.00080 -0.06896 -0.00727

(0.00078) (0.00036) (0.18678) (0.00105) (0.08780) (0.01000)
Day -2 0.00059 0.00011 0.22172 0.00013 0.03268 -0.00114

(0.00098) (0.00047) (0.22238) (0.00125) (0.10535) (0.01169)
Day -1 -0.00043 -0.00013 -0.13420 -0.00164 -0.15001 -0.01391

(0.00090) (0.00043) (0.20446) (0.00136) (0.11571) (0.01265)
Day 0 -0.00028 -0.00031 0.03037 -0.00125 -0.08155 -0.01411

(0.00076) (0.00035) (0.17854) (0.00112) (0.09501) (0.01046)

N 122,693 122,693 122,693 83,197 83,197 83,197

Notes: All regressions include worker and date fixed effects. Standard errors clustered by worker and date are reported in
parentheses. Index outcomes are standardized such that the in-sample mean is zero and the standard deviation is one. All
estimates include quadratic controls for temperature, precipitation, humidity, and cloud cover for days -3, -2, -1 and 0. Fewer
observations are available for these analyses due to missing pollution data in lagged days.
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Table SA4: Main estimates using alternative pollutant measures

Extensive margin Intensive margin

(1) (2) (3) (4) (5) (6)

EM index At work
Net login

time
IM index

Calls per
shift

Calls per
hour

Panel A: Pollutant measures from CPCB

PM2.5 (µg/m3) 0.00033 0.00015 0.06272 -0.00149 -0.15026 -0.01469
(0.00041) (0.00016) (0.09551) (0.00057) (0.04454) (0.00495)

CO (mg/m3) 0.00328 -0.00655 0.28448 -0.20117 -12.5115 -1.43000
(0.03132) (0.01241) (6.99523) (0.05715) (3.83317) (0.42254)

O3 (µg/m3) -0.00013 -0.00015 0.22775 -0.00205 -0.15966 -0.02553
(0.00090) (0.00038) (0.19861) (0.00101) (0.07241) (0.00820)

N 138,226 165,882 165,882 94,584 113,551 113,551

Panel B: PM2.5 Measure from Berkeley Earth

PM2.5 (µg/m3) 0.00150 0.00053 0.42572 -0.00336 -0.28286 -0.03120
(0.00063) (0.00029) (0.14812) (0.00104) (0.09095) (0.00942)

CO (mg/m3) -0.01228 -0.00777 -1.62786 -0.23030 -19.3513 -2.13941
(0.03498) (0.01559) (8.56059) (0.06634) (5.53888) (0.62556)

O3 (µg/m3) 0.00012 -0.00015 0.14039 -0.00272 -0.20568 -0.02780
(0.00058) (0.00026) (0.14493) (0.00101) (0.08677) (0.00923)

N 123,586 123,586 123,586 84,532 84,532 84,532

Panel C: Pollutant measures winsorized at 99th-Percentile

PM2.5 (µg/m3) 0.00043 0.00020 0.09489 -0.00255 -0.22608 -0.02242
(0.00041) (0.00018) (0.10020) (0.00053) (0.04560) (0.00480)

CO (mg/m3) 0.00425 -0.00241 3.28536 -0.22910 -19.2160 -2.13192
(0.03345) (0.01500) (8.24806) (0.06212) (5.20599) (0.58433)

O3 (µg/m3) 0.00006 -0.00020 0.13398 -0.00280 -0.21328 -0.02837
(0.00058) (0.00027) (0.14165) (0.00091) (0.07739) (0.00839)

N 138,337 138,337 138,337 94,679 94,679 94,679

Notes: All regressions include worker and date fixed effects. Standard errors clustered by worker and date are reported in parentheses.
Index outcomes are standardized such that the in-sample mean is zero and standard deviation is one for the main sample, as such only
observations included in the main sample have EM and IM Index values. This results in different observation counts for the indexed
values when the considered pollutants expand the sample. Model in Panel A includes only the concentration of PM2.5 (and controls),
excluding any measures of CO or O3. Panel B is based on pollutant measures directly from the website of the Central Pollution Control
Board of India. Panel C replaces the main measure of PM2.5 with a gridded measure produced by Berkeley Earth (CO and O3 measures
are those from the main analysis. Panel D repeats the main, concentration-based analysis with each pollutant measure winsorized at the
99th percentile. All estimates include quadratic controls for temperature, precipitation, humidity, and cloud cover.
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Table SA5: Main estimates by city

Extensive margin Intensive margin

(1) (2) (3) (4) (5) (6)

EM index At work
Net login

time
IM index

Calls per
shift

Calls per
hour

Panel A: Hubli

PM2.5 (µg/m3) 0.00092 0.00055 0.13519 -0.00127 -0.08614 -0.01410
(0.00103) (0.00050) (0.22558) (0.00065) (0.05279) (0.00641)

CO (mg/m3) -0.06998 -0.02669 -18.65677 -0.03162 -2.92583 -0.26490
(0.12222) (0.05774) (26.90874) (0.09311) (7.35484) (0.94009)

O3 (µg/m3) -0.00469 -0.00199 -1.14498 -0.00031 -0.02938 -0.00259
(0.00210) (0.00095) (0.48866) (0.00115) (0.08453) (0.01222)

N 19,928 19,928 19,928 14,535 14,535 14,535

Panel B: Mumbai

PM2.5 (µg/m3) -0.00422 -0.00203 -0.90028 0.00058 0.08615 0.00135
(0.00279) (0.00127) (0.64191) (0.00465) (0.39409) (0.04323)

CO (mg/m3) 0.14633 0.07083 30.99771 -0.38538 -33.23706 -3.48809
(0.07977) (0.03620) (18.74925) (0.19742) (16.99952) (1.80437)

O3 (µg/m3) -0.00060 -0.00045 -0.04277 -0.00759 -0.61915 -0.07253
(0.00129) (0.00059) (0.30504) (0.00242) (0.20833) (0.02218)

N 15,765 15,765 15,765 11,526 11,526 11,526

Panel C: Noida

PM2.5 (µg/m3) 0.00016 0.00011 0.01709 -0.00168 -0.16284 -0.01330
(0.00053) (0.00025) (0.12079) (0.00051) (0.05348) (0.00371)

CO (mg/m3) -0.03560 -0.01849 -6.86752 -0.01333 0.51777 -0.29988
(0.06494) (0.02929) (14.96298) (0.06219) (6.12969) (0.49517)

O3 (µg/m3) 0.00177 0.00070 0.45827 0.00125 0.11700 0.01031
(0.00109) (0.00049) (0.25006) (0.00105) (0.09606) (0.00907)

N 16,195 16,195 16,195 9,053 9,053 9,053

Panel D: Patna

PM2.5 (µg/m3) -0.00020 -0.00004 -0.07234 -0.00062 -0.05715 -0.00524
(0.00044) (0.00020) (0.10832) (0.00030) (0.02538) (0.00276)

CO (mg/m3) -0.01170 -0.00992 -0.20547 -0.02067 -1.84930 -0.17993
(0.06057) (0.02698) (14.39673) (0.03682) (3.14382) (0.34110)

O3 (µg/m3) 0.00081 0.00018 0.28560 0.00033 0.05061 0.00059
(0.00145) (0.00062) (0.36213) (0.00079) (0.06762) (0.00744)

N 27,323 27,323 27,323 21,016 21,016 21,016

Panel E: Udaipur

PM2.5 (µg/m3) -0.00250 -0.00134 -0.45900 -0.00010 -0.00066 -0.00171
(0.00133) (0.00065) (0.28752) (0.00034) (0.02962) (0.00325)

CO (mg/m3) 0.10175 0.05746 17.16814 -0.04122 -3.20456 -0.41069
(0.06105) (0.02856) (14.89170) (0.02147) (1.57372) (0.24719)

O3 (µg/m3) 0.00110 0.00035 0.32899 0.00051 0.06610 0.00219
(0.00184) (0.00091) (0.39131) (0.00043) (0.03432) (0.00461)

N 59,126 59,126 59,126 38,549 38,549 38,549

Notes: All regressions include worker fixed effects. Date fixed effects are omitted because no variation in pollution (or weather conditions)
exists within a city on a given day. Standard errors clustered by worker and date are reported in parentheses. Index outcomes are
standardized such that the in-sample mean is zero and the standard deviation is one. Each panel reports the results of the main estimation
limited to the sub-sample of workers in the indicated city. All estimates include quadratic controls for temperature, precipitation, humidity,
and cloud cover.
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Table SA6: Main estimates by process type

Extensive margin Intensive margin

(1) (2) (3) (4) (5) (6)

EM index At work
Net login

time
IM index

Calls per
shift

Calls per
hour

Panel A: Outbound

PM2.5 (µg/m3) -0.00006 0.00000 -0.02869 -0.00107 -0.10781 -0.00793
(0.00064) (0.00030) (0.14572) (0.00060) (0.05831) (0.00494)

CO (mg/m3) -0.01529 -0.00897 -2.39842 -0.12096 -8.99041 -1.24978
(0.05492) (0.02485) (12.62314) (0.06885) (6.22932) (0.60207)

O3 (µg/m3) 0.00074 0.00022 0.23001 -0.00219 -0.17173 -0.02173
(0.00080) (0.00036) (0.18832) (0.00120) (0.10227) (0.01106)

N 35,513 35,513 35,513 23,071 23,071 23,071

Panel B: Inbound

PM2.5 (µg/m3) -0.00014 -0.00003 -0.04780 -0.00044 -0.04072 -0.00376
(0.00036) (0.00017) (0.08503) (0.00023) (0.01962) (0.00223)

CO (mg/m3) 0.01345 0.00675 2.72075 -0.04123 -3.65129 -0.36299
(0.04484) (0.02078) (10.40064) (0.02503) (2.07800) (0.24206)

O3 (µg/m3) 0.00021 -0.00022 0.21568 0.00018 0.04758 -0.00190
(0.00092) (0.00041) (0.22230) (0.00043) (0.03623) (0.00417)

N 102,824 102,824 102,824 71,608 71,608 71,608

Notes: All regressions include worker and date fixed effects. Process type is determined by whether the calls handled were initiated by
the work ("Outbound") or received by the worker ("Inbound"). Standard errors clustered by worker and date are reported in parentheses.
Index outcomes are standardized such that the in-sample mean is zero and standard deviation is one. Each panel reports the results of
the main estimation limited to the sub-sample of workers in the indicated city. All estimates include quadratic controls for temperature,
precipitation, humidity, and cloud cover.
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Table SA7: Estimates for Figure 1

(1) (2)
EM index IM index

PM2.5 1-2 SDs -0.021 -0.043
(0.055) (0.074)

PM2.5 2-3 SDs 0.036 -0.382
(0.060) (0.083)

PM2.5 3-4 SDs 0.034 -0.516
(0.068) (0.128)

PM2.5 >4 SDs 0.098 -0.492
(0.112) (0.139)

CO 1-2 SDs 0.124 -0.167
(0.050) (0.056)

CO 2-3 SDs 0.042 -0.239
(0.059) (0.082)

CO 3-4 SDs 0.055 -0.274
(0.067) (0.115)

CO >4 SDs 0.168 -0.707
(0.097) (0.165)

O3 1-2 SDs -0.043 -0.062
(0.036) (0.044)

O3 2-3 SDs 0.013 -0.186
(0.047) (0.072)

O3 3-4 SDs -0.006 -0.275
(0.049) (0.080)

O3 >4 SDs -0.110 -0.357
(0.108) (0.124)

N 138,337 94,679

Notes: Reports the regressions that are used to create Fig-
ure 1. All regressions include worker and date fixed effects.
Standard errors clustered by worker and date are reported
in parentheses. Index outcomes are standardized such that
the in-sample mean is zero and the standard deviation is
one. Pollutants are measured in standard deviations rela-
tive to zero pollution levels. All estimates include quadratic
controls for temperature, precipitation, humidity, and cloud
cover.
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Table SA8: Estimates for Figure 2

(1)
IM index

PM2.5 50-100 µg/m3 -0.091
(0.059)

PM2.5 100-150 µg/m3 -0.216
(0.086)

PM2.5 150-200 µg/m3 -0.405
(0.100)

PM2.5 >200 µg/m3 -0.551
(0.136)

CO 0.5-1.0 mg/m3 -0.207
(0.080)

CO 1.0-1.5 mg/m3 -0.277
(0.095)

CO 1.5-2.0 mg/m3 -0.363
(0.115)

CO >2.0 mg/m3 -0.528
(0.134)

O3 30-60 µg/m3 -0.051
(0.046)

O3 60-90 µg/m3 -0.163
(0.073)

O3 90-120 µg/m3 -0.242
(0.078)

O3 >120 µg/m3 -0.278
(0.117)

N 94,679

Notes: Reports the results used to construct
Figure 2. All regressions include worker and
date fixed effects. Standard errors clustered by
worker and date are reported in parentheses.
The outcome is standardized such that the in-
sample mean is zero and the standard deviation is
one. All estimates include quadratic controls for
temperature, precipitation, humidity, and cloud
cover.
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