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ABSTRACT. Admissions to technical colleges in India feature a multi-period semi-
centralized matching process and are subject to sophisticated affirmative action. At
each stage, applicants can decide whether to finalize their assignments or participate
in the next stage by updating their submitted rank-ordered lists. We propose a sequential
matching model where institutions’ selection criteria are formulated via choice rules that
admit slot-specific priorities. We show that the applicants will be (weakly) better off in
the subsequent stages when their updated rank-ordered lists adhere to the assignments in
the previous stages. Moreover, the mechanism that implements the individual-proposing
deferred acceptance outcome at each stage is gradually stable, a stability notion adapted
to the sequential problem. We use our results to analyze the recently reformed admission
procedures for engineering colleges in India, where applicants are provided various op-
tions to update their rankings at additional stages.
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1 Introduction

Recently, there has been a great deal of discussion on multi-period assignment procedures in col-

lege admissions in countries such as India, Brazil, China, France, and Germany. Baswana et al.

(2019) proposed a semi-centralized, multi-period matching mechanism for engineering college

admissions in India. They observe that the welfare of candidates improves in every round of the

mechanism.

“New semi-centralized, multi-period matching mechanism enjoys monotonicity4 across runs.

The options available to candidates are only enhanced in going from one period to the next....”
1Kriti Manocha is grateful to her advisors, Professors Debasis Mishra and Arunava Sen, for their guidance during

her graduate studies. We also benefitted from discussions with Orhan Aygün, Inácio Bó, Battal Doğan, Vincent Iehlé,
Bumin Yenmez, and participants of the 22nd annual SAET Conference for their constructive feedback. All errors are
our own.

2Economics and Planning Unit, Indian Statistical Institute, Delhi Center. EMAIL: kritimanocha18@gmail.com
3Department of Economics, Iowa State University. EMAIL: bertan@iastate.edu
4By “monotonicity”, the authors mean that candidates are assigned to (weakly) better programs with respect to

their submitted rank-ordered lists in each period of the sequantial procedure.
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In this paper, we provide a general gradual (or sequential) matching framework to study when

this sort of monotonicity happens under complicated diverity and affirmative action considerations.

Our framework allows us to prove the claim in the quote above, among our other contributions.

The admission process for engineering colleges in India matches approximately 1.3 million

students to 34,000 university positions. The Indian Institute of Technologies (henceforth, IITs)

and the non-IIT Centrally Funded Technical Institutes (henceforth, non-IITs) have implemented the

mechanism developed by Baswana et al. (2019). Before that, both types of institutions conducted

their admission processes separately and independently. When an applicant received an offer from

both IITs and non-IITs and chose one, it resulted in a vacancy in the other set of institutions.

These vacant seats were either left unfilled or allocated in an ad-hoc and decentralized manner,

which caused inefficiency and/or unfairness. Under this new combined seat allocation procedure,

students are required to rank all programs (including both IITs and non-IITs) according to their

rank order lists (ROLs) and submit a single ranking. Both types of colleges, IITs and non-IITs,

independently run the individual-proposing deferred acceptance (DA) mechanism introduced by

Gale and Shapley (1962) to find a match. The assignment of students is determined based on their

complete ranking. In the subsequent rounds of the admissions process, students are given various

options to update their ROLs. These options include “withdraw”, “reject”, “freeze”, “slide”, and

“float”5. Depending on the option chosen, the students may either exit the procedure with or

without an assignment or choose to participate in the subsequent periods. After the completion of

a fixed number of periods, each student is then assigned to their finalized program.

This process is subject to a comprehensive affirmative action program, which has been imple-

mented via a reservation system. There are two types of reservations: vertical and horizontal. Each

institution reserves a certain percentage of its slots for students from a vertical reserved category–

Scheduled Castes (SC), Scheduled Tribes (ST), Other Backward Classes (OBC), and Economically

Weaker Sections (EWS). Specifically, 15%, 7.5%, 27%, and 10% of the slots are reserved for SC,

ST, OBC, and EWS students, respectively. Applicants who do not belong to any of these vertical

reserved categories are referred to as General Category (GC) and positions that are not reserved

are referred to as open-category positions. They are available to all applicants, including those

5All these options are formally defined in Section 6.
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from reserved categories who do not declare their membership. A minimum number of positions

within each vertical category are earmarked for women as horizontal reservations. Vertical reser-

vations are implemented as “over-and-above” by filling open-category positions before vertically

reserved categories. Horizontal reservations are implemented as minimum guarantees by filling

horizontally reserved positions before unreserved positions.

Situations such as the one described earlier can be modeled using gradual matching mecha-

nisms framework, introduced in Haeringer and Iehlé (2021) (henceforth, H&I). They introduce a

multi-period college admissions problem where individuals are offered repeated opportunities to

participate in the mechanism, using updated ROLs. The final matching is constructed gradually

over several periods. An important assumption made in the H&I model is that each institution has

a responsive6 choice rule. However, the underlying assumption of responsiveness does not accom-

modate affirmative action considerations and hence rule out important real world applications.

Motivated by engineering college admissions in India, we adopt the gradual matching problem

of H&I. We assume that institutions implement affirmative action policies via the slot-specific

priorities approach of Kominers and Sönmez (2016)). The latter is a model of the individual-

institution matching model where each institution has a set of positions (slots) that can be assigned

to different individuals. Positions have their own (potentially independent) rankings for contracts

(here individuals). Within each institution, a linear order – referred to as the precedence order –

determines the sequence in which positions are filled.

In this paper, we investigate the restrictions on individual’s ROLs across different periods that

result in monotone outcomes, without modifying the priority ranking in a way to guarantee a po-

sition to individuals proposed a match in previous period7. We refer to a matching outcome as

monotone when each individual is matched to an institution that is weakly higher than the match

of previous rounds (see Theorem 1). Further, we introduce a “backward-looking” notion of sta-

bility for gradual matching mechanisms adjusted for affirmative action constraints. We take into

consideration individual rationality, non-wastefulness and justified envy of individuals across dif-

6An institution has a responsive choice rule if it can be generated by a strict preference order that always selects
the q−best alternatives whenever available. Here q is the capacity of the institution (see Roth (1985) and Chambers
and Yenmez (2018)).

7There are several applications where institutions are mandated to to not modify their priority ranking across
different rounds of the mechanism (see Section 6).
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ferent periods. Theorem 2 establishes a relationship between this notion of stability, we refer to as

gradual stability, and monotone outcomes. These results generalize the findings presented in H&I.

However, we do not rely on the proof of H&I to validate our first result. We apply our theoretical

findings to analyze the multi-run multi-stage DA mechanism that has been implemented in engi-

neering college admissions in India since 2016. We also relate our findings to the characterization

result of Kojima and Manea (2010) for the individual-proposing DA mechanism.

The layout of the paper is as follows: the next subsection provides a brief literature review.

Section 2 formally introduces the framework of the matching problem at each stage. Section

3 introduces a multi-period matching problem and Section 3.2 considers a class of multi-period

matching problems, referred to as gradual matching problems. Section 5 introduces the stability

notion for gradual matching problems. Section 6 provides an application of the model.

1.1 Related Literature

The closest paper to ours is that of Haeringer and Iehlé (2021). We extend their framework to

a more generalized setting where institutions’ choice rules that have slot-specific priorities (SSP)

choice rules. They offer a comprehensive review of dynamic matching models and emphasize how

their gradual matching problem differs from other dynamic models. While our results are broader

in scope, they align closely with the findings presented in their work.

There is a vast literature dedicated to the study of dynamic matching problems. Bo and Haki-

mov (2022) introduce a family of iterative deferred acceptance mechanism, where the students are

asked to sequentially make choices or submit partial rankings from set of colleges. These are used

to produce a tentative allocation at each step. If a student is unacceptable to their previous choice

at some period, she is asked to make another choice among colleges that would tentatively accept

her. We refer the reader to Haeringer and Iehlé (2021) for a comprehensive literature review on

dynamic matching models.

The SSP framework of Kominers and Sönmez (2016) provides a tool for market designers to

handle diversity and affirmative action constraints in two-sided matching models. Aygün and Bó

(2021) design SSP choice rules for the Brazilian college admission problem. More recently, Pathak
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et al (2023) use the SSP framework to design protocols allocating medical resources when there

are multiple ethical considerations. Avataneo and Turhan (2021) extend the framework to a more

general one by defining SSP choice rules that allow transfers as in many real-world applications.

Our paper also contributes to the recently active literature on affirmative action in India from

a market design perspective. Aygün and Turhan (2017) and Aygün and Turhan (2020) focus on

IIT admissions and transferring vacant OBC positions to open-category. Similarly, Aygün and

Turhan (2022) introduce a new transfer scheme with superior theoretical and practical properties.

Aygün and Turhan (2023) offers another choice rule to implement affirmative action constraints

and transfer vacant seats. This paper discusses the joint implementation of vertical and horizon-

tal reservations in engineering college admissions in India via position-specific priorities choice

rules in a setting where applicants can update their rank order lists (ROLs) for additional periods.

Another related paper is Sönmez and Yenmez (2022), in which the authors study the allocation of

government jobs in India and relate matching theory to Indian law. Unlike their work, our paper

considers engineering college admissions in India. None of the above papers study the sequential

implementation of individual-proposing DA in a setting where individuals can update their ROLs.

Other papers studying affirmative action implementations include Echenique and Yenmez (2015),

Kamada and Kojima (2015), Correa et al. (2021) among others.

This paper is also related to the characterization results for the DA mechanism of Kojima and

Manea (2010) and Morrill (2013). Their main axiom is built on individually rational monotonic

transformations (i.r.m.t) of a preference relation. A preference profile R′ is an i.r.m.t of a preference

profile R at an allocation, if for every individual, any object that is acceptable and preferred to this

allocation under R′ is preferred to the allocation under R. An outcome satisfies IR monotonicity

if every individual weakly prefers the new allocation with respect to R′ over the earlier allocation

whenever R′ is i.r.m.t of R. They show that the DA mechanism satisfies IR monotonicity when

the choice rules are substitutable and acceptant. We utilize this condition in the sequential frame-

work by referring to i.r.m.t of ROLs of active individuals as proposal-adhering. We establish that

when the mechanism in each period is individual-proposing DA, coupled with SSP choice rules of

institutions, then the outcome will be monotone.
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Our gradual stability notion is a generalization of gradual stability introduced in H&I. When

institutions’ choice rules are responsive, our gradual stability notion reduces to that of H&I. A

related stability concept was introduced in Pereyra (2013) in the context of seniority-based alloca-

tion rules. Feigenbaum et al. (2020) study the two-stage dynamic matching problem where a main

round of admission is followed by a reassignment stage to fill vacancies.

2 Model

There is a finite set of institutions S = {s1, ..., sm} and a finite set of individuals I = {i1, ..., in}.

Each individual i ∈ I has an asymmetric, complete and transitive relation (ROL) Pi over S ∪ {∅},

where ∅ denotes remaining unmatched. We write sPi∅ to mean that institution s is acceptable for

individual i. Similarly, ∅Pis means institution s is unacceptable for individual i. We denote the

profile of individual ROLs by P = (Pi)i∈I . We let P denote the set of all strict ROLs over S ∪ ∅.

We denote by Ri the weak relation associated with Pi and by R = (Ri)i∈I the profile of weak

relations.

Institution s has qs positions, and its selection criterion is summarized by a choice rule Cs,

which selects a subset from any given set of individuals. That is, Cs (I) ⊆ I . A choice rule C

satisfies substitutability if for every set A,B ⊂ I , a ∈ A ⊆ B, a ∈ Cs(B) =⇒ a ∈ Cs(A).

Also, Cs is acceptant if for all A ⊆ I , |Cs(A)| = min(|A|, qs). Finally, Cs satisfies Irrelevance of

Rejected Alternatives (IRA) if for every set A,B ⊂ I such that C(B) ⊆ A ⊆ B, C(A) = C(B).

We let Ξ = (I, S, (Pi)i∈I , (Cs, qs)s∈S) denote a stage problem. A stage matching for a stage

problem Ξ is a mapping µ : I ∪S → 2I ∪S such that, for each i ∈ I and s ∈ S, (i) µ(i) ∈ S∪{∅},

(ii) µ(s) ⊆ I , and (iii) µ(i) = s if and only if i ∈ µ(s). A stage matching is feasible if |µ(s)| ≤ qs

for all s ∈ S.

DEFINITION. A feasible stage matching µ is stage stable if for all i ∈ I and s ∈ S,

1. Individual rationality for individuals: µ(i)Ri∅,

2. Individual rationality for institutions: Cs(µ(s)) = µ(s), and

3. Unbockedness: sPiµ(i) implies i /∈ Cs(µ(s) ∪ {i}).
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The first condition, individual rationality for individuals, guarantees that no individual is as-

signed to an institution they find unacceptable. The second condition, individual rationality for

institutions, ensures that institutions’ selection procedures are respected. This condition guaran-

tees the implementation of affirmative action constraints when they are encoded into institutions’

choice rules.8 The last condition is the standard no blocking pair condition.

A stage matching mechanism φ maps every stage problem Ξ to a feasible stage matching µ.

The mechanism φ is stable if φ(Ξ) is stable for every stage problem.

2.1 Institutions’ Choice Rules

We model institutions’ selection criterion to accommodate affirmative action considerations via

choice rules that have slot (position)-specific priorities (SSP) structure (Kominers and Sönmez

(2016)). Institution s has a set of qs positions denoted by Bs ≡ {p1s, ..., p
qs
s }. Each position pjs ∈ Bs

has a linear priority order ≻j
s over elements of I ∪{∅s}, where ∅s represents remaining unassigned

and can be assigned to at most one individual. We denote the profile of positions’ priority order by

≻s= (≻j
s)

j=qs
j=1 . The positions in Bs are ordered according to a linear order of precedence, denoted

by ▷s. For any p, p′ ∈ Bs, we say p ▷s p
′ to mean that institution s fills position p before filling p′,

whenever possible. For convenience, if i < j for any pis, p
j
s, it indicates pis ▷s p

j
s .

Given the priority order profile ≻s and the precedence order ▷s, the choice structure of institu-

tion s from a given set of individuals A ⊆ I , denoted by Cs(A,≻s, ▷s), is given as follows:

• First, position p1s is assigned to the individual who is ≻1
s–maximal among the individuals in

A. Call this individual i1.

• Then, position p2s is assigned to the individual who is ≻2
s–maximal among the individuals in

A \ {i1}. Call this individual i2.

• This process continues with each position pks is being assigned to the individual who is ≻k
s–

maximal among the remaining individuals in A \ {i1, ..., ik−1}.

If no individual is assigned to a position pls ∈ Bs, then pls is assigned ∅s.
8See Alva and Doğan (2021) for in depth discussion of this point.
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LEMMA 1. If Cs has an SSP structure, then it satisfies substitutability and IRA.

In matching with contracts setup, Kominers and Sönmez (2016) establish that choice rules that

have SSP structure satisfy bilateral substitutes condition proposed by Hatfield and Milgrom (2005).

Additionally, Aygün and Sönmez (2013) demonstrated that these rules also satisfy Independence

of Rejected Contracts property. Thus, choice rules considered here satisfy substitutability and IRA

condition.

We say that a choice rule has an SSP structure if it is “generated” by a pair (≻s, ▷s). A spe-

cial case when ≻i
s=≻j

s for all positions pis, p
j
s ∈ Bs is referred to as responsive choice rules in

the literature (see Chambers and Yenmez (2018)). The SSP structure accommodates a variety of

other constraints, including reservation policy for admissions in engineering colleges in India (see

Section 6).

Unlike H&I that deal with responsive choice rules, we broaden the class of choice rules of

institutions to SSP structures. Thus, a stage problem can now be alternatively represented as

Ξ = (I, S, (Pi)i∈I , (≻s, ▷s, qs)s∈S)

where (≻s, ▷s, qs) encapsulates the choice structure of an institution s. With this generalized

structure, a feasible matching incorporates information regarding the assignments of individuals

to specific positions within an institution, thereby encoding both the matching of individuals to

institutions and the positions to which those individuals are assigned.

Example 1. Consider a stage matching problem Ξ = (I, S, (Pi)i∈I , (≻s, ▷s, qs)s∈S). Let I =

{a, b, c, d, e, f} and S = {s1, s2} with capacities q1 = 3 and q2 = 2. Institutions with Bs1 =

{p11, p21, p31} and Bs2 = {p12, p22}, have choice rule generated by ≻1= (≻1
1,≻2

1,≻3
1) and ≻2= (≻1

2

,≻2
2) respectively, and precedence order p11 ▷s1 p

2
1 ▷s1 p

2
1 and p12 ▷s2 p

2
2 respectively.

≻1
1: d− a− b− e− ∅s1 ≻1

2: b− e− c− f − ∅s2

≻2
1: b− c− f − ∅s1 ≻1

2: e− a− d− b− c− ∅s2

≻3
1: d− c− f − a− ∅s1

Consider a feasible matching µ such that µ(s1) = {a, c, f} and µ(s2) = {b, d}. Given the
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SSP structure, it must be that p11 is associated with individual a, p21 with individual c, and p31 with

individual f . Likewise, p12 and p22 must be associated with individuals b and d respectively. This is

a “derived” individual-position matching from an individual-institution matching.

Thus, the SSP structure enables us to define an associated matching for a feasible stage match-

ing µ. For a given (≻s, ▷s), the associated matching maps each individual to an institution-position

pair. We denote this derived matching9 as µ̂ : I ∪ S → 2I ∪ (S × B) where B =
⋃

s∈S{Bs} is the

collection of all the positions in the set of institutions S.

DEFINITION. Slot-specific matching (SSM) for a stage matching µ is a mapping µ̂ : I ∪ S →

2I ∪ (S × B) such that for all s ∈ S and i ∈ I ,

1. i ∈ µ̂(s) implies i ∈ µ(s).

2. µ̂(i) = (s, p) for some p ∈ Bs implies µ(i) = s.

We illustrate with the example below that not every feasible matching µ can be associated with

an SSM.

Example 2. Consider a feasible matching µ for the stage problem described in Example 1, where

µ(s1) = {a, e, f} and µ(s2) = {b, d}. It can be noted that institution s2 via SSP structure,

allocates b to position p12 and d to p22. On the other hand, there is no associated SSM for institution

s1. This is because s1 allocates a to p11 and f to p21 from the set {a, e, f}. However, there is no

acceptable alternative for p31 from the remaining set {e}. Thus, e cannot be assigned to s1 with

the given priority profile and precedence order. Nevertheless, it is evident that each individual in

{a, e, f} is acceptable by some position in s1.

Proposition 1. Let µ be a stage matching for a stage problem Ξ = (I, S, (Pi)i∈I , (≻s, ▷s, qs)s∈S).

Then µ has an associated SSM µ̂ if and only if µ is individually rational for institutions.

For a matching µ such that Cs(µ(s)) = µs, each individual i ∈ µ(s) can be associated with

a position in s. This is because each position finds the maximal individual of the surviving set

9The matching function µ̂ is different from the matching outcome µ̃ of the associated one-to-one matching problem
defined in Kominers and Sönmez (2016).
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acceptable. It can therefore be concluded that every stage stable matching µ has an SSM µ̂. The

‘if’ of Proposition 1 is proved in Example 2. Also, the uniqueness is guaranteed through the SSP

procedure. In subsequent sections, we restrict our attention to feasible matchings that have an

associated SSM 10.

3 Multi-period Matching and Updating Choice Rules

We study a finite period matching problem that consists of a sequence of stage problems (Ξt)1≤t≤T

where Ξt = (I t, St, (P t
i )i∈I , (≻t

s, ▷
t
s, q

t
s)s∈S) is the problem at stage t. The choice rule of an in-

stitution s has an SSP structure with the set of positions Bt
s, profile of linear order ≻t

s and the

precedence order ▷ts.

DEFINITION. A sequence of T stage problems Ξ1, Ξ2,..., ΞT is nested11 if for all t = 1, ..., T − 1

and s ∈ S,

1. I t+1 ⊆ I t

2. St = St+1 = S

3. Bt+1
s ⊆ Bt

s

Following the terminology of H&I, an individual i ∈ I t means that i is active at stage t.

Individual i ∈ I t\I t+1 (t < T ) means that i finalize her assignment at stage t before the final stage.

We denote by ti := argmax1≤t≤T{i ∈ I t}, the stage at which individual i finalizes her assignment.

At this period, the individual i is last active. Once the individual finalizes her assignment, she can

not be active in further stages.

A sequence ((Ξt), µt)1≤t≤T is feasible if for each stage t ∈ {1, . . . , T}, µt is a feasible stage

matching for the problem Ξt.

10This assumption is inherently satisfied when dealing with stable matchings.
11The concept of nestedness in our setup is weaker than the one defined in H&I.
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3.1 Updating Institutions’ Choice Rules

The institutions update their choice rule, linking the stage problems with the matching “proposed”

in the previous period12. Given a feasible matching µt for the stage problem Ξt and (≻t
s, ▷

t
s) that

generates Cs, the choice rule in next period is obtained by removing “positions that are assigned

to individuals” who finalize their assignments13. The idea is that when an individual finalizes

her assignment, she leaves with the position she is assigned to. No other positions are added or

removed in this process. The relative precedence order between two positions and the priority

order over the set of active individuals remains unchanged. Such a choice update rule is referred

to as consistent, or alternatively, the choice rule is considered to be updated consistently.

DEFINITION. A choice update rule is consistent if for all s ∈ S and t = 1, . . . , T − 1, given µt,

1. ▷t+1
s = ▷ts.

2. For all p ∈ Bt+1
s and i, j ∈ I t+1, i(≻p

s)
tj implies i(≻p

s)
t+1j.

3. if i ∈ I t \ I t+1 and µ̂t(i) = (s, p) for some p ∈ Bt
s, then p /∈ Bt+1

s .

Let us illustrate this choice update rule with an example.

Example 3. Consider a nested two-period matching problem (Ξ1, Ξ2) where I1 = {a, b, c, d, e, f}

and S1 = {s1, s2}. The capacities of s1 and s2 at t = 1 is q11 = 3 and q12 = 2. The institutions have

choice rules generated by ((≻s)
1, ▷1s) as described in Example 1. Suppose the stage matching at

t = 1 be µ1 where µ1(s1) = {a, b, c} and µ1(s2) = {d, e}. The associated SSM is µ̂ depicted in

the priority profile below.

(≻1
1)

1 : d− a− b− e− ∅s1 (≻1
2)

1 : b− e− c− f − ∅s2

(≻2
1)

1 : b− c− f − ∅s1 (≻1
2)

1 : e− a− d− b− c− ∅s2

(≻3
1)

1 : d− c− f − a− ∅s1
12We will be using “stage” and “period” interchangeably.
13Based on the discussion in Section 2, µt is individually rational for institutions to guarantee that each individual

matched to an institution is assigned a position at the institution. When we are referring to a feasible matching
generated by the SSP structure, this condition is assumed in the background.
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Now after the first period, b finalizes her assignment and others participate in the next stage. That

is, I2 = {a, c, d, e, f}.

If the choice rule of institutions is updated consistently, then the only the position occupied by

b, that is p21, is removed from Bs1 , and Bs2 is the same. Thus, q21 = q22 = 2. Over the remaining

positions, the precedence order is unchanged and the priority orders are updated as follows:

(≻1
1)

2 : d− a− e− ∅s1 (≻1
2)

2 : e− c− f − ∅s2

(≻3
1)

2 : d− c− f − a− ∅s1 (≻1
2)

2 : e− a− d− c− ∅s2

It can be observed that if the choice rule of the institution is responsive, that is, the choice rule

is generated by a preference order Ps, and top qs individuals are chosen, updating the choice rule

consistently reduces to the following: P t
s = P 1

s |It where = P 1
s |It is the restriction of P t

s to the set

of active individuals I t. As all the positions are “homogenous”, the updating rule is not dependent

on the SSM associated with the feasible matching at previous period. It is noteworthy that in case

of non-homogenous positions, uniqueness of SSM is critical in updating the choice rule.

The second observation is that this rule implicitly puts a restriction on the relationship between

the capacity of the institutions at every stage. The capacity of an institution is the number of

unassigned seats plus the number of active individuals from the previous period. That is, for all

t ≤ T − 1,

qt+1
s = (qts − |µt(s)|) + |{i ∈ I t+1 : µt(i) = s}|

This relationship between the capacities across stages is assumed explicitly in H&I, which is an

implication of our choice update rule. It should be noted in the subsequent sections that if the

choice update rule is inconsistent but still adheres to the capacity constraints as described above,

our main result will not be applicable.

3.2 Gradual Matching Mechanisms

The multi-period matching problem that we are interested in has the following properties (i) the

sequence of stage problems (Ξt)1≤t≤T is nested, and (ii) choice rule of institutions is updated con-
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sistently. In other words, individuals participate in a college admissions problem by submitting

their ROL. Each individual decides to either finalize their match, allocated to them via stage mech-

anism, or to participate in the next period. The college admissions problem then comprises of

active individuals with updated ROLs and choice rule of institutions that is updated consistently.

All the individuals finalize their match at some period, after which exit the mechanism. Section 6

examines an application of this matching mechanism.

Thus, the nestedness of matching problems and the consistency of institutions enable us to re-

duce this sequential problem to a simpler framework. Instead of individuals deciding to continue

or finalize the match at every period, this centralized framework only requires the first stage prob-

lem Ξ1 of the sequence (Ξt)1≤t≤T and a list of ROLs (P 1
i , P

2
i , . . . , P

ti
i ) for every i ∈ I1, denoted

by Pi = (P t
i )t≤ti . We refer to this class of multi-period matching problems as gradual matching

problems and is represented as Ξ = (I1, S, (Pi)i∈I , (≻1
s, ▷

1
s, q

1
s)s∈S).

An outcome of a gradual matching problem consists of a sequence (Ξt, µt)t≤T that associates

a feasible matching to every stage problem at every t = 1, . . . , T . This outcome implicitly defines

a matching ν : I ∪ S → 2I ∪ S such that ν(i) = µti(i) for all i ∈ I1. We refer to this sequence as

a gradual outcome.

We are interested in imposing restrictions on the ROLs of individuals across different periods

(till they are active) to ensure desirable properties of feasible matchings. H&I propose the concept

of a refitting rule that defines the set of admissible ROLs based on both the ROL submitted by

the individual and the match proposed to her in the preceding period. Formally, a refitting rule

Γ : P × (S ∪ {∅}) → P is a selection correspondence that ensures consistency in the updating

process as follows: for every (P, s) ∈ P × (S ∪ {∅}),

• If s ∈ AP , then AP ′ ̸= ∅ for some P ′ ∈ Γ(P, s);

• For each P ′ ∈ Γ(P, s), we have AP ′ ⊆ AP .

These mild conditions require that an institution —unacceptable at previous stages —can not be

expressed as acceptable in updated ROL. There is a wider class of refitting rules that satisfy these
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mild conditions, including identity mapping14, truncation mapping15 and others16. It is noteworthy

that we take decision of the individuals to finalize their match as given. It is reflected in the length

of the sequence of ROLs submitted. Thus, the strategic behaviour of the individuals is outside the

scope of this model.

For a given refitting rule Γ and a stage mechanism φ, a gradual matching mechanism, denoted

by Mφ
Γ, maps every gradual matching problem to a gradual outcome Mφ

Γ(Ξ) ≡ (Ξt, µt)t≤T such

that (i) µt = φ(Ξt) for all t = 1, . . . , T , and (ii) P t
i = Γ(P t−1

i , µt−1(i)) for all i ∈ I1 and

t = 2, . . . , T . We restrict our attention to stable stage mechanisms, that play a key role in the

matching literature. When Cs is generated by some (≻s, ▷s), one such mechanism is individual-

proposing deferred acceptance, that follows an iterative procedure described below.

Step 1: Every individual applies to her highest ranked acceptable institution under Pi (if any).

Let Î1s be the set of agents applying to institution s. The institution tentatively accepts the set

I1s = Cs

(
Î1s

)
and rejects the applicants in Î1s\I1s .

Step t: (t ≥ 2). Every individual not rejected at step t−1 applies to her next ranked acceptable

institution. Let Î ts be the new set of individuals applying to institution s. The institution tentatively

accepts the set I ts = Cs

(
I t−1
s ∪ Î ts

)
and rejects the applicants in (I t−1

s ∪ Î ts)\I ts.

The deferred acceptance algorithm terminates when every individual—not tentatively accepted

by some institution —is rejected by some institution acceptable to her.

4 Monotonic Outcomes

A desirable property of a gradual matching outcome is that, for each period when an individual is

active, they are assigned to an institution that is ranked weakly higher than the institution to which

they were previously assigned. In effect, the current assignment is acceptable for individuals with

respect to the “outside option”—assignment proposed in the previous period. We demonstrate

through Example 4 that not every gradual outcome has this property.

14An identity mapping is a singleton-valued selection correspondence such that for all (P, s) ∈ P × (S ∪ {∅}),
Γ(P, s) = {P}.

15A truncation mapping is a singleton-valued selection correspondence discussed in Manjunath and Turhan (2016)
such that Γ(P, s) = {P ′} where sPs′ =⇒ ∅P ′s′ and s′Ps′′Ps =⇒ s′P ′s′′P ′s

16H&I provides a detailed discussion on refitting rules.
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Example 4. Consider the two-stage gradual matching problem in Example 3. The choice rule and

capacity of institutions in first period is as described before. The ROLs P 1 of individuals at t = 1

is as follows:

P 1
a P 1

b P 1
c P 1

d P 1
e P 1

f

s1 s1 s1 s2 s2 s2

s2 ∅ s2 s1 ∅ s1

∅ ∅ ∅ ∅

Let the stage mechanism φ be individual-proposing DA. The matching µ1 = φ(Ξ1) is such that

µ1(s1) = {a, b, c}, µ1(s2) = {d, e}, and f is unassigned, as underlined in the profile above. The

associated SSM is µ̂ depicted in the priority profile (≻)1 of Example 3.

Now, let b finalize its allocation at t = 1 and other individuals participate in the next period.

The updated choice rule and capacities of institutions at t = 2 is depicted in Example 3 and the

ROLs of active individuals is updated to P 2
i = Γ(P 1

i , µ
1(i)) for all i ∈ {a, c, d, e, f} as follows:

P 2
a P 2

c P 2
d P 2

e P 2
f

s1 s2 s1 s2 s1

s2 s1 ∅ ∅ s2

∅ ∅ ∅

The stage mechanism φ results in allocation µ2 such that µ2(s1) = {c, d}, µ2(s2) = {a, e}, and

f is unassigned, as underlined in the profile above. It can be noted that outcome for a is strictly

worse in second period, that is, s1 = µ1(a)P 2
3 µ

2(a) = s2. However for d, the matching is strictly

better in the second period with respect to P 2
d .

We refer to such gradual outcomes as monotone outcomes.

DEFINITION. A gradual outcome (Ξt, µt)t≤T is monotone17 if, for each 2 ≤ t ≤ T and i ∈ I t,

µt(i)Rt
iµ

t−1(i).

17H&I refer to this property as gradual safety. Since our model is motivated by Baswana et al. (2019), we adopt
their terminology.
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A mechanism Mφ
Γ is monotone if for every gradual matching problem Ξ, the gradual outcome

(Ξt, µt)t≤T is monotone.

One approach to ensure that every individual is matched to a weakly higher institution than the

one proposed in the previous period is that they “adhere” to the proposal made in the preceding

period. What is meant by this is that individuals update their ROLs in such a way that no institution,

ranked lower than the proposal in the prior period —if acceptable in the current period —is now

ranked higher. This property of updating structure, we refer to as proposal-adhering within the

framework of refitting rules. Formally,

DEFINITION. A refitting rule Γ is proposal-adhering18 if for all (P, v) ∈ P × (S ∪ {∅}) and

s ∈ S \ {v}, if P ′ ∈ Γ(P, v) then,

sP ′v and sP ′∅ =⇒ sPv

Refitting rules like identity mapping, truncation mapping are proposal-adhering. The idea for

individuals to be “individually rational” with respect to the match in the previous round.

Example 5. In Example 4, Γ is a singleton-valued correspondence. Note that it is not a proposal-

adhering correspondence for individual d because for (P, v) = (P 1
d , s2) and s = s1, it is true

that s1P 2
d s2 and s1P

2
d ∅, yet s2P 1

d s1. Likewise, for (P, v) = (P 1
c , s1) and s = s2, the condition is

not satisfied. However, updated ROL of individual f satisfies the condition of proposal-adhering

refitting rules.

We now state our main result, that generalizes Theorem 1 of H&I.

Theorem 1. Let Mφ
Γ be the gradual mechanism where φ is individually-optimal stage stable

mechanism (IOSSM) and Γ is the refitting rule. Then the following statements are equivalent:

1. Mφ
Γ is monotone.

2. Γ is proposal-adhering.
18While H&I refer to this property as regularity, we assert that the terminology proposal-adhering better aligns

with the interpretation of the rule.
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This equivalence result holds significant policy implications, particularly in the context of de-

signing admission procedures, where students are offered several options after every round to par-

ticipate in subsequent rounds.

It is important to note that the existence of an IOSSM is not guaranteed when employing general

choice rules. However, the existence of such mechanisms, specifically in the case of choice rules

with an SSP structure, does follow from the results presented in Hatfield and Milgrom (2005) and

Aygün and Sönmez (2013). Refer to Appendix 2.A.1 for the proof.

It is worth noting that refitting rules have also been employed in the static framework to model

properties “globally”19. Kojima and Manea (2010) introduce a notion of individually rational

monotonic transformation (i.r.m.t) of a preference profile. A preference profile R is an i.r.m.t of R

at s ∈ S∪{∅} if for every individual i, any institution that is ranked above both s and ∅ under R′
i is

ranked above s under Ri. In other words, R i.r.m.t R at s ∈ S ∪ {∅} if R′
i = Γ(Ri, s) for all i ∈ I

and Γ is proposal-adhering. A stage mechanism φ satisfies IR monotonicity if every individual

weakly prefers the allocation φ (R′) to the allocation φ(R) under R′ whenever R′ i.r.m.t R at φ(R).

Note that monotonicity of outcomes in a sequential setting differs from that in a static framework

as the underlying stage problems at every period is different. The first characterization result of

the individual-proposing DA algorithm by Kojima and Manea (2010) relies on IR monotonicity

as a necessary axiom. Theorem 1 in this section can be seen as an extension of this result in a

sequential framework.

Proposition 2. Let φ be the individual-proposing DA mechanism and Cs be an acceptant, substi-

tutable choice rule. Then, for all Ξ and proposal-adhering Γ,

P ′
i ∈ Γ(Pi, µ(i)) =⇒ µ′(i)P ′

iµ(i) ∀ i ∈ I

19A property is modelled “globally” by considering and linking changes in allocations due to changes in preference
profiles (for instance, strategy-proofness, maskin monotonicity etc). However, a property is modelled “locally” via
properties of allocations (for instance, efficiency, fairness etc).
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5 Gradual Stability

In this section, we introduce a stability notion for gradual matching problems. Our definition of

gradual stability generalizes the notion of gradual stability introduced in H&I. When institutions’

choice rules are responsive, our definition reduces to theirs.

DEFINITION. A gradual outcome (Ξt, µt)t≤T is gradually stable if for all i ∈ I1, t′ ≤ t ≤ ti,

1. Individual Rationality: µt(i)Rt
i∅ and µt(i)Rt

iµ
t′(i),

2. Non-wastefulness: if |µt′(s)| < qt
′
s for some s ∈ S, then sP t

i µ
t(i) implies ∅s ≻p

s i where

p ∈ Bt′
s is unassigned at t′,

3. No justified envy: for all j ∈ I t
′ \ I t

′+1, if µ̂t′(j) = (s, p) for some s ∈ S, p ∈ Bt′
s , then

sP t
i µ

t(i) implies j ≻p
s i.

The stability of the stage matching mechanism considers only the final assignments of the

individuals and institutions. However, in the gradual matching mechanism, individuals finalize

their matchings at different stages. As a result, the definition above extends the notion of stage

stability to also include the claims by individuals across stages as long as they are active.

The first condition requires that each individual’s assignment must be individually rational for

each individual at every stage. Here, individual rationality is defined by comparing an assignment

with the “outside option”. In the case of a stage problem, this outside option corresponds to being

unmatched or having an empty matching. In the sequential problem, proposals from previous

periods also serve as an outside option.

The second condition is a sequential version of non-wastefulness. If an individual i prefers

institution s to her stage t assignment, this condition ensures that all positions in s that are deemed

acceptable by individual i, must be assigned to someone else in the current period and all of the

previous periods.

Finally, the last condition is a no justified envy condition adapted to our sequential environment

with an SSP structure. Consider two individuals i and j such that j finalizes her assignment before

i. Then, justified envy by i against j is checked for all periods tj ≤ t ≤ ti using the priority order

of the position that is assigned to j when she finalizes her assignment.
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A gradual mechanism is gradually stable if the outcome for each gradual problem is stable.

The theorem we propose in this section establishes a relationship between gradual stability, stage

stability, and the monotonicity of gradual outcomes.

Theorem 2. Let Γ be a proposal-adhering refitting rule and φ be a stage mechanism. Then the

following statements are equivalent:

1. Mφ
Γ is gradually stable.

2. Mφ
Γ is monotone and φ is stage stable.

Theorem 1 and 2 together indicate that when the stage mechanism is stage stable and Γ is a

proposal-adhering refitting rule, the monotonicity of the gradual outcome implies the stability of

the mechanism within the sequential context. The proof of this theorem can be found in Appendix

2.A.2.

6 Admissions to Engineering Colleges in India

The admission process in engineering colleges in India is subject to a comprehensive affirmative

action program, which has been implemented via a reservation system. The reservation scheme at

an institution s partitions the set of positions Bs in various categories R and the set of individuals

in categories C. It consists of the following key components:

• R = {SC, ST,OBC,EWS} denote the set of reserved categories. The students that belong

to no reserved category are in General Category (GC).

• C = {o, SC, ST,OBC,EWS} denote the set of all position categories (o is the open cate-

gory).

• The vector qs =
(
qos , q

SC
s , qSTs , qOBC

s , qEWS
s

)
describes the initial distribution of positions

over reserved categories where qos = qs − qSCs − qSTs − qOBC
s − qEWS

s . The profile of

vectors for the initial distribution of positions over categories at institutions is denoted by

q = (qs)s∈S .
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• The function t : I → R∪{GC} denotes the category membership of individuals. For every

individual i ∈ I , t(i), or ti, denotes the category individual i belongs to. We denote a profile

of reserved category membership by T = (ti)i∈I , and let T be the set of all possible reserved

category membership profiles.

Merit scores induce strict meritorious ranking of individuals at each institution s, denoted by

≻s, which is a linear order over I ∪{∅}. i ≻s j means that applicant i has a higher priority (higher

merit score) than applicant j at institution s. We write i ≻s ∅ to say that applicant i is acceptable

for institution s. Similarly, we write ∅ ≻s i to say that applicant i is unacceptable for institution s.

The profile of institutions’ priorities is denoted ≻= (≻s1 , ...,≻sm).

For each institution s ∈ S , the merit ordering for individuals of type r ∈ R, denoted by ≻r
s, is

obtained from ≻s in a straightforward manner as follows:

• for i, j ∈ I such that ti = r, tj ̸= r, i ≻s ∅, and j ≻s ∅, we have i ≻r
s ∅ ≻r

s j, where ∅ ≻r
t j

means individual j is unacceptable for category r at institution s.

• for any other i, j ∈ I, i ≻r
s j if and only if i ≻s j.

The over-and-above implementation requires filling open-category positions before the re-

served categories. Formally, given an initial distribution of positions qs, a set of applicants A ⊆ I ,

and a category membership profile T ∈ T for the members of A, the set of chosen applicants

CRes
s (A, qs), is computed as follows:

Step 1: Unreserved positions are considered first. Individuals are chosen one at a time follow-

ing ≻s up to the capacity qos . Let us call the set of chosen applicants Co
s (A, q

o
s).

Step 2: Among the remaining applicants A′ = A\Co
s (A, q

o
s), for each reserve category r ∈ R,

applicants are chosen one at a time following ≻r
s up to the capacity qrs . Let us call the set of chosen

applicants for reserve category r as Cr
s (A

′, qrs).

Then, CRes
s (A, qs) is defined as the union of the set of applicants chosen in Steps 1 and Step 2.
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That is,

CRes
s (A, qs) = Co

s (A, q
o
s) ∪

⋃
t∈R

Ct
s

(
A′, qts

)
This leads to our first lemma of this section, which we state formally below.

LEMMA 2. The selection rule of engineering colleges in India can be modeled via choice rule,

CRes
s that admits SSP structure.

6.1 The Multi-round Deferred Acceptance Mechanism

Admissions to engineering colleges in India implement a multi-round matching procedure. Each

individual submits an ROL over all programs, including IITs and non-IITs. Each program provides

the number of available positions and a merit list of eligible individuals. After collecting this

information, the individual-proposing DA mechanism is run in each period for IITs and non-IITs

separately20. Some individuals may finalize their assignments, while others may want to participate

in future rounds. The inputs of individual-proposing DA are modified in each round. The options

available to individuals at the end of each round are freeze, float, slide, reject, and withdraw (see

Baswana et al. (2019)).

LEMMA 3. The permitted refitting rule is proposal-adhering.

This lemma is validated by the description of the “options” available to the individuals. The

ROLs of candidates in this application can be understood over all the possible (university, program)

pairs. However, the institutions are the universities offering seversal programs. The notion of

refitting rules applies to this setup too.

Reject. If a candidate rejects an assigned program, then the candidate is completely removed

from the assignment process by setting his/her rank-ordered list to an empty set.

Γ(P, s) = P ′, where ∅P ′s′ for all s′ ∈ S.

Freeze. Candidates who choose this option accept the program assigned to them in that round.

Their ROLs are modified so the assigned program and all other programs ranked below it are kept

20Akin to the algorithm proposed by Manjunath and Turhan (2016).
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while the rest are removed. Formally,

Γ(P, s) = P ′ where ∅P ′s′ for all s′ ∈ S such that s′Ps, and P, P ′ agree for the rest.

Float. ROLs of the individuals who choose the float option remain unchanged. These candi-

dates are willing to participate in future rounds in the hope of getting assigned to a better program.

Γ(P, s) = P.

Slide. Individuals who choose the slide option opt to participate in the future rounds but be

considered only for the programs in the same university as the assigned program. In this case,

programs in all other universities above the assigned program are removed. The assigned program

and other programs below it remain unchanged. Let U(s) be the set of programs that are in the

same university as program s.

Γ(P, s) = P ′ where ∅P ′s′ for all s′ /∈ U(s) such that s′Ps, and P, P ′ agree for the rest.

Withdraw. Individuals who choose this option are removed from the problem. The ranking of

these applicants are set to an empty set.

Γ(P, s) = P ′, where ∅P ′s′ for all s′ ∈ S.

Note that the ‘reject’ and ‘withdraw’ options have the same effect on the ROLs. The difference

is about the timing. A candidate who previously accepts an offered program may withdraw in later

stages.

Lemmas 2 and 3 suggest that we can employ Theorems 1 and 2 to state our final result.

Proposition 3. Multi-round deferred acceptance mechanism implemented in engineering colleges

in India is monotone and gradually stable.
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7 Conclusion

This chapter studies a special class of multi-period matching mechanisms. By generalizing the

framework of H&I, we can explain a wider range of applications, including the college admissions

process in engineering colleges in India. The French college admission system (studied in H&I) is

another application that can be explained by our model.

One possible approach to understanding our results is to consider an associated one-to-one

matching market that corresponds to the original many-to-one matching market. This technique

is utilized in Kominers and Sönmez (2016), where positions, rather than institutions, compete for

individuals. In the one-to-one market with unit capacity, the priority structure of institutions is

responsive. Therefore, the results of H&I can be employed to understand the one-to-one market.

However, these results do not straightforwardly extend to the original many-to-one market. In our

study, we take an alternate approach to comprehend our results. Our first result to a great extent

relies on the proof of the first characterization result of DA by Kojima and Manea (2010). This

enables us to draw a comparison of their static problem with our sequential model.
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Appendix 2.A

2.A.1 Proof of Theorem 1

Proof. Let Ξ = (I1, S, (Pi)i∈I , (≻1
s, ▷

1
s, q

1
s)s∈S) be a gradual matching problem with the outcome

MIOSSM
Γ (Ξ) ≡ (Ξt, µt)1≤t≤T . We first prove that IOSSM exists when the choice rule has an SSP

structure.

LEMMA 4 (Hatfield and Milgrom (2005), Aygün and Sönmez (2013)). When Cs satisfies substi-

tutability and IRA, then IOSSM exists, and it is unique. Moreover, it is the outcome of the deferred

acceptance algorithm.

Lemma 1 and 4 prove the existence of IOSSM.

To prove that (1.) =⇒ (2.), let MIOSSM
Γ be monotone and Γ be not proposal-adhering. That

is, there exists a Ξ such that for some t ≤ T − 1, and i ∈ I t, P t+1
i /∈ Γ(P t

i , µ
t(i)). The counter-

example provided in Proposition 1 of H&I suffices as responsive choice rules are a special case of

choice rules with SSP structure where each institution is decomposed to identical multiple copies

with unit demand.

LEMMA 5 (Proposition 1, H&I). Let Mφ
Γ be a gradual matching mechanism such that ≻p

s=≻p′
s for

all s ∈ S and p, p′ ∈ Bs. If Mφ
Γ is monotone, then Γ is proposal-adhering.

Following the methodology used in Kojima and Manea (2010), we now show (2.) =⇒ (1.).

Let Γ be a proposal-adhering refitting rule. Consider Ξt for some t ≥ 2. Let µt−1 = φ(Ξt−1) and

µt = φ(Ξt) be stage matchings at period t − 1 and t respectively. We need to prove that for all

i ∈ I t, µt(i)Rt
iµ

t−1(i). We prove this with the steps below.

Step 1: Define x0 as the allocation µt−1 restricted to I t. That is, x0(s) = µt−1(s) ∩ I t.

Define for all i ∈ I t,

x1(i) =


x0(i), if x0(i)P

t
i ∅,

∅, otherwise.
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If x1 is a stable matching at (P t
It , (C

t
s)s∈S), then using the fact that φ generates individual

optimal stable matching, µt(i)Rt
ix1(i) for all i ∈ I t holds and we are done.

Let us define a sequence (xk)k≥1 as follows:

DEFINITION (Step-wise unblocking process). Define for all k ≥ 1 and i ∈ I t,

xk+1(i) =


sk, if i ∈ Ct

sk

(
xk(i) ∪

{
j ∈ I t | skP t

jxk(j)
})

,

xk(i), otherwise.

where sk is an arbitrary institution that is part of a blocking pair if xk can be blocked at (P t
It , (C

t
s)s∈S).

If xk cannot be blocked, then xk+1 = xk.

We now prove the following lemma.

LEMMA 6. The sequence (xk)k≥0 satisfies for every k ≥ 1:

(I) xk is a feasible stage matching.

(II) xk(i)R
t
ixk−1(i) for all i ∈ I t.

(III) xk(s) ⊆ Ct
s

(
xk(s) ∪

{
j ∈ I t | sP t

jxk(j)
})

for all s ∈ S.

As xk+1(i)R
t
ixk(i) for all i ∈ I t, the step-wise unblocking process generates a sequence

(xk)k≥0 that converges to a matching xK in finite number of steps K. Each iteration results in

a different allocation if the initial matching within the iteration is not stable. Hence, xK is stable at

(P t
It , (C

t
s)s∈S).

Because xK(i)R
t
ix1(i)R

t
i∅ for all i ∈ I t, the matching xK is individually rational for agents.

Also, as the outcome MSOSM
F (Ξ) at time period t is the individual optimal among all the stable

outcomes at t, we get for all i ∈ I t,

µt(i)Rt
ixK(i)R

t
iµ

t−1(i)

It remains to prove Lemma 6.
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Proof. We prove the lemma by induction with the base case k = 1. (I) and (II) hold for k = 1 by

definition of x1. Consider any s ∈ S. We now prove that x1(s) ⊆ Ct
s

(
x1(s) ∪

{
j ∈ I t | sP t

jx1(j)
})

.

By definition of x1(i), we have

x1(s) ⊆ x0(s) ⊆ µt−1(s)

As Γ is proposal-adhering,

{j ∈ I t | sP t
jx1(j)} ⊆ {j ∈ I t | sP t−1

j x0(j)}

Together we get

x1(s) ∪ {j ∈ I t | sP t
jx1(j)} ⊆ x0(s) ∪ {j ∈ I t | sP t−1

j x0(j)} (1)

As the period t− 1 outcome is stable at (P t−1
It−1 , (C

t−1
s )s∈S), we have

1. Ct−1
s (µt−1(s)) = µt−1(s) for all s ∈ S, and

2. i /∈ Ct−1
s (µt−1(s) ∪ {i}), for all i ∈ {j ∈ I t | sP t−1

j x0(j)}.

By consistency of Ct−1
s , we have

Ct−1
s (µt−1(s) ∪ {j ∈ I t | sP t−1

j x0(j)}) = µt−1(s).

In order to state the set-inclusion property at stage t, we state our next lemma.

LEMMA 7. If Ct
s has an SSP structure and the choice update rule is consistent, then for all A,B ⊂

I t,

A ⊆ Ct
s(B) =⇒ A ∩ I t+1 ⊆ Ct+1

s (B ∩ I t+1)

Proof. Let Ct
s be a choice rule that is generated by (≻t

s, ▷
t
s) and Ct+1

s is updated as per Definition

3.1. Let i ∈ A ∩ I t+1 such that µ̂t(i) = (s, pjs) for some pjs ∈ Bt
s. As i is active at stage t + 1,

pjs ∈ Bt+1
s . Since i is ≻j

s maximal at stage t of the surviving set of individuals at Step j, it must be

that i is ≻j
s maximal at stage t+ 1 as no individual is added to the set. Thus, µ̂t+1(i) = (s, pks) for

some k ≤ j. This completes the proof.

Using Lemma 7, we have
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x0(s) ⊆ Ct
s(x0(s) ∪ {j ∈ I t | sP t−1

j x0(j)})

By substitutability of choice fuction Ct
s derived by updating structure of choice function,

x1(s) ⊆ Ct
s

(
x1(s) ∪

{
j ∈ I t | sP t

jx1(j)
})

.

This concludes our proof for the base case.

Assuming the conclusions of step k ≥ 1 hold, we now prove it for k+1 (the only case to prove

is when xk ̸= xk+1).

Let us prove (I) first. Consider s ̸= sk. Observe that xk+1(s) ⊆ xk(s) by construction. As xk

is an allocation, by the inductive hypothesis we get |xk+1(s)| ≤ |xk(s)| ≤ qts.

For institution sk, xk(sk) ⊆ Ct
sk

(
xk(sk) ∪

{
j ∈ I t | skP t

jxk(j)
})

holds by inductive hypothe-

sis at k. Then using definition of xk+1(i),

xk+1(sk) = Ct
sk

(
xk(sk) ∪

{
j ∈ I t | skP t

jxk(j)
})

Feasibility of choice rule Ct
sk

thus guarantees that |xk+1(sk)| ≤ qtsk .

We now prove (II). Observe that

xk+1(sk)\xk(sk) ⊆
{
j ∈ I t | skP t

jxk(j)
}

(2)

Thus, for j ∈ xk+1(sk)\xk(sk), we get

sk = xk+1(j)P
t
jxk(j) (3)

Each agent outside of xk+1(sk)\xk(sk) is assigned the same institution under xk+1 and xk. There-

fore, xk+1(i)R
t
ixk(i) for all i ∈ I t.

We now show (III) for all s ̸= sk. By construction, we have xk+1(s) ⊆ xk(s). By Equation 3,

we have
{
j ∈ I t | sP t

jxk+1(j)
}
⊆

{
j ∈ I t | sP t

jxk(j)
}

. Therefore,

xk+1(s) ∪ {j ∈ I t | sP t
jxk+1(j)} ⊆ xk(s) ∪ {j ∈ I t | sP t

jxk(j)} (4)

Now, substitutability of Ct
s, inductive hypothesis for k (condition (II)), and Equation 4 implies
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xk+1(s) ⊆ Ct
s

(
xk+1(s) ∪

{
j ∈ I t | sP t

jxk+1(j)
})

Let us now consider institution sk. By Equation 2, agents in xk+1(sk)\xk(sk) prefer sk over their

allocation in xk. Individuals who are not chosen from this set in this iteration are those who still

prefer sk over their allocation in xk+1. This is because xk+1(i)R
t
ixk(i) for all i ∈ I t. This implies

xk+1(sk)\xk(sk) =
{
j ∈ I t | skP t

jxk(j)
}
\
{
j ∈ I t | skP t

jxk+1(j)
}
.

Or equivalently,

xk+1(sk) ∪
{
j ∈ I t | skP t

jxk(j)
}
= xk(sk) ∪

{
j ∈ I t | skP t

jxk+1(j)
}

(5)

Using substitutability of Ct
s, (III) for k and Equation 5, we obtain

xk+1(sk) ⊆ Ct
sk

(
xk+1(sk) ∪

{
j ∈ I t | skP t

jxk+1(j)
})

.

This concludes our proof of Lemma 6.

2.A.2 Proof of Theorem 2

We employ the technique utilized by H&I in the proof of Theorem 2. The notions of stage stability

and gradual stability introduced in this chapter are generalized versions of spot stability and grad-

ual stability, respectively, as defined by H&I. Thus, it remains to show the equivalence between

Definition 2 and Definition 5 for an arbitrary stage t and t = t′ for the stage mechanism φ. We

refer to the conditions of Definition 2 as C1, C2, and C3, and the conditions of Definition 5 as C1’,

C2’, and C3’, respectively.

We first show that Definition 5 implies Definition 2. Then, C1 directly follows from C1’. If

possible, assume that C2 is not true. That is, there exists an s ∈ S such that µt(s) ⊊ Cs(µ
t(s)).

As |µt(s)| ≤ qs, this implies |Cs(µ
t(s))| < qs. Suppose i /∈ Cs (µ

t(s)). Since Cs is an SSP

choice rule, at each position pk ∈
{
p1, . . . , pqs

}
, either (i) ∅s ≻pk

s i or (ii) there exists some other

individual j such that µ̂(j) = (s, pk) and j ≻pk
s i. Both cases contradicts with our supposition that
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(Ξt, µt)t is gradually stable. Thus C2 is true.

If possible, assume that C3 is not true. That is, there exists an institution-individual pair (s, i)

such that sP t
i µ

t(i) and i ∈ Ct
s(µ

t(s) ∪ {i}). Let i be assigned to the position pks ∈ Bs. If pks is

unassigned at µ, then C2’ is violated and if µ̂(j) = (s, pks), then C3’ is violated. Thus, φ is stage

stable.

We now prove that Definition 2 implies Definition 5. first, C1’ follows from C1. If possible,

C2’ is violated. That is, there exists an institution s and individual i such that sP t
i µ

t(i). Also, for

some unassigned position p ∈ Bs, i ≻p
s ∅s. This contradicts C3 as this implies i ∈ Ct

s(µ
t(s)∪{i}).

We now prove C3’ by contradiction. Consider i, j ∈ I t such that µ̂t(j) = (s, p), µt(i) ̸= s and

i ≻p
s j for some p ∈ Bt

s. This implies i ∈ Ct
s(µ

t(s) ∪ {i}). If sP t
i µ

t(i), C3 is violated. Thus,

Definition 5 is true for t = t′.
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SÖNMEZ, T. AND M. B. YENMEZ (2022): “Affirmative action in India via vertical, horizontal,

and overlapping reservations,” Econometrica, 90, 1143–1176.

32


	Introduction
	Related Literature

	Model
	Institutions' Choice Rules

	Multi-period Matching and Updating Choice Rules
	Updating Institutions' Choice Rules
	Gradual Matching Mechanisms

	Monotonic Outcomes
	Gradual Stability
	Admissions to Engineering Colleges in India
	The Multi-round Deferred Acceptance Mechanism

	Conclusion
	Appendix 2.A
	2.A.1 Proof of Theorem 1
	2.A.2 Proof of Theorem 2



