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Abstract

We offer a solution to a common problem in developing countries: govern-

ments launch new agricultural programs without collecting pre-implementation

survey data, making it difficult to evaluate the effects of such programs.

Leveraging the flexibility of pixel-level satellite panel data and a well-developed

quasi-experimental policy evaluation design, we study one such program

where pre-implementation data is unavailable. We study the effect of cash

transfers on agricultural productivity in Telangana, India. Treatment and

control regions are within 10 km of the state border on either side. They are

identical in all respects except for the difference in exposure to policy treat-

ment. Agricultural productivity increased in the major monsoon cropping

season due to the cash transfer program, while the causes for the minor win-

ter crop productivity increase are less clear. Our results are robust to two

different sources of satellite data, three alternative indicators of productivity,

and re-sampling. Placebo regressions of two previous years also confirm our

results. Our approach is applicable anywhere satellite data are available in

the world.
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1 Introduction

Governments in emerging economies spend substantial amounts of public money

on agricultural policies. A large proportion of such policies are directed towards

individual producers (OECD, 2022). While some programs are rigorously evalu-

ated in collaboration with researchers from the program roll-out stage itself (for

instance, Boone et al., 2013; Evans et al., 2019), many are not sufficiently evalu-

ated. There are studies that utilize general-purpose survey data to evaluate poli-

cies (Abman & Carney, 2020; Agarwala et al., 2022; Shaw et al., 2023) but this

is largely a matter of chance, and are often not necessarily evaluating policy out-

comes. Further, not all developing countries have systems to collect socio-economic

data regularly. Most programs have no reliable pre-implementation data, making

them difficult to evaluate.

We provide a solution to this problem by combining the flexibility of pixel-level

satellite panel data with a widely used evaluation design to develop a replicable

approach. Our solution is constrained only by what satellites can reliably measure.

We illustrate our method using remotely sensed indicators of agricultural produc-

tivity to evaluate a cash transfer scheme in Telangana, India. The scheme pro-

vided substantial transfers to agricultural landowners based on the amount of land

they owned. The larger the land, the more the transfer. The wide coverage of the

scheme and the large transfers make this policy an ideal program to demonstrate

our approach. This study contributes to two broad strands of applied economics

research: one, literature on spatial data techniques in economic analysis, and two,

literature on agricultural policy evaluation. In the first set of literature, we con-

tribute by demonstrating that pixels can be used units of observation in economic

analysis. Economic studies tend to use administrative units (like villages, districts,

etc) to conduct analysis (Asher & Novosad, 2020; Deininger et al., 2023). However,
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we approach the satellite images as populations of pixels that together represent

the relevant regions and then random sample to select a subset of pixels for analy-

sis. The same pixels are observed every month, allowing us to use panel data tech-

niques. In the second set of literature, we engage with studies that analyse agri-

cultural productivity using satellite data (Asher & Novosad, 2020; Blakeslee et al.,

2023), as well as contribute to the measurement of productivity change as a re-

sult of cash transfer policies (Ambler, de Brauw, et al., 2020; Gazeaud & Stephane,

2023).

To study the effects of a cash transfer programme, we developed a quasi-experimental

approach that involved strictly defined treatment and control groups to estimate

precise difference-in-differences estimates. Our main outcome of interest is the

change in agricultural productivity after the implementation of the cash transfer

program. To meet the requirements of experimental designs, we define the treat-

ment and control regions around the Telangana state border. All the owners of

land classified as agricultural land inside Telangana received cash transfers. Those

on the other side of the border did not receive any comparable transfers during

the study period (Shaw et al., 2023). We demonstrate how agricultural policies

can be evaluated using remote sensing data in the absence of ground data. Satel-

lite data with high spatial resolution allows us to extract a precise border strip

from the treatment and control states. The treatment state is Telangana, where

the Rythu Bandhu cash transfer policy was implemented from May 2018 onward,

and the control states include its neighbouring states, namely Maharashtra, Kar-

nataka, Andhra Pradesh, and Chhattisgarh. The sample consists of pixels drawn

from croplands to exclude forests, other non-agricultural vegetation, and built-up

areas. We analyze annual and season-wise impacts on agricultural productivity

that were linked to the cash transfer scheme.
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Most studies evaluating the impacts of cash transfers have relied on ground-level

survey data. In contrast, our study builds upon existing research by utilizing satel-

lite data and remote sensing tools to assess the effects of the Rythu Bandhu cash

transfer policy on agricultural productivity in India. Using satellite data offers sev-

eral advantages over survey data, including eliminating common errors such as sur-

vey non-response, bias, sampling errors, and recall issues (Beegle et al., 2012). We

rely on and engage with literature that applies remote sensing data to measure

economic variables. This literature has developed not in the context of program

evaluation but to generate data for unusual research designs (Asher & Novosad,

2020) or to study periods where conventional data is sparse or unavailable (Deininger

et al., 2023; Jaafar & Woertz, 2016). For instance, Asher and Novosad, 2020 study

the impact of rural road construction on a variety of local economic variables.

Variables needed for their analysis were not available at the local level (village in

their case). They utilised satellite data to fill these gaps. The other two studies

we mentioned were studying agricultural production in regions that were affected

by war. Jaafar and Woertz, 2016 looks at how agricultural production levels were

maintained to support the war efforts of Islamic State in Syria and Iraq (ISIS).

Deininger et al., 2023 assess the effects of the Russia invasion of Ukraine on the

agricultural production in Ukraine. They are able to provide a near-real-time as-

sessment of the effects of the combat on area under production and the effects on

different farm sizes. Our study develops a policy analysis approach using data sim-

ilar to these studies, and demonstrates the approach by evaluating a cash transfer-

policy’s effect on agricultural productivity.

Cash transfer programs designed for agricultural households can improve their wel-

fare in two ways. These two pathways are not necessarily mutually exclusive. One

is by enabling consumption expenditure, and two, by providing working capital for
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agricultural production, leading to lower debt and/or higher incomes (and again

showing up as consumption increases). The present literature on cash transfers pri-

marily focuses on their impact on consumption expenditure, education, and health.

Some studies report unintended increases in agricultural productivity, with few

studies estimating any intended benefits of cash transfers on agricultural produc-

tivity. No studies have looked at the impact of cash transfers on agricultural pro-

ductivity in the Indian context. We believe that the Indian agricultural context

is unique and differs from other contexts 1, particularly regarding factors such as

climate, institutions, landholding size etc.

Cash transfer programs have been implemented in various contexts to increase

household welfare. Literature shows that cash transfers help households to increase

agricultural production in some cases. Although not intended to increase agri-

cultural production, the evidence from Malawi’s social cash transfer programme

helped families expand farm production by increasing agricultural assets ownership

and time devoted to farm activities(Boone et al., 2013). Experimental evidence

from Lesotha shows that cash transfers caused farm production to go up substan-

tially. (Prifti et al., 2019).

Cash transfers can increase agricultural productivity by overcoming credit con-

straints and due to the increased willingness of risk-averse households to engage in

high-risk and high-return farming. Experimental evidence from the Oportunidades

cash transfer program in Mexico shows that households consume a portion of the

cash transfer while investing the remainder in productive assets.(Gertler et al.,

2012) find that households who received cash transfers increased their income by

10% by investing in non-agricultural microenterprises. Additionally, (Todd et al.,

2010) find that the Oportunidades helped Mexican households increase their con-

1Most cash transfer programmes have been evaluated in the Sub-Saharan African context
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sumption of food produced on their farms, indicating an increase in agricultural

production. The program also led to increased crop production spending, increased

livestock ownership, and more land use.(Ambler, De Brauw, et al., 2020) also find

that cash transfers combined with the farm management plan increased the gross

value output of agriculture by US$580 relative to the control group. They also

found that cash transfers led to increases in livestock and agricultural equipment

ownership.

2 Policy Background

The Government of Telangana introduced the Agriculture Investment Support

Scheme, also known as Rythu Bandhu, during the kharif season (monsoon crop)

of 2018-19. Rythu Bandhu, meaning “friend of the farmer,” is a cash transfer pro-

gram that provides agricultural landowners Rs 4,000 (≈$58.5)2 per acre per season

(subsequently revised to Rs 5,000 or $73.1). Transfers are made to individuals, not

households. A landowner who owns 1 acre of agricultural land would receive Rs

8,000 a year in two instalments. A landowner who owns less or more than 1 acre

receives a proportionately smaller or larger transfer. For instance, a farmer with

0.5 acres would receive Rs 4,000 in a year, and another with 10 acres would receive

Rs 80,000 per year. Tenant farmers and agricultural labourers who are landless

are not covered under this scheme (Ramesh, 2020). The Rythu Bandhu scheme is

an unconditional cash transfer. Recipients are free to use the transfers in the way

they see fit. There is no need to show the government how the transfer was used.

The program had two objectives: one, to provide working capital to invest in agri-

cultural production, and two, to prevent farmers from taking on too much debt

(Minhaz, 2023; Shaw et al., 2023). The transfers are supposed to reach farmers

2Exchange rate used is the 2018 average dollar-rupee rate, which is $1 = Rs 68.41
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before they begin their production cycles in the kharif season (May-June sowing)

and in the rabi season (November sowing). The first transfer was provided through

cheques, which farmers received starting from 10 May 2018 (Muralidharan et al.,

2021). The distribution of cheques took place through village-level meetings un-

der the supervision of State Government Agriculture Officers. Since the second

instalment in November-December 2018, transfers began being made directly to

beneficiary bank accounts (Muralidharan et al., 2021).

Prior to the launch of Rythu Bandhu, the state government had a three-month

rapid Land Records Updation Programme (LRUP) to digitise all land records in

the state (Thomas et al., 2020). This programme led to the issuance of land own-

ership passbooks (called Pattadar Passbooks) to all landowners. The state gov-

ernment now had information about landowners, the type of land owned and the

extent of land owned. This allowed them to design Rythu Bandhu in a way that

only agricultural landowners were provided transfers. There was no special appli-

cation procedure, all agricultural landowners received transfers. The favourable

reception of this scheme led to similar ones being launched elsewhere. Many state

governments (Odisha, West Bengal, Andhra Pradesh, among others) launched new

programs. The Union Government of India too launched a nationwide cash trans-

fer for agricultural landowners in early 2019, albeit with smaller transfers.

3 Data

3.1 Inadequacy of on-ground survey data

We choose to exclusively harness satellite data to inform our insights and drive our

conclusions. In this section, we expound upon the reasoning that underpins our

preference for satellite data over ground survey data.
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The National Statistics: Situation Assessment of Agricultural Households con-

ducted a survey in 2013, a time when Telangana had not yet attained the status of

a separate state. The next survey was conducted in 2019. Consequently, the survey

data from 2013 becomes less relevant to our current analysis due to the substan-

tial changes that have transpired since then. As a result, using this dataset for our

study would not yield results that are accurate for our purposes.

Another facet of survey data pertains to the cost of cultivation at the plot level,

an annual survey undertaken by the Commission of Agricultural Costs and Prices

(CACP). It is imperative to recognize that this dataset comes with limitations that

affect its suitability for our study. The data originates from a three-year panel,

where identical plots are surveyed in successive years. Unfortunately, this con-

strained time frame hinders our capacity to examine pre-treatment trends com-

prehensively. To attain a thorough grasp of the underlying dynamics, a more ex-

tensive temporal span is required. Furthermore, uncertainties surround the repre-

sentativeness of this dataset, a prerequisite for robust and generalized statistical

inferences. Beyond this, the constrained sample size undermines our ability to gen-

erate precise estimates, thereby diminishing the statistical validity of our findings.

As such, our decision to rely exclusively on satellite data is a well-founded one.

This approach empowers us to surmount the inherent limitations of the available

survey data sources.

3.2 Data Requirements

We use remote sensing data from different satellites with varying spatial and tem-

poral resolutions to investigate the impact of cash transfers on agricultural produc-

tivity. Our two main datasets include Sentinel-2 MSI data and Landsat-8 satellite

data. Sentinel-2 is an earth observation system that is part of the Copernicus pro-
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gramme, developed by the European Space Agency (ESA).3 This high-resolution

satellite has a spatial resolution of 10m and acquires images at each location on

the Earth’s surface at 10 a.m. local time, roughly every ten days. In addition to

Sentinel-2 data, we use Landsat-8 satellite data, which has a high spatial resolution

of 30m and a temporal resolution of 16 days (and captures images at 10 a.m local

time).4

To verify our findings from Sentinel-2 and Landsat-8 data, we also employ Moder-

ate Resolution Imaging Spectroradiometer (MODIS) satellite images to analyze the

impact of changes in spatial resolution on productivity estimates. The MODIS-250

has two sensors, Terra and Aqua, with a spatial resolution of 250m and a temporal

resolution of 16 days.

To accurately identify croplands on the ground and ensure that we only measure

and analyze light reflected from croplands, we use a dataset from the European

Space Agency’s (ESA) World Cover project, which offers a high resolution of 10

meters. This land cover classification dataset employs images from Sentinel-1 and

Sentinel-2 satellites to divide global land cover into 11 classes: built-up areas, bar-

ren/sparse vegetation, snow & ice, open water, trees, shrubland, grassland, crop-

land, herbaceous wetland, mangroves, moss and lichen. The ESA World Cover

dataset has a high accuracy assessment rate of 74.4% (Tsendbazar, 2020). Accord-

ing to the ESA World Cover data, cropland is defined as “that part of the land

which is covered with annual cropland and is sown/planted or harvested within a

3It is crucial for generating next-generation products such as land change detection maps,
land cover maps, and various geophysical variables (Drusch et al., 2012). Sentinel-2A has a multi-
spectral instrument (MSI) sensor, which measures radiation reflected from the Earth’s surface
at multiple wavelengths. The range of wavelengths of electromagnetic radiation reflected by the
Earth’s surface and detected by the satellite sensor constitutes a band. Sentinel-2 MSI, Level-1C
captures radiation reflected from the Earth’s surface in thirteen bands.

4Landsat-8 is the eighth Landsat satellite in space and is a part of the U.S. Geological Survey
(USGS) National Land Imaging (NLI) Program. It contains two sensors, the Operational Land
Imager sensor (OLI) and the Thermal Infrared Sensor (TIS) (“Landsat Satellite Missions — U.S.
Geological Survey”, n.d.).
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year after the sowing or planting date” (Van De Kerchove, 2020). We mask every

land cover class except cropland to prevent data contamination from other vege-

tation classes like grasslands, forests, and shrublands, which are irrelevant to our

study (Figure A1 and Figure A2)

We employ an alternative land classification dataset, called the Copernicus Global

Land Service: Land Cover dataset5 to verfiy our results from the ESA World Cover

dataset. The notable advantage of utilizing this alternative dataset is its provision

of land cover classification from 2015 to 2020, with a spatial resolution of 100 me-

ters, which aligns with our study period (2015-2019). Consequently, this dataset

enables us to accurately identify any instances of misidentified agricultural land in

the ESA World Cover dataset. We use this data set to test the reliability and con-

sistency of our findings. The absence of ground truthing (training data) prevents

us from evaluating crop-wise productivity gains directly. Nonetheless, we address

this limitation by verifying productivity gains specifically in cereal crops during the

kharif and rabi seasons. To identify agricultural lands cultivated with cereal crops,

we leverage the MODIS landcover type data provided by NASA USGS EROS Cen-

ter.6 We identify agricultural land cultivated with cereals using the landcover clas-

sification type 1 (LC-Type5), corresponding to the Annual Plant Functional Types

classification7. This classification allows us to ensure that we compare the produc-

tivity of similar crops, as we confirm the presence of common cereal crops in both

the treatment and control regions from administrative data.

To check for the balance of covariates for the treatment and control region, which

5It defines agricultural areas as cultivated and managed land, specifically focused on agri-
culture. It includes annual crops sown and harvested in a year while excluding perennial crops.
Therefore, the definition of agriculture in the Copernicus Global Land Service: Land Cover
dataset aligns with the definition used in the ESA World Cover dataset.

6The MODIS Landcover type data utilizes supervised classification of machine learning tech-
niques, offering five distinct types of classifications(Menashe and Friedl, 2018).

7Croplands are defined as areas primarily characterized by herbaceous vegetation less than 2
meters in height and with at least 60 per cent of the cultivated land dedicated to cereal crops.
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might affect agricultural productivity, we use multiple datasets like Terra Climate

SMAP etc, which contain agro-climatic information like rainfall, temperature, soil

moisture etc. and are shown in Table A1

We chose to sample 100,000 cropland pixels, which are observed every month.

The total population of ESA World Cover cropland pixels in our study region is

219,753,702.8 The chosen sample size of 100,000 pixels will ensure that a popula-

tion proportion of 50% (the worst case) will be estimated at the 99% confidence

level with a margin of error of only 0.41. See Table A3 for details.

4 Key Variables: Vegetation Indices

We use a remotely sensed index called the Normalised Difference Vegetation In-

dex (NDVI) as the main variable to gauge agricultural productivity in treatment

and control regions. The amount of vegetation on the ground correlates with the

light reflected in the red and near-infrared (NIR) bands. The light reflected in the

red band from croplands(vegetation) decreases as the crop moves from sowing to

near the harvesting stage. This is due to the absorption of red light by chlorophyll

present in photosynthetically active leaves. In contrast, the light reflected in the

NIR band increases as plant development starts after sowing because of the scat-

tering of light from healthy leaves (reflection, transmission)(A. Huete et al., 1999).

Thus, NDVI can be used as a measure of production and productivity by calculat-

ing the amount of light reflected in the red and near-infrared band from croplands,

which is captured by satellite sensors in space. NDVI is a ratio9 of reflectance of

two bands, i.e., Red and near-infrared (ρNIR/ρRED), which is normalised and stan-

8(This is the largest total population of pixel among all the data we use. Therefore, in all
other datasets used, we more than satisfy sample size requirement.

9NDVI as a ratio minimises noise associated with bands which arise due to variations in sun
and view angles, topography, clouds and shadows due to clouds. Taking ratio is also important to
control instrument and calibration-related errors(A. Huete et al., 1999)
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dardised to have NDVI values between -1 to +1(Deering, 1978; A. Huete et al.,

1999). NDVI values close to zero represent bare soil; higher NDVI values mean

more ground vegetation.

NDV I =
[(ρNIR/ρRED)− 1]

[(ρNIR/ρRED) + 1]
(1)

Equation 1 can be also simply expressed as NIR to Red ratio

NDV I =
[XNIR −XRED]

[XNIR +XRED]
(2)

ρNIR and ρRED represent the amount of light reflected in the near-infrared and red

bands, respectively.

Additionally, we use the Enhanced Vegetation Index (EVI) to verify whether the

results obtained from NDVI are robust to an alternative vegetation index. Using

multisource data and multiple vegetation indices effectively enhances the accuracy

and validity of remotely sensed phenology-related products (Wang et al., 2017).

Compared to NDVI, EVI does not saturate over regions with high vegetation or

biomass, and it is not affected by soil reflectance, cloud cover (A. Huete et al.,

2002), and aerosol scattering (A. Huete et al., 1999).

EVI =
ρNIR − ρRED

ρNIR + C1ρRED − C2ρBLUE + L
∗ (1 + L) (3)

EVI is a modified NDVI that incorporates a soil adjustment factor,L and C1 , C2

coefficients that use the blue band to correct the red band for atmospheric aerosol

scattering.The values of L,C1 and C2 which has been empirically determined are 6,

7.5 and 1 respectively.

To account for the influence of soil brightness in areas with low vegetation cover
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due to crops, we also use the soil-adjusted vegetation index (SAVI). SAVI helps

compute vegetation indices in areas where crops grow in soils with different back-

grounds. Although both the surface and subsurface soil moisture, which are impor-

tant covariates, are well-balanced in both treatment and control regions (Table 1),

the purpose of using SAVI is to eliminate any potential soil-induced variation that

may arise due to other characteristics of the soil (A. R. Huete, 1988).

SAV I =

(
NIR−R

NIR +R + L

)
· (1 + L) (4)

where L is a soil brightness correction factor and is set to 0.5.

SAV I =

(
NIR−RED

NIR +RED + L

)
· L (5)

SAVI incorporates L as soil brightness correction factor (L) and L = 0.5

We also use the green chlorophyll vegetation index (GCVI) as an alternative index

which helps estimate chlorophyll content in leaves of vegetation. The spectral re-

flectance of vegetation is related to chlorophyll content in the leaves (Gitelson et

al., 2003). Thus GCVI also gives us an idea about the amount of green vegetation

on the ground and, unlike NDVI, helps to overcome the problem of saturation over

dense canopies. GCVI is calculated based on light reflected from vegetation and

recorded by the sensor in NIR and green bands.

GCV I =

(
NIR

Green

)
− 1 (6)

We also use the Normalised Difference Moisture Index (NDMI) to control for time-

varying moisture levels in crop canopy to capture water stress conditions (Mashaba

et al., 2016). NDMI is a ratio of light reflected in NIR and short wave infrared
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band (SWIR)(“Normalized Difference Moisture Index — U.S. Geological Survey”,

n.d.).

NDMI =
NIR− SWIR

NIR + SWIR
(7)

5 Methodology

In this section, we discuss the research design and empirical specifications to be

used for this study. We create a novel experimental design using the flexibility of-

fered by satellite data. Instead of selecting the bordering districts as a whole, we

select all areas in a radius of 10 km from the state border of Telangana on either

side. This includes regions up to 10 km of the border in Telangana and regions up

to 10 km inside neighbouring states.

5.1 Research Design

“Everything is related to everything else, but near things are more related than

distant things”(Toblers First Law of Geography: Tobler, 1970)

The region 10 km within the Telangana border is the treatment area, and the re-

gion 10 km within the neighbouring state borders are the control regions. In Fig-

ure 1b, the regions in green are those up to 10 km inside Telangana and are re-

gions where cash transfers were disbursed. The regions in grey are in neighbour-

ing states and received no comparable transfers, and are control regions. Satellite

images allow the flexibility to focus on areas of interest. By selecting treatment

and control regions in this way, we minimize the differences between treatment and

control regions along a variety of geographical and agro-climatic characteristics. A

covariate balancing test between treatment and control regions demonstrates that
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they do not differ in agro-climatic characteristics (Table 1). The only major differ-

ence that remains between these two regions is that they are exposed to different

state policies. This simulates an experimental design that can be used to estimate

causal effects due to a policy change.

As mentioned in the data section, we identify croplands in this border area with

the help of the ESA World Cover dataset. After masking all land cover classes

except cropland, we select a sample of 100,000 pixels by stratified random sam-

pling from the 10 km border area of the agricultural land. Subsequently, we create

a panel dataset covering 2017 to 2019, observing monthly NDVI, EVI, SAVI and

GCVI values for each crop pixel. We then map the selected crop pixels to the dis-

trict border region to determine which district they belong to. It gives us complete

information about the crop pixels, such as sample size by bordering district and

location of each pixel, allowing us to add pixel-location fixed effects and district-

fixed effects. In Figure 1c, We show the distribution of crop pixels on the 10 km

border region, with green polygons representing bordering districts of Telangana

and blue polygons representing bordering districts of neighbouring states. The

sample covers the 10 km border of Telangana, which is the treatment state, and

the 10 km border of neighbouring states, including Andhra Pradesh, Maharashtra,

Chhattisgarh, and Karnataka, which are the control states.

(a) Telangana
and Neighboring states.

(b) 10 km Border (c) Map showing crop pixels
inside border region

Figure 1: Border Design of the Study
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Table 1: Covariate Balance Test

Variable Unit mean(Treatment,T) mean(Control,C) Difference(T-C) t-value p-value

Actual Evapo-Transpiration mm 66.946 67.591 -0.644 -0.1 0.907

Potential Evapo-Transpiration mm 136.887 137.094 -0.207 -0.05 0.962

Run off mm 20.453 17.389 3.064 0.6 0.547

Minimum Temperature °C 22.2 22.258 0.058 -0.1 0.904

Maximum Temperature °C 33.402 33.469 -0.067 -0.15 0.887

Wind Speed m/s 1.527 1.529 -0.002 0 0.984

Rainfall mm 96.677 95.668 1.009 0.05 0.946

Surface Soil Moisture mm 10.549 10.599 -0.051 -0.15 0.876

Sub Surface Soil Moisture mm 76.931 79.382 -2.45 -1.05 0.301

Night Light Intensity nanoWatts/cm2/sr .437 .439 -0.002 -0.1 0.928

5.2 Empirical Specification

We use a simple difference-in-differences framework to estimate the impact of cash

transfers on agricultural productivity. The following is the difference-in-differences

specification:

VIitk = α0+β1treati+β2postt+β3(treat×post)it+β4NDMI+γp+δd+λt+ ϵitk (8)

VIit in Equation 8 refers to a vegetation index (multiple indices are used) value at

pixel ‘i’ in month ‘t’ in year ’k’. Treati is a dummy variable with value 1 if pixel

‘i’ belongs to the treatment region, and 0 otherwise. Postt is a dummy variable

with value 1 if the observation is recorded after the treatment commences, and 0

otherwise (upto January 2014). There are three variants of Postt: one includes all

months in the year, one includes only the Kharif months (August-November), and

another includes only the rabi months (January-April). Treat × postit is the in-

teraction term of interest (which also varies according to the definition of Postt).

β3 yields the difference-in-differences coefficient. NDMI is a normalised difference

moisture index that controls for time-varying moisture levels over space and time.γp

represents pixel-fixed effects which will take care of a host of time-invariant pixel-

16



specific characteristics. δp represents district-fixed effects that control for time-

invariant characteristics such as agronomic suitability, access to infrastructure etc.

The term λt is for month-fixed effects (to account for annual seasonal variations).

ϵitk is the random error term.

6 Dealing With Cloud Cover

In India, the kharif season from June to November is characterized by cloudy weather

during the rainy days of the monsoon season. This can pose a challenge to estimat-

ing agricultural productivity using satellite data accurately when the light from the

sun is in the form of electromagnetic radiation and encounters clouds and other

materials in the atmosphere, a portion of it gets reflected. Consequently, the sen-

sor used to measure this reflected light from the target (in this case, agricultural

vegetation) records not only the reflected light from the target but also other light

from the reflected radiation of the atmosphere. This additional light can lead to

inaccurate estimates of agricultural productivity when using such data.

Therefore, it is essential to incorporate cloud masking techniques when using satel-

lite data. We employ two methods to address the cloud cover problem. First, we

apply a cloud mask to input images using the internal cloud masking algorithm of

each dataset, setting mask values to zero for pixels corresponding to clouds or cir-

rus clouds10. Second, we create monthly composites of Sentinel-2, Landsat-8, and

MODIS images to retain the best pixels of the month and fill temporal gaps caused

by cloud masking restrictions (Lin et al., 2014; Sakamoto et al., 2005; Soriano-

González et al., 2022; Tornos et al., 2015). By using these methods to deal with

cloud cover, we obtain cloud-free satellite images that can reflect the best possible

10We use QA60 Bitmask bands of Sentinel-2 and the pixel qa band of Landsat-8 data to re-
move pixels contaminated by clouds.
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approximation of true productivity on the ground.

7 Results

From Figure 2, it can be seen that before the implementation of the cash transfer

policy, there were no major differences in productivity trend between the treat-

ment and control states during the kharif months (compare August to November

before and after treatment). For the rabi months, the trends are less conclusive

(we discuss this later on). Overall, the parallel trends indicate that the exposure of

the treatment state (Telangana) to the cash transfer policy can be estimated using

a difference-in-differences design.

Figure 2: Parallel trends assumption is satisfied.

We present the main results in Table 2. These results are estimated according

to the Equation 8 using data from Landsat 8 and the outcome variable here is

NDVI.11 Column (1) shows results from the base model without any controls, col-

11The results are based on atmospherically corrected and cloud-processed surface reflectance
data of Landsat 8. Landsat 8 uses the CFMASK algorithm for cloud processing and contains
results in a quality assessment (QA) band in level 1 Landsat collection.
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umn (2) shows results from the fully specified regression equation. The estima-

tion is based on the full sample, covering all months of the year. To analyze crop-

ping season-wise variations, we further investigate changes in NDVI for kharif and

rabi crops (the two primary cropping seasons in India) in columns (3) and (4), re-

spectively. We are interested in knowing the maximum NDVI values (full green-

ness) during the kharif season (which will correspond to actual crop stand in the

ground), so we limit our sample to August, September, October, and November.

The results in column (3) indicate a positive and statistically significant change in

NDVI for kharif crops. The average NDVI of crop pixels within the treatment re-

gion is 0.017 standard deviations higher than those in the control region, indicating

that the cash transfers changed crop productivity. For the rabi season, we restrict

the sample to December to April and present the results in column (4). The find-

ings suggest a smaller magnitude of effect compared to the kharif season, with the

treatment region’s NDVI being 0.015 standard deviations higher than the control

region. To account for location-specific and time-invariant characteristics, we in-

troduce pixel-fixed effects in our regression specification. These effects capture mi-

croclimate attributes at various crop pixel locations. Additionally, to control for

time-invariant district-level characteristics, we include district-fixed effects. These

include access to infrastructure such as roads, soil testing facilities, Krishi Vigyan

Kendras (KVKS), and soil texture types. Moreover, we incorporate month-fixed

effects to address seasonal variations and other unobservable time-specific charac-

teristics. Our findings reveal a positive and significant impact of the cash transfer

policy on NDVI for kharif and rabi crops, with kharif crops experiencing more pro-

nounced productivity gains.
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(1) (2) (3) (4)

VARIABLES Base Model Full Model Kharif Rabi

1.treat#1.post 0.012*** 0.016*** 0.017*** 0.015***

(0.000) (0.000) (0.001) (0.000)

treat = 1 0.022***

(0.000)

post = 1 -0.027*** -0.051*** -0.096*** -0.055***

(0.000) (0.000) (0.000) (0.000)

NDMI -0.054*** -0.058*** 0.119***

(0.001) (0.003) (0.003)

Observations 5,731,858 5,731,858 1,901,934 2,399,998

R-squared 0.001 0.410 0.322 0.472

Pixel Fixed Effects No Yes Yes Yes

District Fixed Effects No Yes Yes Yes

Month Fixed Effects No Yes Yes Yes

Robust SE No Yes Yes Yes

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 2: Main results with NDVI (from Landsat 8) as outcome variable showing
increases after cash transfer. Results are in standardised beta coefficients.

Table 3 presents results related to croplands where cereals are cultivated. We uti-

lized the MODIS landcover classification dataset to identify areas where cereals are

grown.12 We randomly sample a population of 98,235 cereal pixels based on this

12This dataset is discussed in the data section of this paper.
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dataset, representing our region’s cereal growing areas. The sample acts as a rep-

resentative population of cereal pixels for this analysis. Although this approach

does not allow us to estimate crop-specific productivity, it enables us to focus on a

broad category of crops which includes rice, wheat, maize, and other cereals. The

results presented in Table 3 confirm the productivity gains in cereals due to the

cash transfer policy. Specifically, we compare different models, as shown in Ta-

ble 2, to understand the impact of the policy. Column (1) shows results without

any controls and includes full-year NDVI change estimates. Column (2) shows the

full-year model with all controls. Column (3) and column (4) specifically focus on

NDVI changes in kharif and rabi cereals, respectively. These columns use the same

fixed effects as presented in Table 2. We observe a clear increase in NDVI for ce-

reals in the treatment region (those who received the cash transfer policy) during

both the kharif and rabi seasons. In column (3), NDVI for kharif cereals in the

treatment region is 0.017 standard deviations higher than that of kharif cereals in

the control region. Our findings for rabi cereals are consistent with the results in

Table 2, where the magnitude of change in NDVI is smaller than kharif cereals. In

column (4), we find that the treatment regions, which received the cash transfer

policy, experienced a 0.012 standard deviations increase in NDVI for rabi cereals

compared to the control regions. Our analysis indicates a positive effect of the cash

transfer policy on cereal productivity, evident from the increase in NDVI values

in the treatment regions compared to the control regions for both kharif and rabi

cereals.

21



(1) (2) (3) (4)

VARIABLES Base Model Full Model Kharif Rabi

1.treat#1.post 0.008*** 0.011*** 0.017*** 0.012***

(0.000) (0.000) (0.000) (0.000)

treat = 1 0.016***

(0.000)

post = 1 -0.027*** -0.050*** -0.098*** -0.060***

(0.000) (0.000) (0.000) (0.000)

NDMI -0.015*** -0.046*** 0.163***

(0.000) (0.000) (0.000)

Observations 6,032,595 6,032,595 1,875,780 2,360,230

R-squared 0.001 0.418 0.306 0.502

Pixel Fixed Effects No Yes Yes Yes

District Fixed Effects No Yes Yes Yes

Month Fixed Effects No Yes Yes Yes

Robust SE No Yes Yes Yes

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3: Cereals-only results with NDVI (from Modis 500 Landcover) as outcome
variable showing increases after cash transfer. Results are in standardised beta co-
efficients.
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8 Robustness

In this section, we discuss the results of various robustness checks we carry out to

verify our main results. These checks include placebo regressions for the last two

years of each kharif and rabi season. We re-estimate our main results with alter-

native datasets (with different spatial resolutions), other vegetation indices, and

another cropland classifying dataset from the Copernicus Global Land Cover (Col-

lection 3).

8.1 Placebos confirm results

Placebo regressions involve employing the same sample and regression model but

with a “fake” treatment for years in which we expect no causal impact, i.e. the

productivity of the treatment region is expected to be lower or equal to that of the

control region. We run our main regressions using cut-offs in the past two years

to check if productivity was rising on the Telangana side before the cash transfers.

We run these separately for the kharif and rabi seasons.
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(1) (2) (3) (4)

VARIABLES Kharif:t-1 Kharif:t-2 Rabi: t-1 Rabi: t-2

1.treat#1.post -0.013*** -0.036*** 0.018*** 0.001

(0.001) (0.001) (0.000) (0.000)

NDMI -0.028*** -0.022*** 0.125*** 0.128***

(0.003) (0.004) (0.004) (0.004)

Observations 1,529,397 1,164,205 1,999,998 1,599,998

R-squared 0.312 0.350 0.469 0.473

Pixel Fixed Effects Yes Yes Yes Yes

District Fixed Effects Yes Yes Yes Yes

Month Fixed Effects Yes Yes Yes Yes

Robust SE Yes Yes Yes Yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 4: Placebo regression of two past years

Ideally, the placebos should show that productivity either did not change or has

an opposite sign from the main result. The first two columns of Table 4 suggest

that the productivity of the treatment region is indeed lower than that of the con-

trol region in the kharif season. In the case of rabi seasons the placebos are less

clear. The year before the treatment, rabi productivity saw an improvement on the

Telangana side compared to the control regions. While two years prior to the cash

transfers, rabi productivity change was not different in the treatment and control
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regions.

A notable pattern emerges for kharif, the main cropping season. Productivity change

was positive and significant in Telangana only when the cash transfer was pro-

vided, while in two previous years, Telangana was worse off than the control states.

We can be confident that the cash transfer policy led to increased agricultural pro-

ductivity for kharif crops. The rabi pattern is less conclusive.

8.2 Alternative data shows similar results

(1) (2) (3) (4)

VARIABLES S2 Kharif Modis Kharif S2 Rabi Modis Rabi

1.treat#1.post 0.039*** 0.019*** 0.013*** 0.015***

(0.001) (0.000) (0.000) (0.000)

post = 1 -0.237*** -0.088*** -0.043*** -0.022***

(0.001) (0.000) (0.000) (0.000)

NDMI 0.171*** 0.235*** 0.236*** 0.402***

(0.005) (0.002) (0.003) (0.003)

Observations 599,625 1,994,840 1,187,668 2,399,400

R-squared 0.516 0.490 0.591 0.690

Pixel Fixed Effects Yes Yes Yes Yes

District Fixed Effects Yes Yes Yes Yes

Month Fixed Effects Yes Yes Yes Yes

Robust SE Yes Yes Yes Yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Results in alternative datasets with NDVI as the outcome variable.
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Table 5 presents results from other satellites, namely Sentinel-2 and MODIS-250,

to assess the robustness of our NDVI estimates. By using NDVI data from these

satellites with different spatial resolutions, we aim to check the consistency of our

the main results from Landsat-8. Sentinel-2 offers high-resolution data with a spa-

tial resolution of 10 meters, providing a more granualar view of croplands. We

utilize the multispectral instrument data from Sentinel-2 and the QA60 band for

cloud masking (Delwart, n.d.). To ensure data quality, we apply strict restrictions,

retaining only images with a cloud cover of 20% or less for vegetation index calcu-

lations. This approach helps us minimize errors associated with cloud interference.

In column (1) and column (3) of Table 5, we report the results of kharif NDVI and

rabi NDVI, respectively, based on Sentinel-2 data. Our analysis shows a significant

increase of 0.039 standard deviations in kharif NDVI for the treatment region com-

pared to the control region. Similarly, for the rabi season, the treatment regions

exhibit 0.013 standard deviations higher NDVI than the control regions. Notice

that sign of these results is the same as the main results.

We then estimate NDVI change using MODIS-250 data (with a coarse resolution

of 250 m). Columns (2) and (4) present the results of MODIS-250-based NDVI

for the kharif and rabi seasons, respectively. In the kharif season, the treatment

regions experienced a notable increase of 0.019 standard deviations in NDVI com-

pared to the control region. Similarly, in the rabi season, the treatment regions

observed a 0.015 standard deviations increase in NDVI. Here again, the sign of the

coefficients has remained consistent.

The results from alternative datasets consistently show a smaller magnitude of

NDVI change during the rabi season compared to the kharif season. This obser-

vation aligns with the outcomes from Table 2 and Table 3.
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8.3 Alternative indicators align with NDVI

(1) (2) (3) (4) (5) (6)

VARIABLES EVI Kharif GCVI Kharif SAVI Kharif EVI Rabi GCVI Rabi SAVI Rabi

1.treat#1.post 0.001 0.008*** 0.017*** 0.000 0.003*** 0.015***

(0.197) (0.005) (0.001) (0.049) (0.005) (0.001)

post = 1 -0.002* -0.047*** -0.096*** -0.002** -0.026*** -0.055***

(0.152) (0.003) (0.001) (0.035) (0.002) (0.000)

NDMI -0.003*** -0.005*** -0.058*** 0.009*** 0.047*** 0.119***

(0.588) (0.019) (0.004) (0.222) (0.020) (0.005)

Observations 1,902,091 1,902,091 1,902,091 2,400,000 2,400,000 2,400,000

R-squared 0.053 0.157 0.322 0.042 0.128 0.472

Pixel Fixed Effects Yes Yes Yes Yes Yes Yes

District Fixed Effects Yes Yes Yes Yes Yes Yes

Month Fixed Effects Yes Yes Yes Yes Yes Yes

Robust SE Yes Yes Yes Yes Yes Yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 6: Results in alternative indicators from Landsat.

Table 6 presents the results another robustness check, where we evaluate produc-

tivity change using alternative vegetation indices, namely EVI (Enhanced Vegeta-

tion Index), GCVI (Green Chlorophyll Vegetation Index), and SAVI (Soil-Adjusted

Vegetation Index). These indices offer advantages over NDVI, as previously dis-

cussed in the key variables section, by accounting for various factors such as dense

crop stands, cloud cover, soil reflectance, atmospheric and aerosol scattering, and

other soil-induced variations. The objective of this analysis is to corroborate the

findings from the main results section and examine whether the results hold consis-

tently when measuring productivity changes through EVI, GCVI, and SAVI.
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In Table 6, we report the estimates of Landsat-8 based alternative vegetation in-

dices for both the kharif and rabi seasons. Notably, all vegetation indices exhibit

positive and statistically significant beta (standardized) coefficients, except EVI.

Nevertheless, both the Sentinel-2 and MODIS-250 based EVI estimates in Ta-

ble A8 and Table A9, respectively, are positive and significant.

We also present alternative indicator results from Sentinel 2 (Table A8) and MODIS-

250 (Table A9). Here too we see that the signs of productivity change are consis-

tent 13. Magnitudes of change too vary in a tight band.

An important observation from these results is that the magnitude of GCVI, and

SAVI estimates for the rabi season consistently appear smaller than those for the

kharif season. This pattern aligns with the findings from Table 2, Table 3, and Ta-

ble 5, further reinforces our results. It provides additional evidence supporting the

notion that the cash transfer policy has indeed increased the productivity of the

treatment region.

13GCVI in kharif from Sentinel 2 is an exception
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8.4 Alternative land classification show same results

(1) (2) (3) (4)

VARIABLES Base Model Full Model Kharif Rabi

1.treat#1.post 0.011*** 0.015*** 0.016*** 0.016***

(0.000) (0.000) (0.000) (0.000)

treat = 1 0.025***

(0.000)

post = 1 -0.027*** -0.053*** -0.096*** -0.055***

(0.000) (0.000) (0.000) (0.000)

NDMI -0.043*** -0.061*** 0.112***

(0.000) (0.000) (0.000)

Observations 6,130,778 6,130,778 1,901,067 2,399,997

R-squared 0.001 0.407 0.322 0.473

Pixel Fixed Effects No Yes Yes Yes

District Fixed Effects No Yes Yes Yes

Month Fixed Effects No Yes Yes Yes

Robust SE No Yes Yes Yes

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 7: Results in alternative land classification from Landsat.

In Table 7, we present the results of an additional robustness check, where we es-

timate NDVI derived from Landsat-8 satellite, using light reflected in red and in-

frared wavelengths at various cropland locations identified through the Coperni-

cus landcover classification (Collection 3) dataset. This dataset, discussed in the
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data section, provides information about various landcover classes with a spatial

resolution of 100m for 2015-2020. The purpose of this robustness check is to in-

vestigate whether our results remain consistent when we identify croplands based

on the Copernicus landcover dataset, as opposed to using the ESA WorldCover

dataset. Although the latter offers a higher resolution (10m), it is only available

from 2020 onwards. For our analysis, we limit the data to 2019, as we aim to avoid

any potential data anamolies due to the COVID-19 pandemic that began in March

2020. We assumed that croplands would not change significantly over short inter-

vals of time. We evaluate if there is a significant mismatch between the croplands

identified through ESA WorldCover 2020 and the actual croplands in our study pe-

riod (2018-2019). Any substantial mismatch could potentially affect the stability of

our results when we change the sample of crop pixels to the Copernicus landcover

dataset.

The sample used for NDVI estimation in Table 7 differs in two ways. First, we

identify croplands based on a different data source than ESA, which was used for

the main results. Second, we re-randomize the sample, this time with a different

seed number, resulting in crop pixels being randomly distributed to form a sam-

ple from different locations than those used in the ESA WorldCover-based sample.

In Column (3) of Table 7, we find that the treatment region exhibits NDVI values

0.016 standard deviations higher than the control region for kharif crops and 0.016

standard deviations higher for rabi crops.

The replication of our main results from Table 2 in Table 7 demonstrates that our

findings are robust to changes in the sample. This indicates that the observed im-

pact of the cash transfer policy on productivity is not a random occurrence that is

driven by the sample that we happen to sample.
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8.5 Results hold with varied clustering

Finally, in Table A10 we present the main results at two different levels of clus-

tering of standard errors. Our main results are robust standard errors that are

clustered at pixel-level. This is not always convincing. Since our design is non-

standard and the obvious clustering units which are districts and states are too

few, we resort to alternative approaches to evaluate our errors. We follow state-

location and district-location clustering. We generate a variable at the degree-

minute level using geographic coordinates and interact them with state and district

units, respectively. Our main results are clustered too granularly, which may lead

to under-estimated errors. The district-location clusters are more coarse, while

state-location clusters are even more coarse. We find that the results hold across

these two variations. Our results are not sensitive to the level of error clustering.

9 Discussion and Conclusions

Lack of pre-implementation data constrains the evaluation of many policies. In this

study, we aim to evaluate an agricultural policy designed to enhance agricultural

productivity, despite such data limitations. We leverage high-resolution satellite

data and a custom border design to assess the impact of a cash transfer policy im-

plemented in Telangana, a southern state in India.

Rather than relying on entire district borders, we precisely carve treatment and

control areas within a 10 km radius from the shared border. This approach min-

imises covariate imbalances and provides us with precise productivity estimates.

Due to the lack of administrative/survey data at a granular level, we exclusively

depended on remote sensing data from various satellites, each offering distinct spa-

tial and temporal resolutions, as well as internal cloud processing algorithms.
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Our findings demonstrate that the cash transfer policy has increased productivity

in the state. The season-wise analysis indicates a clearer effect of the policy on the

productivity of kharif crops (the main cropping season), while its impact on rabi

crops is less clear. Although our data limitations prevent a detailed analysis of pro-

ductivity for individual crops in the region, we have addressed this by focusing on

the vital category of cereal crops, which reinforces our conclusions. Placebo regres-

sions confirm our claim, supporting the increase in agricultural productivity due to

the cash transfer policy, primarily for kharif crops.

Specifically, our estimates show a 0.017 standard deviation increase in NDVI for

treatment regions compared to control regions during the kharif season and a 0.015

standard deviation increase during the rabi season. Regarding cereal crops, our

results reveal a 0.017 standard deviation increase in NDVI for Kharif and a 0.012

standard deviation increase during the rabi season due to the cash transfer policy.

We ensure that the results are robust by testing them with various satellite data,

alternative productivity indicators, and different samples. However, the absence

of ground truthing data or training data limited our ability to verify results on a

crop-wise basis.

The sign of productivity change is consistently positive across all specifications

(Table 2), samples (Table 3) datasets (Table 5), and indicators (Table 6,Table A8,Table A9).14

To appreciate these results, compare them with placebo results in Table 4, where

negative changes in productivity occur during the kharif season the previous two

years.

The results vary within a tight range and are consistent in terms of the magnitude

of productivity change. The kharif productivity change according to NDVI, for in-

14The only estimate that is negative and insignificant is for GCVI from Sentinel 2 for kharif in
column (2) in Table A8, with a value of 0
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stance, is between 0.016 standard deviations in the Copernicus classified Landsat 8

data to 0.039 standard deviations in Sentinel 2 (compare Table 2, Table 3, Table 5,

andTable 7). Similarly, rabi productivity change in terms of NDVI has also varied

in a tight range of 0.012-0.016 standard deviations (compare Table 2, Table 5,and

Table 7).

In terms of the percentage change of yields (quantity of output per unit area cul-

tivated), we provide an approximate equivalence relative to NDVI change. We es-

timate the main results using the logarithm of NDVI to estimate coefficients in

percentage change terms in Table A11. Separately we use long-term administrative

yield data at the district level and correlate those with NDVI over the same period

(similar to Asher and Novosad, 2020) in Table A16. The estimated impact of cash

transfers on the increase in productivity during the kharif season would be approx-

imately 2.69 percent for Sentinel-2, 1.98 percent for Landsat-8, and 1.47 percent

for Modis-250 based estimates15. The overall productivity increase attributed to

cash transfers in the kharif season ranges from 1.47 per cent to 2.69 per cent. For

the rabi season, the observed yield changes due to cash transfers amount to around

0.61 percent for Sentinel-2, 0.90 percent for Landsat-8, and 0.76 percent for Modis-

250 based estimates16. The overall productivity increase attributed to cash trans-

fers in the rabi season ranges from 0.61 percent to 0.76 percent.

Our study demonstrates the enormous potential of high-resolution satellite data,

enabling researchers and policymakers to evaluate various policies that otherwise

remain unexplored due to the lack of ground survey data. The custom border de-

sign we develop is adaptable and can be tailored to suit the requirements of policy

evaluations of various kinds. Moreover, our approach to evaluating the cash trans-

15Derived from calculations using specific coefficients: 1.082*2.486, 0.795*2.486, and
0.592*2.486

16Derived from calculations using specific coefficients: 0.419*1.458, 0.620*1.458, and
0.519*1.458, respectively
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fer policy using satellite data and the new border design is generalizable and can

be applied worldwide to evaluate various policy interventions beyond agriculture.

Our approach is only constrained by what satellite imagery can reliably measure.
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A1Appendix

1.1 Dataset Details

Table A1: Details of the Data sets to be used

Source Spatial

Resolution

Frequency Variables used

Harmonised Sentinel-2 MSI:

Multispectral Instrument,

level -1C

10m 10 days Vegetation Indices

LANDSAT/LC08/C01/T1 SR 30m 8 days Vegetation Indices

MODIS-250 Terra 250m 16 days Vegetation Indices

ESA WorldCover 10m Annual Croplands

CHIRPS Daily 5566m Daily Rainfall Data

Terraclimate 4638.3m Monthly Temperature

Terraclimate 4638.3m Monthly AET

Terraclimate 4638.3m Monthly PET

Terraclimate 4638.3m Monthly Runoff

Terraclimate 4638.3m Monthly Temperature

Terraclimate 4638.3m Monthly Wind Speed

VIIRS & Night Composites 463.83m Monthly Night Lights

Copernicus Landcover 100m Annual Croplands

MODIS-500 Land Cover Type 500m Annual Cereal Crops

NASA-USDA Enhanced

SMAP

10000m Monthly Surface Soil Mois-

ture Data

NASA-USDA Enhanced

SMAP

10000m Monthly Subsurface Soil

Moisture Data
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1.2 Visual examples of masking

1.3 Sample size calculations

Table A2: Pixel Count by various landcover classes in ESA World Cover.

Landcover Class Number of Pixels

Tree cover 94918096

Shrubland 31137867

Grassland 27787072

Cropland 219753702

Built-up 4580369

Bare/sparse vegetation 13478684

Snow and ice 0

Permanent water bodies 12424531

Herbaceous wetland 196941

Mangroves 0

Moss and lichen 0

Total Population of Pixels 404277262

Table A3: Sample Size Calculation for Sample of ESA WorldCover Crop Pixels.

Confidence

Level (%)

Margin of

Error (%)

Population

Size

Population

Proportion

(%)

Required

Sample Size

99 2.5 404277262 54.36 2643

99 2 404277262 54.36 4129

99 1.5 404277262 54.36 7340

99 1 404277262 54.36 16514

99 0.5 404277262 54.36 66048

95 2.5 404277262 54.36 1525

95 2 404277262 54.36 2383

95 1.5 404277262 54.36 4236

95 1 404277262 54.36 9531

95 0.5 404277262 54.36 38121
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Figure A1: Unmasked image displaying the various landcover
classes across the study area according to ESA WorldCover
dataset

Figure A2: Masked image of ESA WorldCover dataset, where
white areas indicate masked regions encompassing all landcover
classes except cropland, while green areas represent croplands.
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Table A4: Sample size required to accurately estimate a population proportion of
50% (the worst case) from a population of 219,753,702 pixels from ESA World-
Cover Cropland classification

Confidence Level (%) Margin of Error (%) Minimum Sample Size Required

99 1 16,640

99 0.5 66,544

95 1 9,604

95 0.5 38,410

Table A6: Sample Size Calculation for Sample of ESA Copernicus Global Land-
Cover Crop Pixels.

Confidence

Level (%)

ME (%) Population

Proportion

(%)

Population

Size

Sample Size

Required

99 2.5 64.35 4247633 2444

99 2 64.35 4247633 3818

99 1.5 64.35 4247633 6787

99 1 64.35 4247633 15271

99 0.5 64.35 4247633 61082

95 2.5 64.35 4247633 1411

95 2 64.35 4247633 2204

95 1.5 64.35 4247633 3917

95 1 64.35 4247633 8813

95 0.5 64.35 4247633 35252
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Table A7: Pixel Count by various landcover classes in MODIS LandCover

Landcover Class Number of Pixels

Water Bodies (0) 968

Evergreen Needleleaf Trees (1) 4

Evergreen Broadleaf Trees (2) 529

Deciduous Needleleaf Trees (3) 0

Deciduous Broadleaf Trees (4) 30230

Shrub (5) 125

Grass (6) 19412

Cereal Croplands (7) 98343

Broadleaf Croplands (8) 2549

Urban and Built-up Lands (9) 1333

Permanent Snow and Ice (10) 0

Non-Vegetated Lands (11) 311

Total Population of Pixels 153804
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1.4 Alternative Indicators from Sentinel 2 and Modis 250

(1) (2) (3) (4) (5) (6)

VARIABLES EVI Kharif GCVI Kharif SAVI Kharif EVI Rabi GCVI Rabi SAVI Rabi

1.treat#1.post 0.021*** -0.000 0.016*** 0.010*** 0.007*** 0.013***

(0.001) (0.028) (0.000) (0.000) (0.001) (0.000)

post = 1 -0.194*** -0.042*** -0.225*** -0.033*** -0.072*** -0.059***

(0.001) (0.019) (0.000) (0.000) (0.001) (0.000)

NDMI 0.117*** 0.020*** 0.144*** 0.232*** 0.236*** 0.227***

(0.007) (0.066) (0.000) (0.003) (0.011) (0.000)

Observations 599,609 599,627 599,625 1,187,664 1,187,671 1,187,668

R-squared 0.383 0.162 0.466 0.563 0.464 0.555

Pixel Fixed Effects Yes Yes Yes Yes Yes Yes

District Fixed Effects Yes Yes Yes Yes Yes Yes

Month Fixed Effects Yes Yes Yes Yes Yes Yes

Robust SE Yes Yes Yes Yes Yes Yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A8: Results in alternative indicators from Sentinel 2.
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(1) (2)

VARIABLES EVI Kharif EVI Rabi

1.treat#1.post 0.002*** 0.011***

(0.000) (0.000)

post = 1 -0.105*** -0.030***

(0.000) (0.000)

NDMI 0.236*** 0.365***

(0.001) (0.002)

Observations 1,995,383 2,399,715

R-squared 0.445 0.647

Pixel Fixed Effects Yes Yes

District Fixed Effects Yes Yes

Month Fixed Effects Yes Yes

Robust SE Yes Yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A9: Results in alternative indicators from Modis 250.
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1.5 Results with Clustered Standard Errors

(1) (2) (3) (4)

VARIABLES Kharif Kharif Rabi Rabi

1.treat#1.post 0.017*** 0.017*** 0.015*** 0.015***

(0.002) (0.002) (0.001) (0.001)

post = 1 -0.096*** -0.096*** -0.055*** -0.055***

(0.001) (0.001) (0.001) (0.001)

NDMI -0.058*** -0.058*** 0.119*** 0.119***

(0.009) (0.009) (0.010) (0.010)

Observations 1,901,934 1,901,934 2,399,998 2,399,998

R-squared 0.322 0.322 0.472 0.472

Pixel Fixed Effects Yes Yes Yes Yes

District Fixed Effects Yes Yes Yes Yes

Month Fixed Effects Yes Yes Yes Yes

Clustering State-Location-Time District-Location-Time State-Location-Time District-Location-Time

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A10: Results with alternative clustering from Landsat 8. Clustering errors
when the numbers of clusters is few is difficult. To address this, we leverage ge-
ographic coordinates to create degree-minute indicators. We then use this along
with administrative categories like state and district along with time (month-year)
to form clusters. This allows us to address correlation by location as well as serial
correlation over time.
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1.6 Main Result with log(NDVI) as outcome and percent-

age coefficients

(1) (2) (3) (4)

VARIABLES Base Model Full Model Kharif Rabi

1.treat#1.post 0.498*** 0.750*** 0.795*** 0.620***

(0.000) (0.000) (0.000) (0.000)

treat = 1 0.610***

(0.000)

post = 1 -0.810*** -1.766*** -3.591*** -1.615***

(0.000) (0.000) (0.000) (0.000)

NDMI -10.448*** -14.995*** 14.781***

(0.001) (0.002) (0.002)

Observations 5,731,856 5,731,856 1,901,932 2,399,998

R-squared 0.001 0.409 0.332 0.468

Pixel Fixed Effects No Yes Yes Yes

District Fixed Effects No Yes Yes Yes

Month Fixed Effects No Yes Yes Yes

Robust SE No Yes Yes

Clustering Yes

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A11: Table shows NDVI productivity change in percentage change
terms.Original coefficients corrected by transformation into percentage terms since
the specification has a log-transformed dependent variable and a dummy indepen-
dent variable. Displayed coefficients ≈ (ecoef − 1) ∗ 100.
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Table A14: Modis-250 Result with log(NDVI) as outcome and percentage coeffi-
cients

(1) (2) (3) (4)

VARIABLES Base Model Full Model Kharif Rabi

1.treat#1.post 0.596*** 0.371*** 0.592*** 0.519***

(0.000) (0.000) (0.000) (0.000)

treat = 1 0.798***

(0.000)

post = 1 -1.682*** -1.266*** -1.961*** -0.665***

(0.000) (0.000) (0.001) (0.000)

NDMI 29.431*** 30.817*** 63.340***

(0.004) (0.006) (0.007)

Observations 6,398,014 6,313,911 1,994,840 2,399,400

R-squared 0.004 0.676 0.497 0.699

Pixel Fixed Effects No Yes Yes Yes

District Fixed Effects No Yes Yes Yes

Month Fixed Effects No Yes Yes Yes

Robust SE No Yes Yes

Clustering Yes

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A15: Table shows NDVI productivity change in percentage change terms.
Original coefficients corrected by transformation into percentage terms. Displayed
coefficients ≈ (ecoef − 1) ∗ 100.
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1.7 NDVI to Yield Conversion

Conversion factor NDVI to Yield

(1) (2)

VARIABLES Kharif Rabi

log diff ndvi kharif 2.486**

(1.161)

log diff ndvi rabi 1.458*

(0.855)

(mean) rainfall 0.003 0.000

(0.003) (0.002)

(mean) tmax -0.247*** -0.224***

(0.067) (0.046)

(mean) tmin 0.317*** 0.206***

(0.075) (0.046)

Observations 91 91

R-squared 0.758 0.882

State-Year Fixed Effects Yes Yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A16: Table shows an approximate conversion of NDVI productivity change
to yield in percentage terms.
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Table A5: Pixel Count by various landcover classes in Copernicus Global Land-
Cover

Landcover Class Number of Pixels

Unknown. No or not enough satellite data available 0

Shrubs 141491

Herbaceous Vegetation 57205

Cultivated Land/Agriculture 2733491

Urban/Built Up 46177

Bare 20677

Snow 0

Permanent Water Bodies 40916

Herbaceous Wetland 8878

Moss and Lichen 0

Closed Forest, Evergreen Needle Leaf 0

Closed Forest, Evergreen Broad Leaf 8464

Closed Forest,deciduous Needle Leaf 0

Closed Forest,deciduous Broad Leaf 777935

Closed Forest,Mixed 0

Closed Forest, not matching any of the other 62936

Open Forest, Evergreen Needle Leaf 0

Open Forest, Evergreen Broad Leaf 2707

Open Forest,deciduous Needle Leaf 0

Open Forest,deciduous Broad Leaf 112606

Open Forest,Mixed 0

Open Forest, not matching any of the other 234150

Oceans, seas. Can be either fresh or salt-water bodies 0

Total Population of Pixels 4247633
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Table A12: Sentinel-2 Result with log(NDVI) as outcome and percentage coeffi-
cients

(1) (2) (3) (4)

VARIABLES Base Model Full Model Kharif Rabi

1.treat#1.post 0.460*** 0.462*** 1.082*** 0.419***

(0.000) (0.000) (0.000) (0.000)

treat = 1 1.059***

(0.000)

post = 1 -1.698*** -2.269*** -5.170*** -1.079***

(0.000) (0.000) (0.000) (0.000)

NDMI 33.103*** 30.045*** 36.237***

(0.002) (0.004) (0.003)

Observations 2,325,267 2,301,325 599,625 1,187,668

R-squared 0.006 0.591 0.526 0.603

Pixel Fixed Effects No Yes Yes Yes

District Fixed Effects No Yes Yes Yes

Month Fixed Effects No Yes Yes Yes

Robust SE No Yes Yes

Clustering Yes

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A13: Table shows NDVI productivity change in percentage change terms.
Original coefficients corrected by transformation into percentage terms. Displayed
coefficients ≈ (ecoef − 1) ∗ 100.
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