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distributions over those final consequences. The criteria characterized

are those that assign to every element in a set a weight that depends

upon the rank of this element if it was available for sure (or non-

ambiguously) and that compare sets on the basis of their weighted

utility for some utility function. A specific subfamily of these criteria

that requires the rank-dependent weights to result from a probability

weighting function is also characterized.

1 Introduction

Consider the following decision problem, provided by Ahn (2008), of a cancer

patient having to choose between two treatments. The first is a conventional

and widely used chemotherapeutic treatment associated to a five-year sur-

vival rate of 0.5. The second is a new targeted therapeutic treatment that

has only been tried on two samples of patients of comparable sizes. On one

sample, 80% of the patients have been observed alive after 5 years but on

the other sample, only 20% of the patients were alive after 5 years. This

is an example of decision making under objective ambiguity. There is am-

biguity because the probabilities (of survival) that enter in the description

of the second treatment are not unique. The ambiguity is however objective

because the probabilities, while multiple, are known to the decision maker

and enter therefore in the description of the decision problem. This con-

trasts with decision making under subjective ambiguity studied in papers

such as Gilboa and Schmeidler (1989), Epstein and Zhang (2001), Ghirar-

tado and Marinacci (2002), Ghirartado, Maccheroni, and Marinacci (2004) or

Klibanoff, Marinacci, and Mukerji (2005) in which the compared alternatives

are described as Savagean acts without any a priori probabilities.1 Another

well-known example of an objectively ambiguous decision is the sequence of

two choices made in the Ellsberg (1961) experiment.

1An excellent survey of the literature on subjective ambiguity is provided in Wakker
(2010).
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From a formal point of view, decision making under objective ambiguity

amounts to ranking sets of possible probability distributions over a set of

final consequences. The description of alternatives as sets of objects is also

made in the literature on decision making under radical uncertainty or igno-

rance surveyed, for example, in Barberà, Bossert, and Pattanaik (2004), in

which the elements of the sets are interpreted as the final consequences of

the decisions rather than as probability distributions over those.

This paper contributes to the literature on decision making under ig-

norance or objective ambiguity under the additional assumption that the

compared alternatives can be described as finite sets (of either final conse-

quences or probability distributions). This approach therefore differs from

that provided, for instance, in Ahn (2008) and Olszewski (2007) in which

the compared alternatives are depicted as uncountable sets of objects. As

argued in Gravel, Marchant, and Sen (2012) and Gravel, Marchant, and Sen

(2018), we believe that the description of alternatives as finite sets of conse-

quences (probability distributions) is somewhat natural, and clearly in line

with experimental contexts in which we may want to test these models. For

sure the Ellsberg experiment or the choice faced by the cancer patient above

concern finite sets.

A lot of decision making criteria examined in the literature on ranking

finite sets are based on the best and the worst consequences of the decisions

or on associated lexicographic extensions. There are two obvious limitations

of such “extremist” rankings. The first is that it is natural to believe (in

line with various “expected utility” hypotheses) that decision makers are

concerned with “averages” rather than “extremes”. A second drawback of

“extremist”rankings is that they do not allow for much diversity of attitudes

toward ignorance across decision makers. In situations where the compared

alternatives have only monetary consequences, all decision makers who use

an “extremist”rule such as Maximin, Maximax or lexicographic extensions

of the same and who prefer more money to less would rank lists of these
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amounts of money in exactly the same way. This is unsatisfactory since

the fact for two decision makers to have the same preference over certain

outcomes (or unambiguous decisions) should not imply that they have the

same attitude toward ignorance or ambiguity. It is with the aim of obtaining

less extreme rankings of finite sets that Gravel, Marchant, and Sen (2012)

characterizes with three axioms the Uniform Expected Utility (UEU) family

of criteria for comparing finite sets of objects. Any criterion from that family

results from assigning to every conceivable element of a set a utility number

and from comparing sets on the basis of the expectation of the utility of their

elements under the (uniform) assumption that all elements in the sets are

equally likely. Gravel, Marchant, and Sen (2018) generalizes the UEU family

of rankings of finite sets to the Conditional Expected Utility (CEU) family.

Any CEU ranking of finite sets assigns to every conceivable element of set

both a utility number and a (strictly positive) likelihood, and compares sets

on the basis of their expected utility, with expectations taken with respect

to the relative likelihood of those elements conditional upon the fact that

they are in the sets. A UEU ranking of sets is nothing but a specific CEU

ranking for which the likelihood function considers all conceivable elements

as equally likely. CEU rankings can be viewed as the finite analogues of the

ranking of atomless sets of objects characterized by Ahn (2008) and, before

him, by Bolker (1966) and Jeffrey (1983).

While UEU and CEU criteria provide simple criteria for decision making

under ignorance or objective ambiguity, they both satisfy an axiom that may

be at odd with actual decision making behavior. This axiom, called Averaging

in Gravel, Marchant, and Sen (2012) and Gravel, Marchant, and Sen (2018)

(and also Fishburn (1972)) and disjoint set betweenness in Ahn (2008)2, re-

quires the ranking (weak or strict) of two disjoint sets to be equivalent to

the requirement that their union be ranked between the two sets. To see

2Weaker variants of this axiom are also satisfied by the ranking examined in Olszewski
(2007) and, in another context, in Gul and Pesendorfer (2001).
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why such an axiom may not always provide an accurate depiction of actual

decision making under objective ambiguity, consider again the choice of a

cancer treatment described above. Imagine that, in addition to the second

targeted therapeutic experimental treatment, the patient be proposed a third

treatment tested this time on three samples of sizes comparable to those of

the second treatment, and with respective 5-year survival probabilities of 0.8,

0.5 and 0.2. One can then represent the three treatments by the sets {0.5},
{0.8, 0.2} and {0.8, 0.5, 0.2} respectively. It is plausible that a patient facing
this (horrible) decision could prefer the traditional {0.5} treatment to the
new {0.8, 0.2} treatment because of a (pessimistic) fear that the sample on
which the new treatment has performed poorly provides a better assessment

of its true effectiveness than the sample on which it has performed well. The

Averaging axiom implies that the patient should then also prefer the third

{0.8, 0.5, 0.2} treatment (which is nothing else than the union of {0.5} and
{0.8, 0.2}) to {0.8, 0.2}. Should he really? This is not clear. Indeed, one

could argue that the results of the experimentation of the third treatment

{0.8, 0.5, 0.2} are noisier than those of the second in terms of the information
that they provide on the treatment’s effectiveness. Hence, a pessimistic pa-

tient who gives more weights to the samples where the treatment performs

poorly to those where it performs well could very well choose the second

treatment over the third even though he has chosen the first treatment over

the second. In the only instance we know where the averaging axiom has

been tested in an experimental context (Vridags and Marchant (2015)), it

has been rejected by a vast majority of subjects.

In this paper, we accordingly characterize a family of decision criteria

that keeps the smoothness associated to the evaluation of alternatives as

per their expected utility, while dispensing with the Averaging axiom in

any of the forms considered in the literature. The criteria analyzed can be

viewed as variants of the rank-dependent expected utility family originally

proposed by Quiggin (1982) (see also Quiggin (1993)) that are suitable to the
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considered finite set theoretic framework. These criteria were hinted at in

Vridags and Marchant (2015) where they were referred to as Uniform Rank-

Dependent Utility criteria because they are equivalent to a rank-dependent

model applied to a uniform probability distribution. However, in this paper,

we use the more explicit name of Rank-Dependent Weighted Average Utility

(RDWAU) to designate these criteria. A RDWAU criterion compares two

alternatives (finite sets) on the basis of their weighted average utility, for

some utility function defined over all elements of the universe and some non-

negative weights that depend upon both the number of elements in the sets

and the ranking of those elements if they were certain and that sum to one.

The RDWAU family of criteria characterized in this paper is quite large. It

contains as particular cases "extremist" rankings of sets like the Maximin

or Maximax criteria mentioned above as well as those based on a weighted

average of the min and the max (for example the alpha-maxmin rule widely

discussed in Hartmann (2023) or Olszewski (2007) among many others). It

also contains the UEU family of rankings, obtained by assigning the same

weight to every element in the sets, and allows the weighting schemes of

the elements to vary totally freely with the number of elements in the set

(for example assigning a weight of 1 to the worst outcome in the case of

sets with two elements, but switching to a weight of 1 to the best outcome

in the case of set with three elements). In order to restrict a bit the way

with which the weights are allowed to vary with the cardinality of the sets,

we also provide characterizations of three subfamilies of RDWAU rankings

that may be of interest. One of them consists in RDWAU rankings that

are mildly optimistic or pessimistic and whose rank-dependent weights are,

accordingly, weakly increasing or decreasing with respect to the rank of the

outcomes in the set. Another subfamily of RDWAU rankings characterized

in this paper are those for which all rank-dependent weights result from the

same cumulative weighting function defined on all rational numbers in the

[0, 1] interval. RDWAU rankings generated by such a cumulative weighting
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function have been extensively discussed in the literature on rank-dependent

expected utility models (see for example Luce (1988), Luce (1991), Prelec

(1998) and Tverski and Wakker (1995)) in contexts where decision makers

are comparing single lotteries instead of sets of outcomes. A (very) particular

example of RDWAU rankings generated by a common cumulative weighting

function– also characterized in this paper by an additional axiom– are those

that satisfy the additional restriction that the ratio between any two adjacent

weights is constant.

The organization of the remaining of the paper is as follows. The next

section introduces the framework, notation and main definition. Section 3

provides the results and section 4 concludes.

2 Formal Framework

2.1 Notation and definitions

We let X be a universe of outcomes that we interpret either as possible final

consequences of decisions (decision making under ignorance) or as probabil-

ity distributions over a more fundamental set of final consequences (decision

making under objective ambiguity). We shall nonetheless use the generic

term of “outcomes”to designate these elements of X. Many results stated

and proved in this paper will actually also ride on the assumption that X

is a connected topological space3. Relevant examples of a set X could be

monetary (possibly negative) consequences (X = R), non-negative commod-
ity bundles (X = Rl+ for some integer l) or, in an ambiguity context, the

l − 1 dimensional simplex interpreted as the set of all probability distribu-

tions over l consequences. An alternative or prospect is a finite non-empty

subset D of X. We denote by P(X) the set of all such prospects. Prospects

made of a single outcome (singletons) are naturally interpreted as certain

3A set A is connected for the (relevant) topology if it cannot be written as a finite
union of pairwise disjoint non-empty open sets.
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or non-ambiguous. For all integers m and n such that m ≤ n, the set

{m,m + 1, . . . , n} is denoted by [m,n]. When m = 1, we write simply [n]

instead of [1, n]. A set of the form {m,m + 1, . . .} is denoted by [m, ·]. The
set [1, ·] is also denoted by N.
Prospects are compared by an ordering4 % on P(X) with the usual in-

terpretation that D % D′ if and only if the decision maker weakly prefers

prospect D to prospect D′. The asymmetric (strict preference) and sym-

metric (indifference) factors of % are denoted respectively by � and ∼. For
reasons that will soon become clear, whenever we write a prospectD in P(X)

with n possible outcomes in the formD = {d1, . . . , dn}, we label the outcomes
of D in such a way that {d1} % . . . % {dn}. There may of course be several
such labellings if there are indifferences between some singleton subsets of D.

For every set for which such indifferences happen, we choose once and for all

any of the several labellings that could do. For any prospect D ∈ P(X) la-

beled in this way and any x ∈ D, we denote by rDx ∈ [#D] the rank of x in D

defined by rDx = i⇐⇒ x = di for D = {d1, . . . , d#D}. For any given number
n ∈ N, we say that a rank i ∈ [n] is essential for prospects with n possible

outcomes if there are two distinct outcomes x and y ∈ X and a prospect

A ∈ P(X) such that #A = n − 1, {x, y} ∩ A = ∅, rA∪{x}x = r
A∪{y}
y = i and

A ∪ {x} � A ∪ {y}. In plain English, rank i is essential for prospects with
n possible outcomes if one can think of a prospect with n possible outcome

for which the replacement of one alternative having rank i in this prospect

by another with the same rank would “make the difference”. A contrario, a

non-essential rank for those prospects would be such that all prospects with

n outcomes that differ only in the outcome of that rank would be considered

indifferent. Almost all results of this paper will be derived under the condi-

tion that, for any integer n, there is at least one essential rank for prospects

with n possible outcomes.

This paper is specifically interested in Rank-DependentWeighted Average

4An ordering is a reflexive, complete and transitive binary relation.
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Utility (RDWAU) orderings of P(X) for which there exist a (continuous)

function u : X → R and, for any n ∈ N, n non-negative real numbers
wni satisfying

∑
i∈[n] w

n
i = 1 such that, for all A = {a1, . . . , a#A} and B =

{b1, . . . , b#B}:

A % B ⇐⇒
∑
i∈[#A]

w#A
i u(ai) ≥

∑
i∈[#B]

w#B
i u(bi). (1)

Hence, an RDWAU ordering of prospects can be thought of as resulting from

the comparisons of a weighted average of the utility of the possible outcomes

of those prospects for some utility function, and for some weights that depend

upon the ranking of the outcomes in the prospects if these outcomes were

obtained for sure. There are obviously many RDWAU orderings, as many

in fact as the orderings of prospects that can generated from all logically

conceivable ways of assigning utility levels to outcomes and non-negative

weights to their ranks in the prospects.

To illustrate how a RDWAU ordering compares prospects, reconsider the

introductory example of the cancer patient. In this setting, X = [0, 1], inter-

preted as the various conceivable five-year probabilities of survival ordered in

the obvious way if they were known non-ambiguously. The three prospects

faced by the patient would then be {1/2}, {4/5, 1/5} and {4/5, 1/2, 1/5}
and a RDWAU ordering of the prospects could be based on the utility func-

tion u(p) = p2 for every p ∈ [0, 1] and on the weights w1
1 = 1, w2

1 = 1/4,

w2
2 = 3/4, w3

1 = 1/9, w3
2 = 2/9 and w3

3 = 2/3. In this case, we would have

{1/2} � {1/5, 4/5} because

u(1/2) =
1

4
> w2

1u(4/5) + w2
2u(1/5) =

19

100

and we would have {1/5, 4/5} � {1/5, 1/2, 4/5} because

w2
1u(4/5) + w2

2u(1/5) =
19

100
> w3

1u(4/5) + w3
2u(1/2) + w3

3u(1/5) =
23

150
.
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As mentioned earlier, this ranking of the three prospects violates the averag-

ing axiom used in Gravel, Marchant, and Sen (2012) and Gravel, Marchant,

and Sen (2018) (and also in Ahn (2008) and, in some weakened forms, Ol-

szewski (2007) and Gul and Pesendorfer (2001)) according to which D %
D′ ⇔ D % D ∪ D′ % D′ for any two disjoint prospects D and D′ (such

as {1/2} and {4/5, 1/5}). Hence, this ranking would not be agreed upon
by Uniform Expected Utility criteria characterized in Gravel, Marchant,

and Sen (2012) or Conditional Expected Utility criteria characterized in

Gravel, Marchant, and Sen (2018) (and Ahn (2008) in a setting with atom-

less prospects). This ranking could not even be produced by the convex

combination of the (utility of the) best and the worst outcomes of a prospect

characterized by Olszewski (2007) (again in a setting where prospects are

sets with uncountable outcomes).

We observe that the class of RDWAU orderings contains the class of UEU

orderings, who are nothing else than RDWAU orderings for which the weights

wki are equal to 1/k for every i = 1, . . . , k. Since some of the rank-dependent

weights can be zero, the RDWAU orderings also contain rankings of sets

based on their sole worst outcome (by putting all weights except the last one

at zero), their sole best outcomes or a convex combination à la Olszewski

(2007) or Hartmann (2023) of their best and their worst outcomes. It should

be observed, however, that there is no inclusion relation between the classes

of CEU and RDWAU orderings. The example just given shows that there

are RDWAU orderings that are not CEU orderings. The following example

provides a CEU ordering that is not a RDWAU ordering.

Example 1 Let X = [0, 1] (interpreted again as the five-year survival prob-

abilities ordered in the obvious way), and define % on P(X) by

D % D′ ⇐⇒

∑
p∈D

ρ(p)u(p)∑
p∈D

ρ(p)
≥

∑
p′∈D′

ρ(p′)u(p′)∑
p′∈D′

ρ(p′)
,
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for the functions ρ and u defined (on [0, 1]) by

ρ(p) = 1 + p− p2 and u(p) = p.

Observe that this CEU ordering ranks prospect {19/20, 1/2, 1/80} above prospect
{9/10, 1/2, 1/15} because

(1 + 19/20− 361/400)19/20 + (1 + 1/2− 1/4)1/2 + (1 + 1/80− 1/6400)1/80

1 + 19/20− 361/400 + 1 + 1/2− 1/4 + 1 + 1/80− 1/6400
= 0.49331 >

0.49286 =
(1 + 9/10− 81/100)9/10 + (1 + 1/2− 1/4)1/2 + (1 + 1/15− 1/225)1/15

1 + 9/10− 81/100 + 1 + 1/2− 1/4 + 1 + 1/15− 1/225
.

This CEU ordering would also rank prospect {19/20, 1/5, 1/80} below prospect
{9/10, 1/5, 1/15} because

(1 + 19/20− 361/400)19/20 + (1 + 1/5− 1/25)1/5 + (1 + 1/80− 1/6400)1/80

1 + 19/20− 361/400 + 1 + 1/5− 1/25 + 1 + 1/80− 1/6400
= 0.38504 <

(1 + 9/10− 81/100)9/10 + (1 + 1/5− 1/25)1/5 + (1 + 1/15− 1/225)1/15

1 + 9/10− 81/100 + 1 + 1/5− 1/25 + 1 + 1/15− 1/225
= 0.38760.

These two rankings however cannot be produced by a RDWAU ordering.

Indeed, if they were, the first ranking would imply, for some numbers w3
i

(i ∈ [3]) and utilities u(19/20), u(1/2) and u(1/80),

w3
1u(19/20) + w3

2u(1/2) + w3
3u(1/80) > w3

1u(9/10) + w3
2u(1/2) + w3

3u(1/15)

⇔
w3

1u(19/20) + w3
3u(1/80) > w3

1u(9/10) + w3
3u(1/15)

while the second ranking would imply, as the reader can verify, the reverse

inequality.

Before presenting the axioms that characterize the RDWAU family, we

find useful to introduce the following notion of revealed (by the decision
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maker’s ordinal preferences) preference strength for one outcome over another

as applicable to the various possible ordered pairs of those outcomes. We

formulate successively the definitions of weak, strict and equivalent revealed

preference strength.

Definition 1 Let x, y, x′ and y′ be outcomes in X. The ordering % on P(X)

is said to reveal a weakly larger preference strength for x over y than for x′

over y′, which we write formally as (x, y) ∆% (x′, y′), if there are two sets A

and B not containing x, y, x′ and y′ and satisfying #A = #B = n − 1 for

some integer n and rA∪{x}x = r
B∪{y}
y = r

A∪{x′}
x′ = r

B∪{y′}
y = i for some rank

i ∈ [n] that is essential for prospects with n outcomes such that:

A ∪ {x} % B ∪ {y} and A ∪ {x′} - B ∪ {y′}. (2)

If at least one of % and - in (2) is strict, we then say that the preference
strength for x over y is revealed strictly larger than that for x′ over y′, which

we write formally as (x, y) ∆
%
s (x′, y′).

If both % and - in (2) are replaced by ∼, we then say that the two
preference strengths are revealed to be equivalent, which we write formally as

(x, y) ∆
%
e (x′, y′).

In words, % reveals a preference strength for x over y to be weakly larger
than the preference strength for x′ over y′ if there are two sets A and B with

the same number of outcomes to which the respective addition of x and y–

under the condition that the rank of x and y in the two enlarged sets is the

same and is essential for prospects with the same numbers of outcomes than

those enlarged sets– lead to a preference for the enlarged A to the enlarged

B while the similar addition of x′ and y′ to the two sets lead, under the same

condition on the ranks, to the opposite preference. Hence, it seems that x

“does more”with respect to y than x′ does with respect to y′, at least as

judged by their addition to some sets A and B that do not contain these

outcomes. Observe that Definition 1 does not preclude the two sets A and
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B to which the outcomes are added to be the same. It does not even rule

out the possibility that these two sets be both empty. In this latter case,

the “addition” of two outcomes to the same empty set amount simply to

comparing those outcomes as if they were available for sure. One can also

observe that the requirement of essentiality of the rank used in the definition

is important for the appraisal of preference strength. If the common rank of

x, y, x′ and y′ in the enlarged sets would be allowed to be inessential, then

no inference whatsoever could be extracted from the pairs of rankings (2)

that would both be indifferences.

The interpretation of the quaternary relation ∆% as evaluating the pref-

erence strength for one outcome over another is particularly clear if one

assumes from the start that the ordering % is itself an RDWAU ordering.

Indeed, for a RDWAU ordering, the fact to have, for some rank i ∈ [n],

{a1, . . . , ai−1, x, ai+1, . . . , an} % {b1, . . . , bi−1, y, bi+1, . . . , bn} can be written,
thanks to (1), as

i−1∑
g=1

wngu(ag) + wni u(x) +
n∑

h=i+1

wnhu(ah)

≥
i−1∑
g=1

wngu(bg) + wni u(y) +
n∑

h=i+1

wnhu(bh)

⇔

u(x)− u(y) ≥
∑i−1

g=1w
n
g

(
u(bg)− u(ag)

)
+
∑n

h=i+1w
n
h

(
u(bg)− u(ag)

)
wni

.(3)

On the other hand,

{a1, . . . , ai−1, x
′, ai+1, . . . , an} - {b1, . . . , bi−1, y

′, bi+1, . . . , bn}
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can be similarly written, for the same RDWAU ordering, as

u(x′)− u(y′) ≤
∑i−1

g=1 w
n
g

(
u(bg)− u(ag)

)
+
∑n

h=i+1w
n
h

(
u(bg)− u(ag)

)
wni

. (4)

Hence, the combination of Inequalities (3) and (4) reveals indeed that u(x)−
u(y) ≥ u(x′)− u(y′).

A few additional remarks can be made about the quaternary relation ∆%

of Definition 1. First, this quaternary relation has very little structure. When

viewed as a binary relation on X ×X, it is not reflexive since one may well
have, for some distinct outcomes x and y, that A∪{x} � B∪{y} for all sets
A and B with the same number of outcomes containing neither x and y such

that rA∪{x}x = r
B∪{y}
y . It is not complete since, again, nothing rules out the

possibility that, for some outcomes x, y, x′ and y′ both A ∪ {x} � B ∪ {y}
and A∪ {x′} � B ∪ {y′} hold for all sets A and B with the same cardinality

that do not contain any of these outcomes and that are such that rA∪{x}x =

r
B∪{y}
y = r

A∪{x′}
x′ = r

B∪{y′}
y′ . For sure, ∆% is not transitive when viewed as a

binary relation on X ×X.
However, ∆% viewed as a binary relation onX×X does satisfy Property 2

of what Krantz, Luce, Suppes, and Tversky (1971) call an algebraic difference

structure (Definition 3, chapter 4) as established in the following (obvious)

remark.

Remark 1 For any outcomes x, y, x′ and y′ in X, the two following state-
ments are equivalent:

(i) (x, y) ∆% (x′, y′) and,

(ii) (y′, x′) ∆% (y, x).

We observe also that ∆
%
s (strictly larger preference strength) of Definition

1 is not the asymmetric factor of ∆%, even though it is compatible with it.

Somewhat dually, the symmetric factor of ∆% is compatible with ∆
%
e of

Definition 1 (equivalent preference strength) but is not equivalent to it.
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2.2 Axioms

We now state and discuss the axioms that characterize the whole family of

RDWAU orderings. The first one is an adaptation to the present setting of

Peter Wakker’s “trade-off consistency” condition (see e.g. Wakker (1989)).

The axiom imposes minimal consistency among comparative statements of

revealed preference strength performed by the weak ∆% and the strict ∆
%
s as

defined above. Specifically, the axiom requires that if the ordering % reveals
a preference strength for x over y that is weakly larger than the preference

strength for x′ over y′, then this ordering should never reveal a preference

strength for x over y that is strictly smaller than the preference strength for

x′ over y′. We state this axiom as follows.

Axiom 1 Consistency in Comparisons of Preference Strength. For no x, y,
x′ and y′ in X should we observe both (x, y)∆%(x′, y′) and (x′, y′)∆

%
s (x, y).

While (relatively) natural, this consistency condition has strong impli-

cations. For one thing, it implies an “independence” axiom that has been

widely discussed in the literature on additive numerical representation of

orderings. In the current rank-dependent context, the independence axiom

requires, in substance, that the ranking of prospects with the same number of

outcomes be independent from any outcome that they have in common when

the outcome has the same rank in the two prospects. For future reference,

we state formally as follows this notion of comonotonic independence.

Condition 1 Comonotonic Independence. For any distinct α and β ∈ X,
and prospects D and D′ such that #D = #D′, (D ∪ D′) ∩ {α, β} = ∅ and

r
D∪{α}
α = r

D∪{β}
β = r

D′∪{α}
α = r

D′∪{β}
β , we have

D ∪ {α} % D′ ∪ {α} ⇐⇒ D ∪ {β} % D′ ∪ {β}.

One can observe that this condition is a (significant) weakening of the

restricted independence condition used by Gravel, Marchant, and Sen (2012)

15



(and also by Nehring and Puppe (1996)), which requires the independence

to hold even for a common element that may not have the same rank in

the two considered prospects. The fact that Consistency in Comparison of

Preference Strength implies Comonotonic Independence is established in the

following lemma proved, like all formal results of the paper, in the Appendix

Lemma 1 Let X be a set of outcomes and % be an ordering of P(X) that

satisfies Consistency in Comparisons of Preference Strength. Then % satis-
fies Comonotonic Independence.

Another noteworthy and immediate implication of the Consistency in

Comparisons of Preference Strength axiom is the following condition of weak

monotonicity, which says that the attractiveness of a prospect is always in-

creased if a possible outcome of the prospect is replaced by an even more

preferable outcome of the same rank when the considered rank is essential.

The formal statement of this condition is as follows.

Condition 2 Weak monotonicity. D ∪ {x} � D ∪ {y} for every set D ∈
P(X), and every two outcomes x and y ∈ X\D such that {x} � {y} and
r
D∪{x}
x = r

D∪{y}
y = i for some rank i ∈ [#D+1] that is essential for prospects

with #D + 1 outcomes.

The following lemma, proved in the Appendix, establishes that this weak

monotonicity condition is indeed implied by Consistency in Comparisons of

Preference Strength.

Lemma 2 Let % be an ordering of P(X) that satisfies the Consistency

in Comparisons of Preference Strength axiom. Then % satisfies the Weak

Monotonicity condition.

The second axiom used in the characterization of the family of (contin-

uous) RDWAU orderings is a specific continuity requirement. It requires X

to be a connected set with respect to the order topology induced by the

restriction of % to singletons.
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Axiom 2 Fixed Cardinality Continuity. For any prospect D, the sets

{(b1, . . . , b#D) ∈ X#D : {b1, . . . , b#D} % D}

and

{(b1, . . . , b#D) ∈ X#D : {b1, . . . , b#D} - D}

are closed in the product topology.

We observe that this continuity axiom is limited to comparisons of prospects

with the same number of outcomes. It does not impose any continuity on

the comparisons of prospects with a different number of outcomes.

The third– and last– axiom is a (significant) weakening of the Gärdenfors

(1976) principle discussed in the literature on ignorance (and notably in

Barberà and Pattanaik (1984), Bossert (1989), Fishburn (1984) and Kannai

and Peleg (1984)). This axiom, also called internality by some– for example

Gneezy, List, and Wu (2006)– is formulated as follows.

Axiom 3 Internality . For every prospect D = {d1, . . . , dn} ∈ P(X), one

has {d1} % D % {dn}.

In words, Internality requires any prospect to be weakly better than its

worst outcome received certainly and, symmetrically, to be weakly worse

than its best outcome received certainly. It is important to observe that

Internality is the only axiom that restricts the ranking of prospects with

different numbers of outcomes. The fact that this restriction is limited to

the ranking of any uncertain (ambiguous) prospect vis-à-vis certain (non-

ambiguous) ones is also noteworthy.

In order to prove our main result, we introduce some additional termi-

nology. Let a1, . . . , ak be some finite list of outcomes for some integer k ≥ 3.

We say that a1, . . . , ak form a standard sequence if (ai, ai+1) ∆
%
e (ai+1, ai+2)

for all i ∈ [k − 2]. In plain English, a1, . . . , ak form a standard sequence if
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any two pairs of adjacent outcomes in the sequence exhibit the same pref-

erence strength for their first outcome over their second. Hence, a standard

sequence is made of outcomes who are either increasingly favorable or de-

creasingly favorable (when received for sure) at a “constant rate”.

3 Results

3.1 The general family of RDWAU orderings

The most general theorem proved in this paper is the following.

Theorem 1 Let X be a set of outcomes and % be an ordering of P(X) and

assume that X is connected for the order topology associated to % when re-
stricted to singletons. Assume also that, for every integer n, there is at least

one rank that is essential for sets with n outcomes. Then % satisfies Consis-
tency in Comparisons of Preference Strength, Fixed Cardinality Continuity

and Internality iff % is a RDWAU ordering as in (1) for non-negative weights
summing to 1. Moreover, if there are prospects containing at least two out-

comes that have at least two ranks that are essential, the mapping u is unique

up to a positive affi ne transformation and the weights wni are unique.

The proof of this theorem, provided in the Appendix, proceeds in several

steps. We first prove, under the conditions of the theorem, that the Con-

sistency in Comparisons of Preference Strength and Fixed Cardinality Ax-

ioms alone– without therefore Internality– characterize the RDWAU family

of rankings of sets containing any specifically given number of outcomes.

However, this first result does not say anything about comparisons of sets

containing different numbers of outcome. It does not even connect the nu-

merical representation obtained for the ranking of sets with, say, m outcomes

with that which enables the ranking of sets with, say, n outcomes. This first

step of the proof is summarized in the following proposition.
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Proposition 1 Let X be a set of outcomes and % be an ordering of P(X)

and assume that X is connected for the order topology associated to % when
restricted to singletons. Assume also that, for every integer n, there is at

least one rank that is essential for sets with n outcomes. Then % satisfies

Consistency in Comparisons of Preference Strength and Fixed Cardinality

Continuity iff there exist wni as in (1) and a continuous function u
n : X → R

such that, for all prospects A,B ∈ P(X) with the same cardinality n, one

has

A % B ⇐⇒
∑
i∈[n]

wni u
n(ai) ≥

∑
i∈[n]

wni u
n(bi). (5)

For any n ≥ 2, if the prospects with n outcomes have at least two ranks

that are essential, then the mapping un is unique up to a positive affi ne

transformation for every n > 1. The weights wni are unique.

The second step of the proof consists in showing that any of the functions

un that enters in the numerical representation (5) of the ordering % restricted
to prospects with n outcomes provides a numerical representation of the

ordering % restricted to singletons. The required result for this step is the
following Lemma.

Lemma 3 Let X be a set of outcomes and % be an ordering of P(X) and

assume that X is connected for the order topology associated to % when re-
stricted to singletons. Assume also that, for every integer n, there is at least

one rank that is essential for sets with n outcomes. If % satisfies Consistency
in Comparisons of Preference Strength and Fixed Cardinality Continuity,

then, for any n ∈ N, the function un in (5) also numerically represents the
restriction of the ordering % to singletons. Formally, for any x, y ∈ X and

n ∈ N, x % y iff un(x) ≥ un(y).

Proposition 1 establishes the validity of the numerical representation (5)

for the ranking of prospects with a given number of outcomes. However

it does not connect together the functions un that enter in the definition
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of the numerical representation for prospects involving different numbers of

outcome. With the help of Lemma 3, the next Lemma establishes that all

the functions un that enter in the numerical representations of the orderings

of prospects containing n outcomes for variable n can actually all be taken to

be the same (up to a positive affi ne transformation). The formal statement

of this lemma, proved in the Appendix, is as follows.

Lemma 4 Let X be a set of outcomes and % be an ordering of P(X) and

assume that X is connected for the order topology associated to % when re-
stricted to singletons. Assume also that, for every integer n, there is at least

one rank that is essential for sets with n outcomes. If % satisfies Consistency
in Comparisons of Preference Strength and Fixed Cardinality Continuity,

then, for any n ∈ N, and any prospects D and D′ with n possible outcomes,

one has:

D % D′ ⇐⇒
∑
i∈[n]

wni u(di) ≥
∑
i∈[n]

wni u(d′i)

for some continuous function u : X → R uniquely defined up to a positive
affi ne transformation (if there are prospects with n outcomes with at least

two essential ranks) or up to an increasing transformation (if only one rank

is essential for all prospect size). Moreover, the weights wni are unique.

While Proposition 1 and Lemmas 3 and 4, which roughly establish the

validity of the numerical representation RDWAU as per (1) for prospects with

the same number of outcomes, makes no use of the Internality axiom, the

rest of the proof, which establishes the validity of that same representation

for comparing sets with different number of outcomes, will use this axiom

extensively. The last intermediate result that is required to prove Theorem

1 is the following lemma that establishes, under all the axioms, the existence

of a “certain”(or non-ambiguous) equivalent to any prospect.

Lemma 5 Let X be a set of outcomes and % be an ordering of P(X) and

assume that X is connected for the order topology associated to % when re-
stricted to singletons. Assume also that, for every integer n, there is at least
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one rank that is essential for sets with n outcomes. If % satisfies Consis-

tency in Comparisons of Preference Strength, Fixed Cardinality Continuity

and Internality, then, for any prospect D ∈ P(X), there exists an outcome

CE(D) ∈ X such that {CE(D)} ∼ D.

The proof of Theorem 1 is then completed by showing that the numeri-

cal representation (1) shown so far to represent the ordering % on any two
prospects containing the same number of outcomes is also valid for compar-

ing prospects with different numbers of outcomes.

In the appendix, we also establish the logical independence of the three

axioms used in the characterization.

3.2 Some subclasses of RDWAU orderings

The family of RDWAU orderings of prospects characterized in Theorem 1 is

very large. It is so large that the rank-dependent weights used by RDWAU

to calculate average utility are not restricted at all, if we except the fact that

they are all non-negative and sum to 1, and are the same for all sets with

the same number of outcomes. However, the weights are allowed to vary in

a completely arbitrary way when possible outcomes are added– or deleted–

from a prospect. For example, one could imagine a RDWAU ordering that

puts a weight of 1 on the worst possible outcome of two-outcome prospects

but yet reverses perspective when evaluating three-outcomes prospects by

putting a weight of 1 on the best outcome in those cases. In this subsection,

we explore possibilities of restricting the rank-dependent weights of RDWAU

orderings without of course going as far as making them identical as they are

in the family of UEU orderings discussed previously.
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3.2.1 Optimism and pessimism

A possible way of restricting the weights is through the specification of the

decision maker’s optimism with respect to uncertain or ambiguous prospects.

We are using here the term “optimism”in the common sense of “the quality

of being full of hope and emphasizing the good parts of a situation, or a

belief that something good will happen” (Cambridge Dictionary). There

are various ways by which we can introduce this notion and its opposite–

pessimism– in the current setting.

A somewhat plausible definition of optimism (pessimism) for a RDWAU

decision maker is the requirement that the rank-dependent weights be in-

creasing (decreasing) with the ranking of outcomes if they were certain.

Such a definition would be at least compatible with the definition of op-

timism/pessimism given in the literature on rank-dependent expected utility

models in terms of the super (sub) additivity of the Choquet capacity (see e.g.

Dillenberger, Postlewaite, and Rozen (2017) or Wakker (1990)), even though

nothing in the current radical uncertainty or objective ambiguity context en-

ables the definition of such a capacity as the source of the rank-dependent

weights.

There is an easy ordinal test– and definition– of optimism (pessimism)

in our finite set ranking context that leads precisely to this monotonicity

of the weights as definition of optimism. Consider indeed any outcomes

w, x, y and z such that (w, x) ∆
%
e (y, z) and {w} � {x} % {y} � {z}.

Hence, when certain, these four outcomes are ranked in decreasing order

from w to z (with strict preference between the first two outcomes and the

last two) and the preference strength for the best w over the second best

x has been revealed the same– as per Definition 1– as the the preference

strength for y over z. Consider then a prospect D with at least two possible

outcomes among which are x and y (but not w nor z) and such that the

simultaneous replacement of x by w and of y by z would not affect any rank

of the outcomes. Observe that the replacement of x by a more favorable
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w is appealing to the decision maker while the simultaneous replacement

of y by z is detrimental to him/her. However, since (w, x) ∆
%
e (y, z), the

preference benefit of replacing x by w is exactly the same as the preference

cost of replacing y by z. Since x is ranked weakly above y and the rank of the

two options is not affected by their respective replacement by w and z, an

optimistic agent– who tends to believe that something good will happen–

should favour such a simultaneous replacement, while a pessimistic agent

should find this very same simultaneous replacement detrimental overall.

Hence we find plausible to define formally optimism (pessimism) as follows.

Definition 2 An ordering % on P(X) is said to be weakly optimistic if for

every four distinct outcomes w, x, y and z ∈ X such that (w, x) ∆
%
e (y, z)

and {w} � {x} % {y} � {z} and every prospect A ∈ P(X) such that

{x, y} ⊂ A, {w, z} ∩ A = ∅, rAx = r
(A\{x,y})∪{w,z}
w and rAy = r

(A\{x,y})∪{w,z}
z

with the ranks rAx and r
A
y essential for prospects with #A outcomes, we have

(A \ {x, y}) ∪ {w, z} % A. The ordering is strictly optimistic if the last

comparison is strict.

Weak pessimism and strict pessimism are defined similarly, with the last

comparison replaced by - (or ≺).

We leave to the reader the task of verifying the following implication of

this definition of weak optimism/pessimism for a RDWAU decision maker.

Claim 1 Let % be a RDWAU ordering of P(X) that is numerically repre-

sented as per (1) for some utility function u : X −→ R and some collection of
non-negative weights wni (n ∈ N and i ∈ [n]) satisfying

∑
i∈[n] w

n
i = 1 for any

n. Then % is weakly optimistic (pessimistic) if and only if wni ≥ (≤) wni+1

for every n ∈ N\{1} and i ∈ [n− 1] and is strictly optimistic (pessimistic) if

and only the inequality is strict.
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3.2.2 RDWAU generated by a probability weighting function

The monotonicity of the rank-dependent weights applied to prospects with

the same number of outcomes just discussed does not impose any restriction

on the behavior of the weights when the number of possible outcomes changes.

Yet, it seems plausible that a decision maker would not use radically different

weighting schemes when facing prospects with, say, three possible outcomes

then when facing prospects with four outcomes.

A possible way to impose consistency on the weights used to compare

prospects with varying number of possible outcomes would be to assume that

these weights are all generated by the same probability weighting function.

We specifically consider the following subclass of RDWAU orderings.

Definition 3 A RDWAU ordering is said to be generated by a probability

weighting function if there exists an increasing function ψ : [0, 1] → [0, 1]

satisfying ψ(0) = 0 and ψ(1) = 1 such that, for all integer n, and all i ∈ [n],

wni = ψ( i
n
)− ψ( i−1

n
) or, equivalently, ψ( i

n
) =

∑i
h=1 w

n
h.

The term probability weighting function comes from the fact that the

function ψ takes its value in the [0, 1] interval (set of all probabilities),

and may thus be thought of as “weighting”those probabilities. Most rank-

dependent expected utility criteria examined in the decision theoretic literature–

albeit in a different setting than the finite set framework considered here–

have also considered weighting schemes that are generated by a given prob-

ability weighting function (see e.g. Quiggin (1982), Quiggin (1993), Schmei-

dler (1989), Yaari (1987)). Heuristically, a decision maker who compares

prospects by means of a RDWAU generated by a probability weighting func-

tion may be viewed as assigning to all ranks of the outcomes of a prospect

an equal probability of occurrence and distorting this probability by some

weighting function.

It can be observed that a RDWAU ordering generated by a probabil-

ity weighting function satisfies the following strong dominance axiom, which
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is, as its name suggests, a significant strengthening of the dominance ax-

iom widely discussed by the literature on decision making under ignorance

surveyed in Barberà, Bossert, and Pattanaik (2004) (see their section 3.2).

Axiom 4 Strong Dominance. For every n and r ∈ N, every prospect A such
that #A = n and every list of n prospects B1, ..., Bn satisfying Bj ∩ A = ∅
and #Bj = r for every j = 1, ..., n:

if {aj} � {bj1} for all j ∈ [n], then A � A ∪B1 ∪ ...∪ Bn and,

if {bjr} � {aj} for all j ∈ [n], then A ≺ A ∪B1 ∪ ...∪ Bn.

This axiom requires that if any possible outcome of a prospect is better

(worse), if certain, than every outcome in a collection of r outcomes distinct

from the outcomes of the prospect, then the prospect should be better (worse)

than the (large) prospect formed by the merging of the prospect with the

union of all those collections of outcomes. The dominance axiom discussed

in Barberà, Bossert, and Pattanaik (2004) is a weakening of this axiom that

restricts its applicability to the case where r = 1 and the unique outcome of

the collection is the same for all outcomes of the initial prospect.

As it turns out, adding this axiom to those characterizing the whole

family of RDWAU ordering as per Theorem 1 suffi ces to eliminate from that

family all RDWAU orderings that do not result from a probability weighting

function. The formal statement of this is as follows.

Proposition 2 Let X be a set of outcomes and % be an ordering of P(X)

and assume that X is connected for the order topology associated to % when
restricted to singletons. Assume also that, for every integer n, there is at least

one rank that is essential for sets with n outcomes. Then % satisfies Consis-
tency in Comparisons of Preference Strength, Fixed Cardinality Continuity,

Internality and Strong Dominance iff % is a RDWAU ordering generated by
a probability weighting function.

A particularly simple family of RDWAU orderings that result from a prob-

ability weighting function are those satisfying the (very stringent) restriction
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that the weights wni of Expression (1) can be written as

wni+1

wni
= ρ

for any n ∈ N and i ∈ [n] for some strictly positive real number ρ. Any

such RDWAU ordering can be seen as being generated by the probability

weighting function ψ defined by:

ψ(x) =
eρx − 1

eρ − 1

Let us refer to any RDWAU ordering that satisfies this restriction as an RD-

WAU ordering with constant ratio. Optimism for this class would correspond

to the requirement that ρ < 1. while pessimism would mean ρ > 1. Observe

finally that if ρ = 1 (a limiting case of both optimism and pessimism), then

the weights are the same for all outcomes and this brings us back to the UEU

family characterized in Gravel, Marchant, and Sen (2012).

A simple observation reveals whether the real number ρ is smaller than,

equal to, or larger than 1. Suppose indeed a1, a2 and a3 form a standard

sequence; if {a1, a2, a3} - {a1, a3}, then ρ ≥ 1 and if {a1, a2, a3} % {a1, a3},
then ρ ≤ 1.

The following condition is necessary and suffi cient for a RDWAU ordering

to exhibit a constant ratio.

Condition 3 Rank-dependent preservation of equivalences among pairs. Let
x1, x2, x3, x4 be outcomes such that {x1} � {x2} % {x3} � {x4}. Let A be a

set such that A ∩ {x1, x2, x3, x4} = ∅ and rA∪{xi}xi = r
A∪{xj}
xj for all i, j ∈ [4].

Then

{x1, x4} ∼ {x2, x3} ⇐⇒ A ∪ {x1, x4} ∼ A ∪ {x2, x3}.

Proposition 3 Let % be a RDWAU ordering of P(X) as in Theorem 1. It

satisfies Condition 3 iff it exhibits constant ratio.
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4 Conclusion

This paper has axiomatically characterized the rather large family of criteria

for decision making under ignorance or objective ambiguity that result from

comparing rank-dependent weighted average utilities of the prospects, for

some utility function and some rank-dependent weighting scheme. It has

done so by describing prospects as finite sets of outcomes– that could be

either final consequences or lotteries over the same.

While the rank-dependent weighted average of utility criteria are evoca-

tive of the rank-dependent expected utility criteria à la Quiggin (1993) or

Yaari (1987) considered in decision making under risk (when prospects are

described as probability distributions) or uncertainty (when prospects are de-

scribed as functions from a set of states of nature to a set of consequences),

they are more general than those because they can not meaningfully be

described as resulting from a Choquet or otherwise capacity. The rank-

dependent weights are, in this paper, completely arbitrary. And of course,

the finite set theoretic framework in which we analyze decision making makes

our characterization very different from those obtained in the literature.

Moreover, we have provided additional restrictions that one may want to

impose on the weights to make them more structured. One of them, taking

the form of a rather mild dominance axiom, has been suffi cient to single out

the class of RDWAU rankings of prospects that have been generated by a

given probability weighting function. This class is clearly reminiscent of the

rank dependent expected utility criteria considered in the decision theoretic

literature.

We finally notice that the two main axioms– if we leave aside Fixed Car-

dinality Continuity– used in the characterization are quite easily amenable to

experimental testing. It is our hope that future work in the area– including

possibly our own– will enable progress in these directions.
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A Proofs

A.1 Lemma 1

Consider two distinct outcomes α and β ∈ X, and two prospects D, D′ such
that #D = #D′, (D ∪ D′) ∩ {α, β} = ∅ and rD∪{α}α = r

D∪{β}
β = r

D′∪{α}
α =

r
D′∪{β}
β = i for some rank i ∈ [#D+1] = [#D′+1]. We observe that if i is not

essential for sets with #D+ 1 = #D′+ 1 outcomes, then D∪{α} ∼ D∪{β}
and D′ ∪ {α} ∼ D′ ∪ {β} so that D ∪ {α} % D′ ∪ {α} ⇐⇒ D ∪ {β} %
D′ ∪ {β} always hold in that case. Assume therefore that i is essential for
sets with #D + 1 = #D′ + 1 outcomes and, by contraposition, assume that

D ∪ {α} % D′ ∪ {α} but not D ∪ {β} % D′ ∪ {β}. Since % is complete,

this amounts to assuming that D ∪ {β} ≺ D′ ∪ {β}. From Definition 1,

we obviously have (α, α) ∆
%
s (β, β) and (β, β) ∆

%
s (α, α), which contradicts

Consistency in Comparisons of Preference Strength. �

A.2 Lemma 2

Suppose for contradiction that Condition 2 is violated. Hence, there are two

outcomes x and y ∈ X for which both {x} � {y} and {x} ∪ D - {y} ∪ D
hold for some set D ∈ P(X) such that {x, y} ∩D = ∅ and rD∪{x}x = r

D∪{y}
y

with rD∪{x}x (or rD∪{y}y ) being essential for prospects with #D+ 1 outcomes.

From the statement {x} � {y}, we obtain, using the reflexivity of % re-

stricted to singletons and the definition of ∆· %s that (x, y)∆· %s (x, x). From

{x} ∪D - {y} ∪D, we conclude using this time the definition of ∆· %, that
(x, x)∆· %(x, y), thus contradicting the Weak Consistency in Comparisons of

Preference Strength. �
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A.3 Proposition 1

The result being true for n = 1 by Debreu (1954) theorem (any continuous

ordering on a topological space can be numerically represented by a utility

function), consider any integer n ≥ 2. Any prospect D with n ≥ 2 ordered

elements can be represented as an ordered vector in Xn. The set of all such

vectors is a subset of Xn, denoted by On(X). Let us consider n disjoint

connected subsets {Y1, . . . , Yn} of X such that, for all i ∈ [n − 1] and for

all x ∈ Yi, y ∈ Yi+1, we have {x} % {y}. By construction, the Cartesian
product Πn

i=1Yi is a subset of On(X). The restriction of % to Πn
i=1Yi satisfies

Consistency in Comparisons of Preference Strength and Continuity. We can

therefore apply Theorem III.6.6 in Wakker (1989) (p. 70)– after noticing

that Consistency in Comparisons of Preference Strength implies the absence

of contradictory trade-offs mentioned in this theorem– and conclude in the

existence of n continuous mappings {uni }i∈[n] such that, for all A,B ∈ Πi∈[n]Yi

A % B ⇐⇒
n∑

i∈[n]

uni (ai) ≥
n∑

i∈[n]

uni (bi). (6)

Using then Observation III.6.6′ in Wakker (1989) (p. 71), we conclude that

the functions uni are unique up to an affi ne increasing transformation for all

essential ranks if there are two or more such ranks (the functions associated to

inessential ranks being constant). If however there is only one such essential

rank, then the function of this unique rank is unique up to an increasing

transformation, and all the other functions are constant. Let E(n) ⊂ [n]

be the set of ranks that are essential for prospects with n possible outcomes

and, since at least one rank is essential, let n̂ be the integer defined by

0 < n̂ = #E(n) ≤ n. Consider then the set On̂(X) of all ordered vectors

in X n̂ that correspond to the n̂ ordered elements with essential rank in sets

with n outcomes for some such set D. Just like its cousin On(X), the set

On̂(X) can be written as the union of infinitely many Cartesian products
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of the form Πi∈[n̂]Yi with the sets Yi defined as above for ranks i that are

all essential for sets with n outcomes. The set On̂(X) satisfies Assumption

2.1 in Chateauneuf and Wakker (1993). In particular, all the components of

this subset of a Cartesian product are essential and, thanks to Lemma 2,

the ranking of On̂(X) induced by % satisfies the Chateauneuf and Wakker
(1993) property of strong monotonicity required by their Assumption 2.1.

As a result of Theorem 2.2 in Chateauneuf and Wakker (1993), there is a

continuous additive representation of % (restricted to sets of cardinality n).
That is to say, Expression (6) provides a numerical representation of the

ordering % not only on Πi∈[n]Yi but, also, on the whole set On(X), taking for

granted that the functions uni of Expression (6) can (and must) be taken to

be constant for all ranks i that are not essential for sets with n outcomes. .

Let ̂ ∈ E(n) be an essential rank for sets with n outcomes such that ı̂ > ̂

for any other essential rank ı̂ (if any) in E(n). Assume first that there are at

least two essential ranks for sets with n outcomes and consider therefore any

ı̂ ∈ E(n) such that ı̂ > ̂. Let A and B be any two sets of cardinality n − 1

and x1, x2 and x3 be outcomes in X not contained in either A or B such

that {x1} % {x2} % {x3} and rA∪{xi}xi = r
A∪{xi+1}
xi+1 = r

B∪{xi}
xi = r

B∪{xi+1}
xi+1 =

ı̂. Choose also such outcomes in such a way that A ∪ {xi+1} ∼ B ∪ {xi} for
i ∈ [2]. The existence of these three outcomes and two sets A and B having

those features is secured by the continuity of the representation in (6) and

the connectedness of X. Hence, using (6), we can write A∪{xi+1} ∼ B∪{xi}
for i ∈ [2] as

∑
g∈[̂ı−1]

ung (ag) + unı̂ (x3) +
∑

g∈[̂ı+1,n]

ung (ag−1)

=
∑
g∈[̂ı−1]

ung (bg) + unı̂ (x2) +
∑

g∈[̂ı+1,n]

ung (bg−1) (7)
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and

∑
g∈[̂ı−1]

ung (ag) + unı̂ (x2) +
∑

g∈[̂ı+1,n]

ung (ag−1)

=
∑
g∈[̂ı−1]

ung (bg) + unı̂ (x1) +
∑

g∈[̂ı+1,n]

ung (bg−1). (8)

Subtracting (8) from (7) yields unı̂ (x2)−unı̂ (x1) = unı̂ (x3)−unı̂ (x2). Let now C

and D be sets of cardinality n− 1 not containing x1, x2 and x3 such that the

rank of x1, x2 and x3 in {xi}∪C and in {xi}∪D (for i ∈ [3]) is ̂. Again, the

existence of these two sets C and D having those features is secured by the

continuity of the representation in ((6)) and the connectedness of the set X.

We observe that, thanks to Consistency in Comparisons Preference Strength,

one must have C ∪ {xi+1} ∼ D ∪ {xi} for i ∈ [2]. The same reasoning as

above therefore yields un̂ (x2)−un̂ (x1) = un̂ (x3)−un̂ (x2). In other words, the

images of x1, x2, x3 under unı̂ are equally spaced and so are they in u
n
̂ . Let

us say that x1, x2 and x3 form a grid in X with a mesh of size 1. Thanks to

the uniqueness remark made above with respect to the two essential ranks ̂

and ı̂, we necessarily have that unı̂ = αı̂ + β ı̂u
n
̂ for some real numbers αı̂ and

β ı̂ with β ı̂ > 0.

By continuity and connectedness, there is x1◦2 ‘halfway’between x1 and

x2. More formally, there is x1◦2 such that unı̂ (x1◦2) − unı̂ (x1) = unı̂ (x2) −
unı̂ (x1◦2). There is also x2◦3 such that unı̂ (x2◦3)− unı̂ (x2) = unı̂ (x3)− unı̂ (x2◦3).

The images of x1, x1◦2, x2, x2◦3 and x3 under unı̂ are thus equally spaced and

so are they under un̂ . The outcomes x1, x1◦2, x2, x2◦3 and x3 thus form a grid

in X with mesh of size 1/2. We can again halve the mesh of this grid by

adding the outcomes x1◦(1◦2), x(1◦2)◦2, x2◦(2◦3) and x(2◦3)◦3 to the grid. And we

can make the mesh as fine as we want by repeating this process.

Let us denote the outcomes of the initial grid (mesh size = 1), by g1
1 = x1,

g1
2 = x2 and g1

3 = x3. Similarly, we denote the elements of the second

grid (mesh size = 1/2) by g2
1 = x1, g

2
2 = x1◦2, g2

3 = x2, g2
4 = x2◦3 and
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g2
5 = x3, those of the third grid (mesh size = 1/22, g3

1 = x1, g3
2 = x1◦(1◦2),

g3
3 = x1◦2, . . . , g

3
8 = x(2◦3)◦3 and g3

9 = x3 and so on.

If x1 is not maximal for % restricted to singletons, we can try to extend
the grid to the ‘left’ of x1 = g1

1, by looking for an element g
1
0 such that

unj (g1
1)−unj (g1

0) = unj (g1
2)−unj (g1

1). If such a g1
0 does not exist, then there exists

a mesh size s such that there is gs0 satisfying u
n
j (gs1)−unj (gs0) = unj (gs2)−unj (gs1).

If gs0 is not maximal for %, we can again extend the grid to the ‘left’of
gs0 (this may require using a finer mesh). By repeating this process, we can

extend the grid to the ‘left’of x1 and go as close as we wish to the maximal

prospects for % (if any).
We can also extend he grid to the ‘right’of x3 and go as close as we wish

to the minimal singleton prospect for % (if any). Since the images of all

elements of a grid are equally spaced in R under unı̂ and un̂ , we necessarily
have that unı̂ (x) = αı̂ + β ı̂u

n
̂ (x) for some real numbers αı̂ and β ı̂ with β ı̂ > 0

and for any element x of a grid of any mesh size.

Consider now an element x that does not belong to any grid. We have just

seen above that we can refine or extend the initial grid in order to be as close

as we wish to x. Continuity of unı̂ and u
n
̂ then imply that u

n
ı̂ (x) = αı̂+β ı̂u

n
̂ (x)

holds for any x ∈ X. The reasoning just made is valid for any essential rank
ı̂ ∈ E(n) distinct from ̂. Hence, if there is at least one such an essential rank,

we can write Equivalence (5) as

A % B ⇐⇒
∑
i∈E(n)

βiu
n
̂ (ai) ≥

∑
i∈E(n)

βiu
n
̂ (bi)

after neglecting all irrelevant constant terms (including the constant functions

that represent inessential ranks). Defining un = un̂ and w
n
i = βi/

∑
j∈E(n) βj

for all essential ranks i, and wni = 0 for all inessential ranks, one can equiva-

lently write

A % B ⇐⇒
∑
i∈[n]

wni u
n(ai) ≥

∑
i∈[n]

wni u
n(bi).
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If however ̂ is the only essential rank for prospects with n outcomes, then

one sets wn̂ = 1 and wni = 0 for all i 6= ̂ and un = un̂ . �

A.4 Lemma 3

Let x and y be two outcomes in X such that {x} % {y}. Since for any n,
there is at least one rank that is essential for prospects with n outcomes,

this applies to n = 1 so that the ranking of singletons is not trivial. For

any n ≥ 2, consider a prospect D such that #D = n − 1, {x, y} ∩ D = ∅
and rD∪{x}x = r

D∪{y}
y = i for some i ∈ E(n). Again, the existence of such a

prospect for any given outcomes x and y such that {x} % {y} is guaranteed
by the connectedness of X and the essentialness condition. By consistency

in Comparisons of Preference Strength, one must have D ∪ {x} % D ∪ {y}.
Thanks to Proposition 1, this latter statement can equivalently be written

as

∑
h∈[i−1]

wnhu
n(dh) + wni u

n(x) +
∑

h∈[i+1,n]

wnhu
n(dh−1)

≥
∑

h∈[i−1]

wnhu
n(dh) + wni u

n(y) +
∑

h∈[i+1,n]

wnhu
n(dh−1).

Since wni > 0 (because i ∈ E(n)), this is equivalent to un(x) ≥ un(y).

Using a similar reasoning and the completeness of %, one would obtain
the strict inequality un(y) > un(x) if one had assumed {x} ≺ {y} instead.
Hence {x} % {y} if and only if un(x) ≥ un(y) for any n ≥ 1. �

A.5 Lemma 4

Thanks to Proposition 1, we know that, for any n ∈ N, there exist non-
negative weights wni as in (1) and u

n : X → R such that (5) holds. We
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consider two cases.

Case 1. Suppose there is at least one cardinalitym such that two ranks are

essential (one of them is rank ı̂). Suppose (ai)i∈[p] is some standard sequence

for the sets B and C of cardinality m− 1 with {a1, . . . , ap} ∩ (B ∪ C) = ∅,
B ≺ C and such that rB∪{ai}ai = r

C∪{ai}
ai = ı̂ for all i ∈ [p]. By Consistency

in Comparisons of Preference Strength, we must have {ai}∪B ∼ {ai+1}∪C
for all i ∈ [p−1] and, applying the numerical representation of Proposition 1

for n = m,

um(ai)− um(ai−1) = um(ai+1)− um(ai) (9)

for all those i. Consider now any cardinality m′ 6= m with at least two

essential ranks (if there is such m′). Let ̂ denote one of these essential ranks.

One can find, thanks to continuity and connectedness of X, some sets D and

E of cardinality m′ − 1 such that {a1, . . . , ap} ∩ (D ∪ E) = ∅ and, for all

i ∈ [p−1], rD∪{ai}ai = r
E∪{ai+1}
ai+1 = ̂. Thanks to Consistency in Comparisons of

Preference Strength, one will have D∪{ai} ∼ E ∪{ai−1} for all i ∈ [2, p− 1]

and, thanks to (5),

um
′
(ai)− um

′
(ai−1) = um

′
(ai+1)− um′

(ai). (10)

Thanks to the connectedness of X and continuity of % when restricted to
singletons, we can choose the standard sequence (ai)i∈[p] as fine as we want

following the procedure described at the end of the proof of Proposition 1.

Hence, the comparison of (9) and (10) shows that um = γm
′
+λm

′
um

′
for any

m′ ∈ [2, ·] with at least two essential ranks. We have seen in Proposition 1
that un is unique up to any positive affi ne transformation in the case of n

with at least two essential ranks. Since um is a positive affi ne transformation

of um
′
, we can use um instead of um

′
in (5).

For any cardinality n with only one essential rank, (5) is a purely ordinal

representation because only one weight wni is non zero. We can therefore
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replace un by um because, as shown in Lemma 3, um is a strictly increasing

transformation of un.

Since we can use um everywhere instead of un for every n (including

n = 1), we can just define u = um and this completes the proof for the case

that there is a cardinality m with at least two essential ranks.

Case 2. Suppose there is no cardinality such that two ranks are essential.

Then, for every n, only one weight wni is non zero and (5) is a purely ordi-

nal representation. We can therefore replace un by u1 because, as shown in

Lemma 3, u1 is a strictly increasing transformation of un. Posing u = u1

completes the proof. �

A.6 Lemma 5

The result being trivially true for a prospect D with a single outcome, con-

sider a prospect D with n ≥ 2 outcomes. Let us write D = {d1, . . . , dn}.
We define CE(D) to be any element of the set u−1(

∑
i∈[n] w

n
i u(di)) where the

continuous function u and the weights wni are those that define the numerical

representation constructed in Lemma 4, which is also a numerical representa-

tion of the restriction of the ordering % to singletons thanks to Lemma 3. We
need to show that u−1(

∑
i∈[n] w

n
i u(di)) 6= ∅ and, also, that {CE(D)} ∼ D.

The proof of the non-emptiness of u−1(
∑

i∈[n] w
n
i u(di)) (and of the fact

that {CE(D)} ∼ D) being immediate if u(di) = u(di+1) for all i ∈ [n−1], we

consider the case where u(d1) > u(dn) and, by Lemma 3, where {d1} � {dn}.
We observe that since wni ≥ 0 for all i (with at least one strict inequality

thanks to the assumption that at least one rank is essential for prospects with

n outcomes) and u(d1) > u(dn) by assumption, one must have (since 1 ≥ wni )

u(d1) ≥
∑

i∈[n] w
n
i u(di) ≥ u(dn) with at least one of the two inequalities

strict. The continuity of u on its connected domain X implies u−1 is defined

for any real number in the non-degenerate interval [u(dn), u(d1)] and thus, in
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particular, for the real number
∑

i∈[n] w
n
i u(di). Hence CE(D) exists.

Suppose now that CE(D) ∈ X is such that {CE(D)} � D. Let us

specifically assume that {CE(D)} � D. Let i ∈ [n − 1] be defined by

u(di) ≥ u(CE(D)) and u(di+1) < u(CE(D)). Consider then the sequence

of prospects Dt (for t ∈ N) defined by

Dt = {CE(D)+εtn , ...,CE(D)+εti+1 ,CE(D)−ε
t
i , ...,CE(D)−ε

t
1}

for some list of n outcomesCE(D)+εth andCE(D)−ε
t
h such that u(CE(D)−ε

t
h) =

u(CE(D)) − εth, for h ∈ [i + 1, n], and u(CE(D)+εth) = u(CE(D)) + εth, for

h ∈ [i] for some sequence of suitably small positive real numbers εth (for

h ∈ [n]) such that εt1 < εt2 < . . . < εti, ε
t
n < εtn−1 < . . . < εti+1, limt→∞ ε

t
j = 0

for all j ∈ [n] and ∑
h∈[i]

wnhε
t
h =

∑
h∈[i+1,n]

wnhε
t
h.

It is clear here again that the existence of these CE(D)+εth and CE(D)−ε
t
h

is secured by the continuity of u, the connectedness of X and the fact that

u(d1) >
∑

h∈[n] w
n
hu(dh) > u(dn). We then have

∑
h∈[i]

wnhu(CE(D)−ε
t
h) +

∑
h∈[n]:h>i

wnhu(CE(D)+εth)

= u(CE(D)) =
∑
h∈[n]

wnhu(dh).

By Proposition 1, this implies D ∼ Dt for all t. By transitivity, we therefore

have {CE(D)} � Dt for all t. We observe also that the Internality axiom

implies that

{CE(D)+εtn} % Dt % {CE(D)−ε
t
1} (11)

while the fact– established in Lemma 3– that u numerically represents the
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ordering % restricted to singletons implies that

{CE(D)+εtn} � {CE(D)} � {CE(D)−ε
t
1}. (12)

Since {CE(D)} � Dt for all t, it follows from (11) and (12) and transitivity

that:

{CE(D)+εtn} � {CE(D)} � Dt % {CE(D)−ε
t
1}.

Yet both sequences of singletons {CE(D)+εtn} and {CE(D)−ε
t
1} converge to

{CE(D)}. Hence, having {CE(D)+εtn} � {CE(D)−ε
t
1} for all t holding at the

limit is incompatible with the continuity of %. The argument for the case
where D � {CE(D)} is similar. �

A.7 Remaining of Theorem 1

We know from Proposition 1 and Lemma 4 that for any n ∈ N, there is a
continuous utility function u : X → R and a set of weights wni (for i ∈ [n]) for

which (1) holds for any prospects D and D′ having both n possible outcomes.

For any prospect D, let UD =
∑

i∈[#D]w
#D
i u(di). Consider two prospects

A = {a1, . . . , an} and B = {b1, . . . , bm} for some n and m ∈ N++ with n 6= m

such that A % B. We need to show that UA ≥ UB. By contradiction, suppose

that UB > UA. Choose any suitably small strictly positive real number ε.

Using Lemma 5, the continuity of u and the connectedness of X, define the

sets Cj
n and C

j
m by

Cj
n = {cj1, . . . , cjn}

and

Cj
m = {cj1, . . . , cjm}
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where, for any i ∈ [m] ∪ [n] and j ∈ N, cji ∈ X is such that:

cji = u−1

(
UA +

ε

ij

)
.

By Internality, we have that {cj1} % Cj
n. By the numerical representation,

Cj
n � A. We observe also that, for suffi ciently large j, UCjm can be made

arbitrarily close to UA. Take therefore a fixed j, say ̄, suffi ciently large for

the assumption UB > UA to imply UB > UC ̄m > UA. Since the numerical

representation holds for sets of cardinality m, we must therefore have B �
C
m. By Internality, C

̄
m % {c̄m} and, by the numerical representation applied

to singletons, {c̄m} � {cjm} for all j > ̄. Thanks to Lemma 5 and transitivity,

we have

{cj1} % Cj
n � A ∼ {CE(A)} % B � C ̄

m % {c̄m} � {cjm},

for all j > ̄. But having {cj1} � {CE(A)} � {c̄m} � {cjm} for all j > ̄

contradicts Fixed Cardinality Continuity (applied to singletons), since both

sequences {cj1}j∈N and {cjm}j∈N converge to u−1(UA) = u−1(CE(A)). The

converse implication that UA ≥ UB implies A % B is proved in the same

way. �

A.8 Proposition 2

By our main theorem, % has a RDWAU representation with non-negative

weights wni . Let q be any rational number in [0, 1] and let us consider two

pairs of integers (i, n) and (j,m) such that i/n = j/m = q. Let A =

{a1, . . . , an} be a prospect such that, for all h ∈ [n−1], u(ah) = u(ah+1)+δ for

some positive real number δ. The existence of such a prospect does not raise

any diffi culty thanks to the connectedness of the set X and the continuity of

u. For h ∈ [n], let Bh = {bh1 , . . . , bhm−1} be a prospect with m − 1 outcomes
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such that u(bhk) = u(ah) − εδ/k for all k ∈ [m − 1], with 0 < ε < 1. By

construction, A ∩ B1 ∩ . . . ∩ Bn = ∅ and {ah} � {bhk} for all h ∈ [n] and

k ∈ [m − 1]. Consider then the prospect B = B1 ∪ . . . ∪ Bn = {b1, ..., b#B}
with its elements ordered as usual. By Strong Dominance one has:

A � A ∪B1 ∪ . . . ∪Bn. (13)

Symmetrically, for h ∈ [n], one can construct a prospectCh = {ch1 , . . . , chm−1}
such that u(chk) = u(ah) + εδ/k for all k ∈ [m− 1], with ε < 1. By construc-

tion, A ∩ C1 ∩ . . . ∩ Cn = ∅ and {ah} ≺ {chk} for all h ∈ [n] and k ∈ [m− 1].

Applying again strong dominance dominance, we obtain:

A ≺ A ∪ C1 ∪ . . . ∪ Cn. (14)

When ε tends to zero, both u(bhk) and u(chk) tend to u(ah). Hence, since

(13) and (14) hold for all 0 < ε < 1 and since the RDWAU representation is

continuous, we have

wnh =
hm∑

k=(h−1)m+1

wnmk , ∀h ∈ [n].

This implies, in particular,

i∑
h=1

wnh =

im∑
h=1

wnmk .

A similar reasoning, starting from a set A with m elements and sets Bh, Ch

with n− 1 elements, yields

j∑
h=1

wmh =

jn∑
h=1

wnmk .
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Since im = jn, we have:
i∑

h=1

wnh =

j∑
h=1

wmh . (15)

For any q ∈ [0, 1]Q, let us therefore define ψ(q) =
∑i

h=1w
n
h , using any i, n

such that i/n = q. By (15), ψ(q) does not depend on the particular choice

of i and n. By construction, ψ is increasing. �

A.9 Proposition 3

Necessity. Let x1, x2, x3, x4 and A be as in the premise of Condition 3.

Let #A = n and rA∪{x1}
x1 = k. Then {x1, x4} ∼ {x2, x3} imply

w2
1u(x1) + w2

2u(x4) = w2
1u(x2) + w2

2u(x3).

Obvious simplifications yield

w2
2

w2
1

=
u(x4)− u(x3)

u(x2)− u(x1)
.

Assuming a constant ratio ordering, we have

wnk+1

wnk
= ρ =

u(x4)− u(x3)

u(x2)− u(x1)

and

∑
h∈[k−1]

wnhu(ah) + wnku(x1) + wnk+1u(x4) +
∑
h∈[k,n]

wnh+2u(ah)

=
∑

h∈[k−1]

wnhu(ah) + wnku(x2) + wnk+1u(x3) +
∑
h∈[k,n]

wnh+2u(ah).

Hence A ∪ {x1, x4} ∼ A ∪ {x2, x3} and necessity is proved.
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Suffi ciency. Suppose% is a RDWAU ordering as in Theorem 1, with utility
function u and weights wni . Consider any four outcomes x1, x2, x3 and x4

such that {x1} � {x2} % {x3} � {x4}, {x1, x4} ∼ {x2, x3} and {x} � {x1},
{x4} � {y} for some x and y ∈ X. The existence of such outcomes is

secured by the Essentialness condition (applied to prospects made of two

outcomes) and the continuity of the RDWAU ordering (combined with the

connectedness of X for the order topology of % restricted to singletons).
Consider any n ∈ [2, ·] and k ∈ [n − 1]. By continuity of % and con-

nectedness of X again, there are n− 2 outcomes a1, . . . , an−2 such that a1 �
. . . � ak−1 � x1 � x4 � ak+2 � . . . � an. If we define A = {a1, . . . , an−2},
then Condition 3 implies A ∪ {x1, x4} ∼ A ∪ {x2, x3}. Using the numerical
representation of Theorem 1, we find

wnk+1

wnk
=
u(x4)− u(x3)

u(x2)− u(x1)
.

Since this holds for all n ∈ [2, ·] and k ∈ [n− 1], the proof is complete if we

define

ρ =
u(x4)− u(x3)

u(x2)− u(x1)
.

�

B Independence of the axioms

In the following three examples, we prove the independence of the three

axioms that characterize RDWAU orderings by exhibiting non-RDWAU or-

derings that satisfy any two of the three axioms but not the remaining one.

Example 2 Assume that X = R, and consider the ordering %addon P(X)

defined by A %add B ⇐⇒
∑

i∈#A ai ≥
∑

i∈#B bi. This ordering obviously

satisfies Fixed Cardinality Continuity and Consistency in Comparisons of
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Preference Strength. To see that it violates the Internality axiom, one can

simply observe that, contrary to what this principle would require, {1, 2} �add

{2}.

Example 3 Assume that X = R, and consider the ordering %maxon P(X)

defined by A %max B ⇐⇒ a1 ≥ b1. This ordering obviously satisfies Fixed

Cardinality Continuity and Internality. To see that it violates Consistency in

Comparisons of Preference Strength, one first observes that {6, 1} �max {5, 2}
and {3, 1} ≺max {4, 2}, which implies through Definition 1 that (6, 5) ∆

%max

s

(3, 4). The violation of Consistency in Comparisons of Preference Strength

is then established by noticing that {7, 6} ∼max {7, 5} and {7, 3} ∼max {7, 4}
and, therefore, that (3, 4) ∆

%max

e (6, 5).

Example 4 Assume that X = R2 and, for any x ∈ X and i ∈ [2], let xi

denote the ith component of x. Consider then the lexicographic version of the

UEU ordering %lexon P(X) defined, for any prospects A and B, by

A ∼lex B ⇐⇒
∑
i∈[#A]

a1
i

#A
=
∑
i∈[#A]

b1
i

#A
and

∑
i∈[#A]

a2
i

#A
=
∑
i∈[#A]

b2
i

#A

and by A �lex B if either

∑
i∈[#A]

a1
i

#A
>
∑
i∈[#A]

b1
i

#A

or ∑
i∈[#A]

a1
i

#A
=
∑
i∈[#A]

b1
i

#A
and

∑
i∈[#A]

a2
i

#A
>
∑
i∈[#A]

b2
i

#A

Hence, the ordering %lex compares prospects on the basis of a lexicographic

combination of the symmetric average of each component of the (two-dimensional)

outcomes of those prospects. It is easy to see that this ordering violates Fixed

Cardinality Continuity. Indeed, for any outcome (a1, a2) ∈ X, the set of

outcomes (x1, x2) ∈ X such that {(x1, x2)} %lex {(a1, a2)} is not closed in X.
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To see that %lex satisfies Internality, consider the prospect D = {d1, . . . , dn}
for some n ∈ N. Since {dn} -lex {di} for all i ∈ [n], we have either

d1
i > d1

n (16)

or

d1
i = d1

n and d
2
i ≥ d2

n (17)

for all i ∈ [n]. Summing over n the inequalities or equalities (16) and (17)

yields either

∑
i∈[n]

d1
i > nd1

n ⇐⇒

∑
i∈[n]

d1
i

n
> d1

n if (16) holds for some i or∑
i∈[n]

d1
i

n
= d1

n and

∑
i∈[n]

d2
i

n
≥ d2

n if (17) holds for all i.

Hence, one has {d1, . . . , dn} %lex {dn} as required by the Internality axiom.
The conclusion that {d1} %lex {d1, . . . , dn} can be obtained through a similar
reasoning.

We now turn to Consistency in Comparisons of Preference Strength. To

show that this axiom is satisfied by the ordering %lexsuppose by contradiction

that it is not. This means that there exist prospects A, A′, B and B′ in P(X)

satisfying #A = #A′ = n and #B = #B′ = m for some m, n ∈ N and

distinct outcomes x, y, x′, y′ ∈ X such that {x, y, x′, y′}∩(A∪A′∪B∪B′) = ∅
for which one has

{a1, . . . , ai−1, x, ai+1, . . . , an} %lex {a′1, . . . , a′i−1, y, a
′
i+1, . . . , a

′
n}, (18)

{a1, . . . , ai−1, x
′, ai+1, . . . , an} -lex {a′1, . . . , a′i−1, y

′, a′i+1, . . . , a
′
n}, (19)

{b1, . . . , bj−1, x, bj+1, . . . , bm} ≺lex {b′1, . . . , b′j−1, y, b
′
j+1, . . . , b

′
m}, (20)

{b1, . . . , bj−1, x
′, bj+1, . . . , bm} %lex {b′1, . . . , b′j−1, y

′, b′j+1, . . . , b
′
m}, (21)
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for some i ∈ [n] and j ∈ [m] or, possibly, with the comparison (20) weak and

the comparison (21) strict. Yet, we focus on (20) strict and (21) weak in the

following sketch. From (18) we conclude

i−1∑
h=1

a1
h + x1 +

n∑
h=i+1

a1
h >

i−1∑
h=1

a′1h + y1 +

n∑
h=i+1

a′1h (22)

or

i−1∑
h=1

a1
h + x1 +

n∑
h=i+1

a1
h =

i−1∑
h=1h

a′1h + y1 +
n∑

h=i+1

a′1h and

i−1∑
h=1

a2
h + x2 +

n∑
h=i+1

a2
h ≥

i−1∑
h=1

a′2h + y2 +
n∑

h=i+1

a′2h . (23)

Similarly, we obtain from (19)

i−1∑
h=1

a1
h + x′1 +

n∑
h=i+1

a1
h <

i−1∑
h=1

a′1h + y′1 +
n∑

h=i+1

a′1h (24)

or

i−1∑
h=1

a1
h + x′1 +

n∑
h=i+1

a1
h =

i−1∑
h=1

a′1h + y′1 +
n∑

h=i+1

a′1h and

i−1∑
h=1

a2
h + x′2 +

n∑
h=i+1

a2
h ≤

i−1∑
h=1

a′2h + y′2 +
n∑

h=i+1

a′2h . (25)

Four cases need to be considered:

1. (22) and (24) imply x1 − x′1 > y1 − y′1;
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2. (22) and (25) imply x1 − x′1 > y1 − y′1 and

i−1∑
h=1

a2
h + x′2 +

n∑
h=i+1

a2
h ≤

i−1∑
h=1

a′2h + y′2 +

n∑
h=i+1

a′2h ;

3. (23) and (24) imply x1 − x′1 > y1 − y′1 and

i−1∑
h=1

a2
h + x2 +

n∑
h=i+1

a2
h ≥

i−1∑
h=1

a′2h + y2 +

n∑
h=i+1

a′2h ;

4. (23) and (25) imply x1 − x′1 = y1 − y′1 and x2 − x′2 ≥ y2 − y′2.

Similarly, we can derive from (20) that

i−1∑
h=1

b1
h + x1 +

n∑
h=i+1

b1
h <

i−1∑
h=1

b′1h + y1 +
n∑

h=i+1

b′1h (26)

or

i−1∑
h=1

b1
h + x1 +

n∑
h=i+1

b1
h =

i−1∑
h=1

b′1h + y1 +
n∑

h=i+1

b′1h and

i−1∑
h=1

b2
h + x2 +

n∑
h=i+1

b2
h ≤

i−1∑
h=1

b′2h + y2 +
n∑

h=i+1

b2
h, (27)

while (21) leads to

i−1∑
h=1

b1
h + x′1 +

n∑
h=i+1

b1
h >

i−1∑
h=1

b′1h + y′1 +

n∑
h=i+1

b′1h (28)
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or

i−1∑
h=1

b1
h + x′1 +

n∑
h=i+1

b1
h =

i−1∑
h=1

b′1h + y′1 +

n∑
h=i+1

b′1h and

i−1∑
h=1

b2
h + x′2 +

n∑
h=i+1

b2
h ≥

i−1∑
h=1

b′2h + y′2 +

n∑
h=i+1

b2
h. (29)

The four implications resulting from all the possible combinations of these

expressions are

1. (a) (26) and (28) yield x1 − x′1 < y1 − y′1;

(b) (26) and (29) yield x1 − x′1 < y1 − y′1 and

i−1∑
h=1

b2
h + x′2 +

n∑
h=i+1

b2
h ≥

i−1∑
h=1

b′2h + y′2 +
n∑

h=i+1

b2
h;

(c) (27) and (28) yield x1 − x′1 < y1 − y′1 and

i−1∑
h=1

b2
h + x2 +

n∑
h=i+1

b2
h ≤

i−1∑
h=1

b′2h + y2 +
n∑

h=i+1

b2
h;

(d) (27) and (29) yield x1 − x′1 = y1 − y′1 and x2 − x′2 > y2 − y′2.

Since any combination of one of the cases (1)—(4) with one the cases (a)—

(b) leads to an obvious contradiction, this shows that the ordering %lex does

indeed satisfy Consistency in Comparisons of Preference Strength.
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