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Abstract

We study a network intervention problem where a fully informed intervener removes a player
or a set of links from a network whose participants can only observe their direct neighborhoods.
The intervener’s objective is to structurally perturb the network to maximize the change in
aggregate equilibrium effort levels stemming from an incomplete information linear quadratic
game. Under the assumption that intervention is not anticipated by network participants, we
show that uncertainty over network architecture restricts the number of agents who become
aware of the fact that intervention has transpired. In particular, the set of agents revising equi-
librium actions is restricted to those whose links are directly affected. Consequently, popular
metrics such as inter-centrality or Katz-Bonacich centrality are no longer sufficient in charac-
terizing key agents and key links. We demonstrate our model when agents have under uniform
prior beliefs over network topologies. In this case, key agents as well as key links are completely
characterized by degree centrality.
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1 Introduction

Identifying the key players in a network is an important exercise with applications from optimal
technology adaption to the reduction of criminal activities. Most of the work dealing with the
identification of key player in networks assumes that network participants have full knowledge of
the network topology they are embedded in. However complete information about the network
structure is too strong an assumption. Participants of real world economic and social networks are
rarely if ever aware of the entire network architecture. Nonetheless, identifying optimal intervention
strategies under incomplete information is still an unsolved problem. In this paper we aim to fill
this gap.

We employ the incomplete information linear quadratic game of Chaudhuri, Sarangi, and Tzavellas
(2023) in which we introduce a fully informed planner who structurally intervenes in the network.
The planners objective is to suitably select targets to minimize aggregate actions in equilibrium.
The game proceeds as follows: Nature moves first and picks a graph from an ex-ante distribution
over all possible unweighted and undirected networks on n vertices. Once a network is realized,
each individual sees their direct connections but do not their indirect connections. It is at this stage
that the external planner intervenes. Under the assumption that intervention is not anticipated by
agents, it is only observed locally in the network. That is, only by those individuals whose local
neighborhood is altered by it. Affected agents update their beliefs regarding what other agents were
also affected by the intervention. Lastly, all agents simultaneously exert actions to maximize their
interim linear quadratic payoffs.

We consider two kinds of intervention. In the first kind of intervention the intervenor removes a
player. This player removal is observed only locally by those agents who are directly connected to
the removed player. These agents in turn form beliefs regarding what other players observed the
removal. The player whose removal reduces the aggregate activity the most is termed as the key
player. In the second kind of intervention the intervenor removes a set of links. On removing a
link, only the players involved in the link will observe it being removed. The set of links whose
removal reduces aggregate activity the most is termed as the key links. We show that the optimal
intervention strategy depends not only on the maximum action exerted by a player but also the
expected complementarity strengths that arises due to the removal of nodes or links.

Optimal structural intervention in networks under complete information has been a well studied
problem. Ballester, Calvo-Armengol, Zenou (2006) introduces the inter-centrality metric to deter-
mine the key player in the network. Sun, Zhao and Zhou (2023) introduce the link index, a function
of Katz-Bonacich centrality and influence matrix, to determine the optimal structural intervention
in terms of link creation. Unlike their work, we find that when agents have incomplete information
about network architecture, neither inter-centrality nor Katz-Bonacich centrality can characterize
the optimal structural intervention. Instead, when there is uncertainty about the network architec-
ture, the player that induces the maximum expected complementarity strength for all others in the
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network is the key player. Similarly, the links that give rise to maximum complementarity strengths
are the key links.

We explore optimal structural intervention when the underlying probability distribution is uniform
over all possible networks. Under such beliefs, the one with the highest degree turns out to be
the key player. For uniform priors, expected complementarity strengths arising in the network are
same for all the players. The optimal intervention strategy, therefore, does not depend on the
complementarity strengths arising from indirect connections, and depend only on the number of
connections a player has. Since expected complementarities do not depend on agent identity, it also
follows that all links are equally important under key link intervention.

The rest of the paper is organized as follows. Section 2 depicts the incomplete information linear
quadratic model a la Chaudhuri, Sarangi, and Tzavellas (2023) and the two types of intervention.
Section 3 explores these concepts through an application with an uniform prior.

2 Model

Let N = {1, 2, ..., n} denote the set of players. Letting i ∼ j denote a link between players i and
j, a network (or graph) g is the collection of all pairwise links that exist between the players. The
links are undirected such that i ∼ j ∈ g implies j ∼ i ∈ g. The network can be represented by its
adjacency matrix which, with some abuse of notation, is also denoted as g = [gij ], where gij = 1

if a link exists between players i and j, and gij = 0 otherwise. There are no self-loops and thus
gii = 0 for all i ∈ N . The fact that links are undirected implies g = gT . Let E denote the set
of edges present in the network, i.e. E = {(i, j) : gij = 1}. Since, links are undirected, (i, j) ∈ E

implies (j, i) ∈ E. We denote by Gn the set of all unweighted and undirected networks on n vertices
whose cardinality is 2

n(n−1)
2 . Given the adjacency representation of a network g ∈ Gn we let gi

denote its ith row. That is, gi = (gi1, gi2, ...., gin) ∈ {0, 1}n, where it is understood that gii = 0. In
the following section, it will be convenient to represent any network g by the rows of its adjacency
matrix:

g = (g1,g2, ..,gn) (1)

2.1 Effort Game

We employ the incomplete information network game of Chaudhuri, Sarangi, and Tzavellas (2023),
in which agents embedded in a network have access to information only on their local neighborhood
and play a linear quadratic game. At the beginning of the game Nature, a non-strategic player,
draws a network from the set of all possible networks on n nodes. The network is chosen from an
ex-ante distribution that is common knowledge among all agents. Following Nature’s draw, players
realize their direct connections (they can see the agents with who they are linked), but do not
know the network’s architecture beyond that. In other words, they do not observe the links of their
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neighbors. Using the information on their direct connections, agents proceed to update their beliefs
about the network chosen by Nature according to Bayes’ rule. Given these updated beliefs, agents
simultaneously exert actions to maximize their interim payoffs.

Type Space

Agents’ types are representative of their corresponding row in the adjacency representation of the
network over which the game will be played. That is, each player’s type set assumes the following
form:

Gi = {(gi1, gi2, ...., gin)i ∈ {0, 1}n : gii = 0}

where gij = 1 if player i is connected to j and 0 otherwise. The cardinality of each agent’s type set
is:

|Gi| ≡ γ = 2n−1

and we denote its elements by gti
i ∈ Gi. Whenever the context is clear and we need not enumerate

the elements of each type set we suppress the superscript ti. Given each player’s type set, we can
write down the type space of the game:

G = "i∈NGi

Ex-ante Beliefs

We denote by p ∈ ∆(G) the probability distribution over the type space, with ∆(G) denoting the
set of all probability distributions over G. In our game, Nature moves first and chooses an element
of the type space g ∈ G. We want to restrict Nature’s choice to those elements in G that have valid
network representations. Towards this, we define the following set of admissible distributions, and
impose the assumption that Nature draws a network from a distribution in this set.

Definition 1. We say that the probability distribution p ∈ ∆(G) is admissible if it satisfies:

p(g) = 0 ∀ g ∈ G s.t g ̸= gT

and denote the set of all admissible distributions by ∆A(G).

Assumption 1 : p ∈ ∆A(G) and this is common knowledge.

The imposition of assumption 1 implies that p(g) > 0 if and only if g ∈ Gn . Consequently, Nature
will choose an unweighted and undirected network with certainty, and the fact that the agents are
part of one such network is common knowledge.

Belief Updating

Given assumption 1, agents know that Nature draws a network and proceed to update their
beliefs regarding its true topology according to Bayes’ Rule. These ex-post updated beliefs can be
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written as:

p(gj |gi) =
p(gi,gj)

p(gi)
=

∑
g∈G p(g)I{gi = g|i ∧ gj = g|j}∑

g∈G p(g)I{gi = g|i}
∀i, j ∈ N, (2)

where I is the indicator function. Specifically, for g ∈ G, I{gi = g|i} = 1 if gi is the projection of
g (i.e., g|i ) on its ith component and 0 otherwise.

State Game and Equilibrium

Given the above, conditional on a state g ∈ G being realized, agents play the state game:

sg = (N,A, (ui(ai, a−i))i∈N )

where every agent has the same action set A ≡ R+. Let aj = (aj(g
1
j ), ..., aj(g

γ
j )) , a−i =

(a1, ...,ai−1,ai+1, ...,an) and ai(g
−ti
i ) = (ai(g

1
i ), ..., ai(g

ti−1
i ), ai(g

ti+1
i ), ..., ai(g

γ
i )). Interim utilities

assume a linear-quadratic form:

ui(ai(g
ti
i ); ai(g

−ti
i ), a−i) = ai(g

ti
i )−

1

2
ai(g

ti
i )

2 + λai(g
ti
i )

n∑
j=1

gtiij
∑

gj∈Gj

p(gj |gti
i )aj(gj) (3)

Agents simultaneously exert actions to maximize (3). For each agent i, a pure strategy σi maps
each possible type to an action. That is,

σi = (ai(g
1
i ), ..., ai(g

γ
i ))

This is a simultaneous move game of incomplete information so we invoke Bayes-Nash as the equi-
librium notion.

Definition 2. The pure strategy profile σ∗ = (σ∗i , σ
∗
−i) where σi = (a∗i (g

1
i ), ..., a

∗
i (g

γ
i )) is a

Bayesian-Nash equilibrium (BNE) if:

a∗i (g
ti
i ) = arg max

ai(g
ti
i )

ui(ai(g
ti
i ), a

∗
i (g

−ti
i ), σ∗−i) ∀ i ∈ N, ∀ gti

i ∈ Gi

Best Responses and BNE

Given the payoff structure, the best response of the ith player whose is of type gti
i is given by:

ai(g
ti
i ) = 1 + λ

n∑
j=1

gtiij
∑

gj∈Gj

p(gj |gti
i )aj(gj) (4)

The system characterizing the best responses for all players can be written in vector notation as
follows:

a = 1nγ + λBa (5)

where 1nγ is the nγ-dimesnional column vector of 1’s, a = [ai]
n
i=1 , ai =

[
ai(g

ti
i )

]γ
ti=1

, γ = 2n−1 is
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the total number of types of each player, and B is a block matrix that assumes the following form:

B =


0 G1∼2 . . . G1∼n

G2∼1 0 . . . G2∼n

. . . . . . . . . . . .

Gn∼1 Gn∼2 . . . 0


nγ×nγ

with
[Gi∼j ]titj = gtiijp(g

tj
j |g

ti
i ) ∀ tj , ti = 1, .., γ and ∀ g

tj
j ∈ Gj ,g

ti
i ∈ Gi

For any ex-ant prior and any realized network, Chaudhuri et al. (2023) characterize the unique pure
strategy BNE given by

a∗i (g
ti
i ) =

∞∑
s=0

λsβ
(s)
i,ti

∀ i ∈ N, ∀ gti
i ∈ Gi, (6)

where

β
(s)
i,ti

=

n∑
j1,j2,..,js=1

γ∑
tj1 ,tj2 ,..,tjs−1

=1

gtiij1g
tj1
j1j2

...g
tjs−1

js−1js
p(g

tjs−1

js−1
|g

tjs−2

js−2
)p(g

tjs−2

js−2
|g

tjs−3

js−3
)...p(g

tj1
j1

|gti
i )

2.2 Intervention

We introduce a fully informed planner whose objective is to structurally intervene in the network and
remove suitably selected targets to minimize aggregate actions in equilibrium. By fully informed,
we mean that the intervener has complete information of the effort game played by agents and can
thus compute BNE actions over any realized network.

Assumption 1. Intervention is not anticipated by players.

The key implication of this assumption is that the intervener’s actions are only observed locally
i.e., by players whose links are directly affected. Stated differently, only those agents whose realized
types are altered by the structural intervention become aware that such intervention has transpired.

Intuitively, assumption 1 provides us with a framework for interpreting the nature of the intervention
exercise itself. This framework, is along the lines of standard network intervention analysis as in
the seminal Ballester et al. (2006) paper. In their set up, agents playing the complete information
variant of the linear quadratic game are subjected to agent removal. In particular, an intervener
will strategically remove a player in the network to maximize the change in aggregate equilibrium
actions. Similar to our set up, the planner’s intention to intervene is not anticipated by agents,
and hence the intervention exercise reduces to comparing aggregate actions between pre and post
removal Nash equilibria. Assumption 1 implies that we may think of intervention in a similar
manner. That is, as a counterfactual or a comparative statics exercise on equilibrium actions to
changes in the network topology.
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The timing of events is as follows: (1) Nature selects a network and agents realize their types, (2)
The planner structurally intervenes in the network, and (3) Agents exert actions. We consider two
kinds of targeting strategies: (i) node removal (and all its links), and (ii) links removal. While these
two types of intervention may appear to be structurally identical in certain cases (when a player is
taken out of the network versus when all its links are removed), they are distinct in their degree of
local informativeness. Given agents incomplete information on network architecture, player removal
drives adjacent agents to internalize the intervention, while link removal does not. This stems from
the fact that by removing a node i from the network, adjacent agents will need to form beliefs about
which other agents observed i′s removal. On the other hand simply removing a link, say i ∼ j, does
not remove the node itself. Consequently agents i and j (whose link was removed) still observe one
another participating in the network, and internalize the fact that the only two players who can
observe the link being removed are themselves.

Key Player

Suppose a network g̃ = (g̃1, g̃2, .., g̃n) ∈ G is realized. The intervenor removes an agent k ∈ N to
minimize the total activity in the network. This removal is observed by all i ∈ Nk := {i : g̃ik = 1}i.e.,
all players directly connected to k (the player removed). On the other hand, all i ∈ N \Nk ∪ {k}
realize no change in their local neighborhoods and hence their actions remain unaltered. For any
j ∈ N , we can partition the type set Gj into G1

j := {gj ∈ Gj : gjk = 0}, i.e. the types for which j

doesn’t observe the removal of k, and G2
j := {gj ∈ Gj : gjk = 1}, i.e. types for which j observes the

removal of k.

Upon realizing the removal of k, all i ∈ Nk := {i : g̃ik = 1} update their best-responses according
to,

ãi (g̃i) = 1 + λ
∑
j ̸=k

g̃ij
∑

gj∈G2
j

p (gj | g̃i) ãj (gj) + λ
∑
j ̸=k

g̃ij
∑

gj∈G1
j

p (gj | g̃i) aj (gj)

On the other hand, all k ̸= i ∈ N \ Nk who do not realize the removal of k, have the same
best-responses as given by (4),

ai(g̃i) = 1 + λ

n∑
j=1

g̃ij
∑

gj∈Gj

p (gj | g̃i) aj (gj)

Aggregate activity in the network after the removal of k is given by Σ−k =
∑

i∈Nk
ãi (g̃i) +∑

i/∈Nk
i ̸=k

ai (g̃i). The change in aggregate activity is thus

Σ− Σ−k =
∑
i∈Nk

[ai (g̃i)− ãi (gi)] + ak (g̃k)

The key player is the agent for which this change is maximal. We denote this agent by k∗ ∈ N

where
k∗ ∈ argmax

k∈N
Ψ(k) := Σ− Σ−k
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The change in actions of a player i upon removal of another k where player i in k’s neighborhood is
given by Ψk (gi) = ai (gi)− ãi (gi). Using the best responses, this change in actions can be written
as:

Ψk (gi) = ai (gi)− ãi (gi)

= λ
∑
j ̸=k

gij
∑

gj∈G2
j

p (gj | gi) (aj (gj)− ãj (gj)) + λ
∑

gk∈Gk

p (gk | gi) ak (gk)

= λ
∑
j ̸=k

gij
∑

gj∈G2
j

p (gj | gi)Ψk (gj) + λΦk (gi)

where Φk (gi) =
∑

gk∈Gk
p (gk | gi) ak (gk) is player i’s expectation about the action exerted by

player k given he is of type gi. It follows that

Ψk = λB̃Ψk + λΦk (7)

where Ψk =
[
Ψi

k

]
i∈Nk

, Ψi
k = [Ψk (gi)]gi∈G2

i
, and B̃ is a block matrix that assumes the following

form:

B̃ =


0 G2

k1∼k2
. . . G2

k1∼kq

G2
k2∼k1

0 . . . G2
k2∼kq

. . . . . . . . . . . .

G2
kq∼k1

G2
kq∼k2

. . . 0


qγ′×qγ′

where q = |Nk|, Nk := {k1, k2, . . . , kq}, γ′ =
∣∣G2

i

∣∣ = 2n−2,and[
G2

ki∼kj

]
titj

= gtikikjp
(
g
tj
kj

| gti
ki

)
∀tj , ti = 1, . . . , γ′ and ∀gtj

kj
∈ G2

kj
,gti

ki
∈ G2

ki

Note that matrix B̃ is structurally equivalent to B and can be thought of as a weighted and directed
network over the types of k’s neighbors that are directly connected to k. That is, those types who
would observe the removal of k. The following theorem characterizes the key player.

Theorem 1. For any admissible probability distribution, and for any realized network g̃ ∈ G, the
key-player k∗is the one for whom

Ψ(k∗) := ak∗ (g̃k∗) + λ
∑

i∈Nk∗

Ψ̃k∗ (g̃i)

is the maximum, i.e. Ψ(k∗) = maxk∈N Ψ(k) , with

Ψ̃k∗ (g̃i) =
∞∑
s=0

λsψ
(s)
i,ti

∀ i ∈ N
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Figure 1: Expected complementarity strength from walks of length 3 when k is removed

where

ψ
(s)
i,ti

=
n∑

j1,j2,..,js=1

γ∑
tj1 ,tj2 ,..,tjs−1

=1

gtiij1g
tj1
j1j2

...g
tjs−1

js−1js
p(g

tjs−1

js−1
|g

tjs−2

js−2
)p(g

tjs−2

js−2
|g

tjs−3

js−3
)...p(g

tj1
j1

|gti
i )Φk∗ (gj1)

Ψ (k∗) gives the total complementarity strength arising in the network g̃ due to the presence of
k∗. This complementarity comprises of three parts, (i) the direct complementarity arising due
to the action exerted by the player k∗, (ii) the direct complementarity arising due to the action
exerted by the post-removal isolated players whose only connection was with k∗ and (iii) the indirect
complementarity strength that arises due to the complementarity that k∗’s neighbors expect to
extract from it. While (i) arises due to the local complementarities in the network, the belief
structure in (iii) is a consequence of the prevailing incomplete information. Observe that in the
expression of Ψk∗ (g̃i), only those players whose types are such that gik∗ = 1 adjust their action.
Thus, Ψ̃k∗ (g̃i) gives the total complementarity strength that player i expects to extract from player
k∗ through the walks of all lengths.

As an example, consider the complementarity that player i expects to extract from player k∗ through
walks of length 3:∑

j,l,s∈Nk

∑
gj∈G2

j

∑
gl∈G2

l

∑
gs∈G2

s

g̃ijgjlglsp (gj | g̃i) p (gl | gj) p (gs | gl) Φk (gs)

To compute the expected complementarity from player k∗ through the walks of length 3, player
i performs a similar calculation as in Chaudhuri et al. (2023) to reach player s. As only those
types are considered here where k∗ is a neighbor of s, hence the complelementarity arising from
this walk is the product of the complementarity arising through the links of s ∼ l ∼ j ∼ i

(given by g̃ijgjlp (gj | g̃i) glsp (gl | gj)) and the complementarity that s expects to exert from k∗,
i.e. p (gs | gl) Φk∗ (gs).

Key Links

Instead of removing a player as in the previous case, suppose the intervenor now removes links
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between two players. This can be thought of as an intervention resulting in an obstruction of the
direct connection between any two players. Let L ⊆ E be the links removed by the intervenor and
V (L) := {i ∈ N : ∃j ∈ N such that (i, j) ∈ E} denote the nodes involved in this removal process.
Since we consider undirected links, (i, j) ∈ L implies (j, i) ∈ L. The removal of a link is only
observed by the two nodes involved in that link, i.e. if a link (k, l) ∈ L is removed, then this is
observed only by the agents k and l. Thus, for all i ∈ V (L) upon realizing the removal of their
respective links will update their best responses according to

ãi (g̃i) = 1 + λ
∑
j /∈Li

gij
∑

gj∈Gj

p (gj | g̃i) aj (gj)

where Li := {j ∈ N : (i, j) ∈ L} is the identity of i’s neighbors the direct connections to whom
has been removed and li = |Li| is the number of links removed in which i is involved in. For all
i ∈ N \ V (L) the best-response remains unaltered as given by (4),

ai(g̃i) = 1 + λ

n∑
j=1

g̃ij
∑

gj∈Gj

p (gj | g̃i) aj (gj)

The aggregate activity in the network after the removal of the links L is given by, Σ−L :=∑
i∈N\V (L) ai (g̃i) +

∑
i∈V (L) ãi (g̃i). The change in aggregate action due to the removal of the

links takes the form
Σ− Σ−L =

∑
i∈V (L)

[ai(g̃i)− ãi(g̃i)]

The impact of the removal of links on an individual player i ∈ V (L) is given by

ai(g̃i)− ãi(g̃i) = λ
∑
j∈Li

Ei [aj | g̃i]

where, Ei [aj | g̃i] =
∑

gj∈Gj
p (gj | g̃i) aj (gj) is player i’s expectation about the action exerted by

j, when its type is g̃i. Thus, the change in aggregate actions is given by

Σ− Σ−L = λ
∑

i∈V (L)

∑
j∈Li

Ei [aj | g̃i]

If the planner is performing under the constraint that they can remove at most l̄ links, then the set
of key links L∗ are given by

L∗ ∈ argmax
L⊆E
|L|=l̄

λ
∑

i∈V (L)

∑
j∈Li

Ei [aj | g̃i]

Note that the key player and key links may not correspond to the same optimal intervention strategy.
To demonstrate consider the following example. Let N = {1, 2, 3, 4} and consider networks g1,g2 ∈
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G4 as shown in Figure 2.

Figure 2: g1 (left) and g2 (right)

Suppose that the ex-ante distribution p satisfies:

p(g) =


0.3 if g = g1

0.7 if g = g2

0 otherwise

If the graph g1 is realized, Theorem 1 shows that player 2 is the key player. If the intervenor has a
constraint of removing only two links, then the key links are 1 ∼ 2 and 1 ∼ 3. Thus removing the
key player would result in removing the links 1 ∼ 2 and 2 ∼ 3, which is not the same as the key
links.

In the following section we show how the key players and key links are determined when the under-
lying probability distribution is uniform.

3 Uniform Priors

Definition 3. The probability distribution p ∈ ∆A(G) is uniform if it satisfies:

p(g) =


1

2
n(n−1)

2

if g ∈ Gn

0 otherwise

Suppose the underlying probability distribution be uniform over all networks and a graph g̃ is
realized. Moreover, let di denote the realized degree of agent i in the graph. Then from Chaudhuri,
Sarangi, Tzavellas (2023) we know that the equilibrium action exerted by an agent i is given by:

a∗i (di) = 1 +
λdi

1− nλ
2

(8)

Key Player

Suppose the intervenor removes a player k ∈ N whose neighborhood is Nk. The updated best
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responses of these agents can also characterized by degrees. These are given by

ãi (di) = 1 + λ (di − 1)

[
n−1∑
d=2

(
n−3
d−2

)
2n−2

ã (d) +

n−2∑
d=1

(
n−3
d−1

)
2n−2

a (d)

]

For all other agents who do now observe the intervention, their best responses are unaltered:

ai (di) = 1 +
λdi

1− nλ
2

∀k ̸= i ∈ N \Nk

Solving for updated equilibrium actions, we get

ãi (di) = 1 + λ (di − 1) [f1 + f2]

ai (di) = 1 + λdif3

where
f1 =

1

2

(
2− λ

2− nλ

)
, f2 =

1 + λf1 (n− 1)

2− λ(n−1)
2

, f3 =
1

1− nλ
2

The change in aggregate activity due to the removal of k then takes the form:

Σ− Σ−k = 1 + λ

w1

∑
i∈Nk

di + w2dk

 (9)

where, w1 = f3 − (f1 + f2) is the difference in complementarity strengths that each player in Nk

expects to extract and w2 = f3 + (f1 + f2) represents the total complementarity strengths that
arises due to the presence of player k.

Lemma 1. For any graph realization with n ≥ 3 an individual with the highest degree is the key
player.

This lemma shows that under the uniform probability distribution, the expected complementarity
that each player expects to extract through their neighbors is same for everyone. As a result, the
intervention is most effective when the player with the highest degree is removed.

Key Links

Suppose the intervenor removes a set of links L ⊆ E where they are performing under the constraint
that they can remove only l̄ links. Then for any player i of type g̃i and degree di, their expectation
about the action exerted by their neighbor j is given by,

Ei [aj | g̃i] =
1

1− nλ
2

= f3 (10)

Remark 1. Any set of l̄ links is the key links.
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With the underlying distribution being uniform, the complementarity strengths that the individuals
involved in the link removal expects to extract is same for everyone. As a result the complementarity
strength involved in a link is same for all the links, which is illustrated in (10). As a result, any set
of l̄ links is the key links.

Key player vs Key links

In the previous sections we have seen who is the key player and what are the key links. We have
also seen through an example that the key player and the key links might not be the same. Now the
question arises, if the intervenor is faced with a strategic decision to make, which type of intervention
will be more fruitful, i.e. which type of intervention will result in reducing the aggregate activity by
a higher margin. For comparing the two types of intervention, we assume that when all the links of
a key player is removed, they become inactive in the network (i.e. they exert no action). This can
be thought of as an externality of intervention on the player whose links are removed.

Proposition 1. For any realized graph g̃ if k∗is the player with the highest degree, then according to
Lemma 1, k∗is the key player. Denote by ∆Σkey as the change in aggregate activity in the network
due to the removal of k∗. Alternatively, if the intervenor had instead removed all the links of k∗, i.e.
L = {(k∗, i) : gik∗ = 1}, then denote ∆Σlinks as the change in aggregate activity due to the removal
of the links of k∗. Then we have ∆Σlinks ≥ ∆Σkey.

The above proposition discusses about the efficiency of intervention. Instead of removing a player,
if the links of the same player is removed then the aggregate activity is reduced by a higher margin.
This is because of the fact that, link removal is only observed by the individuals involved in the
link and there is no anticipation of any other links being removed. Where as, for the node removal
the direct neighbors anticipates about who else might have seen this node removal and resulting in
updating their actions accordingly. Containing the information within the players involved in a link
thus turns out to be more effective in the absence of speculation and updating actions.
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Appendix

Proof of Theorem 1

From (7) we have that

Ψk = λ
(
I− λB̃

)−1
·Φk

= λ
(
Φk + λB̃ ·Φk + λ2B̃2 ·Φk + . . .

)
= λΨ̃k

And hence for any i ∈ Nk,

Ψk (g̃i) = λ

Φk (g̃i) + λ
∑
j∈Nk

∑
gj∈G2

j

g̃ijp (gj | g̃i) Φk (gj) + . . .


= λΨ̃k (g̃i)

Thus, the key-player k∗is the one for whom

Ψ(k∗) := ak∗ (g̃k∗) + λ
∑

i∈Nk∗

Ψ̃k∗ (g̃i)

is the maximum, i.e. Ψ(k∗) = maxk∈N Ψ(k).

■

Proof of Lemma 1

Note that w1 < 0 and w2 > 0 for any n ≥ 3 and λ < 1
n−1 . If dk∗ ≥ dk and

∑
i∈Nk∗

di ≥
∑

i∈Nk
di

for all k ∈ N which proves the result, as Σ − Σ−k is maximum at k = k∗. On the other hand, if
dk∗ > dk′ and

∑
i∈Nk∗

di ≤
∑

i∈Nk′
di for some k′ ∈ N and Σ− Σ−k is maximum at k = k′ then

w1

∑
i∈Nk′

di + w2dk′ > w1

∑
i∈Nk∗

di + w2dk∗

w1

 ∑
i∈Nk′

di −
∑

i∈Nk∗

di

 > w2 [dk∗ − dk′ ]

But this is not a possibility as w1 < 0 and w2 > 0. Hence the player with the highest degree is the
key player.

■

Proof of Proposition 1
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From (9) we see that if k∗ is the player with the highest degree

∆Σkey = Σ− Σ−k∗ = 1 + λ

w1

∑
i∈Nk∗

di + w2dk∗


Suppose the links in L = {(k∗, i) : gik∗ = 1} are removed. Then for all i ∈ V (L) \ {k∗}, Li = {k∗}
and Lk∗ = {j ∈ N : g̃jk∗ = 1}. And as we assume that the removal of all links of k∗ will make them
inactive, the change in aggregate activity due to the removal of links in L is given by

∆Σlinks = Σ− Σ−L = ak∗(g̃k∗) + λ
∑

i∈V (L)
i ̸=k∗

∑
j∈Li

Ei [aj | g̃i]

= 1 + λf3dk∗ + λ
∑

i∈V (L)
i ̸=k∗

∑
j∈Li

f3

= 1 + 2λf3dk∗

Hence,
∆Σlinks −∆Σkey = 2λf3dk∗ − λw1

∑
i∈Nk∗

di − λw2dk∗

And we know that ∑
i∈Nk∗

di ≥ dk∗ =⇒ −w1

∑
i∈Nk∗

di ≥ −w1dk∗

where the second inequality holds because w1 < 0. As a result we have

∆Σlinks −∆Σkey ≥ 2λf3dk∗ − λw1dk∗ − λw2dk∗

= 2λf3dk∗ − λ (w1 + w2) dk∗

= 0

where the last equality is due to the fact that w1 + w2 = 2f3. And hence, ∆Σlinks ≥ ∆Σkey.

■
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