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1 Introduction

Information sharing is an integral part of policymaking in international alliances. Coun-
tries in an alliance typically have common objectives (e.g., collective defense, security
cooperation, immigration, etc.), and share information in order to coordinate their
policies towards achieving these shared objectives. The European Union, for exam-
ple, has established multiple forums for information exchange between the member
countries on a wide gamut of issues.1 An important consideration is that informa-
tion sharing is affected by policy constraints that individual countries face. Further,
in order to aggregate information and make policy decisions efficiently, committing
costly resources (e.g., fiscal or military) to the alliance plays an important role. To see
this difference, consider migration policy as opposed to security policy. In the former,
policymaking is constrained by the fact that countries have bounds imposed by their
state capacity and the political preferences of their electorate. In the case of the latter,
the ex-ante commitment of countries to physical resources becomes their policy set in
the future.

In other words, the policy constraints faced by countries are endogenously de-
termined as a consequence of their initial commitment decisions. For example, the
NATO, which is a security and defense focused alliance, has laid an important focus
on information sharing and commitment to resources.2 Specifically, NATO proscribes
an implicit “rule of thumb” on defense spending of 2 percent of GDP for member coun-
tries. The Permanent Structured Cooperation (PESCO) agreement, on the other hand,
explicitly mandates participating countries to commit about 2.5-3 percent of GDP.3

However, some pertinent problems remain with introducing such commitment
clauses. A majority of the commitments to NATO, for example, have been made by
U.S. in comparison to European countries. In fact, this commitment gap has been glar-
ingly evident in NATO since the early 2000’s. In 2007, the U.S. contributed roughly
68% of the total defense spending of NATO, and this increased to 72% by 2012. As
of 2012, U.S. spent over four per cent of its GDP on defense compared to European
counterparts that averaged around 1.6%, and some of whom spent less than one per

1Some of the prominent ones are Europol for internal law enforcement within the EU, and Interpar-
liamentary EU Information Exchange (IPEX) which is a platform for information exchange between EU
national parliaments.

2NATO’s 2010 Strategic Concept document captures this idea succinctly: “The alliance will engage
actively to enhance international security, through partnership with relevant countries and other inter-
national organizations; by contributing actively to arms control, non-proliferation and disarmament.”;
further, it adds ”Any security issue of interest to any ally can be brought to the NATO table, to share
information, exchange views and, where appropriate, forge common approaches.”

3The PESCO agreement from 2018 reads, and we quote, “The aim is to jointly develop defence capa-
bilities and make them available for EU military operations....The difference between PESCO and other
forms of cooperation is the legally binding nature of the commitments undertaken by the participating
Member States. The decision to participate was made voluntarily by each participating Member State,
and decision-making will remain in the hands of the participating Member States in the Council.”
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cent towards defense spending. This growing transatlantic gap in defense spending
has remained an important issue of contention in the relationship between U.S. and
EU. Further, with the EU trying to form its own defense alliances through PESCO and
European Defence Agency (EDA), questions pertaining to information sharing and
commitment in alliances have become ever more salient.

The theoretical literature on informational incentives and commitment in interna-
tional organizations, and more specifically, in alliances, is surprisingly limited.4 The
aim of the paper is to fill this gap in the literature. In this context, we are interested in
the following questions. How is information aggregation within an alliance affected
by the presence of policy constraints among the players? If players could instead com-
mit to resources by investing in them ex-ante, what is the relationship between the
individual preferences of players and their investments to the alliance? What factors
determine the divergence in ex-ante commitments to the alliance?

In this paper, we develop a stylized model to study incentives for information ag-
gregation and commitment in international alliances. In the baseline setup without
commitment, we consider an alliance with four key features: information asymmetry
about an unobservable state of nature, positive spillovers in policies, preference het-
erogeneity (biases) over final outcomes, and exogenous constraints on the policy set.
The setup induces a multi-player version of a coordination game (see e.g. Venkatesh,
2023) in which each player has a coordination function that depends on the actions of
all other players. Specifically, a player’s policy decision has a positive spillover on ev-
ery other player’s coordination function. Further, players face a quadratic loss when
this coordination function deviates from the players’ expectation of the (bias adjusted)
state of nature. Information about an underlying state of nature is soft in nature and
disaggregated among the players. That is, conditional on the draw of the (unobserved)
state of the world, each player receives a private signal—low or high—that imperfectly
informs them about the true underlying state (Morgan and Stocken, 2008; Galeotti
et al., 2013). In the communication stage, each player, publicly and simultaneously,
sends a cheap talk message about their private information. After the communica-
tion stage, conditional on the private information and the messages exchanged, each
player takes a policy decision from the policy set.

First, we characterize the equilibrium condition for full information revelation in
the presence of exogenous policy constraints. The characterization has a surprisingly
intuitive feature: information aggregation depends only on the biases of the two ex-
treme players and not on the composition of biases in the alliance. This is in stark
contrast to earlier results in the literature on multi-player cheap talk games in which

4Some papers have delved into the role of intellectual property rights on investment decisions by
countries in the context of climate agreements (Harstad, 2012; Harstad, 2016), and the impact of do-
mestic political incentives on international agreements (Buisseret and Bernhardt, 2018; Battaglini and
Harstad, 2020) between countries.
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truthful communication depends on the preference composition of the players.
The intuition for why the composition of biases do not matter in our model is as

follows. In order to reveal information truthfully, the subsequent policy decision of
the players must be within the feasible policy set. If this is violated, players have an
incentive to misreport (exaggerate or understate) their private information in order to
change the other players’ actions. The policy set therefore acts as an incentive com-
patibility constraint for truth-telling.5 Given this feature, players can be grouped into
two types: those who always reveal the low signal but may lie about the high signal,
and vice-versa. For the former, the only relevant incentive compatibility constraint is
when the action exceeds the lower bound for the lowest posterior expectation of the
state conditional on the player holding a high signal. If this holds, then the action is
above the bound for all other higher expectations of the state. Similarly, for the latter
set of players, the only constraint of interest is for the action to be below the upper
bound for the highest possible posterior expectation of the state, conditional on them
holding a low signal. The set of conditions for full information revelation therefore
boils down to just two constraints, one each for the least biased player with a high
signal, and the most biased player with a low signal.

Next, we use the cohesiveness of an alliance (distance between the two extreme
biases) to derive the maximal size of an alliance. We show that the maximal size of an
alliance depends crucially on the interdependency in policies. With a higher interde-
pendency, there is greater spillovers in actions of players which tightens the incentive
compatibility constraints in equilibrium. This reduces the size of the alliance. Further,
fixing the cohesiveness of an alliance, we find that smaller alliances support more pol-
icy interdependence. The implication of these results is that alliance formation must
take into account the interdependency across policy issues.

Our results on information revelation in alliances illustrates how information shar-
ing is linked to the extent of cohesiveness and interdependency within the alliance.
Consider the issue of migration control that concerns the European Union. Migra-
tion related policies have spillovers since countries migrants usually enter the “front-
line states” and proceed to emigrate to more prosperous countries.6 In the case of the
Russia-Ukraine war that began in 2022, Hungary became the primary frontline state
since most migrants fled to its borders first before trying to emigrate to other countries
within the EU. When the EU formulated a policy of quotas such that every member
would take in a percentage of the reported numbers, it incentivized Hungary to in-
flate its migration numbers. In March 2022, an article in The Guardian reported that the

5This feature is similar to the one studied by Venkatesh (2023) with two players and one-sided infor-
mation asymmetry.

6See https://www.unav.edu/web/global-affairs/detalle/-/blogs/

refugee-crisis-the-divergence-between-the-european-union-and-the-visegrad-group for
more on this.
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migration numbers were grossly exaggerated by the Hungarian government.7 This is
precisely captured by the truthful information aggregation conditions identified in the
model.

Given that the incentives for truthful information revelation is closely linked to the
size of the policy set, we next endogenize this constraint. Specifically, we allow for
players to choose ex-ante commitments to a set of actions that act as a constraint on
their subsequent decisions. The continuation game is as before in that players observe
their private information after the commitments are sunk, communicate them to oth-
ers, and then take an action from their available set. The commitment is costly and
players pay a marginal cost upfront for every unit committed to. This could be inter-
preted as an “opportunity cost” of investment in otherwise costly resources like military
infrastructure (troops, weapons, etc.), or fiscal expenditures that are diverted towards
the alliance. Importantly, we assume that the commitment is implicit: it is a strategic
decision and cannot be imposed on the players in the alliance.

Since greater first period investments reduce the constraints players face in the
decision-making phase later on, there is a trade off between the expected benefits of
committing to greater resources in the beginning and the cost of doing so. Once the
investments are sunk, players aggregate information under two possible scenarios: (a)
the investment levels are high enough such that they take the appropriate first-best
actions (i.e., fully efficient); or, (b) the investment levels are such that the constraints
do not bind up to some information level, but binds for all higher expectations of the
state (i.e., partially efficient). In the latter case, there is no incentive to misrepresent
private information for the players since their actions are anyway constrained beyond
a threshold of information, irrespective of whether they hold a high or low signal.

We characterize the unique symmetric commitment equilibrium in which a player’s
ex-ante investment is proportional to their individual bias, and is a function of the
composition of biases in the alliance. However, interestingly, the marginal benefits
from investing an additional unit in the alliance is independent of player’s bias and is
uniform across all the players. This implies that, in equilibrium, each player chooses
the same threshold of information up to which their actions are not constrained. Be-
yond this threshold there is no change in actions of players and therefore there is full
revelation of information.

The equilibrium characterizes the commitment to an action set for each player. This
set has an intuitive ordering: The commitments are increasing in the biases such that
the most biased player in the alliance has the largest set of actions while the least bi-
ased player’s action set is the smallest. That is, the initial preferences of players over
the policy issue determines the size of the commitment (preference effect). Crucially,

7See https://www.theguardian.com/world/2022/mar/30/hungary- accused-of-inflating-number-
of-ukrainian-arrivals-to-seek-eu-funds.
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these differences are also exacerbated by the degree of interdependence in actions (in-
terdependence effect). That is, when the actions of players become more interdependent,
the action set of players shrink since the marginal benefit from a unit of investment is
decreasing. From a player’s perspective, higher interdependencies in actions implies
an opportunity to free-ride on other players’ investments. This drags down the aggre-
gate investment in the alliance and partial efficiency threshold falls. That is, players
are constrained for smaller thresholds of information.

The preference effect is driven by heterogeneity in the preferences over the policy in
question. The analysis argues that what matters for greater commitment to resources
is the biases of countries. If some countries cared less about, say, military interventions,
then their willingness to contribute to defense initiatives would diminish. This could
be interpreted as lower investment level that is proportionate with their individual
preference. The second effect, the interdependency effect, is due to the nature of inter-
ventions that countries undertake. To be more precise, any joint action, like military
strikes or peacekeeping, allows for a form of piggybacking in which countries that care
less about the issue tend to piggyback on the efforts of those countries for whom the
intervention is more salient.

In the context of alliances, the need for commitment to costly resources cannot be
understated. For example, US Presidents have long advocated for greater partner-
ship and contributions from EU countries. Bush in 2006, Obama in 2014, and more
recently Trump in 2018 have all pushed for a greater share of resource contributions
from NATO’s European allies.8 The NATO, since 2006, has agreed to and adopted a
resolution for implementing the “two per cent guideline” for member nations in which
each ally would contribute 2 percent of GDP (proportional contributions) for NATO’s
collective defense initiatives. The fact that European members of NATO have not con-
tributed sufficiently to the joint defense budget has been well documented.9

The transatlantic commitment gaps have been an issue in NATO since the early
2000’s. For example, at the end of the cold war in 1989/90, the U.S. contributed 6%
of its GDP and European members of NATO around 3% of their GDP towards joint-
defense expenditures. However, from 1990 onwards there was a steady decline in
these expenditures - in 2000 the U.S. contributed 3.2% of GDP and NATO Europe
around 2% of GDP. The September 2001 attack reversed the trend for the United States,
which began committing more resources to fighting the war on terror. As a result, by
2009, the United States was spending about 5.3% of GDP while the expenditure by

8See https://www.cnbc.com/2018/07/11/obama-and-bush-also-pressed-\

nato-allies-to-spend-more-on-defense.html for more on this point.
9Petersson (2015) writes, quoting from Obama’s “West Point speech” on May 28, 2014, “We can’t

have a situation in which the United States is consistently spending over 3 percent of our GDP on de-
fense,” and Europe is spending 1 percent. “The gap becomes too large,” he continued, and the alliance
needed to make sure that everybody was doing their fair share.”
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European members gradually decreased to approximately 1.8% of GDP.10

Our results clearly provide a strategic rationale for why an alliance like NATO
struggle with enforcing the “two per cent of GDP ” rule. We argue that these rules are
indexed to the GDP of the countries while in reality what matters is how much each
country cares about the underlying policies that the alliance engages in.

These trends are in line with the theoretical predictions of this paper. In particu-
lar, the near universal drop in contributions between 1990-2000 could be almost en-
tirely attributed to the decreased Soviet threat (post the cold war breakup of USSR).
The ending of the Cold war is equivalent to a decline in the bi’s of the countries in
NATO. However, when the terror attacks of September 2001 happened, the salience
of defense related spending increased again. Correspondingly, it disproportionately
affected some NATO members more than others. This explains why there was a con-
tinued decline in defense contributions by European partner countries compared to
US and the UK. The nature of defense policy also changed with the ‘war on terror’ in
that it required coordination of allies and troops on the ground (in Afghanisthan and
Iraq), which was not entirely the case during Cold war. This is akin to an increase in
interdependency which diminished the incentives of doves and exacerbated those of
hawks to contribute towards the war efforts and the subsequent peacekeeping inter-
ventions that followed.

Related Literature

The paper is related to the cheap talk literature with multiple senders and receivers.
The two closest papers are Hagenbach and Koessler (2010) and Galeotti et al. (2013).
Though the information and communication structure we adopt is identical to Gale-
otti et al. (2013), a fundamental difference is that they assume the actions of players
are independent of each other. We allow for interdependent actions, so that a player’s
message affects her own action by shifting beliefs of other players. Hagenbach and
Koessler (2010) study a model of strategic complementarities in actions with multiple
players. In their framework, private signals of players are independent and commu-
nication between players is private. In contrast, in this paper, actions are imperfectly
substitutable, private signals of players are conditionally independent but correlated,
and the communication protocol is public.11

The paper is also related to collective decision-making literature. Gerardi and
Yariv (2007) study role of communication in a collective choice (voting) problem; Jack-

10As of 2014, only four countries in NATO contributed over 2% of GDP to defense (U.S.,
Greece, United Kingdom, and Estonia). See https://csis-prod.s3.amazonaws.com/s3fs-public/

publication/180816_NATO_Burden_Sharing_0.pdf for more on the infeasibility of GDP based burden
sharing rules.

11In addition, we focus on conditions for full information aggregation that is equivalent to a complete
network formulation in Corollary 4 of Hagenbach and Koessler (2010).
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son and Tan (2013) analyze voting rules with informational asymmetry and (hard)
information disclosure; and, both Austen-Smith and Feddersen (2005) and Austen-
Smith and Feddersen (2006) look into optimal voting rules with deliberative decision-
making. While this literature studies the role communication in a collective choice
(voting) problem, in contrast, we study a problem of information aggregation in an
interdependent decision-making environment with capacity constraints.

Finally, many papers have analyzed information aggregation in the context of elec-
tions (Bhattacharya, 2013; Feddersen and Pesendorfer, 1997), polling (Morgan and
Stocken, 2008), financial markets (Werning and Angeletos, 2006; Dasgupta and Prat,
2008), and organizations (Dewan et al., 2015; Jehiel, 1999). None of the papers look
at interdependent action environments, and the relationship between information ag-
gregation and constraints.

2 Model

Consider a group of players in an alliance, indexed by N = {1, 2, ...., n}. Each player
chooses a policy xi ∈ [0, 1] ≡ V on an issue of common interest. The payoff to each
player depends on an unknown state of the world θ that is distributed uniformly on
[0, 1]. The policies of players are interdependent in that the final policy outcome de-
pends on the policies chosen by all the players. Further, from the perspective of each
player, this final outcome is possibly heterogeneous. This is captured by a coordi-
nation function for each player, ϕi : VN → [0, 1], that depends on the policy vector
x = (x1, ..., xn). The coordination function takes the following form:

ϕi(x) =

xi + η ∑
j ̸=i

xj

1 + (n − 1)η

The ϕi function exhibits two key features. First, each player’s policy, xi, has a greater
marginal effect compared to other players’ policies. Second, the parameter η ∈ (0, 1)
in the ϕi function captures the degree of spillover in the policies of players. That is, a
higher η indicates greater degree of substitutability in the policies. Finally, each player
has a bias bi that captures the heterogeneity of preferences within the alliance. Players
want to match their respective coordination function to the bias-adjusted state, θ + bi.
Specifically, player i’s utility function is given by:

ui(x; θ, bi) = − [ϕi(x)− θ − bi]
2

If the biases were homogeneous and equal to b, then there would be no strategic prob-
lem since every player would want to perfectly reveal their information and take an
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action equal to θ + b. The bias parameter bi therefore captures the (mis)alignment of
interests within the alliance. We assume without loss of generality that biases are or-
dered: 0 ⩽ b1 ⩽ b2 ⩽ ....... ⩽ bn, with at least one strict inequality. For the sake of
exposition, we define b = {b1, b2, ..., bn},

¯
b = b1, b̄ = bn, and bn > b1. We refer to a

player whose bias exceeds the average bias of the group, Avg(b), as a hawk, and one
whose bias is below the average as a dove. The feasible policy set, V = [0, 1], places
constraints on the outcomes that players can achieve despite their heterogeneity in
preferences over the final outcomes. We focus on information transmission incentives
in the presence of such policy constraints.

Information Structure, Communication, and Actions

Information structure. The problem of information aggregation is critical since infor-
mation about the underlying state θ is imperfect and distributed among the play-
ers. The information asymmetry among players is modeled along the lines of Mor-
gan and Stocken (2008) and Galeotti et al. (2013). Specifically, the underlying state
θ ∈ U[0, 1] is not directly observable. Each player i receives an imperfect private sig-
nal si ∈ Si ≡ {0, 1} about the state of the world such that: si = 1 with probability
θ, and si = 0 with probability 1 − θ. The conditional density f (θ|{si}i∈N) belongs
to a standard Beta-binomial distribution. The sufficient statistic of the distribution is
denoted by k, which is the number of signals si = 1. The posterior distribution of θ

with uniform prior on [0, 1], given k, is a Beta distribution with parameters k + 1 and
n − k + 1. Consequently, f (θ|{si}i∈N) =

(n+1)!
k!(n−k)! θ

k (1 − θ)n−k and E [θ|{si}i∈N] =
k+1
n+2 .

The Beta distribution implies players’ signals are conditionally independent but cor-
related.12

Communication. After each player receives their signal si, they publicly and simul-
taneously communicate their information through a cheap talk message to the alliance.
We focus on pure messaging strategies in which each player simultaneously sends a
public message mi(si) to every other player in the alliance. Player i’s messaging strat-
egy is given by mi : {0, 1} −→ {0, 1}. A truthful message is one where mi(si) = si

for si = {0, 1}, and a babbling message is characterized by mi(si) = mi(1 − si). Let
m = (m1, m2, ...., mn) be the joint communication strategy of the players.

Actions. After the messages have been exchanged publicly, each player’s policy is
chosen simultaneously. The strategy for a player can be defined as τi : Si × {0, 1}N →
V. That is, τi(si, (mi, m−i)) is the action of player i with private signal si, who sent the
message mi, and observed the messages m−i = (mj)j ̸=i from the other players in the

alliance. Let τ(s, m) =
{

τi(si, (mi, m−i))
}

i∈N
be the strategy profile of the players.

12Specifically, Pr(sj = 1 | si = 1) = 2
3 , Pr(sj = 0 | si = 1) = 1

3 and Pr(sj = 0 | si = 0) = 2
3 , Pr(sj = 1 |

si = 0) = 1
3 .
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The parameter η, bias vector b, and the policy set V are all assumed to be common
knowledge. The timing of the policymaking game is as follows:

1. The state of nature θ is drawn from a uniform distribution on [0, 1]. Conditional
on θ each player observes a private signal si ∈ {0, 1}.

2. The players simultaneously send a public message mi(si) to the alliance. The
vector m is the publicly available information at the end of the communication
stage.

3. After observing the private signal si and set of messages m each player decides
on the policy xi(si, m) ∈ V simultaneously. Payoffs are realized.

Equilibrium

We focus on linear best reply functions. The equilibrium concept is perfect Bayesian
equilibrium in pure strategies (henceforth equilibrium). An equilibrium is defined as
a strategy profile

{
m, τ(s, m)

}
=
{
(mi)i∈N, (τi)i∈N

}
. Further, given the messaging

strategies, the players can be grouped into the “truthful” set and “babbling” set in equi-
librium. We define them as follows:

Definition 1. Truthful set, T = {i : mi(0) = 0, mi(1) = 1}

Definition 2. Babbling set, B = {j : mj(0) = mj(1)}

The truthful set consists of players whose messages are believed in equilibrium
as informative, while messages from the babbling set are ignored as uninformative.
After the communication stage, the information available to the players consists of |T|
truthful messages, mT = {mi : i ∈ T}, and |B| babbling messages, mB = {mj : j ∈ B}.

3 Equilibrium Policies without constraints

We first characterize the equilibrium policies in the final stage of the game in absence
of policy constraints. That is, we assume that xi ∈ R for all i ∈ N. Let t = |T| and
(n − t) = |B| be the number of truthful players and babbling players respectively. We
fully characterize the closed form solution of the policymaking stage, for any mes-
saging equilibrium of the public communication protocol. An intuitive way to think
about the policymaking stage is to abstract away from communication, and assume
the following. Suppose all agents were exogenously given the information mT, a set of
t truthful signals, and a sub-group of (n − t) agents were additionally provided with a
private signal 0 or 1. Subject to this exogenous information structure what are the poli-
cies of each player? The solution to this problem is a Bayesian Nash equilibrium (BNE)
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that is equivalent to solving the case where there are t truthful players and (n− t) bab-
bling players. We define the unconstrained policies of players as simply functions of
the summary statistic of the Beta-binomial, k, and the number of truthful signals, t.

Definition 3. Let x∗i (k, t) be the policy choice of a truthful player i ∈ T, given a sufficient
statistic k.

∀i ∈ T : x∗i (k, t) ≡ argmax
xi∈R

Eθ,sB

[
ui

(
ϕi

(
xi, x∗T\{i}(k, t), x∗j∈B(sj, k, t)

)
, θ, bi

) ∣∣∣k, mT

]
(1)

x∗T(k, t) represents the vector of equilibrium policies of the t truthful players.

Definition 4. Let x∗j (sj, k, t) be the equilibrium policy of a babbling player j ∈ B with private
signal sj and sufficient statistic k.

∀j ∈ B, sj ∈ {0, 1} :

x∗j (sj, mT) ≡ argmax
xj∈R

Eθ,sB

[
uj

(
ϕj

(
xj, x∗T(mT), x∗j′∈B\{j}(sj′ , t, k)

)
, θ, bj

) ∣∣∣sj, k, mT

]
(2)

x∗j∈B(sj, k, t) is the vector of equilibrium policies of the (n − t) babbling players.

For exposition sake, the actions can be represented without the truthful message
set mT that is publicly observable. The equilibrium profile of actions is given by,(

{x∗i (k, t)}i∈T ,
{

x∗j (0, k, t), x∗j (1, k, t)
}

j∈B

)
Players choose an action that solves a system of (|T|+ 2|B|) equations. Since commu-
nication is public, every player knows precisely the set of truthful signals in equilib-
rium. Moreover, all truthful players have the same information given by mT, while the
babbling players have an additional private signal sj. Finally, every babbling player is
one of two types—0 or 1—and players in the alliance have the same posterior expec-
tation about their type.

Definition 5. Let b̃i =
η

1−η ∑
j∈N

(bi − bj) measure the misalignment of interests for player i.13

b̃i captures the weighted distance of each player’s individual bias from that of all
the players in the alliance. This term measures the extent of misalignments within
the alliance. Since the b̃i’s are ordered according to the biases, we can deduce that in
more closely aligned alliances, for example, the dispersion in b̃i’s is lesser. Using this
formulation, we completely characterize the policies chosen by the players when there
are no constraints.

13We omit the exogenous parameters b̃i is dependent on, for simplicity of exposition.
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Theorem 1. Under unconstrained domain of actions (xi ∈ R) the players’ sequentially ratio-
nal action after receiving t truthful messages and (n − t) babbling messages is given by:

Truthful player:
x̄i(k, t) = E[θ | k, mT] + bi + b̃i

Babbling player with low signal:

x̄j(0, k, t) = E[θ | k, mT] + bi + b̃i −
1

1 + h(t)
E[θ | k, mT]

Babbling player with high signal:

x̄j(1, k, t) = E[θ | k, mT] + bi + b̃i +
1

1 + h(t)

(
1 − E[θ | k, mT]

)
where h(t) = (2+t(1−η))

(1+(n−1)η)

Proof. See Appendix A.2.

When the policy set is unconstrained, players can either reveal their private in-
formation and choose the optimal policy dictated by the first equation of Theorem 1,
or not reveal their private information and choose the policies according to the other
two equations in Theorem 1.14 Therefore, whether a player reveals information or not,
their coordination function ϕi(x) is equal to the bias adjusted expected state. Further,
it holds for any set of truthful messages. This implies that without policy constraints
the coordination game has a common interest feature, in that all players can achieve
their first-best outcomes irrespective of their signals and messaging strategies.

Corollary 1. When the policy set is unconstrained, there always exists a fully revealing equi-
librium in which every player’s messaging strategy is truthful (t = n), and players’ policies
are given by:

x̄i∈N(k, n) = E[θ | k, n] + bi + b̃i (3)

4 Full Information Revelation with Constraints

The equilibrium policies of players in any fully revealing equilibrium depends on the
constraint imposed on the policy set, xi ∈ [0, 1]. Whether the policies are within the
bounds is driven by the sign of bi + b̃i. Intuitively, from Equation 3, if bi + b̃i < 0,
the policies can never exceed the upper bound (xi < 1). Correspondingly, bi + b̃i >

0, the policies are always above the lower bound (xi > 0). The former never face

14This follows directly from Theorem 1 in Venkatesh (2023).
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incentives to exaggerate their low signal but may choose to misreport their high signal.
Analogously, the latter may exaggerate their low signals but truthfully report their
high signals. We therefore separate the players into two types based on their incentives
to reveal the low and high signal respectively. Specifically, we define 0 − type and
1 − type set of players in the following way:15

Definition 6. 0 − type =
{

i ∈ N : bi + b̃i ≤ 0
}

Definition 7. 1 − type =
{

i ∈ N : bi + b̃i > 0
}

A player in the set 0 − type has incentives to reveal their low signal but may face
incentives to misrepresent their high signal si = 1. This is driven by the observation
that for some truthful message realizations, mN, their optimal policy choice may be
bounded at zero.16 In contrast, players in the set 1 − type always reveal their high
signal, but may misrepresent their low signal for analogous reasons. Since we focus
on full revelation equilibrium, the policies are henceforth represented as a function of
only the sufficient statistic k. Going forward, we refer to x∗i (k) ∈ [0, 1] as the equilib-
rium policy of player i under full information revelation.

In the case of N player alliance, full information revelation implies that every
player in the group reveals their private information si = {0, 1} truthfully for ev-
ery possible (truthful) signal realization of the other (n − 1) players. In other words,
player i’s policy choice, conditional on message mi being truthful, must be within the
constraint set for all possible (n− 1) truthful message realizations of the other players.
The following result characterizes the sufficient condition for full information revela-
tion.

Theorem 2. Under public communication protocol, given the set of policy constraints [0, 1],
there is full information revelation if and only if:

∀i ∈ N :
∣∣bi + b̃i

∣∣ ⩽ 2
n + 2

Proof. See Appendix A.3.

Let a player, say i′, from the set 0 − type hold a signal si′ = 1. In any equilibrium
where all (n − 1) other players reveal truthfully, it must hold that the equilibrium pol-
icy of player i′ is greater than zero, for every possible signal realization of the remain-
ing players. If this is not so, there are positive deviations for the 0 − type player. The
pivotal constraint for the 0 − type player is the one where the IC is tightest, i.e., when

15Henceforth, I refer to a player belonging the set j − type as ‘j − type player’.
16Clearly, if this player held the low signal, her action would still be bounded but the player cannot

report anything lower.
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k = 1, ∑
j∈N\{i′}

sj = 0 and si′ = 1. In this case, the expectation of state is E[θ | 1, n] = 2
n+2

and the IC constraint can be expressed as,

x∗i′(1) ≥ 0 =⇒ −(bi′ + b̃i′) ≤
2

n + 2

For a player i′′ ∈ 1 − type to reveal information truthfully in equilibrium, the
policies have to be weakly below one for every possible realization of the remaining
(n − 1) signals. As before, the pivotal IC constraint is one where the sufficient statistic
k = n − 1, i.e., ∑

j∈N\{i′′}
sj = (n − 1) and si′′ = 0. The corresponding expectation of the

state is E[θ | n − 1, n] = n
n+2 . The policy constraint can therefore be written as,

x∗i′′(n − 1) ≤ 1 =⇒ bi′′ + b̃i′′ ≤ 1 − n
n + 2

=
2

n + 2

The necessary and sufficient condition requires policies to be within the bound for
almost all the set of signal realizations. That is, each player’s (expected) coordination
function ϕi(x) be exactly equal to ϕ̄k

i = E[θ|k, n] + bi for every possible set of truthful
messages mN, except when k = 0 and k = n.17

The equilibrium condition implies that no player can do better by misreporting
their private signal. In other words, if any player’s policy goes above (below) the up-
per (lower) bound, in equilibrium, the other players can readjust their policies. This
would violate the player’s interim incentive compatibility constraint as their ϕi differs
from the ideal policy given by E[θ|mN] + bi. Since the biases are ordered in ascending
order and the policy constraint is homogeneous for all players, the equilibrium con-
dition has to be satisfied only for the extreme players — player 1 in 0 − type and n in
1 − type. Once the condition holds for these two players in the alliance, it must hold
for all other players in both the 0 − type and 1 − type sets. That is,

−(
¯
b + b̃1) ⩽

2
n + 2

=⇒ −
¯
b ⩽

2
n + 2

+ b̃1

b̄ + b̃n ⩽
2

n + 2
=⇒ b̄ ⩽

2
n + 2

− b̃n

(4)

Combining these equations, we can write down the condition for full information
revelation as just a function of the two extreme biases.

b̄ −
¯
b ⩽

1 − η

1 + (n − 1)η
· 4

n + 2
(5)

17When a 0 − type player i holds signal 0 and sj ̸=i = 0, such that k = 0, the player cannot do better
than revealing this information. Similarly, when a 1 − type player holds signal 1 and k = n, then even
if the policies are constrained the player cannot do any better than revealing this signal.

14



Optimal Size of an Alliance

In order to efficiently aggregate information the two extreme players must be ‘closely’
aligned. Going forward, we refer to this difference in biases of the extreme players as
the measure of cohesiveness in the alliance. Clearly, expanding the alliance by including
a new player changes incentives for information aggregation. Whether the additional
player in the alliance has a bias in the interior of [

¯
b, b̄], or outside this interval, the in-

centives for information aggregation with n+ 1 players is characterized by Equation 5.
Crucially, if the additional player’s bias is in the set [

¯
b, b̄], then as we add more players

to the alliance, the size of the alliance is simply determined by the largest n such that
Equation 5 is satisfied.

Proposition 1. Suppose the biases of players in an alliance is in the interval [
¯
b, b̄]. Then, the

maximal size of the alliance, n̄, is given by,

n̄ ≡ argmax
n∈N

(n + 2)(1 + (n − 1)η) ≤ 4(1 − η)

b̄ −
¯
b

The expected state under the most pivotal constraint of player n, i.e., E[θ | n −
1, n] = n

n+2 , is increasing in n. Analogously, it is decreasing in the case of player 1, since
E[θ | n − 1, n] = 2

n+2 . This implies that both the extreme players face tighter truth-
telling constraints to satisfy (Equation 4) as more players are added into the alliance.
Moreover, as additional players enter the alliance, their policy has a spillover effect
on the coordination functions of the two extreme players. For player 1, since 2

n+2

decreases with n while the total policy spillover increases, player 1 has incentives to
readjust her policy downwards. This continues until her policy choice hits the lower
bound. An analogous argument ensues in the case of player n. Intuitively, when the
alliance is more cohesive (i.e., b̄ −

¯
b is smaller), it can accommodate (weakly) more

players without affecting the truth-telling constraints.

Lemma 1. If 2
n+2 > −(

¯
b + b̃1) >

2
n+3 or 2

n+2 > b̄ + b̃n > 2
n+3 , there exists no bias b′ such

that adding a player maintains full information revelation.

The observation follows from Proposition 1. In order for an alliance to include
more members, it must continue to satisfy the constraints in Equation 4. Intuitively, if
the constraints fail to hold for n + 1 players, for either of the two extreme members,
then new members cannot be inducted into the alliance. This is because adding a new
member with any bias b′ worsens the truth-telling constraints of the extreme players.
To see the intuition, suppose player 1’s constraint fails to hold in the case of n+ 1 play-
ers, i.e., −(

¯
b + b̃1) >

2
n+3 . Then adding a player with bias b′ >

¯
b worsens truth-telling

constraint, precluding information revelation. If instead b′ <
¯
b, then the new member

becomes an extreme player in the alliance with n + 1 members. However, clearly, for
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this new player the truth-telling constraint is violated since b̃b′ < b̃1. Similarly, when
b̄ + b̃n > 2

n+3 , then if a new member’s bias is to the left of b̄, the truth-telling constraint
only worsens since b̃n increases with the addition of a player. On the other hand, if
the new player’s bias is to the right of b̄, then this player becomes the alliance’s right
extreme member. But, for this new player, b̃b′ > b̃n since her bias is further away from
the n members compared to b̄.

Two observations are in order. First, these results provide a natural upper bound
on the maximal size of a coalition. This is similar to the “size principle” proposed by
Riker (1962) that argues for minimal coalitions to occur in equilibrium. In contrast,
when there is an informational rationale, we characterize the maximum size of an al-
liance for any level of cohesiveness. Second, information aggregation becomes harder
as more players join the alliance. However, when players’ actions are independent of
each other, and there are no constraints, Penn (2015) shows that there is a trade-off be-
tween the informational benefit and cost (imposed by increased preference diversity)
when a new member joins an alliance. Consequently, there is an incentive to include
extremists to the alliance whenever the informational benefits outweigh the costs. In
contrast, in the presence of interdependency between policies and constraints on the
policy set, adding extremists only worsens the constraints for truth-telling.

Lemma 2. The maximum permissible interdependency in the alliance, η̄, is given by,

1 + (n − 1)η̄
1 − η̄

=
4

(n + 2)(b̄ −
¯
b)

As the degree of interdependence in policies increases, players readjust their poli-
cies downwards for any fixed value of the sufficient statistic k. This in turn tightens the
pivotal constraint for truth-telling since policies of player 1 could hit the lower bound
for large values of η and k = 1. For player n, an increase in η has two effects. At low
levels, an increase entails a lower policy from other members and a smaller spillover
as a consequence. However, at sufficiently high values of η, the interdependency effect
is greater even though actions of other players decreases. This implies for high values
of η the incentive constraints for truth-telling tightens for both the extreme players.

The maximal interdependency parameter that supports information revelation is
given in Lemma 2. Intuitively, we can observe that in more cohesive alliances, this pa-
rameter is higher. That is, more cohesive alliances allow for greater interdependencies
in policies. This is because, in more cohesive alliances the actions of the two extreme
players are closer to each other. In order to satisfy truth-telling, therefore, a greater
range of η can be supported. Further, larger alliances admit lesser interdependencies.
This is driven by the fact that fixing cohesiveness, as we add more members to the
alliance the net policy spillover in every player’s coordination function increases. This
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puts a pressure on the left extreme player to readjust her policy downwards. In the
same vein, the right extreme player readjusts her policy upwards since the expected
state under the tightest constraint is greater.

An implication of Lemma 1 is that more interdependent the policy is, the more co-
hesive an alliance must be in order to achieve full information aggregation. Lemma 1
argues why having a one-size-fits-all type of policy-making might be infeasible, espe-
cially so when the alliance size and cohesiveness are fixed. Our analysis indicates that
in the case of migration policy, an alliance member can exaggerate their numbers in
order to extract greater resources from other members.

4.1 Example

Consider an alliance with b̄ = 1
10 and

¯
b = 0. In this case we immediately compute the

maximum size of permissible alliance for different values of η using the equation in
Proposition 1.

Specifically, if η = 2
5 then the RHS of equation is 24. Simple computation yields

n̄
(2

5

)
= 6. Similarly, when η = 1

10 , the optimal size of the alliance is n̄
(

1
10

)
= 13.

Figure 1 captures this trade-off between cohesiveness and alliance size for different
values of η. Crucially, as the interdependency in policies decreases, the alliance can
support a greater size for a fixed value of the cohesiveness parameter. This is because
greater interdependency implies greater spillover in the policies of other players, i.e., a
higher aggregate spillover from all other players’ policies. This reduces the incentives
for the lowest bias

¯
b player to reveal the highest signal. In order to counteract this, the

alliance size must be smaller in order for the overall spillover to be within the limit for
truthful communication.

We can also compute the cutoff η such that there is truthful communication for a fixed
alliance size. Suppose n = 3. Using Lemma 2, we can calculate η̄(3) = 7

10 . Similarly,
η̄(5) = 33

68 and η̄(10) = 7
37 . That is, as the size of an alliance increases, the cutoff

interdependency is smaller (see Figure 2). This is because for the extreme players’
truth-telling constraint to be satisfied with a greater n, the spillover term must readjust
by decreasing the extent of interdependency in policies. This way the overall spillover
is maintained for truth-telling.

5 Commitment and Investment in Alliances

One of the main insights of the analysis so far is that the policy (action) set available to
the players directly affects information aggregation. However, two restrictions were
imposed on this set. First, it was assumed to be homogeneous across players. Second,
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(a) η = 0.5

(b) η = 0.01

Figure 1: The cohesiveness parameter is bd on the x-axis. When bd = 0.1 and η = 0.5,
the maximum size of alliance is only 4; instead, if η = 0.01 the size increases to 31.

the set was exogenous in that players do not choose how much to invest in the alliance.
However, as is often the case in international alliances, an important component of
decision-making is to do with allocation of otherwise costly resources (e.g., military
personnel and weaponry, defense budgets). The need for commitment by members to
such resources arises from two possible sources: i) an explicit contract via treaties and
agreements (see e.g. Harstad, 2012; Harstad, 2016), and ii) an implicit commitment-
by-interest (see e.g. Harstad et al., 2019; Snyder, 2007).18 With commitment, the action
set of the players are determined endogenously, and depending on their alignment of
interest, it could vary across players. Specifically, each player chooses ex-ante the level

18Snyder (2007), for example, argues that both explicit agreements-driven and implicit interests-
driven commitment are sustained by a combination of moral, legal, and reputational considerations.

18



Figure 2: Fixing bd = 0.1 on the x-axis, we can notice that the as n increases, the cutoff
η̄ for full information revelation falls drastically.

of commitment R̄i at marginal cost c. The ex-ante utility of a player i is given by,

ui(x, R̄i, R̄−i) = − [ϕi(x)− θ − bi]
2 − cR̄i

The sequence of the alliance commitment game is as follows.

1. Players simultaneously choose an investment Vi = [0, R̄i].

2. The state of nature θ is drawn from a uniform distribution on [0, 1]. Conditional
on θ each player observes a private signal si ∈ {0, 1}.

3. The players simultaneously send a public message mi(si) to the group. The vec-
tor m = (m1, m2, ...., mn) is the publicly available information at the end of the
communication stage.

4. After observing the set of messages m and k, each player decides on the action
x∗i (k) ∈ [0, R̄i] simultaneously. Payoffs are realized.

The modified commitment game has an additional first “investment” stage in which
members simultaneously commit to resources. This could be interpreted as an invest-
ment that each member must explicitly comply with in order to be part of the alliance.
The commitment clauses are typically proscribed in alliance agreements that spec-
ify “rules of thumb” for members. Such clauses impose both an implicit (e.g. NATO)
and explicit (e.g. PESCO) commitment requirement on countries to ex-ante invest re-
sources into the alliance. At the same time they also specify an upper bound on the
levels of spending that members are obligated to undertake. Typically, being part of an
alliance entails strategic benefits in monetary terms (Konrad, 2014). Here, we abstract
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away from the pecuniary advantages of joining an alliance and instead focus on the
informational incentives associated with ex-ante commitments.

When R̄i’s are endogenously chosen and therefore possibly heterogeneous across
the players, information aggregation incentives are also affected. This is because play-
ers now choose different levels of initial investments that in turn affect their ability to
allocate resources in the continuation game, which involves strategic communication
and decision-making. Full information revelation can ensue due to two factors. First,
each player invests enough resources in the beginning such that R̄i is never binding
irrespective of the sufficient statistic k that is realized from truthful communication.
Second, the constraints are binding for a particular level of q̄ < n, and for any k > q̄ the
actions of all players are bounded at R̄i. This implies that players can truthfully reveal
all information since they have already exhausted their resources and there is no gain
from misrepresenting their private information.

For example, suppose players commit to investments in the first stage such that
R̄i = x̄i(0) (defined according to Equation 3). In the continuation game their action set
is binding for all k = {1, 2, ..., n}. This holds for every player in the alliance, and no
one player has an incentive to lie and exaggerate their signal si = 0. This is because
the actions of other players are invariant and bounded at x̄i(0), irrespective of the value
of the sufficient statistic. Therefore, full information revelation ensues eventhough all
players have under-invested in the alliance.

Definition 8. Let qi be the highest sufficient statistic up to which actions are not binding for
player i, given an investment R̄i. That is,

qi ≡ argmax
q

x̄i(q) ≤ R̄i such that ϕi

(
x̄i(q), x̄−i(q)

)
= E[θ | q, n] + bi ≡ ϕ̄

q
i

From the property of the Beta-Binomial function and the nature of equilibrium
actions (Equation 3), it follows that,

x̄i(k + 1) = x̄i(k) +
1

n + 2

We characterize the equilibrium levels of investment in an alliance in terms of qi ≤ n,
the highest value of the sufficient statistic such that player i’s coordination function
matches their expected bias-adjusted state (first-best). Therefore, the ex-ante commit-
ment problem can be viewed as the optimal choice of qi, which is in turn determined
by the marginal cost of investment, c. From Definition 8, if R̄i = x̄i(n), then qi = n for
all players. This implies they can truthfully reveal their information and take actions
such that the coordination functions are equal to the first-best levels, resulting in full
efficiency. The following definition formalizes this concept.
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Definition 9. Full Efficiency: Coordination function of each player exactly matches the bias-
adjusted expected state for all possible values of k.

∀i, k : ϕi

(
x̄i(k), x̄−i(k)

)
= E[θ | k, n] + bi ≡ ϕ̄k

i

Intuitively, when the marginal cost of investment goes to zero, players can achieve
full efficiency, and as c becomes sufficiently large investment falls to zero and qi → 0
for all the players. Since the marginal costs are the same across players, we focus
on symmetric investment equilibrium of the alliance commitment game, such that
q1 = q2 = ... = qn = q̄. If players under-invest such that q̄ < n, the actions in the
continuation game are bounded for k > q̄. That is, there is some inefficiency induced
by the actions since the coordination function is below the first-best.

Definition 10. Partial Efficiency: There exists q̄ ≤ n − 1 such that,

∀k ∈ {0, 1, .., q̄}, ∀i ∈ N : ϕi

(
x̄i(k), x̄−i(k)

)
= ϕ̄k

i

∀k ∈ {q̄ + 1, ..., n}, ∃i ∈ N : ϕi

(
R̄i, R̄−i

)
< ϕ̄k

i

That is, q̄ is the upper bound on the sufficient statistic for which all players achieve
first-best coordination. Beyond this, there is miscoordination losses due to lack of com-
mitment to sufficient resources. Using the notion of Partial Efficiency, we characterize
the unique symmetric equilibrium under which there is full information revelation.

Proposition 2. The alliance commitment game has a unique full information revelation equi-
librium in symmetric investment strategies given by R̄i = x̄i(q̄) + y, where q̄ < n and y
solves,

(n − q̄)(n − q̄ + 1)
(n + 1)(n + 2)(1 + (n − 1)η)

− 2(n − q̄)
(n + 1)(1 + (n − 1)η)

y = c (6)

where y ∈
[

0,
1

n + 2

)
Proof. See Appendix A.4.

The reason why this constitutes an equilibrium with full revelation can be gleaned
by looking at the best response functions of players. Specifically, consider player i’s
best response strategy given that all other players j ̸= i have invested x̄i(q̄) + y. We
consider three intervals broadly: (i) R̄i < x̄j(q̄ − 1); (ii) R̄i ∈ [x̄j(q̄ − 1), x̄j(q̄) + ỹ],

where ỹ = 1+[1−(n+2)y](n−1)η
n+2 ; and (iii) R̄i > x̄j(q̄) + ỹ.

In the first, there is under-investment by i which results in incentives for lying in the
continuation game. That is, by committing to substantially lesser resources in the first
stage, player i can exaggerate the low signal si = 0 and report mi = 1. In this case,
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when k = {q̄ − 1, q̄, ..., n}, player i can free-ride on the investments made by the other
players. Analogously, in the third case, player i is over-investing in the alliance. Any
player j can exaggerate her signal in the messaging stage and benefit from the over-
investment by i when k = {q̄ + 1, ..., n}. Both these case therefore preclude truthful
communication by the players.

Suppose the marginal benefit at any generic q̄ is MBq̄. In the intermediate interval
given in (ii), the marginal benefits to player i is decreasing while the marginal costs
of investment is fixed at c (see Equation 6). Since the marginal costs are the same
across players, it follows that the residual investment y is also equal. Consequently,
uniqueness follows from noting that, when y = 0 is substituted in equation 6, the
marginal benefit function is clearly decreasing in q̄. That is, we can start with the case
when q̄ = 0. The marginal benefit in this case is MB0 = n

(n+2)(1+(n−1)η) . When q̄ = 1

instead, the marginal benefit is MB1 = n(n−1)
(n+1)(n+2)(1+(n−1)η) < MB0. Since marginal

benefit function decreases discontinuously between q̄ and q̄ + 1 while the marginal
cost is constant at c, a unique residual investment y ensures that both marginal benefits
and costs are equal in the investment stage.

Proposition 3. The ex-ante expected welfare for a player under the symmetric investment
equilibrium is:

Wi(q̄, y) = −Var(θ | n)− (n − q̄)(n − q̄ + 1)(2(n − q̄) + 1)
6(n + 1)(n + 2)2

+

(
n − q̄
n + 1

) [
(n − q̄ + 1)
(n + 2)

− y
]
· y − c · R̄i (7)

where Var(θ | n) =
1

6(n + 2)

Proof. See Appendix A.5.

The first term of Equation 7 captures the variance of the underlying state variable
given an alliance size (e.g. Penn, 2015). The second term is the additional variance
generated due to partial efficiency (q̄ < n); the third term quantifies the losses induced
by residual investment y. The final term captures the cost of ex-ante commitment
to the alliance. Clearly, investing more resources into the alliance (weakly) increases
q̄ and decreases miscoordination losses resulting from inefficient actions. Similarly,
welfare of members is strictly increasing in y ∈ [0, 1

n+2), fixing a level of q̄. The op-
timal commitment in an alliance therefore involves a fundamental trade off between
the efficiency benefits of a higher investment, (q̄, y), and the opportunity costs of con-
tributing, c.

Corollary 2. q̄ is (weakly) increasing in n and (weakly) decreasing in c.
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When the alliance size increases, the possible realizations of the sufficient statistic
q also increases. This implies that if members fix q̄, the miscoordination losses —the
second and third terms in Equation 7—increase with n. Therefore the marginal partial
efficiency gains from increasing the cutoff q̄ is greater. As a consequence when the
alliance size increases, members choose weakly higher levels of q̄. Similarly, as the
marginal costs of investment increases, fixing n, members would choose a weakly
lower q̄ in order to equate the increased marginal costs with greater miscoordination
losses.

Corollary 3. The following statements hold true about commitments in alliances.

1. Preference effect: Bias differences exacerbates the investment differences in the alliance.

2. Interdependence effect: Higher interdependence reduces investments made by players.

Though the choice of q̄ and y are independent of bi’s, the final equilibrium invest-
ments are proportional to individual biases of players:

R̄i ∝ bi + b̃i (8)

The action (policy) sets Vi ≡ [0, R̄i] are therefore ordered according to the bias pa-
rameter bi. Henceforth, we refer to a player whose bias exceeds the average bias,
Avg(b) = ∑i∈N bi

n , as a hawk, and one whose bias is below the average as a dove.
Clearly, we can rewrite b̃i as,

b̃i =
η

1 − η ∑
j∈N

(bi − bj) =
nη

1 − η
(bi − Avg(b))

Using the above and taking the differences in R̄i’s, we get,

∀i, j ∈ N, j > i : R̄ji ≡ R̄j − R̄i =
(1 − η)(bj − bi)

1 + (n − 1)η
(9)

The differences in investments exhibit an intuitive ordering: Greater the difference
in biases, the greater are the differences in the investments made by the players. Fur-
ther, when η goes up the marginal benefits from investing decreases for any level of
efficiency q̄. Intuitively, this is because of the greater spillover as a result of a higher η.
As a consequence, when η increases, either y must decrease keeping q̄ fixed in order to
balance the marginal benefits with c, or the extent of efficiency achieved by the alliance
also decreases. The following example illustrates these observations.
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5.1 Example

Consider an alliance with N = 4 and individual biases (b1, b2, b3, b4) = ( 1
20 , 1

15 , 1
12 , 1

10).
For different values of η we can compute the marginal benefit at q̄ = {0, 1, 2, 3}, given
by MBq̄, using the equation specified in Equation 6. In particular, by substituting y =

0, we can compute precisely the jumps in marginal benefit function as q̄ increases.19

We carry out this precise exercise when the marginal cost is c = {0.25, 0.1}. The values
in red marks the highest q̄ such that the marginal benefit is above c. Given this, it
is straightforward to calculate y by substituting for q̄ in Equation 6. Once (q̄, y) is
known, we can directly compute the total investments of each player. This is carried
out in Table 1 and Table 2. We compute the partial efficiency parameter q̄, and then use
this to compute the optimal residual investment y, and finally the action x̄i(q̄) which
together with y gives the equilibrium investments.

η MB0 MB1 MB2 MB3

1
2 0.266 0.16 0.08 0.027
1
4 0.381 0.228 0.114 0.038
1
10 0.513 0.308 0.154 0.051

q̄ y R̄1 R̄2 R̄3 R̄4

0 0.025 0.142 0.225 0.308 0.392

0 0.143 0.326 0.365 0.404 0.476

1 0.062 0.435 0.459 0.483 0.507

Table 1: Case of c = 0.25

η MB0 MB1 MB2 MB3

1
2 0.266 0.16 0.08 0.027
1
4 0.381 0.228 0.114 0.038
1
10 0.513 0.308 0.154 0.051

q̄ y R̄1 R̄2 R̄3 R̄4

1 0.125 0.408 0.492 0.575 0.658

2 0.016 0.549 0.587 0.626 0.665

2 0.087 0.626 0.651 0.675 0.698

Table 2: Case of c = 0.1

Notice that the investments are ordered depending on the size of the players’ bi-
ases, i.e. R̄1 < R̄2 < R̄3 < R̄4 irrespective of the degree interdependence. In a similar
vein, R̄i is decreasing in η across all the players, which captures the interdependency
effect.

Corollary 4. The total investment in an alliance is increasing in the size of the alliance.

From the symmetric equilibrium investments we can compute the aggregate in-
vestment as,

R̄ = ∑
i∈N

R̄i = n
[
E[θ|q̄] + y

]
+ ∑

i∈N
bi

19The fully efficient case is ignored since MBn = 0 by definition.
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Clearly, as more players join the alliance it has an equilibrium investment effect in that
either q̄, or y increases. Further there is an additional bias effect since investments are
proportional to the individual players’ biases. This implies that bigger alliances tend
to increase both individual and aggregate commitments.

6 Conclusion
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A Proofs

A.1 Equilibrium Definition

The equilibrium concept is perfect Bayesian equilibrium in pure strategies (henceforth
equilibrium). An equilibrium is defined as a strategy profile (m, τ) = ((mi)i∈N, (τi)i∈N)

such that,

1. Actions are sequentially rational, given messages and beliefs:

∀i ∈ N, m−i ∈ M−i :

τi(si, (mi, m−i)) ∈ arg max
xi∈Vi

∫ 1

0
∑

s−i∈{0,1}n−1

ui(xi,(τj(sj, (mj, m−j)))j ̸=i; θ, bi)

Pr(s−i | θ) f (θ|m−i, si)dθ
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2. Messages are truthful if and only if they satisfy the IC for truth-telling:

∀i ∈ N, si ∈ {0, 1} :

−
∫ 1

0
∑

sT−1∈{0,1}t−1
∑

sB∈{0,1}n−t

ui(τi(si, (si, m−i)), (τj(sj, (si, m−i)))j∈T−1,

(τk(sB(k), (si, m−i)))k∈B; θ, bi) f (θ, sT−1, sB|s)dθ

≥

−
∫ 1

0
∑

sT−1∈{0,1}t−1
∑

sB∈{0,1}n−t

ui(τi(si, (1 − si, m−i)), (τj(sj, (1 − si, m−i)))j∈T−1,

(τk(sB(k), (1 − si, m−i)))k∈B; θ, bi) f (θ, sT−1, sB|s)dθ

where sT−1 is the set of (T − 1) truthful signals, apart from player i and sB is the
set of babbling signals.

A.2 Proof of Theorem 1

Before proceeding to prove Theorem 1, we begin by providing some basic insights into
the nature of the maximization problem that each type of player faces, and in general,
lay out some important properties of the Beta-Binomial distribution. We start by refor-
mulating the maximization problem faced by a truthful player, given in Equation 1, as
follows:

max
xi

∫ 1

0
∑

sB∈{0,1}n−t

ui((xi, xT\{i}, xB(sB)); θ, bi)Pr(sB|θ) f (θ|mT)dθ

The conditional density f (θ|mT) belongs to a standard Beta-binomial distribution.
Letting k = ∑i∈T si, the number of signals si with i ∈ T that are equal to one, the
posterior distribution of θ with uniform prior on [0, 1], given k successes in t tri-
als, is a Beta distribution with parameters k + 1 and t − k + 1. As a consequence,
f (θ|mT) = (t+1)!

k!(t−k)! θ
k (1 − θ)t−k and E [θ|mT] = [k + 1]/[t + 2]. Further, for any sB,

letting ℓ(sB) = ∑q∈B sq, it is the case that Pr(sB|θ) = θℓ(sB) (1 − θ)n−t−ℓ(sB).

In a similar way, the problem of every babbling player j ∈ B with a private signal sj,
stated in Equation 2, can be expanded as the following:

max
xj(sj)

∫ 1

0
∑

sB\{j}∈{0,1}n−t−1

uj((xj(sj), xT, xB\{j}(sB\{j})); θ, bj)Pr(sB\{j}|θ)

f (θ|mT, sj)dθ
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The posterior density f (θ|mT, sj) with k + sj successes in t + 1 signals is a Beta distri-
bution with parameters k + sj + 1 and (t − k − sj + 2). Consequently, f (θ|mT, sj) =

(t+2)!
(k+sj)!(t+1−k−sj)!

θk+sj (1 − θ)t+1−k−sj and E
[
θ|mT, sj

]
= [k + sj + 1]/[t + 3]. As before,

for any sB\{j}, Pr(sB\{j}|θ) = θℓ(sB\{j}) (1 − θ)n−t−ℓ(sB\{j}).

The characterization involves solving the best responses of each of the three types of
players from Equation 1 and Equation 2.

Case 1. Truthful player’s problem:

Eθ,sB [ui(x, m)] =

−

1∫
0

∑
sB∈{0,1}n−t

(
xi + η ∑j∈T\{i} xj + η ∑j∈B xj(sj)

1 + (n − 1)η
− θ − bi

)2

Pr(sB|θ) f (θ|mT)dθ

where f (θ|mT) = (t+1)!
k!(t−k)! θ

k (1 − θ)t−k , iff 0 ≤ θ ≤ 1. Differentiating the above with
respect to xi, we get the following FOC:

1∫
0

∑
sB∈{0,1}n−t

(
xi + η ∑j∈T\{i} xj + η ∑j∈B xj(sj)

1 + (n − 1)η
− θ − bi

)

Pr(sB|θ) f (θ|mT)dθ = 0

Simplifying, we obtain:

xi + η

 ∑
j∈T\{i}

xj +

1∫
0

∑
sB∈{0,1}n−t

∑
j∈B

xj(sj)Pr(sB|θ) f (θ|mT)dθ

 =

(1 + (n − 1)η) (bi + E[θ|mT])

(10)

Case 2. Babbling player’s problem:

With analogous procedures, the expected utility of a babbling player i with signal si is:

Eθ,sB [ui(x, m)] = −Eθ,sB\{i}

(xi(si) + η ∑j∈T xj + η ∑j∈B\{i} xj(sj)

1 + (n − 1)η
− θ − bi

)2

| mT, si
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= −

1∫
0

∑
sB\{i}∈{0,1}n−t−1

(
xi(si) + η ∑j∈T xj + η ∑j∈B\{i} xj(sj)

1 + (n − 1)η
− θ − bi

)2

Pr(sB\{i}|θ)

f (θ|mT, si)dθ

(11)

Again, the density f (θ|mT, si) belongs to the Beta-binomial family such that,

f (θ|mT, si) =
(t + 2)!

(k + si)! (t + 1 − k − si)!
θk+si (1 − θ)t+1−k−si

Differentiating Equation 11 with respect to xi(si),

1∫
0

∑
sB\{i}∈{0,1}n−t−1

(
xi(si) + η ∑j∈T xj + η ∑j∈B\{i} xj(sj)

1 + (n − 1)η
− θ − bi

)
Pr(sB\{i}|θ)

f (θ|mT, si)dθ = 0

Simplifying yields,

xi(si) + η

∑
j∈T

xj +

1∫
0

∑
sB\{i}∈{0,1}n−t−1

∑
j∈B\{i}

xj(sj)Pr(sB\{i}|θ) f (θ|mT, si)dθ

 =

(bi + E[θ|mT, si]) [1 + (n − 1)η]

(12)

We focus on linear equilibrium strategies of the form where xi and xi(si) are both only
functions of the individual bias bi, the vector of group biases b, and the expectation of
the state given the information – mT for truthful players and (mT, si) for the babbling
players.20 Since the signals are conditionally independent, the information contained
in mT captures everything that the players know about each babbling players’ pri-
vately held signal. As a result we can rewrite Equation 10 as the following:

xi + η ∑
j∈T\{i}

xj + η

1∫
0

∑
j∈B

∑
sj∈{0,1}

xj(sj)Pr(sj|θ) f (θ|mT)dθ =

(1 + (n − 1)η) (bi + E[θ|mT])

20For example, a linear functional form where xi = [P(bi + E[θ|mT ]) + Q] and xi(si) = [Psi (bi +
E[θ|mT , si]) + Qsi ] could be applied to the best response equations.
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Substituting Pr(sj|θ) = θ,

(1 + (n − 1)η) (bi + E[θ|mT]) = xi + η ∑
j∈T\{i}

xj+ η

1∫
0

∑
j∈B

xj(0)(1 − θ) f (θ|mT)dθ

+η

1∫
0

∑
j∈B

xj(1)θ f (θ|mT)dθ

Since

1∫
0

θ f (θ|mT)dθ = E[θ|mT] and

1∫
0

(1 − θ) f (θ|mT)dθ = 1 − E [θ|mT], the above

equation can be further simplified as:

(1 + (n − 1)η) (bi + E[θ|mT]) = xi + η ∑
j∈T\{i}

xj + η (1 − E [θ|mT]) ∑
j∈B

xj(0)

+ ηE[θ|mT] ∑
j∈B

xj(1)

Similarly, applying the same principles to Equation 12,

(1 + (n − 1)η) (bi + E[θ|mT, si]) =xi(si) + η ∑
j∈T

xj

+ η

1∫
0

∑
j∈B\{i}

∑
sj∈{0,1}

xj(sj)Pr(sj|θ) f (θ|mT, si)dθ

Performing the substitutions

1∫
0

θ f (θ|mT, si)dθ = E[θ|mT, si] and

1∫
0

(1− θ) f (θ|mT, si)dθ =

1 − E [θ|mT, si],

(1 + (n − 1)η) (bi + E[θ|mT, si]) = xi(si) + η ∑
j∈T

xj + η (1 − E [θ|mT, si]) ∑
j∈B\{i}

xj(0)

+ ηE[θ|mT, si] ∑
j∈B\{i}

xj(1)

Together, we can sum up the best responses for the three types of players as the fol-
lowing:
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1. Truthful player i ∈ T:

xi = (bi + E[θ|mT]) [1 + (n − 1)η]− η ∑
j∈T\{i}

xj−η (1 − E [θ|mT]) ∑
j∈B

xj(0)

− ηE[θ|mT] ∑
j∈B

xj(1)
(13)

2. Babbling player with low signal i ∈ B, si = 0:

xi(0) = (bi + E[θ|mT, 0]) [1 + (n − 1)η]− η ∑
j∈T

xj−η (1 − E [θ|mT, 0]) ∑
j∈B\{i}

xj(0)

− ηE[θ|mT, 0] ∑
j∈B\{i}

xj(1)

(14)

3. Babbling player with high signal i ∈ B, si = 1:

xi(1) = (bi + E[θ|mT, 1]) [1 + (n − 1)η]− η ∑
j∈T

xj−η (1 − E [θ|mT, 1]) ∑
j∈B\{i}

xj(0)

− ηE[θ|mT, 1] ∑
j∈B\{i}

xj(1)

(15)

There are essentially three types post the communication round – the truthful type,
the babbling type with low private signal, and one with high private signal. Let
E [θ|mT] = c, E [θ|mT, 0] = c0 and E [θ|mT, 1] = c1. We apply the following linear
guessing strategies for the players respectively:

xi = Pbi + Q ∑
j ̸=i

bj + K

xi(0) = Pbi + Q ∑
j ̸=i

bj + K0

xi(1) = Pbi + Q ∑
j ̸=i

bj + K1

Plugging the above functional forms into equations 13, 14 and 15, we get the follow-
ing:21

Case. Best response of truthful players:

21The algebra is omitted and available on request.
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xi = (1 + (n − 1)(1 − Q)η)bi − η(P + (n − 2)Q). ∑
j ̸=i

bj − η(t − 1)K

+(1 + (n − 1)η)c − ηb.(cK1 + (1 − c)K0) (16)

Case. Best response of babbling players with low signal

xi(0) = (1 + (n − 1)(1 − Q)η).bi − η(P + (n − 2)Q). ∑
j ̸=i

bj − ηtK

−η(n − t − 1).(c0K1 + (1 − c0)K0) + (1 + (n − 1)η).c0 (17)

Case. Best response of babbling players with high signal

This is very similar to the low signal case, except for one expression. Following the
same steps as in the case with the low signal,

xi(1) = (1 + (n − 1)(1 − Q)η).bi − η(P + (n − 2)Q). ∑
j ̸=i

bj − ηtK

−η(n − t − 1).(c1K1 + (1 − c1)K0) + (1 + (n − 1)η).c1 (18)

COMPARING COEFFICIENTS:

Using Equation 16, Equation 17, and Equation 18 to compare coefficients:

P = (1 + (n − 1)(1 − Q)η) Q = −η(P + (n − 2)Q)

=⇒ Q = −η(1 + (n − 1)(1 − Q)η + (n − 2)Q)

Solving the above equations:

P =
(1 + (n − 2)η)

1 − η
Q = − η

1 − η

Proceeding similarly, we solve for three equations in three unknowns (K, K0, K1).22

K =
(1 + η(n − t − 1))(1 − η(c1 − c0))c − (n − t)ηc0

(1 − η) (1 + η(n − t − 1)(c1 − c0))

K0 =
(1 + η(t − 1))c0 − ηt(1 − η(c1 − c0))c
(1 − η)((1 + η(n − t − 1)(c1 − c0))

22For exposition sake, we omit the part where we solve for the coefficients. It is available to interested
readers on request
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K1 =
((n − 1)η − (n − t − 1))ηc0 + (1 + (n − 1)η)(1 − η)c1 − ηt(1 − η(c1 − c0))c

(1 − η) (1 + η(n − t − 1)(c1 − c0))

Suppose that out of the T truthful messages, k signals are 1, then E[θ | k, mT] =
k+1
t+2 .

Similarly, the babbling player with low signal then has an expectation given by E[θ |
k, mT, 0] = k+1

t+3 , and the babbling player with a high signal has E[θ | k, mT, 1] = k+2
t+3 .

c =
k + 1
t + 2

c0 =
k + 1
t + 3

c1 =
k + 2
t + 3

c1 − c0 =
1

t + 3

Substituting for h(t) = (2+t(1−η))
(1+(n−1)η) and the above values in the expressions for K, K0

and K1,

K =
k + 1
t + 2

K0 =
k + 1
t + 2

1

(1 + 1+(n−1)η
2+t(1−η)

)
=

k + 1
t + 2

· h(t)
1 + h(t)

K1 =

(
1 + (k+1)

(t+2)
(2+t(1−η))
(1+(n−1)η)

)
(

1 + 2+t(1−η)
1+(n−1)η

) =
k + 1
t + 2

· h(t)
1 + h(t)

+
1

1 + h(t)

Truthful players’ equilibrium action:

x̄i(k, t) =
(1 + (n − 2)η)

1 − η
bi −

η

1 − η ∑
j ̸=i

bj + E[θ | k, mT]

x̄i(k, t) = E[θ | k, mT] + bi + b̃i (19)

Low signal babbling players’ equilibrium action:

x̄j(0, k, t) =
(1 + (n − 2)η)

1 − η
bi −

η

1 − η ∑
j ̸=i

bj +
h(t)

1 + h(t)
· E[θ | k, mT]

x̄j(0, k, t) = E[θ | k, mT] + bi + b̃i −
1

1 + h(t)
E[θ | k, mT] (20)

High signal babbling players’ equilibrium action:

x̄j(1, k, t) =
(1 + (n − 2)η)

1 − η
bi −

η

1 − η ∑
j ̸=i

bj +
h(t)

1 + h(t)
· E[θ | k, mT] +

1
1 + h(t)

x̄j(1, k, t) = E[θ | k, mT] + bi + b̃i +
1

1 + h(t)

(
1 − E[θ | k, mT]

)
(21)
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This completes the proof. QED

A.3 Proof of Theorem 2

Sufficiency:

From arguments made in Section 3 and 4, a 0− type player always reveals the low sig-
nal and the 1− type player never misreports a high signal. The only cases of relevance
then is one where 0 − type (1 − type) gets a high (low) signal.

Take the case of a 0 − type player. For i to reveal a high signal si = 1, it must be that,
for any possible realization of the other (n − 1) players’ signals, sending a truthful
message mi = si = 1 must be optimal. This means that the equilibrium action of
i, x∗i (1 + ∑ m−i) ⩾ 0 for any set of (truthful) messages from the other players, m−i.
Since the posterior on the state θ is a beta-binomial distribution, what matters is the
sufficient statistic k, the number of 1’s in the set of messages (mi, m−i).

Therefore, for i to reveal si = 1, a set of n constraints (corresponding to k = 1 to n).
However, the tightest constraint that would ensure this is when every other player
reveals 0, meaning that ∑ m−i = 0. In this case, if mi = 1, then k = ∑

j∈N
mj = 1 and

therefore the expected value of θ, E[θ | k] = 2
n+2 . Once this constraint is satisfied,

every other IC for player i must be satisfied. From Equation 3, it must be that,

bi + b̃i +
2

(n + 2)
⩾ 0

−(bi + b̃i) ≤
2

n + 2
(22)

A similar argument ensues for a player i ∈ 1 − type. For i to reveal a low signal
truthfully, it must be that for any other order of (n − 1) truthful signals from the other
players, player i’s optimal action upon sending the message mi = si = i0 must be
within the upper bound of the action set. As before, we only need to concentrate on the
tightest IC that satisfies this condition. This is the constraint when ∑ m−i = (n − 1),
the case in which every other player reveals a high signal.

In this case, if mi = 0, then k = ∑
N

m = (n − 1) and therefore the expected value of θ

is E[θ | k] = n
n+2 . Once this constraint is satisfied, every other IC for player i must be

satisfied. Again applying the upper bound condition for Equation 3,

bi + b̃i +
n

(n + 2)
⩽ 1
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(bi + b̃i) ≤
2

n + 2
(23)

Equation 22 and Equation 23 together imply that for every possible signal realization,
every player’s action is within the action set [0, 1]. This means that ϕi(x) = ϕ̄k

i =

E[θ | k, mN] + bi for all i ∈ N and mN ∈ {0, 1}N. That is, there is no additional
residual variance (in expectation) and players cannot do better by misrepresenting
their signals. By combining Equation 22 and Equation 23, we conclude that there is
full information aggregation if:

∀i ∈ N :
∣∣bi + b̃i

∣∣ ⩽ 2
n + 2

(24)

Necessity:

We prove by contradiction. Suppose there is a full revelation equilibrium in which for
(n − 1) players Equation 24 is satisfied and for some player i ∈ N, this condition is
violated. It is then enough to show a profitable deviation for this player i conditional
on truthful messaging strategy of the other players in the group. Without loss of gen-
erality, let the condition be violated for player n, with conflict of interest bn.23 Then,
given that each of remaining (n − 1) players are being truthful and the sufficient con-
dition holding for them, it requires to be checked if n has an incentive to misreport her
signal. Since bn = sup{bi : i ∈ N}, n is a 1− type player. Further, as before, sn = 0 and
n reports truthfully. Then, if each of the other signals are such that ∑ m−n = (n − 1),
then the equilibrium action of n is x∗n(n− 1) = min{1, bn + b̃+ n

(n+2)} = 1, since Equa-
tion 24 is violated by construction. This implies that the other (n − 1) players readjust
their action by compensating for player n’s lower action as opposed to one dictated by
Equation 3. Henceforth, x̄i(k) is the first-best action of player i written in terms of only
the sufficient statistic.

We proceed in two steps. First, we characterize exactly how the rest of the play-
ers readjust their actions when x̄n(n − 1) > 1, in which case the action is binding
(x∗n(n − 1) = 1). Second, using this we show that the readjustment process results
in miscoordination losses for player n. In other words, ϕn(x∗n(n − 1), x∗−n(n − 1)) <

ϕ̄n−1
n = E[θ | n − 1, mN] + bn, where (x∗n(n − 1), x∗−n(n − 1)) is the vector of actions

after the readjustment. This results in miscoordination since the readjusted actions re-
sult in a lower value of coordination function than what the first best actions x̄(n − 1)
entails. We let xj(k) to be the readjusted actions of players j ∈ {1, 2, ...(n − 1)} when
the sufficient statistic is k, and let x−n(k) be the joint vector of (readjusted) actions of
the (n − 1) players.

STEP 1:
23For example, the same set of arguments are valid for players in the set 0 − type.
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Clearly, the readjusted action xj(n − 1) ≥ x̄j(n − 1). For example, the readjusted ac-
tion binds for player n − 1 if x̄n−1(n − 1) ≥ 1, according to Equation 3. We drop the
sufficient statistic k as an argument in the player’s action in order to simplify notation.
Let ϵ∗n−1 = x̄n − 1 be the residual action that player n could not take when k = (n − 1).
Then the extra action that remaining (n − 1) players have to compensate is given by

η
1+(n−1)η ϵ∗n−1. Since the marginal spillover (η) of each player’s action on every other
players’ coordination function ϕi is homogeneous, the (n − 1) players must share this
extra η

1+(n−1)η ϵ∗n−1 equally. Let X∗
n−1 be the extra action of each of the remaining play-

ers. Then, the following condition solves for X∗
n−1:

1
1 + (n − 1)η

X∗
n−1 +

(n − 2)η
1 + (n − 1)η

X∗
n−1 =

η

1 + (n − 1)η
ϵ∗n−1

The above expression simply implies that the total sum of the actions must equal to
the residual that is required to be compensated. Solving gives,

X∗
n−1 =

η

1 + (n − 2)η
ϵ∗n−1

There are two cases to be considered. If xn−1 = x̄n−1 + X∗
n−1 ≤ 1 then each of the

other (n − 1) players take an action that is given by xi = x̄i + X∗
n−1 and ϕn

(
xn(n −

1), x−n(n − 1)
)
≡ ϕn−1

n is,

ϕn−1
n =

(
x̄n(n − 1)− ϵ∗n−1

)
+ η

(
∑

j∈N\n
x̄j(n − 1) + (n − 1)X∗

n−1

)
(1 + (n − 1)η)

ϕn−1
n = ϕ̄n−1

n −
[

ϵ∗n−1
1 + (n − 1)η

− (n − 1)η
1 + (n − 1)η

X∗
n−1

]
︸ ︷︷ ︸

∆1
n(n−1)

The residual variance term ∆q
n(n − 1) is where the superscript q denotes the number

of players for whom the constraint binds. In the case where xn−1(n − 1) ≤ 1, we
write ∆1

n(n − 1) as the residual variance when the constraint binds only for one player,
n. Since by construction ϕ̄n−1

n = E[θ | k = (n − 1)] + bn, the final expressions for
∆1

n(n − 1) and ϕn−1
n is simply given by,

∆1
n(n − 1) =

1 − η

1 + (n − 2)η
ϵ∗n−1

ϕn−1
n = ϕ̄n−1

n − ∆1
n(n − 1)

If on the other hand xn−1 = x̄n−1 + X∗
n−1 > 1, but x̄j + X∗

n−1 ≤ 1 for all j ∈ {1, 2, ...(n −
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2)}, we can define ϵ∗n−2 in a similar manner, i.e.,

ϵ∗n−2 = x̄n−1 + X∗
n−1 − 1

As before X∗
n−2 solves:

1
1 + (n − 1)η

X∗
n−2 +

(n − 3)η
1 + (n − 1)η

X∗
n−2 =

η

1 + (n − 1)η
ϵ∗n−2

X∗
n−2 =

η

1 + (n − 3)η
ϵ∗n−2

The actions of players j ∈ {1, 2, ...., (n − 2)} : xj = x̄j + X∗
n−1 + X∗

n−2, that of (n − 1)th

player is xn−1 =
(

x̄n−1 + X∗
n−1

)
− ϵ∗n−2, and as before, xn = x̄n − ϵ∗n−1.

As before, if xj = x̄j + X∗
n−1 + X∗

n−2 ≤ 1 for all j ∈ {1, 2, ...., (n − 2)},

ϕn−1
n = ϕ̄n−1

n −
[

ϵ∗n−1 − (n − 1)ηX∗
n−1

1 + (n − 1)η

]
︸ ︷︷ ︸

∆1
n(n−1)

−
[

ηϵ∗n−2 − (n − 2)ηX∗
n−2

1 + (n − 1)η

]
︸ ︷︷ ︸

∆2
n(n−1)

∆2
n(n − 1) =

η

1 + (n − 1)η
· 1 − η

1 + (n − 3)η
ϵ∗n−2

Rewriting ∆1
n(n − 1) in a similar manner, we get,

∆1
n(n − 1) =

1 − η

1 + (n − 1)η
ϵ∗n−1 +

η

1 + (n − 1)η
· 1 − η

1 + (n − 2)η
ϵ∗n−1

Using these expressions, the readjusted coordination function is,

ϕn−1
n = ϕ̄n−1

n − 1 − η

1 + (n − 1)η
ϵ∗n−1

− η

1 + (n − 1)η

[
1 − η

1 + (n − 2)η
ϵ∗n−1 +

1 − η

1 + (n − 3)η
ϵ∗n−2

]
Recursively writing the above equation we get,

ϕn−1
n = ϕ̄n−1

n − 1 − η

1 + (n − 1)η
ϵ∗n−1 −

η(1 − η)

1 + (n − 1)η

n−1

∑
j=1

ϵ∗n−j

1 + (n − j − 1)η

The total miscoordination losses when q players’ action constraint binds, is given by,

Λq
n(n − 1) =

q

∑
ℓ′=1

∆ℓ′
n (n − 1) =

1 − η

1 + (n − 1)η

[
ϵ∗n−1 + η

q

∑
ℓ′=1

ϵ∗n−ℓ′

1 + (n − ℓ′ − 1)η

]
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The action of the players in this case is,

∀j ∈ {1, 2, ..., (n − q)} : xj(n − 1) = x̄j(n − 1) +
q

∑
h=1

X∗
n−h

∀j ∈ {(n − q + 1), (n − q + 2)...., n} : xj(n − 1) = 1

Clearly, irrespective of how large or small the q is, there is miscoordination losses
for player n. Further, this total miscoordination loss is increasing in q, the number of
players facing a binding constraint as a result of the readjustment process. This implies
there is always under-provision from n’s point of view.

STEP 2:
Now instead if n misreports her signal and sends a message mn = 1 − sn = 1, and
as before the rest of the players all have a signal si = 1, then the actions of every
other player apart from n is increased in equilibrium. The additional increase is just
E[θ | k = n] − E[θ | k = (n − 1)] = 1

(n+2) . As in STEP 1, the players ∀j ∈ {(n −
q + 1), (n − q + 2)...., n} : xj = 1 and the remaining players have to compensate for an
additional 1

n+2 increase in the expectation of θ. For all players j ∈ {1, 2, ..., (n − q)}, the
action is xj(n) = xj(n − 1) + γ(n) where γ(n) solves,[

1
1 + (n − 1)η

+
(n − q − 1)η
1 + (n − 1)η

]
γ(n) =

1
n + 2

γ(n) =
1 + (n − 1)η

(n + 2)(1 + (n − q − 1)η)
< 1

It is straightforward to see that when each of the non-binding player’s action increases
by an additional γ(n), the marginal increase in ϕn−1

n is just χd
n(q) = (n−q)η

(1+(n−1)η)γ(n).
The overall value of the coordination function for player n from playing the deviation
strategy is given by,

ϕn−1
n = ϕ̄n−1

n − Λq
n(n − 1) + χd

n(q)

If Λq
n(n − 1) > χd

n(q), the total miscoordination losses from deviating and sending
the higher message is lower and therefore there is a gain from deviation. If on the
other hand, χd

n(q) > Λq
n(n − 1), then since χd

n(q) < 1
1+(n−1)η , it immediately implies

that χd
n(q) − Λq

n(n − 1) < 1
1+(n−1)η . Player n can readjust her actions and choose a

deviation action xd
n ∈ (0, 1) such that ϕn−1

n = ϕ̄n−1
n .

This concludes both the requisite steps. A similar argument holds true for every other
signal realization of the remaining (n− 1) players. This can be observed by noting that
q — the number of players for whom the constraint is binding — is weakly increasing
in k, the sufficient statistic of the Beta-binomial distribution. It is straightforward to
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note that as before, either Λq
n(k) > χd

n(q) in which case the miscoordination is smaller
from the deviation strategy, or Λq

n(k) < χd
n(q), in which case the miscoordination loss

is reduced or eliminated irrespective of the value of q. That is, player n can always
misrepresent her private signal and subsequently readjust her action according to the
realization of k. This way n can reduce miscoordination, or eliminate it, for all possible
realizations of the other signals from the remaining players. It concludes to observe
that irrespective of whether xn(sn + ∑ m−n) ⩽ 1 or not, n is better off deviating to the
higher message when sn = 0, since the actions of other players have unequivocally
risen and decreases miscoordination as a consequence. Thus, n benefits from deviating
to mn = 1 when sn = 0. But if this is true, then a n−player equilibrium ceases to exist,
contradicting the starting presumption.

An analogous argument holds for players j ∈ 0− type. This concludes the proof. QED

A.4 Proof of Proposition 2

The characterization of a fully revealing equilibrium in the alliance commitment game
relies on an intuitive property of the payoff function. Specifically, if players are truthful
in the continuation game after the commitment stage, it must be that their actions al-
ways binds for some values of the sufficient statistic k. Suppose not, and let R̄i = x̄i(n).
In this case, there is full efficiency and the coordination function of all the players ex-
actly match the bias-adjusted state, for all k = {0, 1, ..., n}. Therefore, the ex-ante wel-
fare is simply the variance of θ.24 This implies that the marginal benefit is zero while
the marginal cost is positive. Therefore R̄i < x̄i(n) and the investment can never be
such that players achieve full efficiency in the action stage.

To establish that a symmetric strategy described in Proposition 2 is indeed an equi-
librium, we fix the strategies of all players but one. Suppose all players j ̸= i choose
an investment level R̄j = x̄j(q̄) + y. We check if player i can deviate from this sym-
metric strategy and invest R̄i ̸= x̄i(q̄) + y. Since the investment decisions are taken
simultaneously, we look at the best response function of player i given players −i
are investing according to the symmetric strategies. For q̄ ≥ 1, we separate the best
response function of i into five intervals:

(a) R̄i ∈ [0, x̄i(0))

(b) R̄i ∈ [x̄i(0), x̄i(q̄ − 1))

(c) R̄i ∈ [x̄i(q̄ − 1), x̄i(q̄))

24See Galeotti et al. (2013) and Penn (2015) for the precise derivation of welfare given a Beta-Binomial
information structure.
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(d) R̄i ∈ [x̄i(q̄), x̄i(q) + ỹ] where ỹ = 1+(1−(n+2)y)(n−1)η
n+2

(e) R̄i > x̄i(q̄) + ỹ

The reason for splitting the best response function of i into these intervals is the fol-
lowing. Given the structure of the distribution, all values of k = {0, 1, ..., n} have an
ex-ante probability of 1

n+1 at the commitment stage. Therefore if player i, fixing the
investment in one of the intervals, is able to deviate from truthful communication in
the subsequent period and readjust her actions accordingly for every realization of k,
then from an ex-ante perspective this precludes possibility of truthful communication.

It follows that when the best response is according to (a) and player i is truthful, then
i’s action is always bounded at R̄i irrespective of the realization of k. Since η < 1, this
implies that i suffers from miscoordination losses if she reports the truth. To see this,
suppose R̄i = x̄i(0)− ϑ and i is truthful in the ensuing game. If kT = 0, then the action
of i in equilibrium is x∗i (0) = x̄i(0)− ϑ. Player j ̸= i takes an action that compensates
for this under-provision by player i. The action of j, x∗j (0) = x̄j(0) + ε0

+, where εk
+ is

the additional action required to ensure that j’s coordination function is equal to the
first best. That is,

[x̄j(0) + ε0
+] + η ∑

j′ ̸=j,i
[x̄j′(0) + ε0

+] + η[x̄i(0)− ϑ]

1 + (n − 1)η
= ϕ̄0

j

=⇒ ε0
+ =

ηϑ

1 + (n − 2)η

However, if we substitute this into the coordination function of i, it gives,

[x̄i(0)− ϑ] + η ∑
j ̸=i

x̄j(0) + (n − 1)ηε0
+

1 + (n − 1)η
= ϕ̄0

i −
ϑ − (n−1)η2ϑ

1+(n−2)η

1 + (n − 1)η︸ ︷︷ ︸
>0

There is miscoordination in that from i’s perspective, the readjusted actions are not
sufficient to achieve her first-best, ϕ̄0

i . Instead, if i exaggerates her signal in the com-
munication stage, then if the other players take an action corresponding with kD = 1,
i reduces the miscoordination loss. A similar logic applies to all kT > 0. Since each
of the kT’s occur with probability 1

n+2 , there is positive benefit from deviating to an
inflated messaging strategy. Therefore best responses in this interval are ruled out as
an equilibrium strategy under full revelation.

Next, we proceed as follows. First, we show that if the best response of i is in (b)
or (c), then full information revelation breaks down since i would have incentives
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to exaggerate her low signal. Second, if the best response is according to (e), then
player i has over-invested in the alliance and player j would have incentives to lie.
The implication of (b), (c) and (e) is that in any equilibrium where information is
fully revealed, the investments are such that actions are bounded for all k > q̄. That is
there is partial efficiency and miscoordination for some values of k. Finally, using this
finding, we characterize the ex-ante welfare of players and then verify that the best
response of i indeed coincides with the symmetric strategy which is in the interval
(d).

Claim 1. If R̄i ∈ [x̄i(0), x̄i(q̄ − 1)) then player i has incentives to misrepresent her signal
si = 0 and report mi(si) = 1 for both signal types.

Proof. We proceed by first assuming that R̄i ∈ [x̄i(0), x̄i(q̄ − 1)), and show that con-
ditional on all other players j ̸= i investing R̄j = x̄j(q̄) + y and revealing infor-
mation truthfully in the continuation game, there is an incentive for player i to de-
viate from truth-telling. Intuitively, given the investments in the first stage, R̄ ≡
{x̄1(q̄) + y, ..., x̄i−1(q̄) + y, R̄i, x̄i+1(q̄) + y, ..., x̄n(q̄) + y}, there exists a profitable de-
viation action for player i that makes her better off under the messaging strategy
mi(0) = 1 instead of the truthful strategy.

We fix the investment at some R̄i < x̄i(q̄ − 1) and compute the actions of i for the dif-
ferent values of the sufficient statistic, kT, under truthful messaging in the subsequent
communication round. Once this is done, we show that for “every” possible realiza-
tion of the sufficient statistic kT (realizing with probability 1

n+2 ), a deviation strategy
exists where the message by i is inflated (mi(0) = 1) and an associated deviation ac-
tion under the inflated sufficient statistic kD = kT + 1 gives i a weakly higher expected
payoff. Crucially, the equilibrium beliefs of other players is fixed implying that they
believe i’s deviation message to be truthful. Their equilibrium actions x∗j ̸=i(·) are there-
fore conditioned on kD. Meanwhile, i’s deviation action is conditioned on kT and is a
best response to x∗j ̸=i(kD).

We begin by letting R̄i = x̄i(q̄ − 1)− ϑ, where ϑ ∈ (0, 1
n+2 ]. Note that R̄i = x̄i(q̄ − 1)−

1
n+2 = x̄i(q̄ − 2). The same set of arguments would carry through for R̄i = x̄i(q̄ − 2)−
ϑ, and so on until R̄i = x̄i(1)− ϑ.

Given R̄i = x̄i(q̄ − 1) − ϑ, we consider three cases, where under truthful revelation,
kT = {q̄ − 2, q̄ − 1, q̄}. We present the incentives for deviation and the associated
deviation strategies for each of the cases below.

Case 1. kT = q̄ − 2

In this case, under truthful revelation, the investments of players are not binding.
Therefore they all take the action dictated by Equation 3. That is, x∗j (q̄− 2) = x̄j(q̄− 2),
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for all j ∈ N. Given this, player i achieves first-best coordination levels, ϕ̄
q̄−2
i =

E[θ|q̄ − 2] + bi. However, we argue that even by deviating to an inflated messag-
ing strategy, player i can achieve the same, if we fix equilibrium beliefs. That is fixing
the fact that other players believe i’s message to be truthful, if i chooses to inflate her
signal si = 0, then the realized kD = q̄ − 1 instead of kT = q̄ − 2. In this case, players
j ̸= i anticipate that i’s actions are bounded at x̄i(q̄ − 1) − ϑ instead of the optimal
x̄i(q̄ − 1). They would choose their actions accordingly. Remember that in the coordi-
nation function of any player j ̸= i, the reduced action of i, x̄i(q̄ − 1)− ϑ implies a net
reduction of ηϑ. This reduction can be compensated for by the (n − 1) players j ̸= i if
they choose an additional ε+kD

such that,

[1 + (n − 2)η]ε+q̄−1 = ηϑ =⇒ ε+q̄−1 =
ηϑ

1 + (n − 2)η

That is, the player i knows that in the case where kD = q̄ − 1, all other players would
play an action x∗j (q̄ − 1) = x̄j(q̄ − 2) + 1

n+2 + ε+q̄−1. This means that according to the
true kT, player i could instead choose an action x∗i (q̄ − 2) = x̄i(q̄ − 2)− ϑ−

q̄−2 such that
the coordination function of i is given by,

ϕ
q̄−2
i =

[
x̄i(q̄ − 2)− ϑ−

q̄−2

]
+ η∑

j ̸=i

[
x̄j(q̄ − 2) + 1

n+2 + ε+q̄−1

]
1 + (n − 1)η

=⇒ ϕ
q̄−2
i = ϕ̄

q̄−2
i +

[
(n − 1)η

( 1
n + 2

+
ηϑ

1 + (n − 2)η

)
− ϑ−

q̄−2

]
By setting ϑ−

q̄−2 = (n − 1)η
(

1
n+2 +

ηϑ
1+(n−2)η

)
, the player can readjust her actions such

that there is no miscoordination. Therefore, in the subgame where mi(0) = 1 and
kD = q̄ − 1, player i gets the same expected payoff as in the case of truth-telling.
Indeed, for any lower realization of k ≤ q̄ − 2, the same incentives hold and player i’s
expected payoff under lying is the same as truth-telling.

Case 2. kT = q̄ − 1

In this case, under truthful revelation, the investments of players j ̸= i are not binding,
while player i’s action is binding at x̄i(q̄ − 1) − ϑ. In order to compensate for this,
player j ̸= i chooses an additional ε+q̄−1 = ηϑ

1+(n−2)η (similar to the previous case).
From the perspective of player i this results in miscoordination given by,

ϕ
q̄−1
i =

[
x̄i(q̄ − 1)− ϑ

]
+ η∑

j ̸=i

[
x̄j(q̄ − 1) + ε+q̄−1

]
1 + (n − 1)η

= ϕ̄
q̄−1
i +

(n − 1)ηε+q̄−1 − ϑ

1 + (n − 1)η
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ϕ
q̄−1
i = ϕ̄

q̄−1
i − (1 − η)ϑ

1 + (n − 2)η

If i instead deviated to an inflated messaging strategy, player i can reduce the misco-
ordination losses. Again, we fix equilibrium beliefs. If i chooses to inflate her signal,
then the realized kD = q̄ in which case players j ̸= i choose an additional ε+q̄ that
takes into account the fact that x∗i (q̄) = x̄i(q̄)− 1

n+2 − ϑ. The action of player j ̸= i is
therefore x∗j (q̄) = x̄j(q̄) + ε+q̄ , where the residual additional action is given by,

ε+q̄ =
η
(

ϑ + 1
n+2

)
1 + (n − 2)η

We consider two sub-cases. First one is where ε+q̄ < y. In this sub-case, from earlier
arguments, player i can anticipate it in equilibrium with kD = q̄, where all other play-
ers take the action x∗j (q̄) = x̄j(q̄ − 1) + 1

n+2 + ε+q̄ . As before, i can readjust her action
according to the true kT, and instead take an action x∗i (q̄ − 1) = x̄i(q̄ − 1)− ϑ − ϑ−

q̄−1

such that the coordination function of i becomes,

ϕ
q̄−1
i =

[
x̄i(q̄ − 1)− ϑ − ϑ−

q̄−1

]
+ η∑

j ̸=i

[
x̄j(q̄ − 1) + 1

n+2 + ε+q̄

]
1 + (n − 1)η

=⇒ ϕ
q̄−1
i = ϕ̄

q̄−1
i +


(n − 1)η

 1
n+2 +

η

(
ϑ+ 1

n+2

)
1+(n−2)η

− ϑ − ϑ−
q̄−1

1 + (n − 1)η


=⇒ ϕ

q̄−1
i = ϕ̄

q̄−1
i +

 (n−1)η
n+2

1+(n−1)η
1+(n−2)η + (1−η)(1+(n−1)η)ϑ

1+(n−2)η − ϑ−
q̄−1

1 + (n − 1)η


By setting ϑ−

q̄−1 =
(

1+(n−1)η
1+(n−2)η

) [
η · n−1

n+2 + (1 − η)ϑ
]
, the player can readjust her actions

such that there is no miscoordination.
In the second sub-case where ε+q̄ ≥ y, the additional action by the players j ̸= i is

simply (n − 1)η
[

1
n+2 + y

]
. In this sub-case, ϑ−

q̄−1 = (n − 1)η
[

1
n+2 + y

]
− ϑ.

Case 3. kT = q̄

In this case, under truthful revelation, player i’s action is binding at x̄i(q̄ − 1)− ϑ. In

order to compensate for this, player j ̸= i chooses an additional ε+q̄ =
η[ϑ+ 1

n+2 ]
1+(n−2)η (similar

to the previous case).

44



If ε+q̄ < y, from the perspective of player i this results in miscoordination given by,

ϕ
q̄
i =

[
x̄i(q̄)− 1

n+2 − ϑ
]
+ η∑

j ̸=i

[
x̄j(q̄) + ε+q̄

]
1 + (n − 1)η

= ϕ̄
q̄
i +

(n − 1)ηε+q̄ − 1
n+2 − ϑ

1 + (n − 1)η

ϕ
q̄
i = ϕ̄

q̄
i −

(1 − η)
[
ϑ + 1

n+2

]
1 + (n − 2)η

If i inflates her signal, then the realized kD = q̄ + 1 in which case players j ̸= i choose
an additional ε+q̄+1 that takes into account the fact that x∗i (q̄) = x̄i(q̄)− 1

n+2 − ϑ. The
action of player j ̸= i is therefore x∗j (q̄) = x̄j(q̄) + y. The additional action by the
players j ̸= i is simply (n − 1)ηy. Clearly, since ε+q̄ < y, making the other players
take a higher action reduces the miscoordination losses experienced by player i under
truthful communication.

If ε+q̄ ≥ y, then all players’ actions are bounded irrespective of whether communication
is truthful or not. Indeed, for all kT ≥ q̄ + 1 the same intuition applies since players’
actions are always binding.

So far, we have established that the best response by i to symmetric strategies cannot
be such that R̄i = x̄i(q̄ − 1)− ϑ. For every R̄i = {x̄i(q̄ − q′)− ϑ where q′ = {2, 3, ..., q̄ −
2} and ϑ = (0, 1

n+2 ], we can similarly consider the three cases: (i) kT = q̄ − q′ − 1,
emph(ii) kT = q̄ − q′, emph(iii) kT = q̄ − q′ + 1. These coincide with precisely the
same incentive problem as in Cases 1-3 presented above. Therefore, under truthful
revelation, there are incentives for deviation and the associated deviation strategies
for i. Consequently, the equilibrium best-response to symmetric strategies is such that
R̄i /∈ [x̄i(0), x̄i(q̄ − 1)).

Claim 2. If Ri ∈ [x̄i(q̄ − 1), x̄i(q̄)), then there exists a cutoff z̃(y) ≥ 0 such that i has incen-
tives to misrepresent signal si = 0 and report m(si) = 1 if Ri ∈ (x̄i(q̄ − 1) + z̃(y), x̄i(q̄)).

Proof. The intuition follows along the same lines as the previous case. If kT = {0, 1, ..., q̄−
1}, players’ investments are not binding and they take the first-best action such that
x∗j (kT) = x̄j(kT) for all j ∈ N. In the case where kT = {q̄ + 1, ..., n}, all player’s ac-
tions are binding and therefore they cannot do better than reporting truthfully since
misreporting does not change the actions of the players in the subsequent stage.

Consider the only salient case, kT = q̄. In this case, under truthful communication,
suppose x∗j ̸=i(q̄) = R̄j. The cutoff z̃ can be computed by looking at the coordination
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function of j ̸= i under these actions:

ϕ
q̄
j =

[
x̄j(q̄) + y

]
+ η ∑

j′ ̸=j,i

[
x̄j′(q̄) + y

]
+ η

[
x̄i(q̄)− 1

n+2 + z̃
]

1 + (n − 1)η

=⇒ ϕ
q̄
j = ϕ̄

q̄
j +

 [1 + (n − 2)η]y − η
(

1
n+2 − z̃

)
1 + (n − 1)η


Clearly,

[1 + (n − 2)η]y − η

(
1

n + 2
− z̃
)
≤ 0

=⇒ z̃(y) ≤ max
{

0,
1

n + 2
− [1 + (n − 2)η]y

η

}
(25)

Case. y ≥ 1
n+2 ·

η
1+(n−2)η

That is, if y > 1
n+2 ·

η
1+(n−2)η , then the actions of players j ̸= i are not binding for any

R̄i ∈ [x̄i(q̄ − 1), x̄i(q̄)). This results in miscoordination losses for i when kT = q̄. To
see this, suppose player i has invested R̄i = x̄i(q̄) − ϑ while the players j ̸= i have
invested R̄j = x̄j(q̄) + y where y > 1

n+2 ·
η

1+(n−2)η . In this case, clearly, the additional
action taken by j is such that,

[1 + (n − 2)η]ε+q̄ = ηϑ =⇒ ε+q̄ =
ηϑ

1 + (n − 2)η

Since ε+q̄ < y, the miscoordination for i given the set of actions x∗i (q̄) = x̄i(q̄)− ϑ and
x∗j ̸=i(q̄) == x̄j(q̄) + ε+q̄ is computed as before,

ϕ
q̄
i =

[
x̄i(q̄)− ϑ

]
+ η∑

j ̸=i

[
x̄j(q̄) + ε+q̄

]
1 + (n − 1)η

=⇒ ϕ
q̄
i = ϕ̄

q̄
i −

(1 − η)ϑ

1 + (n − 2)η

This miscoordination can be corrected by i by sending an inflated message which ex-
tracts the highest possible action by the other players, i.e., x∗j ̸=i(q̄+ 1) = x̄j(q̄) + y. This
is clearly better for the player i since,[

x̄i(q̄)− ϑ
]
+ η∑

j ̸=i

[
x̄j(q̄) + ε+q̄

]
1 + (n − 1)η

<

[
x̄i(q̄)− ϑ

]
+ η∑

j ̸=i

[
x̄j(q̄) + y

]
1 + (n − 1)η

≤ ϕ̄
q̄
i

46



Or, [
x̄i(q̄)− ϑ

]
+ η∑

j ̸=i

[
x̄j(q̄) + y

]
1 + (n − 1)η

> ϕ̄
q̄
i

In the latter case, clearly, player i can choose a downward readjustment in actions,
ϑ−

q̄ = (n − 1)ηy − ϑ. That is the readjusted action to eliminate miscoordination is
therefore, x∗i (q̄) = x̄i(q̄)− ϑ − ϑ−

q̄ = x̄i(q̄)− (n − 1)ηy.

Case. y < 1
n+2 ·

η
1+(n−2)η

In this case, there exists a z̃(y) > 0 such that whenever R̄i ∈ (x̄i(q̄ − 1), x̄i(q̄ − 1) + z̃(y)],
the actions of all players j ̸= i are binding at R̄j when kT = q̄. This implies player i can-
not do better by exaggerating her private signal and therefore truthful communication
can be an equilibrium messaging strategy.

Analogously, if instead R̄i ∈ (x̄i(q̄ − 1) + z̃(y), x̄i(q̄)), then there is miscoordination
concerns for i. To see this, suppose R̄i = x̄i(q̄)− ϑ̃ where ϑ̃ ∈

(
0, 1

n+2 − z̃(y)
)

. In this
case, when kT = q̄, the actions of players j ̸= i are not binding. That is, x∗j (q̄) < R̄j.

Specifically, x∗j (q̄) = x̄j(q̄) + ε+q̄ where, as computed in earlier cases, ε+q̄ = ηϑ̃
1+(n−2)η .

This results in miscoordination losses for i thereby precluding full revelation of in-
formation in equilibrium. Finally, the action of player i cannot be in the interval
(x̄i(q̄ − 1), x̄i(q̄ − 1) + z̃(y)] either since the marginal costs are the same across all the
players and if i’s best response is in the above interval, the marginal benefits will be
below the marginal costs (this is shown formally in Claim 4).

Claim 3. If Ri > x̄i(q) + ỹ then analogously player j ̸= i has incentives to misrepresent her
signal sj = 0 and report m(sj) = 1 for both signal types. The intuition follows along the same
lines as the previous case.

Proof. Notice that ỹ is the action at which if kT = q̄ + 1, then ϕ
q̄+1
i = ϕ̄

q̄+1
i . This is

because when kT = q̄ + 1, all other players j ̸= i take the action x∗j (q̄ + 1) = x̄j(q̄) + y.
If x∗i (q̄ + 1) = x̄i(q̄) + ỹ, then

ϕ
q̄+1
i =

[
x̄i(q̄) + ỹ

]
+ η∑

j ̸=i

[
x̄j(q̄) + y

]
1 + (n − 1)η

=

[
x̄i(q̄ + 1) + (n−1)η

n+2 − (n − 1)ηy
]
+ η∑

j ̸=i

[
x̄j(q̄ + 1)− 1

n+2 + y
]

1 + (n − 1)η
= ϕ̄

q̄+1
i

(26)

However, this results in a miscoordination loss for player j ̸= i. To see this, we can
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substitute the actions into the coordination function of j:

ϕ
q̄+1
j =

[
x̄j(q̄ + 1)− 1

n+2 + y
]
+ η ∑

j′ ̸=j,i

[
x̄j′(q̄ + 1)− 1

n+2 + y
]
+ η

[
x̄i(q̄ + 1) + (1−(n+2)y)(n−1)η

n+2

]
1 + (n − 1)η

=⇒ ϕ
q̄+1
j = ϕ̄

q̄+1
j −

(1 − η)
(

1
n+2 − y

)
1 + (n − 1)η

That is, if player i’s initial investment is such that Ri > x̄i(q)+ ỹ, the actions of i are not
binding when kT = q̄. Since this results in miscoordination, player j can use inflated
messaging strategy and derive a higher action from i. This would either reduce or
eliminate, depending on how high the investments made by i are, the miscoordination
losses faced by j. This precludes truthful communication by j.

Claim 4. For all R̄i ∈ [x̄i(q), x̄i(q) + ỹ], the marginal benefit from investing x̄i(q) + yi is
strictly decreasing in yi. Since the marginal cost of investing resources is constant at c, the
symmetric equilibrium exists and is unique.

We write the ex-ante welfare in terms of the investment R̄i = x̄i(q̄) + yi, where yi ≤ ỹ.
We allow heterogeneity via the term yi and then check if there is an equilibrium in
which yi = y ∈ [0, 1

n+2) for all i ∈ N.

Wi(q̄, yi, y−i) ≡ −Eθ

[
Ek

[
ϕi

(
min{x̄i(k), R̄i}, min{x̄−i(k), R̄−i}

)
− θ − bi

]2
]
− cR̄i

Define y−i = ∑j ̸=i yj and Yi =
yi+ηy−i

1+(n−1)η . Let the expected miscoordination loss (i.e.,
ignoring the cost term) be:

Li = −Eθ

[
Ek

[
ϕi

(
min{x̄i(k), R̄i}, min{x̄−i(k), R̄−i}

)
− θ − bi

]2
]

Li = −
1∫

0

n

∑
k=0

[
ϕi

(
min{x̄i(k), R̄i}, min{x̄−i(k), R̄−i}

)
− θ − bi

]2
f (k | n, θ)dθ

Li = − 1
n + 1

n

∑
k=0

1∫
0

[
ϕi

(
min{x̄i(k), R̄i}, min{x̄−i(k), R̄−i}

)
− θ − bi

]2
f (θ | k, n)dθ

48



where, f (k | n, θ) = f (θ|k,n)
n+1 from the property of Beta-Binomial distribution.

Li = − 1
n + 1

q̄

∑
k=0

1∫
0

[
ϕ̄k

i − θ − bi

]2
f (θ | k, n)dθ

− 1
n + 1

n

∑
k=q̄+1

1∫
0

[
ϕ̄

q̄
i + Yi − θ − bi

]2
f (θ | k, n)dθ

The above expansion of the equation follows from noting that q̄ is the highest suffi-
cient statistic up to which players’ actions can achieve first best coordination, i.e., ϕ̄k

i
for all i ∈ N as long as k ∈ {0, 1, ..., q}. Beyond the cutoff q̄, there is inefficiency in
decision-making in that players to do not achieve first-best coordination. Focusing on
the integral inside the second term:

[
ϕ̄

q̄
i + Yi − θ − bi

]2
=

[(
E[θ | k, n]− θ

)
−
(

E[θ | k, n]− E[θ | q̄, n]− Yi

)]2

This follows from making the substitution ϕ̄
q̄
i = E[θ | q̄, n] + bi, then adding and

subtracting E[θ | k, n], and rearranging the terms.

[
ϕ̄

q̄
i + Yi − θ − bi

]2
=
(

E[θ | k, n]− θ
)2

+
(

E[θ | k, n]− E[θ | q̄, n]− Yi

)2

−2
(

E[θ | k, n]− θ
)
·
(

E[θ | k, n]− E[θ | q̄, n]− Yi

)
When taken into the integral, the last term cancels out. We therefore omit it and con-
tinue rewriting the welfare.

Li = − 1
n + 1

q̄

∑
k=0

1∫
0

[
E[θ | k, n]− θ

]2
f (θ | k, n)dθ

− 1
n + 1

n

∑
k=q̄+1

1∫
0

[
E[θ | k, n]− θ

]2
f (θ | k, n)dθ

− 1
n + 1

n

∑
k=q̄+1

1∫
0

[
E[θ | k, n]− E[θ | q̄, n]− Yi

]2
f (θ | k, n)dθ

Li = − 1
n + 1

n

∑
k=0

1∫
0

[
E[θ | k, n]− θ

]2
f (θ | k, n)dθ

− 1
n + 1

n

∑
k=q+1

1∫
0

[
E[θ | k, n]− E[θ | q̄, n]− Yi

]2
f (θ | k, n)dθ

49



where − 1
n + 1

n

∑
k=0

1∫
0

[
E[θ | k, n]− θ

]2
f (θ | k, n)dθ = − 1

n + 1

n

∑
k=0

Var(θ|k, n)

For the Beta-Binomial distribution,

1
n + 1

n

∑
k=0

Var(θ|k, n) = Var(θ|n) = 1
6(n + 2)

Li = − 1
6(n + 2)

− 1
n + 1

n

∑
k=q+1

1∫
0

[
E[θ | k, n]− E[θ | q̄, n]− Yi

]2
f (θ | k, n)dθ

Since none of the terms in the bracket of the integral depend on the realization of θ,
we can rewrite them omitting the integral,

Li = − 1
6(n + 2)

− 1
n + 1

n

∑
k=q+1

[
E[θ | k, n]− E[θ | q̄, n]− Yi

]2

︸ ︷︷ ︸
≡Z

Expanding the term in the brackets further,

Z ≡
[(

E[θ | k, n]− E[θ | q̄, n]
)2

− 2Yi ·
(

E[θ | k, n]− E[θ | q̄, n]
)
+ Y2

i

]

Where, E[θ | k, n] − E[θ | q̄, n] = k+1
n+2 − q̄+1

n+2 = k−q̄
n+2 . Substituting this back into the

ex-ante welfare function,

Wi(q̄, yi, y−i) = − 1
6(n + 2)

− 1
n + 1

n

∑
k=q̄+1

[(
k − q̄
n + 2

)2

− 2Yi ·
(

k − q̄
n + 2

)
+ Y2

i

]
− cR̄i

Using the identities 12 + 22 + ... + z2 = z(z+1)(2z+1)
6 and 1 + 2 + .. + z = z(z+1)

2 , we get,

Wi(q̄, yi, y−i) = − 1
6(n + 2)

− (n − q̄)(n − q̄ + 1)(2(n − q̄) + 1)
6(n + 1)(n + 2)2 +

(n − q̄)(n − q̄ + 1)
(n + 1)(n + 2)

Yi

− (n − q̄)
(n + 1)

Y2
i − cR̄i

To see that the above expressions are consistent, we check for the limit case where Yi =

0 and Yi =
1

n+2 . In the former, the terms containing Yi disappear and the expression is
trivially equal to one where R̄i = x̄i(q̄). In the latter case, the 2nd, 3rd, and 4th terms
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in the welfare function simplifies to,

− (n − q̄)(n − q̄ + 1)(2(n − q̄) + 1)
6(n + 1)(n + 2)2 +

(n − q̄)2

(n + 1)(n + 2)2 =

− (n − q̄ − 1)(n − q̄)(2(n − q̄)− 1)
6(n + 1)(n + 2)2

However we know that when R̄i = x̄i(q̄ + 1) and Yi = 0,

Wi(q̄ + 1, yi, y−i)
∣∣∣
Yi=0

= − 1
6(n + 2)

− (n − q̄ − 1)(n − q̄)(2(n − q̄)− 1)
6(n + 1)(n + 2)2 − cR̄i

This implies the following:

Wi(q̄ + 1, yi, y−i)
∣∣∣
Yi=0

= Wi(q̄, yi, y−i)
∣∣∣
Yi=

1
n+2

The final expression for the welfare function is therefore,

Wi(q̄, yi, y−i) = − 1
6(n + 2)

− (n − q̄)(n − q̄ + 1)(2(n − q̄) + 1)
6(n + 1)(n + 2)2

+
(n − q̄)
(n + 1)

[
(n − q̄ + 1)
(n + 2)

− Yi

]
Yi − cR̄i

(27)

In the symmetric equilibrium, when every other player invests yi = y in the first stage
such that Yi =

yi+(n−1)ηy
1+(n−1)η , the equilibrium welfare is,

Wi(q̄, yi, y) = − 1
6(n + 2)

− (n − q̄)(n − q̄ + 1)(2(n − q̄) + 1)
6(n + 1)(n + 2)2

+
(n − q̄)
(n + 1)

[
(n − q̄ + 1)
(n + 2)

− Yi

]
Yi − c[x̄i(q̄) + yi]

The first order condition with respect to yi is therefore,

(n − q̄)(n − q̄ + 1)
(n + 1)(n + 2)(1 + (n − 1)η)

− 2(n − q̄)
(n + 1)(1 + (n − 1)η)

yi = c

This is the same expression for all players due to symmetry. Therefore yi = y and,

(n − q̄)(n − q̄ + 1)
(n + 1)(n + 2)(1 + (n − 1)η)

− 2(n − q̄)
(n + 1)(1 + (n − 1)η)

y = c

A.5 Proof of Proposition 3

The expression for welfare directly follows from plugging Yi = y under the symmetric
equilibrium strategies into Equation 27.
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B Proof of Theorem 2: Two Player Case

Since there are only two players and second player is more hawkish than the first, it
directly follows that the latter is a 0 − type and the former is a 1 − type. This implies
the first player always has incentives to reveal the low signal while the second, the
high one. Further, the signals si are conditionally independent but correlated in that
Pr(s2 = 1|s1) = 2

3 and Pr(s2 = 0|s1) = 1
3 , and vice versa for s2. Suppose signals

s = (s1, s2) are publicly observed such that,

E[θ|s] = s1 + s2 + 1
4

The actions of players in this case is given by,

x1(s) = E[θ|s]− η

1 − η
b < 1 (28)

x2(s) = E[θ|s] + 1
1 − η

b > 0 (29)

The actions depend crucially on whether the bounds on actions xi ∈ [0, 1] are binding
or not. It is very clear from the above equations that x1(s) is always less than one
while x2(s) is always greater than zero. As long as actions remain within the bound,
it is straightforward to observe that ϕ1(x1(s), x2(s)) = E[θ|s] and ϕ2(x1(s), x2(s)) =

E[θ|s] + b.

However, suppose the constraints are binding for certain signal realizations. In partic-
ular x1(s) < 0 and/or x2(s) > 1 for some realization of signals s. Suppose x1(s) < 0,
then x1 = 0 and x2(s) = (1 + η) (E[θ|s] + b). Further, x1(s) < 0 implies E[θ|s] <

η. (E[θ|s] + b). It can be verified trivially that ϕ1(0, x2(s)) = η. (E[θ|s] + b) > E[θ|s].
Similarly, if x2(s) > 1, then x2 = 1 and x1(s) = (1 + η)E[θ|s] − η. As before,
ϕ2(x1(s), 1) = η.E[θ|s] + (1 − η) < E[θ|s] + b since x2(s) > 1 implies E[θ|s] + b >

η.E[θ|s] + (1 − η).

Whenever x1(s) < 0 there is over-provision concern for player 1 and whenever x2(s) >
1 there is under-provision concern for player 2. To see how this can lead to babbling in
equilibrium, let us consider the case where the signals are privately observed and the
players communication with each other via simultaneous cheap talk messages. Say
truthful messages are such that mT

i : m(si) = si for si = 0 or 1. Consider the case where
s1 = 1.25 Let EU1(1, mT

1 ) be the ex ante EU of player 1 with information s1 = 1 under
truthful messaging, conditional on the other player reporting truthfully.

25An analogous argument follows for the player 2.
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EU1(1, mT
1 ) = − ∑

s2∈{0,1}
Pr(s2|s1 = 1)

1∫
0

(
x1(1, s2) + ηx2(1, s2)

1 + η
− θ

)2

f (θ | 1, s2)dθ

Given the interim expectation of s2 conditional on s1, I can expand the above equation
as follows:

EU1(1, mT
1 ) = −1

3

1∫
0

(
x1(1, 0) + ηx2(1, 0)

1 + η
− θ

)2

f (θ | 1, 0)dθ

− 2
3

1∫
0

(
x1(1, 1) + ηx2(1, 1)

1 + η
− θ

)2

f (θ | 1, 1)dθ

Suppose x1(1, 1) > 0 but x1(1, 0) < 0 according to Equation 28 and Equation 29. Then
it follows from previous arguments that,

x1(1, 1) + ηx2(1, 1)
1 + η

= E[θ|(1, 1)]

x1(1, 0) + ηx2(1, 0)
1 + η

= E[θ|(1, 0)] + (ηb − (1 − η)E[θ|(1, 0)])

Where,
∆1(1, 0) = (ηb − (1 − η)E[θ|(1, 0)]) > 0

EU1(1, mT
1 ) = −1

3

1∫
0

(E[θ|1, 0]− θ + ∆1(1, 0))2 f (θ | 1, 0)dθ−

2
3

1∫
0

(E[θ|1, 1]− θ)2 f (θ | 1, 1)dθ (30)

The additional term ∆1(1, 0) increases the expected losses over and above the stan-
dard variance term (E[θ|1, 0]− θ)2. This provides incentives for under-reporting the
high signal. To see this clearly, suppose player 1 misrepresents her signal and sends a
deviation message mD

1 : m(1) = m(0) = 0. Player 2 treats the deviation message as if
it were on equilibrium path. This implies that her action is simply given by x2(0, 0) and
x2(0, 1) when the signal s2 = 0 or 1 respectively. Of course, if x2(1, 0) and x2(1, 1) were
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both above the upper bound implying x2(1, 0) = x2(1, 1) = 1, then it is also possible
x2(0, 0) = x2(0, 1) = 1. If so, then the deviation strategy does not alter the expected
utility and player 1 is indifferent. However, if x2(0, 0) < x2(0, 1) < 1, then player 1’s
deviation actions xD

1 (1, 0) and xD
1 (1, 1) anticipate player 2’s actions and correspond-

ingly is readjusted. That is,

x2(0, 0) =
1
4
+

1
1 − η

b =⇒ xD
1 (1, 0) = (1 + η)

1
2
− η.x2(0, 0)

x2(0, 1) =
1
2
+

1
1 − η

b =⇒ xD
1 (1, 1) = (1 + η)

3
4
− η.x2(0, 1)

This implies that ϕ1
(
xD

1 (1, 0), x2(0, 0)
)
= E[θ|1, 0] or,

ϕ1 (x1(1, 0), x2(1, 0)) ≥ ϕ1

(
xD

1 (1, 0), x2(0, 0)
)
≥ E[θ|1, 0]

In the former case, it is obvious ∆D
1 (1, 0) = 0 while in the latter ∆D

1 (1, 0) ≤ ∆1(1, 0).
That is,

EUD
1 (1, mD

1 ) =− 1
3

1∫
0

(
E[θ|1, 0]− θ + ∆D

1 (1, 0)
)2

f (θ | 1, 0)dθ

− 2
3

1∫
0

(E[θ|1, 1]− θ)2 f (θ | 1, 1)dθ ≥ EU1(1, mT
1 )

As a result player 1 will always prefer the deviation message and truthful revelation
breaks down. In the case where x1(1, 0) < x1(1, 1) < 0 the deviation message weakly
benefits player 1 when s2 = 0 and s2 = 1. That is with truthful messaging the expected
utility is,

EU1(1, mT
1 ) =− 1

3

1∫
0

(E[θ|1, 0]− θ + ∆1(1, 0))2 f (θ | 1, 0)dθ

− 2
3

1∫
0

(E[θ|1, 1]− θ + ∆1(1, 1))2 f (θ | 1, 1)dθ
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Under the deviation message, the expected utility is instead,

EUD
1 (1, mD

1 ) =− 1
3

1∫
0

(
E[θ|1, 0]− θ + ∆D

1 (1, 0)
)2

f (θ | 1, 0)dθ

− 2
3

1∫
0

(
E[θ|1, 1]− θ + ∆D

1 (1, 1)
)2

f (θ | 1, 1)dθ

For analogous arguments made above, ∆1(1, 0) ≥ ∆D
1 (1, 0) ≥ 0 and ∆1(1, 1) ≥ ∆D

1 (1, 1) ≥
0. Therefore it follows that EUD

1 (1, mD
1 ) ≥ EU1(1, mT

1 ). Finally,it can be inferred from
the arguments that the relevant IC constraints for truth-telling are s1 = 1 for player 1
and s2 = 0 for player 2.
That is to check if full revelation is possible by both players, it is necessary and suf-
ficient to check for IC constraint of player 1 with the high signal and player 2 with
low signal. Given the incentives for player 1 to deviate from revealing the high signal,
as described above, it is also clear that the pivotal IC is the one where s = (1, 0) and
x1(s) < 0, i.e the one in which the other player holds a low signal and the resulting
action of player 1 after truthfully revealing the high signal is below the lower bound
of actions. The vice-versa holds for player 2. The pivotal constraint to check is one in
which s = (1, 0) and x2(1, 0) > 1. (Remember that for player 2 the following inequal-
ities hold when the actions are above the upper bound: 1 ≤ x2(0, 0) ≤ x2(1, 0).) The
reason is intuitive. Though x2(0, 0) < 1 (or x1(1, 1) > 0) is a necessary condition for
truthful revelation, it is not sufficient. Simply put, as in the case analyzed earlier, it
could be that x1(1, 1) > 0 but x1(1, 0) < 0 (x1(0, 0) < 1 and x2(1, 0) > 1 in the case
of player 2). In this case, sufficiency breaks down since player’s have an incentive to
deviate since x1(1, 0) < 0 (x2(1, 0) > 1). Therefore the pivotal case is one in which the
signal s = (1, 0) and the actions corresponding to the truthful revelation of s is such
that,

x1(1, 0) =
1
2
− η

1 − η
b ≥ 0 x2(1, 0) =

1
2
+

1
1 − η

b ≤ 1

Rearranging gives,

b ≤ 1 − η

2η
and b ≤ 1 − η

2

Since η < 1 the condition for x2 is the one that is binding.
In the case of two players, it is straightforward to see that player 1 is a 0 − type and
player 2 is a 1 − type. As before, q = s1 + s2 and q ∈ {0, 1, 2}. From ??, it follows
that x1(2) ≥ 0 and x2(0) ≤ 1. Player 1 has an incentive to under-report the high signal
whenever for some realization of player 2’s signal, player 1’s action under truth-telling
is below the lower bound. In this case, x1(q) = 0 and player 2 readjusts her actions
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accordingly. Crucially, this readjustment results in ϕ1(x) > E[θ | s], increasing the
overall ex ante variance. This is sufficient to induce player 1 to deviate and under-
report.
Since the utility functions satisfy single crossing, if player 1 is truthful and her action
is below the lower bound for s2 = 1, then it must be below this bound for s2 = 0. The
vice versa need not be true. That is, it may be that when s = (1, 0) the action x1(1) < 0,
and when s = (1, 1) the action x1(2) > 0. As a result, the pivotal IC constraint for
player 1 is the case when s2 = 0 and x1(1) < 0. A similar argument for player 2
implies that her pivotal IC is when s2 = 0 and s1 = 1 such that x2(1) > 1. Together,
these conditions yield the characterization for the two player case.

QED
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