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Abstract

The paper analyzes how the patent-economic growth relationship changes as popula-

tion growth dynamics change in the variety expansion model with overlapping generations.

The literature on this relationship has not focused on the role of population growth despite

data showing that countries’ population growth trends have recently shifted from positive

to declining and even negative. The declining population growth trend decreases the econ-

omy’s new demand for output, which reduces the producers’ demand for inputs. As patent

owners seek profits by providing differentiated inputs to the producers, decreasing input

demand reduces patent owners’ rewards, restricting entry into research and development

(R&D) entrepreneurship and hence economic growth. As a result, we conclude that, with

diminishing population growth, the existing patent policy must be tightened in order to

increase entry into R&D entrepreneurship and to boost economic growth.

Keywords: Economic Growth, Overlapping Generations Economy, Patent, Physical Cap-

ital, Population Growth, Variety Expansion Model

JEL classifications: O31, O34, O40

2



1 Introduction

Several countries have taken positive steps in recent decades to tighten their patent pro-

tection policies.1 The global agreement on trade-related aspects of intellectual property

rights (TRIPS), which came into force in 1995; has influenced countries’ adoption of such

tighter patent protection policies. For example, Park (2008) obtains that the strength

of India’s patent protection policies has increased from 1.23 in 1995 to 3.76 in 2005.2

However, recent studies suggests that the relationship between the economy’s strength of

patent protection policies and the rate of economic growth is ambiguous.3 For instance,

Falvey et al. (2006) found that the relationship between the economy’s patent policy

tightness and growth rate depends on its development level. It is positive and significant

for high- and low-income countries but not for middle-income countries, as middle-income

countries primarily engage in imitation rather than innovation. Further, Iwaisako and Fu-

tagami (2013) obtained a non-monotone relationship between the economy’s patent policy

tightness and growth rate in an endogenous growth model.

We theoretically investigate why countries have continued to tighten patent protection

policies despite theoretical and empirical findings indicating that doing so may not be a

panacea for economic growth. Does the rate of population growth play a role in this?

For instance, in a world with positive population growth and large rates of immigration,

like the United States, does optimal patent protection loosen because there is a large

pool of potential entrepreneurs? In a world with negative population growth and no im-

migration, like Japan, is optimal patent protection tightened? Therefore, the study adds

to the existing literature by looking into how growth-maximizing patent policies interact

with changing population growth dynamics. This is especially important at a time when

most countries are experiencing declining population growth trends (see Figure 1), with

some, such as Japan, Germany, Italy, and Spain, already experiencing negative popu-

lation growth.4 As a result, the implications of changing population growth dynamics,

specifically the declining population growth trend, on the patent-growth nexus must be

investigated. Furthermore, we allow for a negative population growth rate and investi-
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gate its impact on growth-maximizing patent protection policies and, consequently, on

the optimal output per capita growth. Although there are growth models that allow for

negative population growth rates; see Sasaki and Hoshida (2017), Jones (2022), and Bucci

(2023), but they do not examine the effects of patent policies on economic growth given

the negative population growth rates.

Fig. 1: The population growth trends for various regions since 1998.
Source: The World Bank

We employ the variety expansion model in a finite horizon overlapping generations

(OLG) economy with physical capital and lab-equipment type R&D specification as in

Rivera-Batiz and Romer (1991). Most studies on patent protection policies and economic

growth have focused on economies of infinitely lived households.5 However, the infinite

horizon model, by design, implies positive population growth rate and is not entirely

consistent with declining population growth trend or negative population growth rate. In

short, a finite horizon model, such as an OLG model, can capture the effects of a declining

population growth rate or a negative population growth rate more accurately. Further-

more, because the literature on endogenous growth has emphasized the role of R&D

in economic growth and the role of patents in incentivizing these R&Ds, the endoge-
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nous growth model is a natural framework for capturing the impact of patent policies on

growth. Therefore, following Diwakar et al. (2021), we employ a variety expansion endoge-

nous growth model in a finite horizon OLG economy to analyze the effects of declining

population growth on patents and economic growth dynamics.6 Moreover, the govern-

ment regulates patent protection through several patent policy instruments, the most

well-known of which are patent length and patent breadth in growth theory. The patent

breadth limits the ability of the patent owner to charge an unconstrained monopolist’s

price, whereas the patent length is the duration for which a patent is valid. This study fo-

cuses on patent breadth policy for simplicity and tractability. Furthermore, patent breadth

has a more immediate impact on the value of patented varieties, as it affects both current

and future profits. In contrast, patent length merely affects future profit, see Chu (2022).

Our primary objective is to analyze three key aspects: First, we examine the impact on

the output per capita growth resulting from changes in patent breadth policy. Second,

we explore how growth-maximizing patent breadth policy responds to shifting population

growth trends, which have transitioned from positive to declining and, in some cases, neg-

ative. Third, we investigate whether the patent breadth policy that maximizes economic

growth also maximizes the economy’s welfare.

Only a few theoretical analyses in the literature on patent policy and economic growth

used a finite-period OLG economy, pioneered by Samuelson (1958) and Diamond (1965).7

These are Chou and Shy (1993), Sorek (2011), and Diwakar et al. (2021). Chou and Shy

(1993) analyze the effects of different patent lengths, particularly one-period and infinite

patent length, on the growth in a variety expansion model. Sorek (2011) analyzes the

effects of both patent length and patent breadth on growth in a quality-ladder model.

He obtained that both Inter-temporal Elasticity of Substitution (IES) and patent length

determine the effects of loosening patent breadth on growth. Diwakar et al. (2021) also

analyze the effects of both patent length and patent breadth on growth but in a variety

expansion model. They obtained that unlike Sorek (2011), IES has no role in their analysis.

Furthermore, they discovered that the growth-maximizing patent breadth is incomplete
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for any positive depreciation rate and tightened with an increase in effective labor supply.

We may deduce from this that, under certain special assumptions, growth maximizing

patent breadth tightens with an increase in labor supply (Young population).8 Does this

also imply that growth-maximizing patent protection policies tighten with population

or labor supply growth rates? However, this is not supported by data because there are

countries that, on the one hand, have declining population growth rates (See Figure 1) and,

on the other hand, are tightening their patents (See Figure 2).9 For example, while India’s

population growth rate fell from 1.89 in 1998 to 1.03 in 2019, the Patent Enforcement

Index (PEI) rose from 3.9 in 1998 to 5.0 in 2017.10

Fig. 2: The Patent Enforcement Index (PEI) trends for various regions since 1998.
Source: Papageorgiadis and Sofka (2020).

To the best of our knowledge, this is the first study that investigates how growth-

maximizing patent policy is related to declining population growth dynamics. The declin-

ing population growth decreases the economy’s new demand for final output; therefore,

the output producer reduces their demand for new inputs (machines),11 and subsequently,

it decreases the profit flow of patent owners that enter the R&D entrepreneurship to seek

profits. So, the existing patent policy must be revised to enhance entry in the R&D

entrepreneurship and economic growth. In addition, we will also examine how growth-
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maximizing patent policy is related to other parameters, such as the depreciation of ma-

chines and the patent’s per capita R&D cost.

In our model, the production involves decreasing returns to machine’s utilization. It

implies that, the rising machine-variety per capita increases the output per capita at a de-

creasing rate. Therefore, an optimal machine-variety per capita must exist that maximizes

machines’ utilization and output per capita. Further, rising machine-variety per capita be-

yond the optimal level does not increase the machines’ utilization level but crowds out

investment from innovation,12 thereby lowering the output per capita. As expected, our

model obtains an optimal machine-variety per capita that maximizes the output per capita

growth; it also corresponds with machine-variety per capita at an optimal patent breadth.

We find that increasing or decreasing machine-variety per capita by loosening or tight-

ening patent breadth respectively,13 may have two opposing effects on output per capita

and two opposing effects on consumption. It improves output per capita growth by nar-

rowing the gap between actual and optimal machine-variety per capita (positive effect).14

However, it impedes per capita output growth by widening the same gap (negative effect).

The relative strength of the aforementioned mechanisms relating to machines’ utilization

and crowding out of investments, determines whether the gap widens or narrows. On the

consumption side, it boosts Young consumption due to increased labour income (a posi-

tive effect), as increased machine variety per capita raises labor’s marginal productivity.

However, it reduces Old consumption due to a lower interest rate on savings (a negative

effect) because more machines must be supplied at a low-interest rate. An inverted-U

relationship between machine variety per capita and output per capita growth may exist

as a result of these two opposing effects. Similarly, an inverted-U relationship between

machine variety per capita and lifetime utility of all generations may exist. Therefore, the

economy must have a unique growth- and welfare-maximizing patent breadth for any fixed

population growth. Our analysis, however, indicates that the machine-variety per capita

that maximizes growth may differ from the machine-variety per capita that maximizes
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lifetime utility of all generations.

We also show that optimal patent breadth may be complete or incomplete, depending

on the new demand for machine-varieties.15 Suppose the economy does not have new de-

mand for machines due to a population decline. In that case, the optimal patent breadth

is complete to encourage R&D entrepreneurship. However, the optimal patent breadth is

incomplete if the economy has new demand for machines.

Furthermore, we observe whether the declining population growth impacts the optimal

patent breadth policy and whether countries should consider shifting population growth

dynamics while formulating their patent policy. We obtain that if the economy has a pos-

itive demand for machine-varieties, the declining population growth impacts the optimal

patent breadth, and it tightens with declining population growth to promote entry in

R&D entrepreneurship and to maximize growth. In contrast, declining population growth

does not affect the optimal patent policy when there is no new demand for machines.

Thus, in contrast to Diwakar et al. (2021), we obtain that the growth-maximizing patent

breadth can be complete for any positive depreciation rate if there is no new demand for

machines, and it tightens with a decrease in population growth (labor supply).

This study follows the subsequent structure: Section 2 introduces the model and ex-

plores the growth implications of patent breadth in declining population growth, while

Section 3 delves into the welfare implications of patent breadth. Finally, Section 4 con-

cludes the study.

2 The Model

We consider a variety expansion model in a two-period overlapping generations framework

with lab-equipment type R&D specification. The economy is consisting of three types of

agents: the households, producer of the final output, and R&D entrepreneurs. Households

are finitely-lived and can live for at most two-periods defined as their young and old ages.
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S/he dies at the start of old age with a probability 1− µ and lives through old age with

a probability µ.16 Therefore, at any point in time, the economy is composed of 2 cohorts:

the Young and the Old. Each young agent is endowed with one unit of labor that they

supply inelastically. Old agents retire and consume by dis-saving. In each period t, Lt

young agents are born and grow at the constant rate n ∈ (-1,∞),

Lt+1 = (1 + n)Lt; n ∈ (−1,∞). (1)

The economy’s population may increase, remain fixed or decrease according to the pos-

itive, zero and negative values of n. The producer of final output employs labor and

differentiated capital inputs to produce the final output, which is sold at the normalized

unitary price. The R&D entrepreneur devotes resources in R&D or inter-generational

patent trade to get a patent for newly invented or old existing varieties’ blueprints. After

getting a patent, the entrepreneur creates a monopoly and sells the input at the monop-

olist’s price.

2.1 The Household Sector

A representative agent consumes only one good, the final good produced by perfectly

competitive firms, and derives utility from his or her lifetime consumption: consumption

when young and consumption when old. We assume that the utility specification is inter-

temporal logarithmic. As a result, the lifetime expected utility of a representative agent

born at period t is,

ut = lncY,t + µlncO,t+1, (2)

where cY,t is consumption at young and cO,t+1 is consumption at old. At Young, the

representative agent supplies his or her labor inelastically to the production sector and

earns wage wt that s/he allocates between current consumption cY,t and saving st. The

uncertainty regarding old age survival makes old age consumption also uncertain. As a

result, each agent obtains insurance by utilizing savings to purchase actuarial notes in

order to mitigate risk. Following Blanchard (1985), we assume an actuarially fair annuity
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market, in which the survivor receives 1+rt+1

µ
st in exchange for the insurance company’s

saving, st. Moreover, similar to Grossman and Helpman (1991), we assume that capital

is held as shares of monopolist firms. The representative agent retires (if s/he survives)

and consumes using returns. Thus, the inter-temporal budget constraints are,

cY,t = wt − st, (3)

cO,t+1 =

[
1 + rt+1

µ

]
st. (4)

We assume rt ∈ [0,∞) ∀t; however only a positive interest rate motivates the agent

to invest. Now, maximizing Equation (2) with respect to the inter-temporal budget con-

straints given by Equations (3) and (4) gives optimal saving,

st =
wt

1 + µ−1
, (5)

which maximizes the expected lifetime utility of an agent. This optimal saving increases

with the labor income wt and survival probability µ. The aggregate saving of the economy

is equal to the aggregate saving by the Young:

St =
wtLt

1 + µ−1
. (6)

2.2 The Final Good Sector

The producer of the final output operates in a perfectly competitive environment, employ-

ing labor from the households and differentiated capital inputs from the monopolists to

produce a single output in the economy.17 We assume Constant Returns to Scale (CRS)

production technology,

Yt = L1−α
t

∫ Nt

0

Kα
i,t di, (7)

where, Lt is the labor supply, Nt is the available varieties, Ki,t is the utilization level of

ith machine-variety at period t and, α ∈ (0, 1) determines the share of labor, 1 − α, in

final output.
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Let wt, and pi,t represent the wage rate and the rental price for the labor and the

ith(i ∈ (0, Nt]) machine-variety at period t, respectively. The CRS and perfect competition

assumptions then imply that final output producer earns a normal profit and assigns a

wage and a rental price to their respective marginal productivities.

wt = (1− α)
Yt

Lt

, (8)

pi,t = αL1−α
t Kα−1

i,t ∀i ∈ (0, Nt]. (9)

The Equation (9) represents the inverse demand for the input i ∈ (0, Nt] at the rental

price pi,t, indicating that producer of the final output demand more inputs at a lower

price. The final demand for the ith machine-variety at the rental price pi,t can be written

as,

Ki,t =

(
α

pi,t

) 1
1−α

Lt. (10)

2.3 The Monopolistic Sector

The economy has a continuum of input varieties i ∈ (0, Nt] at any given time t, each

of which is produced by its respective patent owner after creating a monopoly. At each

period t, the patent owner of the ith variety borrows raw capital from the annuity market

at the net interest rate rt+1 and transforms each unit of raw capital into one specialized

machine at no additional cost. At period t+1, machines are then rented to the final-good

producer at the rental price pi,t+1.
18

Let the specialized machines depreciate at a constant rate δ ∈ [0, 1] per period. As a

result, the average cost of raw capital is δ + rt+1, and given the demand for ith machine-

variety, the profit flow of ith patent owner or monopolist at time t+1 can be written

as,

πi,t+1 = [pi,t+1 − (δ + rt+1)]Ki,t+1. (11)

A monopolist maximizes profit by setting the optimal price. At period t+1, the ith patent

owner or monopolist maximizes profit flow by setting the price of the ith machine equal
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to,

pi,t+1 =
δ + rt+1

α
≡ pt+1 ∀ i ∈ (0, Nt+1]. (12)

2.3.1 Patent Breadth

Assume that the government limits the patent owner’s ability to charge an unconstrained

monopolist’s price by introducing a patent breadth.19 We follow Goh and Olivier (2002)

to model the patent breadth,20 using parameter λ, it modifies the monopolist’s price to

pt+1,λ =
λ(δ + rt+1)

α
; λ ∈ (α, 1]. (13)

When λ = α, the price pt+1,λ that the monopolist is allowed to charge is equal to the

marginal cost of (input) production δ + rt+1, and the monopolist completely loses his or

her market power. However, when λ becomes one, s/he is allowed to charge an uncon-

strained monopolist price pt+1.
21 Tightening (rising) the patent breadth λ increases the

monopolist’s market power by enabling the patent owner to charge a higher monopolist’s

price for each machine-variety.

The final good producer’s per capita demand for each machine-variety or machine-

variety per capita at the monopolist’s price pt,λ in period t is,

Ki,t

Lt

=

[
α2

λ(δ + rt)

] 1
1−α

≡ kt,λ; ∀ i ∈ (0, Nt]. (14)

Equation (14) gives the number of machine-variety assigned to each labor. After plugging

the monopolist’s price pt+1,λ in Equation (11) and using Equation (14), we get the profit

flow of each monopolist in period t+1,

πt+1,λ = α
(
1− α

λ

)
kα
t+1,λLt+1. (15)
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Then, plugging the aggregate demand Ki,t ≡ kt,λLt for each input i ∈ (0, Nt] in Equation

(7), we get the per capita output that is produced in each period t,

Yt,λ

Lt

= kα
t,λNt ≡ yt,λ. (16)

According to Equation (16), the rising machine-variety per capita increases the output

per capita at a decreasing rate. Therefore, an optimal machine-variety per capita must

exist that maximizes machines’ utilization and output per capita. Further, rising machine-

variety per capita beyond the optimal level does not increase the machines’ utilization level

but crowds out investment from innovation, thereby lowering the output per capita. Thus,

the loosening (tightening) patent breadth can increase the output of an economy if the

actual machine-variety per capita is lower (higher) than the optimal machine-variety per

capita. Because the loosening (tightening) patent breadth decreases (increases) the price

for machines, thereby increasing (decreasing) the actual machine-variety per capita, and

the gap between actual and optimal machine-variety per capita become small. Moreover,

we get the aggregate saving of the economy using Equations (8) and (16) in Equation (6),

St,λ =
(1− α)Yt

1 + µ−1
=

(1− α)kα
t,λNtLt

1 + µ−1
. (17)

2.3.2 The R&D Sector

We consider lab-equipment type R&D specification as proposed by Rivera-Batiz and

Romer (1991). The R&D entrepreneur devotes ηt units of output in R&D or inter-

generational patent trade to get a patent for newly invented or old existing varieties’

blueprints. We assume that the R&D cost ηt for getting a patent to machine-variety is

given by ηLt.
22 Additionally, we assume free entry conditions in the R&D sector. An

entrepreneur who values the patent above R&D cost and is willing to bear those costs

can enter the R&D sector. At equilibrium (or at the zero profit condition), the value of

a patent must equal the R&D cost. Therefore, the patent owner of a machine-variety

obtains a profit πt+1,λ and a capital gain or loss (ηt+1 − ηt) by investing ηt units of funds
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in patents.23 Furthermore, investing ηt units of funds in the risk-free asset gives net return

rt+1ηt.

The no-arbitrage condition, which equates the net rate of return on a risk-free asset

to the net rate of return on investment in a patent, can therefore be expressed as follows:

rt+1ηt = πt+1,λ + (ηt+1 − ηt). (18)

By entering the monopolist’s profit and R&D cost in the no-arbitrage condition, we can

obtain the implicit expression for interest rate.

1 + rt+1 =

{
α

η

(
1− α

λ

)
kα
t+1,λ + 1

}
(1 + n). (19)

Lemma 1. A positive and unique stationary interest rate exists for sufficiently small

patent’s per capita R&D cost, η.24

Proof. Let f(rt) = 1 + rt −
{

α
η

(
1− α

λ

)
kα
t,λ + 1

}
(1 + n).

Since f(rt) is continuous and f(0) = 1 −
{

α
η

(
1− α

λ

) (
α2

λδ

) α
1−α

+ 1

}
(1 + n) < 0 as

η → 0, and f(∞) > 0. Hence by Intermediate Value Property, ∃ r∗λ ∈ (0,∞) such that

f(r∗λ) = 0.

We are left with the proof of uniqueness. Since f ′(rt) = 1 +
α2(1+n)kαλ

η(1−α)(δ+rt)

(
1− α

λ

)
> 0,

which implies f(rt) is increasing and one-one. Moreover, rt depends on the parameters

only; therefore, the unique positive interest rate is stationary. That is, rt = r∗λ(> 0),∀t.

Assumption 1. The patent’s per capita R&D cost η is sufficiently small.25

Since only a positive interest rate motivates the agent to invest, and the Assumption

1 is necessary to get a positive and unique stationary interest rate. Thus, hereafter we

follow the Assumption 1 and therefore the stationary interest rate.

The monopolist’s price pt,λ and the per capita demand for machine kt,λ, have both

become stationary at the stationary interest rate r∗λ, and are denoted by pλ and kλ re-
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spectively. The output per capita growth rate gy,λ =
Yt+1,λ

Yt,λ

Lt

Lt+1
− 1 can be obtained by

using Equation (16). We get the output per capita growth rate gy,λ =
Yt+1,λ

Yt,λ

Lt

Lt+1
− 1 to be

exactly equal to the variety growth rate gN,λ = Nt+1

Nt
− 1. We represent this by gλ.

gy,λ = gN,λ = gλ (20)

Thus, the optimal patent breadth λo that maximizes variety growth gN,λ also maximizes

the output per capita growth gy,λ.

Lemma 2. The stationary interest rate r∗λ decreases with the declining population

growth n.

Proof . The implicit expression for the stationary interest rate can be written as,

1 + r∗λ =

{
α

η

(
1− α

λ

)
kα
λ + 1

}
(1 + n), (21)

where kλ =
[

α2

λ(δ+r∗λ)

] 1
1−α

. With loosening patent breadth or decreasing depreciation rate,

machine-variety per capita kλ increases.
26 Differentiating the stationary interest rate given

in Equation (21) with respect to n, we get

∂r∗λ
∂n

=
(1− α)(1 + r∗λ)(δ + r∗λ)

(1 + n)[(δ + r∗λ)− α(δ + n)]

It is clear, from Equation (21), that r∗λ > n which implies
∂r∗λ
∂n

> 0. The stationary

interest rate r∗λ decreases with the declining population growth n. This is due to de-

creased demand for raw capital, eventually leading to a fall in interest rate. A decline

in the population growth rate n decreases the market size, leading to lower demand for

machine-varieties. The demand for raw capital falls as monopolists use raw capital to

create these machines, thereby decreasing interest rates. Moreover, the stationary interest

rate increases as the patent breadth rises and decreases as patent’s per capita R&D cost

or the depreciation rate rises. That is,
∂r∗λ
∂λ

> 0,
∂r∗λ
∂η

< 0 and,
∂r∗λ
∂δ

< 0.27 Tightening patent
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breadth λ increases the monopolist’s market power and encourages the R&D entrepreneur

to devote ηt units of funds in R&D or inter-generational patent trade for getting a patent

for newly invented or old existing varieties’ blueprints. It increases the demand for raw

capital, thereby increasing interest rates. In contrast, the stationary interest rate r∗λ de-

creases as patent’s per capita R&D cost η and depreciation rate δ rise. This is because

a rise in patent’s per capita R&D cost η and depreciation rate δ increase the cost of the

new blueprint invention ηt and the price of machine, respectively, decreasing the demand

for raw capital and lowering the interest rate.

2.4 Capital Market Clearing Conditions

At any time t, the aggregate investment It,λ can be obtained by aggregating investment

in buying old patents, in acquiring new patents on inventions, and in the formation of

differentiated machines. Therefore, the aggregate investment at the time t is given by,

It,λ =

∫ Nt+1

0

[ηt +Ki,t+1] di = [η + (1 + n)kλ]Nt+1Lt. (22)

The market clearing condition is an equilibrium point at which the economy’s aggre-

gate saving St,λ, is translated into the economy’s aggregate investment It,λ. Now, if we set

St,λ equal It,λ at the stationary interest rate, we get the variety growth rate, which is also

equal to the the output per capita growth.28

gλ =
Nt+1

Nt

− 1 =
(1− α) kα

λ

(1 + µ−1)[η + (1 + n) kλ]
− 1. (23)

Lemma 3. The output per capita growth is positive under the Assumption 1.29

Proof . See Appendix A3 for the proof of Lemma 3.

A sufficiently low patent’s per capita R&D cost makes R&D participation affordable

to the entrepreneurs by lowering the R&D cost of getting a patent. This spurs variety
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growth in the economy and leads to positive output per capita growth.

Proposition 1. An inverted-U relationship may exist between machine-variety per

capita and output per capita growth.

Proof . Differentiating the output per capita growth gλ in Equation (23) with respect

to the machine-variety per capita kλ, we get

∂gλ
∂kλ

=
(1− α) kα−1

λ

(1 + µ−1) [η + (1 + n)kλ]2
[αη − (1 + n)(1− α)kλ]. (24)

The output per capita growth gλ increases (decreases) with rise of the machine-variety per

capita kλ, if kλ < (>) αη
(1+n)(1−α)

. However, kλo = αη
(1+n)(1−α)

is the critical point at which

the output per capita growth may have a maxima.

Differentiating Equation (24) with respect to kλ, at kλo = αη
(1+n)(1−α)

we get

[
∂2gλ
∂k2

λ

]
kλ=kλo

=
−(1 + n)(1− α)2kα−1

λo

(1 + µ−1)
[
η + αη

1−α

]2 < 0.

Therefore, the output per capita growth will have maximum at kλo = αη
(1+n)(1−α)

, which

is the optimal machine-variety per capita that maximizes machines’ utilization level and

output. Thus, increasing machine-variety per capita generates an inverted-U relationship

with the output per capita growth. Because it initially closes the gap between actual

and optimal machine-variety per capita up to a critical level. However, as it continues to

increase beyond the critical level, it gradually widens the gap, leading to this distinctive

relationship.

Loosening patent breadth λ, a policy variable in our model, raises machine-variety per

capita (see Appendix A1), which increases (decreases) the output per capita growth if the

actual machine-variety per capita kλ is lower (higher) than optimal machine-variety per

capita kλo . Furthermore, the output per capita growth is always maximum at the optimal

machine-variety per capita kλo = αη
(1+n)(1−α)

because the machines’ utilization is maximal

at the optimal machine-variety per capita. Moreover, at the optimal machine-variety per
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capita, the proportion of aggregate investment devoted to patents at any period equals

the labor share.30

Suppose the term ”optimal patent breadth” refers to the patent breadth that maxi-

mizes the output per capita growth. Since the output per capita growth is maximized at

the optimal machine-variety per capita kλo = αη
(1+n)(1−α)

. Therefore, the patent breadth

λo is optimal if it makes the machine-variety per capita at kλo , alternatively if the actual

machine-variety per capita becomes the optimal machine-variety per capita.

At the actual patent breadth λ, the machine-variety per capita is kλ =
[

α2

λ(δ+r∗λ)

] 1
1−α

.

Using Equation (21), it can be written as kλ =
αη(r∗λ−n)

(1+n)(λ−α)(δ+r∗λ)
. However, at the optimal

patent breadth λo, the machine-variety per capita is kλo = αη
(1+n)(1−α)

. Thus, the gap

between the machine-variety per capita at the optimal and actual patent breadth can be

written as

kλo − kλ =
αη

(1 + n)(1− α)(λ− α)(δ + r∗λ)
[δ(λ− α) + n(1− α)− r∗λ(1− λ)].

For the case of zero patent breadth λ = α, the gap between the machine-variety per

capita at the optimal and zero patent breadth becomes

kλo − kα < 0.

Since the optimal machine-variety per capita kλo is much lesser than the actual machine-

variety per capita kα; thus the zero patent breadth can not be optimal. In this case, the

tightening patent breadth that reduces the actual machine-variety per capita towards

the optimal and reduces the crowding out of investment can enhance the output per

capita growth. Furthermore, at the zero patent breadth, the monopolist’s price equals the

marginal cost of machines’ production. Therefore, no one will devote resources to getting

a patent, and growth will be zero.
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For the case of complete patent breadth λ = 1, the gap between the machine-variety

per capita at the optimal and complete patent breadth becomes

kλo − k1 =
αη(δ + n)

(1 + n)(1− α)(δ + r∗1)
,

and its sign depends on the factor (δ + n). The parameters δ and n also show the rate

at which the new machines replace the old ones and the new machines are assigned to

increased labor over the period, respectively. Thus, δ + n shows the rate at which new

machines are demanded over the period. If the economy has new demand for machines over

the period due to the depreciation of machines and/or the population growth, δ + n > 0,

then the optimal machine-variety per capita kλo is much higher than the actual machine-

variety per capita k1; thus, the complete patent breadth can not be optimal. In this

case, the optimal patent breadth λo will be incomplete, and the loosening patent breadth

that raises the actual machine-variety per capita towards the optimal can enhance the

output per capita growth. If the economy does not have new demand for machines due to

population decline, even if the depreciation of machines is positive, δ+n = (<) 0, then the

optimal machine-variety per capita kλo is equal to (lower than) the actual machine-variety

per capita k1; thus, the complete patent breadth will be the optimal patent breadth.31

Hence, if the economy has new demand for machines over the period then the in-

complete patent breadth is an optimal patent policy. An inverted-U relationship exists

between machine-variety per capita and output per capita growth. However, the above

relationship will be monotonic and the complete patent breadth is an optimal patent pol-

icy if the economy does not have any new demand for machines.

Corollary 1. An inverted-U relationship may exist between patent breadth and output

per capita growth.32

Proof . The machine-variety per capita increases with the loosening patent breadth,

and from Proposition 1, the machine-variety per capita and output per capita growth may

19



Fig. 3: The relationship between machine-variety per capita and output per capita growth
if the economy has new demand for machines, δ + n > 0.
Note: The vertical axis represents the output per capita growth, while the horizontal
axis represents machine-variety per capita and the strength of patent breadth. Moving
left to right on the horizontal axis increases machine-variety per capita kλ ∈ [k1, kα)
and decreases the strength of patent breadth λ ∈ (α, 1]. The maximal output per capita
growth exists at the incomplete patent breadth λo.

have an inverted-U relationship. As a result, Corollary 1 follows from Proposition 1.

Lemma 4. The stationary interest rate expression is explicit at the optimal patent

breadth.

Proof . At the optimal patent breadth λo, the actual machine-variety per capita

becomes the optimal machine-variety per capita. That means,

[
α2

λo(δ + r∗λo)

] 1
1−α

=
αη

(1 + n)(1− α)
= kλo .

This implies,

kα
λo =

αη

(1 + n)(1− α)

[
α2

λo(δ + r∗λo)

]−1

.
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Fig. 4: The relationship between machine-variety per capita and output per capita growth
if the economy has no any new demand for machines, δ + n ≤ 0.
Note: The vertical axis represents the output per capita growth, while the horizontal
axis represents machine-variety per capita and the strength of patent breadth. Moving
left to right on the horizontal axis increases machine-variety per capita kλ ∈ [k1, kα)
and decreases the strength of patent breadth λ ∈ (α, 1]. The maximal output per capita
growth exists at the complete patent breadth λo = 1.

Now, plugging kα
λo in Equation (21) at the optimal patent breadth λo, we get an explicit

expression for the interest rate:

r∗λo =
(λo − α)δ + (1− α)n

1− λo
. (25)

Proposition 2. The optimal patent breadth, λo, tightens with declining population

growth, n, if the economy has new demand for machines. Moreover, the declining popu-

lation growth does not have any impact on the optimal patent policy if the economy does

not have any new demand for machines.

Proof . At the optimal patent breadth λo, the actual machine-variety per capita

becomes the optimal machine-variety per capita.

[
α2

λo(δ + r∗λo)

] 1
1−α

=
αη

(1 + n)(1− α)
, (26)
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where r∗λo represents the stationary interest rate at λo. Plugging the explicit expression

for stationary interest rate from Equation (25) into Equation (26), we get the expression

for optimal patent breadth,

λo =
α2
(

1−α
αη

)1−α

(1 + n)1−α

(1− α)(δ + n) + α2
(

1−α
αη

)1−α

(1 + n)1−α

. (27)

It is obvious that the optimal patent breadth is incomplete, λo ∈ (α, 1), if the economy has

new demand for machines over the period due to the depreciation of machines and/or the

population growth, δ + n > 0. However, the optimal patent breadth is complete, λo = 1,

if the economy does not have new demand for machines, δ + n ≤ 0.

Now differentiating the optimal patent breadth expression given in Equation (27) with

respect to the population growth rate n, we get

∂λo

∂n
=

−α2(1− α)
(

1−α
αη

)1−α

(1 + n)−α [(1− δ) + α(δ + n)][
(1− α)(δ + n) + α2

(
1−α
αη

)1−α

(1 + n)1−α

]2 . (28)

Clearly ∂λo

∂n
< 0 if δ+n > 0, implying that the optimal patent breadth λo that maximizes

the output per capita growth becomes stringent with declining population growth n. A

declining population growth decreases the new demand for machines thereby less entry

into the R&D entrepreneurship. Thus, as the population growth declines, the optimal

patent breadth should be tightened to generate more entry into the R&D entrepreneurship

and to maximum growth. Furthermore, if δ + n ≤ 0 then a declining population growth

could not change the status of δ + n ≤ 0. Thus, under δ + n ≤ 0, the optimal patent

breadth remains complete even if the population growth trajectory of the economy is

declining.33

Since the optimal patent breadth, λo tightens with declining population growth, n, if

the economy ha new demand for machines, δ+n > 0. Hence, a tightening patent breadth

policy up to new optimal patent breadth level can enhance the output per capita growth

for this case. However, keeping patent breadth complete is the optimal policy for the case
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where the economy does not have any new demand for machines.

Proposition 3. The optimal patent breadth, λo, tightens with declining patent’s per

capita R&D cost, η, if the economy has new demand for machines. Moreover, the declin-

ing patent’s per capita R&D cost does not have any impact on the optimal patent breadth

policy if the economy does not have new demand for machines.

Proof . Differentiating the optimal patent breadth λo given in Equation (27) with

respect to the patent’s per capita R&D cost η, we get

∂λo

∂η
=

−α3(1− α)(δ + n)
(

1−α
αη

)2−α

(1 + n)1−α[
(1− α)(δ + n) + α2

(
1−α
αη

)1−α

(1 + n)1−α

]2 .

Clearly ∂λo

∂η
< 0 if δ + n > 0, implying that the optimal patent breadth λo tightens

with declining patent’s per capita R&D cost η if δ + n > 0. Since new demand for

machines exists, entry into R&D entrepreneurship is profitable even at incomplete patent

breadth. However, a declining patent’s per capita R&D cost decreases optimal machine-

variety per capita. Therefore, a tightening patent breadth that reduces machine-variety per

capita to optimal machine-variety per capita can enhance the output per capita growth.

Furthermore, if δ+n ≤ 0 then a declining patent’s per capita R&D cost could not change

the status of δ + n ≤ 0. Thus, if δ + n ≤ 0 then the optimal patent breadth remains

complete even if the patent’s per capita R&D cost is declining.

The optimal patent breadth λo that maximizes the output per capita growth, decreases

as depreciation of machines δ ∈ [0, 1] rises. That is, ∂λo

∂δ
< 0.34

Proposition 4. The maximal output per capita growth gλo, at the optimal patent

breadth, increases with declining population growth n.
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Proof . The output per capita growth is maximal at the optimal patent breadth and

can be written as

gλo =

(
1− α

1 + µ−1

)(
1− α

η

)1−α(
α

1 + n

)α

− 1. (29)

Clearly, ∂gλo
∂n

< 0, implying that the maximal output per capita growth, at the optimal

patent breadth, increases with declining population growth. A declining population growth

nmakes optimal patent breadth stringent. So, the government tightens the patent breadth

policy to the optimal patent breadth. This increases new entry in R&D entrepreneurship

and maximizes the output per capita growth. Moreover, ∂gλo
∂η

< 0 and ∂gλo
∂µ

> 0 because

the optimal patent breadth becomes stringent as the patent’s per capita R&D cost de-

clines and the aggregate saving increases as the survival probability increases, respectively.

According to Equation (29), the maximal output per capita growth can be steady at

a fixed level of population growth, even if the population is declining if n ∈ (−1, 0). The

negative n ultimately empties the people of the economy. Thus, at a negative population

growth, the economy can become steady at a positive output per capita growth but with

no population ultimately.

3 Patent and Welfare

This section conducts a welfare analysis to ascertain whether enhancing the lifetime utility

of all generations is feasible beyond the optimal patent breadth level. At the optimal patent

breadth, actual machine-variety per capita becomes optimal and gives the maximal output

per capita growth. We follow Diwakar et al. (2021), the lifetime utility of generation t

is,35

Ut = ln(cY,tLt) + µln(cO,t+1µLt).
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Plugging the consumption flow of a representative agent born at period t, the lifetime

utility of generation t becomes,

Ut = (1 + µ)ln

[(
1− α

1 + µ

)
kα
λNtLt

]
+ µln [(1 + r∗λ)µ] . (30)

Equation (30) implies that Ut = Ut−1 + (1 + µ)ln[(1 + n)(1 + gλ)], and thus

Ut = U0 + t(1 + µ)ln[(1 + n)(1 + gλ)], (31)

where U0 = (1 + µ)ln
[(

1−α
1+µ

)
kα
λN0L0

]
+ µln [(1 + r∗λ)µ] represents the lifetime utility of

initial generation.36 According to Equation (31), adjusting patent breadth, either by loos-

ening or tightening it up to the critical patent breadth level that maximizes the sum of

the lifetime utility of initial generation and the output per capita growth, can enhance

the lifetime utility of all generations. This improvement in lifetime utility is greater for

generations that will be further into the future.

Proposition 5. An inverted-U relationship may exist between the machine-variety

per capita and the lifetime utility of generation t.

Proof . Differentiating the lifetime utility of generation t given in Equation (31) with

respect to machine-variety per capita, we get

∂Ut

∂kλ
=

(1 + µ)
[
(1 + t)− ξ

(
1−λ
λ

)]
kλ[η + (1 + n)kλ]

[
αη − (1 + n)

(
t

(1 + t)− ξ
(
1−λ
λ

) − α

)
kλ

]
,

where ξ =
µ(δ+r∗λ)[(δ+r∗λ)−(δ+n)]

(1+µ)(1+r∗λ)[(δ+r∗λ)−
α
λ
(δ+n)]

< 1. Clearly, the lifetime utility of generation t max-

imizes at kλw = αη

(1+n)

(
t

(1+t)−ξ( 1−λ
λ )

−α

) .37 Because, it increases (decreases) with the rise of

machine-variety per capita if kλ < (>)kλw . Thus, we get an inverted-U relationship be-

tween machine-variety per capita and lifetime utility of generations because an increment

of machine-variety per capita has two opposing effects on consumption of initial gener-

ation and two opposing effects on output per capita.38 Positive, it increases the Young
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consumption of initial generation and the output per capita growth due to increased wage

and decreased gap between optimal and actual machine-variety per capita. Negative, it

decreases the Old consumption of initial generation and the output per capita growth due

to decreased interest rate and increased gap between optimal and actual machine-variety

per capita. The positive effect dominates over negative effect up to a threshold level, kλw ,

where these two effects cancel out, after that negative effects dominates over positive effect.

Corollary 2. An inverted-U relationship may exist between the patent breadth and

the lifetime utility of generation t.

Proof . Since machine-variety per capita increases with the loosening patent breadth

(see Appendix A1). Thus, Corollary 2 follows from Proposition 5.

Corollary 3. The welfare-maximizing machine-variety per capita, kλw , may differ

from the optimal (growth-maximizing) machine-variety per capita, kλo.

Proof . Clearly, kλw ⪌ kλo if ξ ⪋ λ
1−λ

.

Corollary 4. Loosening (tightening) patent breadth further up to welfare-maximizing

patent breadth level from optimal patent breadth level may benefits all generations if

ξ < (>) λ
1−λ

.

Proof . It follows from Proposition 1 and Corollary 3.39

4 Conclusion

Using a lab-equipment type variety expansion model with physical capital, this study

investigates the impact of declining population growth on the optimal patent breadth

policy in an OLG economy. We show that increasing machine-variety per capita due to
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loosening patent breadth yields two opposing effects on consumption and two opposing

effects on output per capita. Thus, increasing machine-variety per capita may generate

an inverted-U relationship with the output per capita growth and the lifetime utility of

all generations. We obtain unique growth- and welfare-maximizing patent breadth policy.

However, the patent breadth policy, which maximizes growth, may differ from the patent

that maximizes lifetime utility of all generations.

Additionally, we show that the optimal patent breadth depends on the economy’s new

demand for machines, which can come from population growth and/or the depreciation

of machines. The optimal patent breadth is complete if population decline results in no

new demand for machines. However, it is incomplete in the presence of new demand for

machines.

Furthermore, we investigate whether the declining population growth impacts optimal

patent breadth policy. We obtain that if the economy has a positive demand for machine-

varieties, the declining population growth impacts optimal patent breadth, and it tightens

with declining population growth to promote entry in R&D entrepreneurship and to

maximize growth. In contrast, declining population growth does not affect the optimal

patent policy when there is no any new demand for machines.

Notes

1 Tightening patent rewards the R&D entrepreneurship more.

2 Park (2008) provides an update to the index of patent protection policies of Ginarte and Park (1997). The

index is the unweighted sum of five categories of patent protection (extent of coverage, membership in international

treaties, duration of patent protection, enforcement mechanism, and restriction on patent protection) that have

been assigned a score ranging from 0 to 1. Thus, the index of patent strength is on a 0-5 scale, where a higher

value indicates more robust protection of inventions.

3 See Gould and Gruben (1996), Thompson and Rushing (1999), Falvey et al. (2006), Qian (2007), Lerner

(2009), and for theoretical studies; see O’donoghue and Zweimuller (2004), Furukawa (2007), Horii and Iwaisako

(2007), Chu et al. (2012a), Chu et al. (2012b), Iwaisako and Futagami (2013), and Nakabo and Tabata (2018).

4 Jones (2022) using United Nations 2019 data showed that the natural population growth rates (births minus

deaths rate, ignoring immigration) in Japan, Germany, Italy, and Spain are already negative.

5 See Iwaisako and Futagami (2003), Kwain and Lai (2003), O’donoghue and Zweimuller (2004), Furukawa

(2007), Horii and Iwaisako (2007), Chu et al. (2012a), Chu et al. (2012b), Cysne and Turchick (2012), Iwaisako

and Futagami (2013), Zeng et al. (2014).
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6 To the best of our knowledge Chou and Shy (1993), Sorek (2011), and Diwakar et al. (2021) are the only

studies that analyze the growth implications of patent protection policies in a discrete-time OLG economy with

finitely living households, whereas Nakabo and Tabata (2018) analyzes it in a continuous-time OLG economy of

perpetual youth households.

7 See the latest study on patent policy and economic growth in OLG framework by Diwakar et al. (2021).

8 Note that if A = 1 in Proposition 4 of Diwakar et al. (2021), effective labor supply becomes labor supply

(Young population) in the model. In two period OLG model, the overall population growth is the same as the

Young population growth.

9 Moreover, Jones (2022) showed that fertility rates of high-income countries as a whole, as well as India,

China and the US, have been below the replacement rates.

10 Papageorgiadis and Sofka (2020) provide a composite index of the patent enforcement system (on a 0-10

scale, with a higher value indicating a strong patent enforcement system). PEI is the equally weighted sum of the

scores of the three transaction costs (servicing, property rights protection, and monitoring costs).

11 In our model, the final output producer employs labor from households and machines from the patent owners

to produce output.

12Suppose there is an increasing demand for machine-variety per capita beyond the optimal level. In that case,

more investment goes to the machine formation to meet the supply-demand condition, which crowds out the

investment that can be used in new inventions.

13 The loosening (tightening) patent breadth lowers (raises) the price of machine-variety, thereby increasing

(decreasing) its demand.

14 The narrowing (widening) gap implies that the actual machine-variety per capita approaches (diverges)

optimal.

15 The differentiated input producer is allowed to charge a price that is less than (equal to) the monopoly price

under incomplete (complete) patent breadth.

16 The households setup is similar to Tabata (2015) and Morimoto et al. (2018).

17 We follow Iwaisako and Futagami (2013) and Diwakar et al. (2021) and assume differentiated inputs are

investment input (physical capital or machine).

18 Investment input takes one period to form and is then available for rent or use.

19 In this section, we assume that the government only uses patent breadth as a patent protection tool and

takes patent length as fixed and infinite.

20 This modelling approach is widely used in patent policy and growth literature; for example, see Zeng et al.

(2014), Chu et al. (2016) and Diwakar et al. (2021). The subscript λ indicates variables after implementing the

patent breadth.

21 The patent breadths λ = α and λ = 1 are known as zero and complete patent breadth, and the patent

breadth λ between α and 1 is known as incomplete patent breadth.

22 We follow Barro and Sala-i-Martin (2004), Laincz and Peretto (2006), Sorek and Diwakar (2017), and Nakabo

and Tabata (2018) to define the cost of a new variety blueprint, which eliminates the scale effect.
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23 We have assumed that the length of a patent is fixed and infinite. Therefore, the old (patent owner of existing

machine-varieties) sell their patent to the young at a price equal to the new variety R&D cost. That is, the market

value of the old patent is equal to the R&D cost of the new one.

24 We require an additional assumption, unlike Diwakar et al. (2021), to obtain the unique stationary interest

rate. Because, in our study, population can increase or decrease as n ∈ (−1,∞).

25 The similar assumption has been taken by Diwakar et al. (2021) to obtain a positive output growth.

26 See Appendix A1 for details.

27 See Appendix A2 for details.

28 For the sake of simplifying notation, Diwakar et al. (2021) has assumed ψ = k1−α
λ , and the term has no

economic meaning. By setting n = 0, Equation (23) of this paper matches with Equation (9) of Diwakar et al.

(2021) .

29 Diwakar et al. (2021) obtain the similar result but in aggregate terms. However, our result is in per capita

terms.

30 See Appendix A4 for details.

31 For the case of δ + n < 0, λo = 1 because monopolists maximize their profit at λo = 1 and will not choose

any λo beyond 1.

32 Nakabo and Tabata (2018) obtains an inverted-U relationship between patent breadth and economic growth

in a continuous OLG economy. However, we find the same results in discrete OLG economy.

33 Unlike Diwakar et al. (2021), we obtain that the optimal patent breadth can be complete for a positive

depreciation rate δ > 0 if δ + n ≤ 0.

34 See Appendix A5 for details.

35 The generation t represents all households/agents who born at period t.

36 A high stationary interest rate decreases the machine-variety per capita. See Appendix A6 for details.

37 Since t

(1+t)−ξ( 1−λ
λ )

− α > t
1+t

− α, where t
t+1

→ 1 and α = 0.3 suggested by empirical literature. Thus, the

expression t

(1+t)−ξ( 1−λ
λ )

− α is positive.

38 The two opposing effects on consumption due to increased machine-variety per capita is similar to Diwakar

et al. (2021). Moreover, we obtain an additional opposing effects on output per capita.

39 A part of result, in line with Corollary 4, is obtained by Diwakar et al. (2021): loosening patent breadth

further beyond optimal level benefits all generations. However, in our analysis we also get a role for tightening

patent breadth.
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Appendix

A1. Effects of patent breadth and depreciation of machines on the

machine-variety per capita

The machine-variety per capita, at the stationary interest rate, is given by

kλ =

[
α2

λ(δ + r∗λ)

] 1
1−α

. (A.1)

Now differentiating Equation (A.1) with respect to the patent breadth λ and depreciation

of machines δ, respectively. We get

∂kλ
∂λ

=
−k2−α

λ

[
(δ + r∗λ) + λ

∂r∗λ
∂λ

]
α2(1− α)

< 0

∂kλ
∂δ

=
−kλ

[
1 +

∂r∗λ
∂δ

]
(1− α)(δ + r∗λ)

=
−kλ

[(δ + r∗λ)− α(δ + n)]
< 0

As a result, the machine-variety per capita increases as patent breadth is loosened and

the depreciation of machines is declined.

A2. Effects of patent breadth, patent’s per capita R&D cost and depreciation

of machines on the stationary interest rate

Differentiating the stationary interest rate given by Equation (21) with respect to λ, η

and δ, we get

∂r∗λ
∂λ

=
α(1− λ)(r∗λ − n)(δ + r∗λ)

λ(λ− α)[(δ + r∗λ)− α(δ + n)]

∂r∗λ
∂η

=
−(1− α)(r∗λ − n)(δ + r∗λ)

η[(δ + r∗λ)− α(δ + n)]

∂r∗λ
∂δ

=
−α(r∗λ − n)

[(δ + r∗λ)− α(δ + n)]
.
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It is clear, from Equation (21), that r∗λ > n. Therefore,
∂r∗λ
∂λ

> 0,
∂r∗λ
∂η

< 0 and,
∂r∗λ
∂δ

< 0.

These relationship are consistent with Diwakar et al. (2021).

A3. Proof of Lemma 3

A sufficiently small patent’s per capita R&D cost, η → 0, implies that r∗λ → ∞ for any

patent breadth λ ∈ (α, 1]. Thus,

lim
η→0

(gλ) =
(1− α)

(1 + µ−1)
lim
η→0

kλ
α

[η + (1 + n)kλ]
− 1 =

(1− α)

(1 + µ−1)
lim

r∗λ→∞

kλ
α−1

1 + n
− 1 > 0,

which implies that the output per capita growth is positive for sufficiently small patent’s

per capita R&D cost.

A4. Alternative intuition for the optimal machine-variety per capita

The optimal machine-variety per capita kλo is given by αη
(1+n)(1−α)

. That is, kλo = αη
(1+n)(1−α)

which implies,

(1 + n)kλo

η + (1 + n)kλo

= α =⇒ 1− α =
η

η + (1 + n)kλo

=⇒ 1− α =
ηNt+1Lt

[η + (1 + n)kλo ]Nt+1Lt

, (A.2)

where 1−α is the labor share in final output, ηNt+1Lt is the investment in patents (old and

new), and [η + (1 + n)kλo ]Nt+1Lt is the aggregate investment. Therefore, Equation (A.2)

suggests that the labor share at any period equals the proportion of aggregate investment

devoted to patents at the optimal machine-variety per capita.
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A5. Effect of depreciation of machines on optimal patent breadth

Differentiating the optimal patent breadth λo in Equation (27) with respect to the depre-

ciation of machines δ, we get

∂λo

∂δ
=

−α2(1− α)
(

1−α
αη

)1−α

(1 + n)1−α[
(1− α)(δ + n) + α2

(
1−α
αη

)1−α

(1 + n)1−α

]2 < 0.

Thus, the optimal patent breadth λo increases as the depreciation of machines δ decreases.

It is consistent with the result of Diwakar et al. (2021).

A6. The machine-variety per capita and stationary interest rate

From Chain-Rule, we have
∂r∗λ
∂kλ

=
∂r∗λ
∂λ

∂λ
∂kλ

. Thus,

∂r∗λ
∂kλ

=
−α(1− λ)(r∗λ − n)(δ + r∗λ)

kλ[λ(δ + r∗λ)− α(δ + n)]
< 0,

which implies that the machine-variety per capita and stationary interest rate have neg-

ative correlation.
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