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1 Introduction
Job market interviews are an integral part of hiring decisions. Candidates are considered sequen-
tially, and employers can decide what questions to ask and what tests to perform.

Economic literature lacks papers in which there is a sequential search with flexible and uncon-
strained learning. This paper closes the gap – we build a model of sequential search in which a
decision maker can decide how much and what information to acquire at each stage of the search
process. Other papers, for example, Ursu et al. (2020), model learning as flexible but restrict their
analysis to a specific learning technology of acquiring signals of fixed structure, and the decision
maker chooses only the amount of these signals.

We show that under general conditions, the optimal learning and hiring strategy are extremely
tractable and intuitive. First, learning at each stage of the search is characterized by a set of
posterior beliefs about the candidate that is considered at this stage, and this set is binary – high
and low posteriors. Second, if the interview ends by approaching the high posterior, the candidate is
hired, and the search stops; if, however, the low posterior is approached, the candidate is dismissed,
and the search goes to the next stage. Third, both high and low posteriors are lower at each new
stage than they were in the previous stage.

Our results are important for several strands of literature. First, to the best of our knowledge,
our paper is the first one that considers a problem of sequential search with full flexibility of
acquired information; that is, we generalize the optimal stopping problem (see, e.g., Gilbert and
Mosteller (1966)). Secondly, we contribute to the literature on Bayesian learning. One of the
central notions in the literature is the notion of Blackwell’s order on signal structures, or, what
is equivalent, experiments (see Blackwell (1951)). The issue is that, in practice, many signals are
Blackwell- incomparable. We introduce a new order on information structures, and this new order
is related to the third result of our paper. The third result has a very intuitive interpretation and
is also important for literature in information acquisition. It can be interpreted in the following
way: the interviews of each following candidate become easier and easier to pass. The importance
of information acquisition literature is as follows. The signal structures designed by the decision
maker are not comparable in a Blackwell sense but still can be ordered; that is, we introduce a new
order on interviews – their difficulty to pass. Fourth, our paper is important for labor economics,
namely, for literature on labor market discrimination.

2 Setup
We study a decision maker (DM, she) who considers T a priori identical candidates. Each candidate
i (he) has an associated random variable which we call the productivity level, θi ∈ Θ = {0, 1}.1
The productivity levels are iid across all candidates with P(θi = 1) = µ ∈ (0, 1).

The manager must choose one candidate; there is no outside option. Before making a decision,
she may learn about the candidates’ types. Learning is costly and sequential. In stage i, the
manager inspects candidate i. We assume no discounting between periods, and therefore, the total
costs in the problem for the manager is simply the sum of costs in each period i. The manager’s
payoff in the problem equals the difference between the expected value of the chosen candidate
and total costs.

Learning in stage i proceeds as follows. The manager chooses a Blackwell experiment, which
generates information about θi. This experiment is a mapping from the state space {0, 1} to a
probability measure over some compact set of signal realizations. Each signal realization is asso-
ciated with posterior belief distribution on {0, 1}, and an experiment induces a distribution over
posterior beliefs. Since we consider a binary random variable, we identify a posterior belief distri-
bution with a belief about θi = 1. It is commonly known from the literature on rational inattention
(e.g., Caplin and Dean (2013)) that instead of considering the set of Blackwell experiments, one
can consider the set of distribution of posterior beliefs, in which the mean equals prior. In our
analysis, we apply the posterior approach. Formally, we define a feasible set of distributions as

1The results presented are robust with respect to the cardinality of the productivity levels.
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follows

Π = {pi ∈ ∆(∆(Θ)) : Epi
[x] = µ} , (1)

where x is a generic posterior belief about state θi = 1. Feasible sets of posterior distributions are
the same for all candidates since the productivity levels of the candidates are iid random variables.
If DM does not acquire informative signals during the interview, we simply denote the resultant
information structure by δ, a completely uninformative signal, that is, p puts unit weight on the
prior, µ.

Choice of pi is costly. We define the cost as a mapping C : Π → R+ such that

C(p) = λEp[c(x)], (2)

where λ ∈ R++ is the marginal cost of information and c(x) is convex and belongs to C∞ class. This
cost specification falls into the class of the posterior-separable cost function, the most commonly
used function in the rational inattention literature (Caplin et al. (2022)).

After observing the realized posterior belief xi about candidate i, the DM has to make a decision
about this candidate. We assume no recall property, that is, if a candidate is not hired right after
an interview, he is no longer available to the DM.2 Thus, DM has only two available actions:
whether or not hire i, denoted by ai ∈ {0, 1}. If DM chooses ai = 1 and hires a candidate i, she
stops the search process.3

To formulate the DM’s dynamic problem formally, we introduce a history up to time i. We
define a set Hi that consists of all realized posteriors such that all candidates before i have been
rejected.4 Formally,

Hi =
{
[0, 1]i−1 × {0, 1}i−1

}
if i ∈ {2, . . . , T},

H1 = ∅.

The DM’s strategy at i is a pair of functions denoted by pi and ai where5

pi : Hi → Π,

ai : Hi × [0, 1] → {0, 1}.

The first function gives the choice of signal for i for each hi ∈ Hi. The second function dictates
the hiring decision for i for each posterior xi in support of optimal signal.6 Collecting these two
functions for each candidate, the DM’s strategy is given by (p,a) = ((p1, a1)), . . . , (pT , aT )).

Given any posterior belief, xi DM has two actions. If she hires a candidate, she gets utility xi

and if she does not she reaches the history hi+1|hi = (xi, 0, hi). We denote a continuation value,
the maximal expected value that DM achieves at this history as V (hi+1|hi). Given a strategy
(pi, ai) we can write the DM’s payoff from interviewing candidate i as

Epi

[
aixi + (1− ai)V (hi+1|hi)− λc(xi)

]
. (3)

We formulate DM’s dynamic problem using dynamic consistency and normalization require-
ments.

Definition 1. The full dynamic problem of the manager is given by
2There can be several rationales for such assumption: no-recall can be caused by the psychological factors of the

rejected agent (pride, etc.), or of the DM (extreme case of limited memory), or by conditions on the labor market
(other firms immediately hire rejected candidate).

3Usually, interviews with other candidates are prescheduled in advance. In this case, DM simply does not obtain
informative signals about candidates from i+ 1 to T .

4If the DM has already been hired, the history is terminal. Consequently, there are no actions to take.
5Throughout we restrict our attention to pure actions, both for signals and hiring decisions. It is shown that

this is without loss.
6Note that the hiring decision is invariant across signals if their supports coincide.
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(p,a) ∈
{
arg max

(pi,ai)

[
Epi

[
aixi + (1− ai)V (hi+1|hi)− λc(xi)

]]}
(i,hi)∈{1,...,T}×Hi

(4)

s.t.

V (hi+1|hi) =

{
max

(pi+1,ai+1)

[
Epi+1

[
ai+1xi+1 + (1− ai+1)V (hi+2|hi+1)− λc(xi+1)

]]}
∀ i ̸= T, hi ∈ Hi

(DC)

V (hT ) = 0 ∀ hT ∈ HT (FC)

Constraint (DC) ensures dynamic consistency, that is DM behaves optimally in every history.
Constraint (FC) captures the intuition that if the final candidate is indeed reached, it implies that
the DM has rejected all candidates before. In that case DM rejects all candidates and ends up
with zero payoff.

3 Solution

3.1 Reduction to Static Problems
Using the notation from the previous Section, we introduce a building block for our analysis and
consider a special class of static problems. We later show how the problem (4) can be reduced to
a collection of the introduced static problems.

We consider a decision problem with two states θ = {0, 1} such that P(θ = 1) = µ and two
available actions. First action a = 1 is state-dependent and gives utility u(a = 1, θ) = θ. Another
action a = 0 is state-independent and gives fixed utility u(a = 0, θ) = ū ∈ (0, 1). Prior to making
a decision, DM may reduce the uncertainty regarding the state. DM’s learning technology and
related cost are summarized by set Π and function C(p) from (1) and (2) correspondingly.7

Given a realized posterior x, the DM chooses an action that delivers higher utility; therefore,
her ex-post reward from x equals max{x, ū}. Formally, DM solves the following problem

Definition 2. The static problem (or the problem with exogenous outside option) is

max
p(x)∈Π

Ep

[
max{x, ū} − λc(x)

]
. (5)

We show how the full DM’s problem (4) can be reduced to the collection of the problems
(5). The key observation is that continuation values are history-independent. Suppose that DM
reaches a history hi+1|hi. Continuation value V (hi+1|hi) equals the maximum achieved payoff for
that history. Because of the no-recall property, DM faces the same problem for any history hi+1

given that all ai′ = 0 for i′ ≤ i. Therefore, given that DM did not hire a candidate up to time i, a
sufficient statistic for her problem at any history hi+1 is the number of candidates left. Thus, we
can write V (hi+1|hi) = VT−i, because DM discarded first i candidates and T − i is left.

In stage i given a posterior realization xi in order to make a choice ai DM simply compares
value xi and a fixed number VT−i. Therefore, a problem (4) can be reduced to a collection of
problems (2) with different outside options ū. We can formulate the simplified DM’s problem as
follows.

Definition 3. The (reduced) dynamic DM’s problem is

max
pi(x)∈Π

Epi

[
max{xi, VT−i} − λc(xi)

]
∀ i ̸= T,

s.t.

VT−i =
{

max
pi+1(x)∈Π

Epi+1

[
max{xi+1, VT−i−1} − λc(xi+1)

]}
,

VT = 0.

(6)

7Such a problem is a problem of rationally inattentive agent with an exogenous outside option, see, e.g. Matějka
and McKay (2015), Wei (2021) for the previous reference.
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In the analysis of the DM’s problem below, we use the formulation (6) and refer to it as dynamic
DM’s problem. To solve the problem (6), we start with the analysis of the static problem (5).

3.2 Analysis of the Static Problem
We start with a characterization lemma that exploits the convexity of the cost function c(x).8

Lemma 1. 1. The optimal posterior distribution p(x) in the problem (5) consists of at most
two posterior beliefs.

2. There exist two thresholds xlnl, xhnl such that if ū ≤ xlnl or ū ≥ xhnl DM chooses degenerate
posterior distribution with unit mass on µ and chooses a = 1 if ū ≤ xlnl and a = 0 if
ū ≥ xhnl. If ū ∈ (xlnl, xhnl) DM chooses a posterior distribution with two posterior beliefs
xL, xH such that xL < µ < xH .

The first statement is a consequence of two available actions and convexity of c(x). If two
different posterior beliefs lead to the same action, a merged posterior, which equals their linear
combination, is cheaper and leads to the same expected reward. The second statement determines
the so-called learning region. If the value of the outside option is too low or too high compared to
the expected value of the random option, DM does not obtain any informative signal and chooses
the best ex-ante action. If ū ∈ (xlnl, xhnl) then DM chooses a posterior distribution p with two
posterior realizations xL, xH . Given xL she chooses a = 0 and given xH chooses a = 1. Inequality
xL < µ < xH follows from the feasibility condition p ∈ Π.

Exact values of xL and xH depend on the parameters of the model and function c(x). We
use the concavification technique as a solution method to the problem.9 Using the language from
Caplin et al. (2022) we introduce net utility u(x) = max{x, ū} − λc(x). Optimal beliefs xL, xH

belong to the concave closure û(x) of the net utility. Moreover, û(x) = u(x) if x ≤ xL or x ≥ xH

and û(x) equals to the straight line, connecting points (xL, u(xL)), (xH , u(xH)).
Using tangency conditions, we can characterize necessary and sufficient conditions for the op-

timal posteriors xL, xH . We formulate those in the following technical lemma.

Lemma 2. Suppose the optimal solution to the problem (5) is not degenerate. Optimal posterior
beliefs solve the system{

−λc′(xL) = 1− λc′(xH)
xH − λc(xH)− (ū− λc(xL)) = −λc′(xL)(xH − xL).

Concave closure û(x) may not depend on the prior belief µ. For example, it happens if the
cost function C(p) falls into the class of uniformly posterior-separable cost functions with C(p) =
λEp[c̃(x)] − c̃(µ), where function c̃(x) does not depend on µ. In this case posterior beliefs xL, xH

that satisfy conditions from Lemma 2 are a solution of the problem (6) if xL < µ < xH . To analyze
how the solution to the static problems in (6) changes for different i, we investigate the dynamics
of continuation values Vi.

3.3 Continuation Value Dynamics
We observe that a continuation value equals the maximal attained value in a static problem (5)
for a particular value of outside option ū. We define a function g : [0, 1] → [0, 1] such that

g(y) = max
p(x)∈Π

Ep

[
max{x, y} − λc(x)

]
,

that equals value of the problem (5) for an outside option y. Clearly, if y ≤ xlnl then g(y) = µ
and if y ≥ xhnl then g(y) = y. We characterize function g(y) on the interval (xlnl, xhnl) using the
Envelope theorem.

8A variant of this lemma appears in the literature, and we state it without proof. For the reference, see, e.g.,
Matysková and Montes (2023), Wei (2021).

9See, e.g., for recent use of concavification to the related rationally inattentive problems Jain and Whitmeyer
(2021), Kim et al. (2022).
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Lemma 3. If y ∈ (xlnl, xhnl) function g(y) is strictly increasing and strictly convex. Moreover,
lim

y→xlnl+0
g′(y) = 0 and lim

y→xhnl−0
g′(y) = 1.

Proof. We consider optimal posterior beliefs xL, xH and denote q(xL), q(xH) as marginal proba-
bilities to receive such beliefs. Using this notation we can can express g(y) as expected value in
the optimum: g(y) = q(xL)(y − λc(xL)) + q(xH)(xH − λc(xH)).

By the Envelope theorem equality g′(y) = q(xL) holds. Because q(xL) ∈ (0, 1) inequality
g′(y) > 0 holds and function g(y) is strictly increasing.

To show that function g(y) is strictly convex, we compute derivative q(xL) with respect to
y. We express q(xL) using Bayes rule as q(xL) = xH−µ

xH−xL . Simple algebra shows that condition
q′(xL) > 0 is equivalent to the conditions dxL

dy > 0, dxH

dy > 0. Rearranging the system from Lemma
(2) we get that {

dxL

dy = 1
λc′′(yL)(yH−yL)

dxH

dy = 1
λc′′(yH)(yH−yL)

,

therefore function g(y) is convex.
By the Envelope theorem and the fact that if y = xlnl DM chooses a = 1 and if y = xlnl DM

chooses a = 0, conditions lim
y→xlnl+0

g′(y) = 0 and lim
y→xhnl−0

g′(y) = 1 hold.

Our first characterization relates to the learning strategy. We claim that for any value of T , DM
learns during the first interview and continues learning until she gets a high posterior realization.

We first show that if DM in the solution to problem (5) learns with outside option y, then
she learns in the solution to the problem with outside option g(y). For such a result we need
to show that if y ∈ (xlnl, xhnl) then g(y) ∈ (xlnl, xhnl). Function g(y) is increasing, convex and
g′(xhnl) = 1. Therefore, line y = x is a tangent line to g(y) at point y = xhnl. Thus for any
y ∈ (xlnl, xhnl) value g(y) < xhnl. Inequality g(y) > xlnl is trivial.

Therefore, continuation values satisfy VT−i = gi(µ). The sequence gi(µ) is increasing and
clearly bounded. Sequence gi(µ) converges if the number of candidates approaches infinity. Because
equation g(y) = y has a single root y = xhnl limit equals lim

i→∞
gi(µ) = xhnl.

We draw a dynamics of the continuation values for the entropy cost function and a particular
set of parameters in Figure 1 and summarize the analysis above in the Proposition below.

Figure 1: Dynamics of the continuation values

Proposition 1. For any T , the manager always acquires information during the first interview
and chooses distribution with two posterior beliefs xL

1 , x
H
1 .

If during interview i for all i < T −1 low posterior belief xi
L has been realized, manager acquires

information during the interview i+1 and chooses distribution with two posterior beliefs xL
i+1, x

H
i+1.
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We characterize and discuss the optimal learning strategy in the next Section.

4 Optimal Interviews
Recall that the manager acquires information during the interview i, and she chooses two posterior
beliefs. We apply the binary test interpretation of the interview. Suppose a candidate i fails the
test. In that case, the manager gets the expected estimate of the candidate’s productivity xL

i , and
if the candidate succeeds, the manager gets an estimate of xH

i with xH
i > xL

i .
The usual way to compare such tests is by their informativeness using the Blackwell order. A

test i is more informative than j if distribution pi is the mean-preserved spread of distribution pj .
In the case of binary tests, the condition simplifies into two inequalities xL

i ≤ xL
j , x

H
i ≥ xH

j . The
interpretation for such a condition is simply that the test i includes test j. Although the Blackwell
ordering has intuitive properties, it is incomplete, and very often, two tests are incomparable in
the Blackwell sense. We introduce an alternative order of tests (interviews) that allows comparing
them to the current problem.

Definition 4. We say that an interview i is more difficult that an interview j if

xL
i > xL

j , x
H
i > xH

j .

The condition above has a simple interpretation. Suppose that the same agent is offered test
i and j. We say that test i is more difficult than test j if the manager gets higher estimates
about the candidate’s productivity given both low and high realizations. Stating differently, if the
agent succeeds on the test i, he has relatively high expected productivity, which means he solves
a relatively hard problem. On the contrary, if he fails the test j, he has relatively low expected
productivity and does not solve a relatively easy problem. It is straightforward from the definition
that the probability of success is lower for the harder interview.

Our main result says that the optimal tests decrease in difficulty.

Theorem 1. The optimal difficulty of informative interviews decreases, that is, for any fixed T

xL
i , x

H
i are decreasing in i.

Moreover,
lim

T→∞
xL
1 = µ, lim

T→∞
xH
1 = x′,

where x′ ∈ (xhnl, 1].

Proof. The proof mostly follows from Lemma 3. For the first part, it is sufficient to show that
both optimal posterior beliefs in the static problem (5) increase with respect to the outside option.
It follows from the proof of Lemma 3.

If T → ∞ then continuation value V1 converges to xhnl. In the solution to the problem (5)
with an outside option xhnl, DM does not learn because her lower posterior beliefs equal to the
prior µ. By the continuity argument, lim

T→∞
xL
1 = µ holds.

In the Figure below, we show an example of an optimal learning strategy for the entropy cost
of learning.
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Figure 2: Optimal posterior beliefs given the number of candidates left

Decreasing the high posterior realizations xH
i is intuitive. If a posterior xH

i is realized on the
interview i, the manager stops the search and chooses candidate i. The manager stops the search
earlier if she gets a higher expected estimate about the quality of a candidate.

Decreasing the low posterior realizations xL
i is rather surprising. By using such a strategy,

the manager optimally procrastinates: instead of acquiring the most information during the first
interviews, she wants to spread expected information acquisition towards all interviews. Intuitively,
during the first interviews, she offered hard tests for the applicants because she had some applicants
that were left. The manager wants to bear the risk and try to «catch a big fish» at the beginning.
The fewer candidates are left, the safer the strategy used by the manager.

Such interview design is the result of the flexible information technology that is available to the
manager. Below, we briefly show why flexible information is useful. We consider restricted a very
stylized version of a problem (6). We fix uniform prior belief µ = 0.5 and restrict set Π such that
DM can choose only symmetric binary information structures. In particular, binary distribution
p with xL, xH is feasible only if µ− xL = xH − µ. The cost of such information structure can be
summarized in a number ϕ, where ϕ(p) = xH − µ. We denote a cost for ϕ as c̃(ϕ) with standard
properties. Because of the symmetry, the expected payoff of the manager in the interview i is given
by 0.5(0.5 + ϕ) + 0.5VT−i − c̃(ϕ). Thus, optimal ϕ is independent from i, and the manager uses
the same posterior distribution on all interviews.

To show the role of flexibility, we consider a marginal change for both symmetric posterior
beliefs xL, xH by δ > 0. The first order effect on the expected rewards equals pHt ∆xH

t +∆pHt VT−i−
∆pHt xH

t . Using symmetry and m = 0.5 assumptions, the first-order effect can be simplified into
∆pHt (VT−i − 0.5). The last expression is always positive. Therefore, the manager has an incentive
to use the flexibility of information, increase both posterior beliefs, and decrease the difficulty of
the interview.

5 Discrimination
To study discrimination, we compare the unconditional probabilities of the choice of the manager.
The optimal design of an interview generates two opposite effects on probabilities. Because the
first interviews are more difficult, they are harder to pass. However, if a candidate passes the
interview, he is immediately hired.

We present our results mainly for the case T = 2. We assume that function c(x) has an axis of
symmetry x = z such that for any x′ and x′′ such that x′ < z < x′′ and z − x′ = x′′ − z equality
c(x′) = c(x′′) holds. For example, for the quadratic cost c(x) = (x − µ)2 the axis of symmetry
is x = µ, for the entropy cost c(x) = −x log(x) − (1 − x) log(1 − x) the axis of symmetry equals
x = 1

2 .
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We denote P 1
2 and P 2

2 as unconditional probabilities of choosing the first and the second agent
correspondingly. We formulate the discrimination result in terms of sufficient conditions for the
cost function c(x).

Proposition 2. Let µ ∈ (z−ε, z+ε) for small enough ε. If µ = z then P 1
2 = P 2

2 . If c′(x) is linear
on (y′, y′ + ε) then P 1

2 = P 2
2 , if c′(x) is concave on (y′, y′ + ε) then P 1

2 < P 2
2 , if c′(x) is convex on

(y′, y′ + ε) then P 1
2 > P 2

2 .

Proof. We first consider a problem with two available candidates that may differ in their expected
qualities. We denote µ as the expected quality of the first candidate and y as the expected quality
of the second candidate (outside option).

We consider a value x = z such that posterior beliefs xL, xH are symmetric around z: xH −z =
z − xL. Therefore, equalities c′(xL) + c′(xH) = 0 and c(xL) = c(xH) hold. From the system of
first-order equations, we get that

xH − z

xH − xL
=

1

2
.

holds. Therefore xH − y = y − xL holds and z = y also holds. If y = µ then P 1
2 = P 2

2 = 1
2 .

Below, we analyze the case with the candidates with the same expected qualities y = µ. We
compute the sign of the derivative of the P 2

2 :

dP 2
2

dy
=

( xH − y

xH − xL

)′
=

((xH)′ − 1)(xH − xL)− ((xH)′ − (xL)′)(xH − y)

(xH − xL)2
.

The sign of the numerator determines the sign of the expression. We rearrange the numerator in
the following form:

((xH)′ − 1)(xH − xL)− ((xH)′ − (xL)′)(xH − y) = ((xH)′ − 1)(y − xL)− ((xL)′ − 1)(xH − y).

Because points xL and xH are symmetric around z equality c′′(xL) = c′′(xH) holds and,
therefore, (xH)′ = (xL)′. Thus, the sign of the expression above is determined from the sign of the
expression (xH)′ − 1. Using the expression for (xH)′ and for c′(xH) we write

(xH)′ − 1 =
1

λc′′(xH)(xH − xL)
− 1 = 2

c′(xH)

c′′(xH)(xH − xL)
− 1.

The sign of the expression above is determined from the sign of the expression c′(xH)
c′′(xH)

− xH−xL

2 .
There exists a straight line, that connects points (xH , c′(xH)), (z, 0), (xL, c′(xL))). Therefore,

if c′(x) is linear, then the expression above equals 0. If function c′(x) is concave on [z, xH ] then
the tangent line to c′(x) at point xH intersects Ox axis below z and, therefore, the expression is
positive; if function c′(x) is convex on [z, xH ] then the tangent line to c′(x) at point xH intersects
Ox axis above z and, therefore, the expression is negative.

Thus, if c′(x) is linear then P 1
2 = P 2

2 , if c′(x) is concave on (z, z + ε) then P 1
2 < P 2

2 , if c′(x) is
convex on (z, z + ε) then P 1

2 > P 2
2 .

We discuss the implications of the Proposition 2 for two cost functions that are popular in the
literature, quadratic cost and entropy cost.10 In the case of the quadratic cost of learning, DM
does not discriminate between candidates and chooses them uniformly.

However, with entropy cost, the manager behaves differently. Because the third derivative
of an entropy is positive for x > 1

2 , the manager is involved in discrimination. She chooses the
first candidate more often if the candidates are ex-ante relatively good, µ < 0.5, and the second
candidate more often if the candidates are ex-ante relatively bad, µ < 0.5. Such a pattern of
behavior is similar to the «cherry-picking» and «lemon-dropping» from Bartoš et al. (2016). In
the case of two candidates, the manager acquires information only during the first interview. Such
attention discrimination favors the first candidate if his expected productivity is above uniform
productivity, and attention discrimination harms him in the other case.

10For the reference, see, e.g., Lipnowski et al. (2022) for quadratic cost and Caplin et al. (2019) for entropy cost.
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For the case T > 2, the ordering of the unconditional choice probabilities can be highly non-
trivial. In the Figure below, we present the unconditional probabilities of choice for the entropy
cost.

Figure 3: Non-monotone unconditional probabilities

For example, the probability of being hired for the first candidate is lower than for the third
candidate. The order is determined by the combination of the curvature of the function c(x) with
prior belief µ and marginal cost λ. We leave the investigation of the sufficient conditions for the
discrimination when T > 2 for future research.

6 Conclusion
As documented in the economic literature, see, e.g., Bertheau et al. (2023), hiring is difficult for
firms, and one of the reasons is that the firms face time constraints while hiring candidates. This
means that firms do not learn the potential workers’ productivities perfectly (since it will take too
long time) but instead acquire noisy information about those. In this paper, we model the process
of sequential search with costly but flexible learning in each stage.

The hiring firm observes several candidates who arrive sequentially and can design interviews
for each candidate individually. We show that the optimal learning strategy has a simple feature
– the later the candidate appears (the higher the serial number she has), the easier questions she
will be facing. That is, the optimal interviews are decreasing in their difficulty in time. However,
it does not mean that the workers should try to be interviewed in the end since the probability of
being hired as a function of time of arrival is not necessarily increasing.

Our paper is the first step in studying sequential search with flexible and endogenous infor-
mation acquisition. Therefore, many research questions are left for the future. For instance, we
study only the situation in which the candidates are ex-ante identical, and the order of their ar-
rival is random. The problem of studying a similar problem with a priori heterogeneity in workers’
productivities and choice of order of the candidates is interesting and intriguing.

Another suggestion for future research is to consider a model similar to ours but with an
opportunity for recall. We suspect that the decreasing difficulty property will remain present in
this class of problems.
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