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Abstract

This dissertation aims to re-evaluate the question of resource misallocation in the con-
text of labor informality. I present a theoretical framework of monopolistic competition
among heterogeneous firms using two types of labor, capital and intermediate inputs. The
firms face idiosyncratic distortions to factor prices, generating misallocation of resources.
The model predicts that the ratio of informal to formal labor increases in the presence of
labor regulations. This effect is further augmented by a higher elasticity of substitution
between the two. Owing to this flexibility, larger firms facing high regulatory costs to
formal employment can easily sidestep them by hiring informally. Taking the model to
plant-level data on formal Indian manufacturing, I find that aggregate misallocation has
declined over 2010-11 to 2018-19. Majority of this decline was a construct of high labor
informality, which reduced the relevance of labor misallocation for larger units. Most of
the bite from factor misallocation is faced by small and mid-sized units that suffer from
high capital and intermediate input distortions, respectively. On the other hand, larger
units benefit from lower capital and intermediate input costs, in addition to hiring infor-
mally, allowing them to produce more than they should under an efficient allocation. Due
to labor informality, output gains from removing size-based labor regulations does not
substantially benefit manufacturing output. Instead, removing distortions in intermedi-
ate input lead to the highest gains. There are two main takeaways – First, policymakers
aiming to reduce formal labor misallocation in developing economies cannot ignore the
phenomenon of labor informality; Second, an isolated focus on labor regulations misses
the importance of misallocation in other inputs.
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I Introduction

Misallocation of resources within an economy stands as a well documented phenomenon, with

negative consequences for aggregate TFP and output. Following the seminal work of Hsieh

and Klenow (2009) (H&K, henceforth), resources may not be allocated efficiently across firms,

such that reallocating resources towards those who could use them to produce more will benefit

aggregate outcomes. Given its parsimonious nature, the H&K framework has been widely

applied to evaluate resource misallocation in developing economies. However, such studies

often ignore a crucial feature of the developing world, namely – the issue of informality. In a

more general context, the literature has ignored the fact that if the ease of substitution across

inputs is high, those who face constraints in employing one input may shift to another to

meet their production needs. Following these observations, this dissertation raises two main

questions – (i) Can we improve our understanding of misallocation by explicitly accounting

for informality? and (ii) How does misallocation behave when there is an ease of substitution

across resources?

Informality is often associated with rather unromantic views. The work of Farrell (2004) and

Levy (2008) suggests that the informal sector is ‘parasitic’ such that certain firms remain small

and unregistered to avoid regulations, allowing them to compete with their formal counterparts.

In the language of misallocation, the basic intuition is that resources can be freed from the

informal sector and shifted to the more productive formal firms, raising aggregate output.

This line of thought often misses the second dimension of informality. As highlighted by

Ulyssea (2018), informality must be understood in two margins. First, firms may decide

to stay unregistered (the extensive margin); Second, the formal sector firms can choose to

hire informal workers as a recipe to sidestep labor regulations (the intensive margin).1 This

dissertation puts the intensive margin of informality at the center stage. Particularly, in the

context of resource misallocation, I argue that policy implications generated by ignoring this

margin might be misleading.

Suppose that a highly productive formal firm wishes to hire a certain number of workers

in its quest to achieve an optimal scale of production. However, if this firm is hit by labor

regulations, it will consequently hire less and thus produce less than it otherwise would. This

will clearly imply losses in aggregate output. In this scenario, the flexibility afforded by the

intensive margin of informality becomes crucial. If there is enough degree of substitutability

across formal and informal workers, the constrained firms can opt to increase the hiring of the

latter and achieve their desired scale of production. This would in turn imply gains in aggre-

gate output, even in the presence of labor regulations. Using the H&K framework to study

misallocation in developing economies, several studies have accounted for the extensive mar-

1Formal workers are defined as those who get in-kind benefits owing to labor regulations and cannot be
fired instantaneously without adjustment costs, while the informal workers usually do not benefit from such
regulations and can be fired instantaneously.
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gin (Chatterjee, 2011; Misch and Saborowski, 2018; Kabiraj, 2020; Mohommad et al., 2021).

However, the implications of the intensive margin are virtually absent in these studies.2 There

are two main reasons for this – First, not many developing countries report detailed data on

the distinction of informal and formal employees hired by the registered firms. Second, even

if such data exists, it is not immediate how to augment the original H&K framework with the

intensive margin of informality. This dissertation is aimed at filling this gap in the existing lit-

erature. I propose an extension of the H&K framework by explicitly accounting for the degree

of substitutability across both types of labor and across combined labor, capital and interme-

diate inputs.3 This is done by positing a two-level CES specification for micro-level output,

rather than working with the usual Cobb-Douglas specification originally used by H&K and

the subsequent literature.4 Accounting for the elasticity of substitution has important conse-

quences for the extent of misallocation generated by this framework. Intuitively, if the more

productive firms can easily substitute to informal labor to meet their labor requirements, the

importance of the constraints imposed on hiring formal workers by labor regulations reduces.

Subsequently, the contribution of labor misallocation towards the aggregate losses in output

also reduces. The ease of substitution across other inputs also matters. For example, if a firm

faces strong constraints in renting capital, but can easily shift to intermediate inputs or labor

to meet its production needs, the relevance of capital misallocation decreases.

To empirically evaluate the model, I utilise plant-level data from the registered segment

of manufacturing in India. The unique feature of this data is that it allows us to distinguish

between both types of labor, in terms of the number of employees and wages. However, there is

no free lunch – utilising data on only the registered plants implies that the I cannot analyse the

extensive margin of informality. Chatterjee (2011) and Kabiraj (2020) use data from the un-

registered manufacturing plants in India in their application of the H&K framework. However,

I argue that this methodology is inherently flawed. The H&K model is based on representative

agents at each level of production. This implies that both of these studies essentially assume

the same production technology across both registered and unregistered plants, which is highly

debatable. As noted before, I explicitly introduce formal and informal employees as separate

inputs in my model, where the former benefits from strong labor regulations. Since unregis-

tered plants do not have to abide by any regulations, it clearly does not make sense for the

model to assume the same production technology across such units. The focus thus remains

2Mohommad et al. (2021) argues that reducing labor market rigidities in Indian states with high informality
positively affects aggregate output. Informality is measured as the share of unregistered manufacturing plants
in the states, completely missing the intensive margin. Moreover, the authors’ use an index of Employment
Protection Legislation (EPL) in their estimations. Such an index is based on inherently subjective assessments
of differences in the text of the labor laws across states and is thus problematic (Amirapu and Gechter, 2020).

3The inclusion of intermediate inputs allows me to push the original value-added framework of H&K to a
gross-output approach, widely held as the more appropriate method of TFP measurement.

4The Cobb-Douglas specification produces tractable mechanisms but operates on the restrictive assumption
of unitary elasticity of substitution across inputs.
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on sketching out the implications of the intensive margin of informality.

How relevant is the intensive margin in India’s manufacturing story? Figure 1 illustrates

this by evaluating the probability that informal labor accounts for more than 50% of total

plant employment, as a function of total employment. It is evident that informal hiring has

remained more or less stable in smaller plants. On the other hand, there appears to be an

increase in informal hiring for plants employing more than 100 total workers.5 The mechanism

of sidestepping regulations by higher informal labor thus appears to be a relevant phenomenon

for Indian manufacturing, meriting further investigation.6

Figure 1: Contract Labor Usage and Plant Size
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Note: The plot shows point estimates and 95% confidence intervals from non-parametric regression of the
probability a plant hires more than 50% of its non-managerial workers through contractors on (log) non-
managerial employment). The vertical dashed line represents 100 employed persons, beyond which high ad-
justments costs of formal labor kick in (ref. Section III.2).

Having computed the ‘elasticity robust’ measure of misallocation, the model is able to generate

counterfactual gains in aggregate TFP and output from a hypothetical reallocation of all re-

5Table 9 in Appendix A illustrates the same phenomena by reporting the average contract worker usage by
plant-size bins, for each year.

6Bertrand et al. (2021) carry out an event study to further evince this phenomena, using an important
Supreme Court judgement in 2001, saying that – there is no requirement of automatic absorption of contract
workers in the permanent workforce. The authors’ show that adoption of contract labor rose and constraints
on large firms fell.
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sources. In the spirit of a more disaggregated analysis, the aggregate gains are broken down by

narrowly defined industry groups, as a guide to directing policy towards the industries suffering

from high misallocation.7 Additionally, by comparing the observed data and model-generated

counterfactual, I provide evidence on which plants will increase and shrink their size under an

efficient allocation of resources. This analysis essentially asks whether on an average, smaller

or larger plants face relatively stronger constraints and should thus be receiving more attention

from policymakers. In the context of Indian manufacturing, Banerjee and Duflo (2005) argue

that policy tends to pamper the inefficient plants while hindering the most efficient ones. For

1994, H&K find that this is synonymous to saying – larger plants in India’s formal manufac-

turing are more constrained while the smaller plants benefit from several implicit subsidies. I

re-evaluate this contention in my framework with more recent data.

Lastly, and perhaps most importantly, the model allows the elimination of each factor

price distortion at a time, such that we can gauge the relative importance of misallocation

in each resource towards aggregate misallocation. Due to the separate introduction of both

types of labor inputs, we can specifically back out a formal labor input distortion from the

data. Reduced form evidence shows that this separation is important, as the estimated formal

labor distortion is greatly in line with size-based labor regulations – a widely debated policy

instrument in India. Such regulations are known to plague the larger plants when adjusting

their formal labor input. As a result, policymakers often argue that these regulations need to be

eased, to allow the existence of more large-sized plants in the economy. I build a counterfactual

plant size distribution by removing the formal labor distortion in the model, in order to evaluate

whether this vision would indeed come true. Further, to grasp the relative importance of this

policy, I compare the reallocation gains from removing formal labor distortions with the gains

implied by removing distortions in capital and intermediate inputs, one at a time.

I find that aggregate resource misallocation in formal manufacturing has decreased over

the 2010-11 to 2018-19 period. Although declining in importance, misallocation appears to be

substantially limiting manufacturing output. In particular, an efficient allocation of resources

across plants, within each industry, could have increased manufacturing gross output by 63%

in 2018-19. Several important industries seem to be constrained by an inefficient allocation,

including – manufacturing of refined petroleum products, basic iron and steel, automobiles,

textiles and pharmaceuticals. Given the high output share of these industries in the aggregate,

this is particularly concerning. Dissecting the observed misallocation within industries, I find

that on an average – small and medium sized plants face the strongest constraints in the

input markets, relative to the larger plants. This implies that under a hypothetical efficient

allocation, the relatively smaller plants will be able to increase their size, while the larger plants

will shrink. Investigating the possible sources of misallocation across plants of different sizes,

7The H&K framework generates aggregate reallocation gains based on the weighted industry-level gains. It
is thus surprising that papers utilizing this framework fail to report disaggregated results.
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several important findings emerge. First, misallocation in intermediate inputs appears to be

constraining majority of the plants, except those at the top of the size distribution. Moreover,

the importance of such distortions appear to have increased for mid-sized plants. Second,

capital misallocation only hinders the output of the smallest plants. Third, the larger plants

appear to be constrained from size-based labor regulations, while the smaller plants benefit from

lower costs of hiring formal labor. However, the larger plants relatively benefit more lower costs

of hiring informal labor. Removing the size-based labor regulations, I find that the new plant

size distribution will indeed exhibit more large sized plants, while the density of smaller plants

reduces. This is in line with the expectations of policymakers aiming to ease such regulations,

with the aim of promoting ‘ease of business’ for larger plants (Economic Survey of India,

2019-20). However, I show that the output gains from this exercise, although substantial in

absolute terms, decline in relative importance over 2010-11 to 2018-19. In particular, removing

size-based labor regulations would have increased manufacturing output by a towering 41% in

2010-11. More recently, in 2018-19, this policy benefits output by only 15%, while removing

misallocation in intermediate inputs leads to a 31% increase in manufacturing output.

Why does the relative relevance of removing size-based labor regulations decrease? Rec-

onciliation from the model shows that the equilibrium ratio of informal to formal labor un-

ambiguously rises in response to higher regulatory costs of the latter. This effect is further

augmented by a greater ease of substitution across both labor inputs. In essence, the larger

plants constrained by such regulations, easily sidestep them by hiring informal labor to meet

their total labor requirements. Removal of such regulations would reallocate more formal labor

towards these plants in the hope to improve aggregate output. However, the resulting increase

in output runs into diminishing returns, since the total labor input of the constrained plants is

already high. Ignoring the intensive margin of informality would thus lead to incorrect expecta-

tions of policy outcomes from easing size-based labor regulations. The sidestepping mechanism

subsequently reduces the contribution of formal labor misallocation towards aggregate decline

in output. On the other hand, misallocation of capital and intermediate inputs maintain their

relevance over the 2010-11 to 2018-19 period. In summary, a decade’s worth of policy towards

reducing misallocation has lead Indian manufacturing nowhere. Rather, the observed decline

in aggregate misallocation is a construct of the intensive margin of informality.

This dissertation is structured as follows. Section II outlines the theoretical framework

– extending the H&K model with weaker assumptions and an alternative path to deriving

the gains from reallocation. Section III reports the details of the dataset, important labor

regulations and calibrations. Section IV reports the empirical results of the model. Section

V delves into the sources of misallocation and the relative importance of removing each type

of distortion. Section VI presents various robustness checks. Finally, Section VII offers some

concluding remarks. Several statistics and figures are relegated to Appendix A. The details of

the theoretical proofs and derivations are outlined in Appendix B.
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II Model

The theoretical framework is built on the seminal work of Hsieh and Klenow (2009), where

plants are heterogeneous in productivity, facing exogenous idiosyncratic ‘distortions’ in factor

prices, which in turn generates resource misallocation and limits the output of the economy.

Although devoid of international trade, the model draws inspiration from Melitz (2003) in

terms of heterogeneous plants facing monopolistic competition within industries. The main

deviation from H&K comes from my assumptions on plant-level output. In particular, instead

of assuming a unitary elasticity of substitution across inputs and hence working with a Cobb-

Douglas specification, I introduce a more general two-level CES production function. A simple

change in this specification allows me to grasp rich implications.

In particular, it allows me to explicitly capture the elasticity of substitution between formal

and informal labor input, relevant for generating mechanisms that explain the ‘sidestepping’

of labor regulations. Further, I also capture the elasticity of substitution across combined

labor, capital and intermediate inputs. This is particularly relevant when explaining whether

misallocation is indeed an issue when all inputs are highly substitutable. Moreover, introduc-

ing both types of labor as separate inputs allows the model to capture a formal labor input

distortion, which can be subsequently backed out from the data. This is important since the

size-based labor regulations only apply to the formal labor input, and not labor input as a

whole. The counterfactual exercise of removing these regulations should thus be based on this

specific distortion alone.

The introduction of intermediate inputs in the production function allows me to use the

gross-output approach, widely held as the more appropriate method when dealing with TFP

measurement (Jorgenson et al., 1987; Oulton and O’Mahony, 1994; Jorgenson and Stiroh,

2001).8 The analytical solutions of the model are inspired from the work of Dias et al. (2016,

2018), who take an alternative route compared to H&K, when arriving at the expression for

the hypothetical reallocation gains. This method is much more tractable when working with

elaborate production functions, such as the one I employ.

II.1 Environment

II.1.1 The Agents

The model’s economy consists of three main agents – heterogeneous producers at the plant-

level, a representative firm at the industry-level that combines plant-level output, and a rep-

resentative final good producer that combines industry-level output. There are a total of S

8Gollop and Roberts (1979) remarks that value-added measure of productivity operates on an unrealistic
assumption – technical change only affects the usage of capital and labour so that intermediate inputs cannot
be the source of improvements in productivity. In my context, a reduction in misallocation of intermediate
inputs will benefit aggregate TFP and output, and thus cannot be ignored.
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industries, indexed by s = 1, 2, .., S and a total of Ns plants within each industry s, indexed

by i = 1, 2, .., Ns. The plants are assumed to be heterogeneous in their productivity, denoted

by Asi.
9 Further, each plant i faces monopolistic competition within a given industry s, and

produces an output denoted be Ysi. The plant-level output is further sold to a representative

firm at the industry level, at price Psi. Industry output, denoted by Ys, is then sold to a rep-

resentative final goods producer at price Ps. The final goods producer behaves competitively

and combines industry output into one final output, denoted by Y , reflecting the GDP of the

model’s economy. The supply of factors is assumed to be exogenous i.e., the supply of labor,

capital and intermediate inputs is inelastic. The respective agents make optimal production

decisions in a static setting without any uncertainty, such that each plant is always assumed to

be in its long-run equilibrium in each period. Notably, the dynamics of entry and exit are not

investigated i.e., producers do not respond to reallocation and corresponding changes in TFP.

II.1.2 Production Functions

Plant-level output is assumed to be produced using a constant returns to scale two-level CES

technology10 of formal labor (Hf,si), informal labor (Hc,si), capital input (Ksi) and an aggre-

gate (combining energy, material and services) of intermediate inputs (Qsi). The first-level

CES captures the substitutability between formal and informal labor, with the elasticity of

substitution parameter θ < 1, and respective factor shares denoted by βc,s and βf,s.

Xsi = (βcH
θ
c,si + βfH

θ
f,si)

1
θ (1)

Further, the second-level captures the substitutability across the combined labor input (Xsi),

capital and intermediate inputs, with the elasticity of substitution parameter ψ < 1 and the

respective factor shares denoted by αL,s, αK,s and αQ,s.

Ysi = Asi

[
αL,sX

ψ
si + αK,sK

ψ
si + αQ,sQ

ψ
si

] 1
ψ

(2)

For further derivations and convenience of notation, let the elasticity of substitution in the

first and second-level be denoted by ν = 1/(1− θ) and η = 1/(1−ψ), respectively. Combining

both levels, the plant-level production function writes:

Ysi = Asi

[
αL,s(βc,sH

θ
c,si + βf,sH

θ
f,si)

ψ
θ + αK,sK

ψ
si + αQ,sQ

ψ
si

] 1
ψ

(3)

9The Hicks-neutral productivity parameter can be assumed to be drawn exogenously from a distribution
F (Asi), without any consequence to the model’s derivations and implications.

10This specification is borrowed directly from the work of Sato (1967), which provides an exposition on the
more general CES nesting structures.
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Notably, the subscript s on the factor shares denotes the assumption that revenue factor shares

are assumed to be constant for all plants in a given industry s. The necessity of this rather

strong assumption will be described later in Section II.3, and the way I make it less restrictive in

Section III.2. Industry output is assumed to be a Dixit and Stiglitz (1977) style CES aggregate

of the Ns differentiated plant-level output, as follows:

Ys =

( Ns∑
i=1

Y
σ−1
σ

si

) σ
σ−1

;σ > 1 (4)

Here, σ denotes the elasticity of substitution across plant-level output, and is assumed to be

constant across all plants, implying no heterogeneity in markups.11 The final good producer

combines industry output using a Cobb-Douglas technology, with respective industry shares

µs, as follows:

Y =
S∏
s=1

(Ys)
µs ;

S∑
s=1

µs = 1 (5)

II.2 Optimization Problems

The profit maximization problem of the representative final good producer, taking industry

output price (Ps) as given, gives an expression for industry shares as follows:12

max
Ys

ΠF =
S∏
s=1

Y µs
s −

S∑
s=1

PsYs =⇒ µs =
PsYs

Y
(6)

The demand curve for plant-level output, within each industry, is arrived at by solving the

following industry-level profit maximization problem:

max
Ysi

Πs = Ps

( Ns∑
i

Y
σ−1
σ

si

) σ
σ−1

−
Ns∑
i=1

PsiYsi ;∀s = 1, 2, .., S (7)

The first-order condition gives the following expression for the plant-level demand curve:

Psi = PsY
1
σ
s Y

− 1
σ

si (8)

Where PsY
1
σ
s is an industry level constant which can set equal to one without any consequence

to the relative productivities and hence no implications on the intra-industry reallocation

11σ is assumed to be greater than one to ensure well-behaved convex preferences over the ‘bundle’ of plant-level
output. Heterogeneous markups may endogenously generate misallocation (Peters, 2020). This is something I
do not capture.

12The final good price P is assumed to be the numeraire.
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exercise.13 A formal proof of this assertion is relegated to Appendix B.6. Since the plant-level

production function is built on four inputs, it is possible to separately identify distortions that

affect the factor prices of all inputs simultaneously from distortions that affect the marginal

product of one of the factors relative to the others. Using the absolute informal labor distortion

as the base, I introduce four types of idiosyncratic distortions – an output distortions (τYsi),

formal labor distortion (τfsi), capital distortion (τKsi) and an intermediate input distortion

(τQsi). Taking into account the demand curve in equation (8), the resulting profit maximization

problem of a given plant i in an industry s is given by:14

Πsi = max
Hc,si,Hf,si,Ksi,Qsi

(1−τYsi)PsiYsi−wc,sHc,si−wf,s(1+τfsi)Hf,si−rs(1+τKsi)Ksi−qs(1+τQsi)Qsi

(9)
s.t. Psi = PsY

1
σ
s Y

− 1
σ

si

Equation (9) deserves a brief discussion. Notably, the input prices are assumed to be constant

for all plants within a given industry s.15 The indirect approach to understanding resource

misallocation i.e., keeping the form of (1 + τsi) unspecified for each input, captures several

policies and implicit costs that affects the plants in an idiosyncratic manner, together in a

single term. The output wedge captures any distortion that changes the marginal products

of informal labor, formal labor, capital and intermediate inputs by the same proportion and

be thought of as an implicit tax on the value of production. Subsequently, the formal labor,

capital and intermediate input wedges capture the distortions that raise the marginal product

of each input, relative to informal labor. For instance, in the context of labor regulations that

affect the cost of hiring formal labor, a higher τfsi will capture the higher adjustment costs of

formal labor relative to their informal counterparts. Plants with higher τKsi can be thought of

as credit constrained due to non-competitive banking, while those with a lower τKsi might be

benefiting from subsidised credit due to preferential access. Finally, plants with a higher τQsi
might be facing high supply chain distortions or a combination of distortions in the prices of

energy, material and services.

Using a cost minimization approach to solve the problem in equation (9), I am able to pin

down the plant-level pricing equation as a function of input prices, respective input shares, dis-

tortions, the productivity parameter and the markup. Let TCsi denote the total cost function.

13This assumption is similar to the one made in Hsieh and Klenow (2009) and Dias et al. (2016, 2018).
14An analogous characterisation is to think of distortions to each input in absolute levels, denoted by (1+τ∗si),

and writing the profit function as:

Πsi = max
Hc,si,Hf,si,Ksi,Qsi

PsiYsi − wc,s(1 + τ∗csi)Hc,si − wf,s(1 + τ∗fsi)Hf,si − rs(1 + τ∗Ksi
)Ksi − qs(1 + τ∗Qsi

)Qsi

Assuming that (1−τYsi) = 1/(1+τc∗si) and (1+τzsi) = (1+τ∗zsi)/(1+τ
∗
csi) ;∀z ∈ {f,K,Q}, leaves the first-order

conditions unchanged and is thus equivalent to working with equation (9).
15The relevance of this assumption and the attempt to make as less restrictive as possible, is discussed in

Section II.3 and III.2, respectively.
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Then the profit maximizing level of production will solve the following optimization problem:

max
Ysi

Πsi = (1− τYsi)PsiYsi − TCsi (10)

s.t. Psi = PsY
1
σ
s Y

− 1
σ

si =⇒ PsiYsi = PsY
1
σ
s Y

σ−1
σ

si (11)

The first-order condition gives the standard result of monopolistic competition, plant-level

price is a markup over the marginal cost of production:

Psi =

(
σ

σ − 1

)
∂TCsi/∂Ysi

(1− τYsi)
(12)

This pricing equation can be made more explicit by solving for the marginal cost of producing

a unit of Ysi. Since the plant-level production function is assumed to be a two-level CES,

there is an implicit additive separability between each level. This separability implies that the

equilibrium allocation of factors within each level is determined entirely by the relative prices

of the given level only (Sato, 1967). This is important since it implies that the equilibrium

ratio of informal to formal workers will only depend on their relative prices. As argued in the

previous section, the choice of hiring informal labor appears to be motivated by the regulatory

costs of formal labor. This idea can thus be captured by the modelling choice. The separability

also implies that the cost minimization problem can be broken down into two stages. First,

the plant decides on its optimal mix of formal and informal labor that minimizes the cost of

production based only on the combined labor input (Xsi). Second, the plant then decides on

its optimal mix of combined labor input, capital and intermediate inputs, given the minimum

cost of production from the first level. The first level cost minimization problem writes:

min
Hc,si,Hf,si

wc,sHc,si + (1 + τfsi)wf,sHf,si (13)

s.t. (βc,sH
θ
c,si + βf,sH

θ
f,si)

1
θ ≥ Xsi

Solving for the conditional factor demands of formal and informal labor, the resulting first-level

cost function, denoted by TC
(1)
si , is given by:16

TC
(1)
si (wc,s, wf,s, βc,s, βf,s, τfsi , Xsi, ν) = Xsi

[
βνc,sw

1−ν
c,s + βνf,sw

1−ν
f,s (1 + τfsi)

1−ν
] 1

1−ν

(14)

Using the expression for TC
(1)
si , the second-level cost minimization problem writes:

16Note that the term in the squared parenthesis can be thought of as the imputed price index of producing
Xsi, which also takes a CES form (Sato, 1967).
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min
Xsi,Ksi,Qsi

TC
(1)
si (wc,s, wf,s, βc,s, βf,s, τfsi , Xsi, ν) + rsKsi + qsQsi (15)

s.t. Asi

[
αL,sX

ψ
si + αK,sK

ψ
si + αQ,sQ

ψ
si

] 1
ψ

≥ Ysi

Solving the above, we arrive at the second-level cost function, denoted by TC
(2)
si . Further, using

the expression for TC
(2)
si in equation (12), we can re-express a given plant’s pricing equation

more explicitly as follows:17

Psi =

(
σ

σ − 1

)
Asi(1− τYsi)

{
(αL,s)

ν

[
βνc,sw

1−ν
c,s + βνf,sw

1−ν
f,s (1 + τfsi)

1−ν
] 1−η

1−ν

+ (αK,s)
ηr1−ηs (1 + τKsi)

1−η+

(αQ,s)
ηq1−ηs (1 + τQsi)

1−η

} 1
1−η

(16)

Instead of working with a two-level CES, if plant-level output was specified to be Cobb-Douglas,

we can arrive at a much more tractable pricing equation, written as:

Psi =

(
σ

σ − 1

)
(1 + τfsi)

βf,s(1 + τKsi)
αK,s(1 + τQsi)

αQ,s

Asi(1− τYsi)

(
wc,s

βc,s

)βc,s(wf,s
βf,s

)βf,s( rs

αK,s

)αK,s( qs

αQ,s

)αQ,s
It is clear that both equations follow the same structure i.e., price is a function of the markup,

input prices, input shares, and idiosyncratic factor distortions. However, equation (16) is

explicitly augmented with the elasticity of substitution parameters and provides a more general

approach to expressing plant-level prices. The novelty of working with equation (16) rather

its Cobb-Douglas counterpart can be appreciated by understanding how the plant’s pricing

equation affects the measure of misallocation. This is described in the next section.

II.3 Revenue Productivity and Physical Productivity

In order to provide a theoretical context behind the association of distortions and plant-level

productivity, it is essential to understand the distinction between total factor revenue pro-

ductivity (henceforth, TFPRsi) and total factor physical productivity (henceforth, TFPQsi).

As outlined by Foster et al. (2008), researchers seldom have access to plant-level prices (Psi),

which would allow us to back out real units of output (Ysi) from the data. In this scenario,

the measure of productivity has to be based on the revenue of the plant, which is denoted by

TFPRsi. Exploiting the Hicks-neutral nature of the productivity parameter in equation (3),

17The algebra behind the cost minimization procedure is outlined in Appendix B.3.
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TFPRsi in the model can be written as:

TFPRsi = PsiAsi =
PsiYsi[

αL,s(βc,sHθ
c,si + βf,sHθ

f,si)
ψ
θ + αK,sK

ψ
si + αQ,sQ

ψ
si

] 1
ψ

(17)

In the spirit of Solow (1956), the ‘true’ technological efficiency of the plant, denoted by TFPQsi

can be expressed as:

TFPQsi = Asi =
Ysi[

αL,s(βc,sHθ
c,si + βf,sHθ

f,si)
ψ
θ + αK,sK

ψ
si + αQ,sQ

ψ
si

] 1
ψ

(18)

Notably, a high plant TFPRsi can at best be interpreted as a noisy signal of high TFPQsi, due

to the plant-level price acting as a confounding factor. To see this more clearly, we can rewrite

equation (16) to get a more edified expression for TFPRsi, as follows:

TFPRsi =

(
σ

σ − 1

)
(1− τYsi)

{
(αL,s)

ν

[
βνc,sw

1−ν
c,s +βνf,sw

1−ν
f,s (1+τfsi)

1−ν
] 1−η

1−ν

+(αK,s)
ηr1−ηs (1+τKsi)

1−η+

(αQ,s)
ηq1−ηs (1 + τQsi)

1−η

} 1
1−η

(19)

Clearly, a higher TFPRsi is proportional to a higher levels of distortions faced by a plant, within

their respective industries. Subsequently, it is important to note that under the assumptions

of the model, the only source of variation in TFPRsi are the idiosyncratic distortions. Thus,

if prices reflect idiosyncratic variations in distortions which are in turn transmitted to the

measure of TFPRsi, the variance of the revenue based productivity measure can be used to

capture the extent of misallocation. Subsequently, if there were no variation in the idiosyncratic

distortions18 i.e., τsi does not vary across plants in a given industry, it is clear from equation (19)

that TFPRsi also loses its variation. As highlighted by H&K, “..In the absence of distortions,

more capital and labor should be allocated to plants with higher TFPQ to the point where their

higher output results in a lower price and the exact same TFPR as at smaller plants..”. On the

other hand, high TFPRsi serves as an indicator that the given plant is facing distortions that

raises the marginal costs of inputs, hence, rendering the plant smaller than optimal.19 The

18Equivalently, one could also assume that each plant in a given industry faces the same industry average
wedge (Dias et al., 2016).

19Note that since the marginal revenue product of inputs is equalized to the marginal cost, this implies that
the given plant can produce more from the inputs.
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relation between TFPRsi and marginal revenue products can be seen more clearly after solving

for the first-order conditions from the profit-maximization problem outlined in equation (9).

Let MRPsi denote the marginal revenue product of the respective inputs, we can then rewrite

the expression for TFPRsi as:

TFPRsi =

(
σ

σ − 1

){
(αL,s)

ν

[
βνc,sMRPL1−ν

c,si + βνf,sMRPL1−ν
f,si

] 1−η
1−ν

+

(αK,s)
ηMRPK1−η

si + (αQ,s)
ηMRPL1−η

c,si

} 1
1−η

(20)

Thus, the dispersion in TFPRsi is generated from the underlying dispersion in the marginal

revenue products of the inputs, which is in turn rooted in the differences in distortions faced by

the plants in a given industry. Further, it is important to note how the elasticity parameters

affect our estimates of TFPRsi. Since equation (20) is highly non-linear, it is difficult to directly

establish this relationship. Since the term in the parenthesis of equation (20) is also a two-level

CES, we may attempt to use a Taylor approximation. The empirical literature based on CES

functions often works with a translog approximation, originally proposed by Kmenta (1967).

Although this approximation has been extended to the case of n inputs by Hoff (2004), it

only applies to CES functions without a nesting structure, and thus cannot be applied here.

However, the intuition behind the influence of the elasticity parameters can be grasped by a

simple example. Assume that a plant faces high distortions in capital input due to the lack

of credit access. If the substitutability across combined labor, capital and intermediate inputs

(η) is high, the plant can instead rely on the other inputs, essentially negating the effect of the

capital distortion. Similarly, a plant hit by labor regulations can start relying on informal labor

to meet its labor requirements, when the elasticity of substitution across both labor inputs (ν)

is high. Thus, high elasticity across inputs will push down the estimates of TFPRsi, such that

the plants facing high distortions can possibly have a closer TFPRsi to those who benefit from

lower distortions. This will reduce the dispersion in TFPRsi and hence reduce misallocation

in the economy.

II.4 The Efficient Counterfactual

In the absence of distortions, TFPRsi will be equalized for all plants i within the given industry

s = 1, 2, .., S i.e., resources will be allocated efficiently within each industry. Naturally, the

next step is to generate this efficient counterfactual in order to study the potential gains from

this intra-industry reallocation exercise. Setting the industry constant equal to one, we can

13



rewrite equation (8) to get the following expressions for real and nominal output.

Ysi =

(
Asi

TFPRsi

)σ
(21)

PsiYsi =

(
Asi

TFPRsi

)σ−1

(22)

In the counterfactual scenario, let TFPR∗
s denote the efficient level of TFPR in a given industry

s, when the plant-level distortions are eliminated such that TFPRsi equalizes across all plants

within the given industry. Subsequently, the efficient level of real and nominal output at the

plant-level writes:

Y ∗
si =

(
Asi

TFPR∗
s

)σ
=

(
Asi

TFPRsi

)σ(TFPRsi

TFPR∗
s

)σ
= Ysi

(
TFPRsi

TFPR∗
s

)σ
(23)

(PsiYsi)
∗ =

(
Asi

TFPR∗
s

)σ−1

=

(
Asi

TFPRsi

)σ−1(TFPRsi

TFPR∗
s

)σ−1

= PsiYsi

(
TFPRsi

TFPR∗
s

)σ−1

(24)

When the idiosyncratic distortions are eliminated, we essentially have TFPRsi = TFPR∗
s, using

this in the expressions shown above would simply lead to Y ∗
si = Ysi and (PsiYsi)

∗ = PsiYsi,

contradicting the assertion that equations (23) and (24) represent efficient outcomes. The

reader must note a small subtlety here. The TFPRsi term used in the second and third

equality of the above equations are meant to represent the actual ‘observed’ TFPRsi of the

plants, which is potentially distorted and is not equal to the theoretical construct of the efficient

TFPR∗
s. The re-expressed equality in both equations is meant to convey the idea that if the

observed TFPRsi is higher than TFPR∗
s i.e., if the plant faces barriers to optimal scale, then the

efficient output for the given plant would be higher in the counterfactual exercise. Analogous

to equation (17), developing the definition of TFPR∗
s gives us:

20

TFPR∗
s =

(PsYs)
∗[

αL,s(βc,sHθ
c,s + βf,sHθ

f,s)
ψ
θ + αK,sK

ψ
s + αQ,sQ

ψ
s

] 1
ψ

(25)

Let λi ≥ 1 denote the sampling weight assigned to each plant in the dataset. Then, industry

level inputs can be written as Hc,s =
∑Ns

i=1 λiHc,si , Hf,s =
∑Ns

i=1 λiHf,si, and similarly for Ks

and Qs. Using the expression for efficient nominal output from equation (24), and rewriting

20Note that definition of TFPR∗
s is equivalent to assuming that each plant faces the same industry average

wedge, such that there is no within industry variation in TFPRsi (Dias et al., 2016). This also ensures that
industry demand for each input remains constant in the counterfactual. The derivation behind this expression
is shown in Appendix B.5.2.
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(PsYs)
∗ =

∑Ns
i=1 λiPsiYsi, we can rewrite equation (25) as :

TFPR∗
s =



Ns∑
i=1

λiA
σ−1
si[

αL,s(βcHθ
c,s + βfHθ

f,s)
ψ
θ + αK,sK

ψ
s + αQ,sQ

ψ
s

] 1
ψ



1
σ

(26)

It is important to re-emphasise that the above expression gives us a model estimate of an

efficient level of TFPR in a given industry s, which would occur in the absence of plant-level

idiosyncratic distortions. In contrast, H&K define an expression denoted as TFPRs, which is

meant to capture the average ‘observed’ TFPR in a given industry, with possible misallocation

of resources. These two terms are completely different, and should not be confused with each

other. Once we have the model estimates of the counterfactual outcomes, we can arrive at

the potential gross output gains at the industry and aggregate level. Since the counterfactual

exercise essentially takes the amount of inputs observed in the model’s economy as given

and generates a model estimate for potential gains under an efficient allocation, the gross

output gains will coincide with aggregate TFP gains (Dias et al., 2016). At the industry level,

accounting for sampling weights, efficient industry output (Y ∗
s ) relative to the observed (under

misallocation) output (Ys) can now be written as:

Y ∗
s

Ys
=

[ Ns∑
i=1

λi(Y
∗
si)

σ−1
σ

] σ
σ−1

[ Ns∑
i=1

λi(Ysi)
σ−1
σ

] σ
σ−1

=


Ns∑
i=1

λi(Asi)
σ−1

Ns∑
i=1

λi

(
Asi

TFPR∗
s

TFPRsi

)σ−1



σ
σ−1

(27)

At present, equation (27) is difficult to interpret. However, some algebraic manipulation leads

to a much more intuitive expression:

Y ∗
s

Ys
=


1

Ns∑
i=1

Ωsi

(
1

TFPRsi
TFPR∗

s

)σ−1



σ
σ−1

; Ωsi =
λiA

σ−1
si∑Ns

i=1 λiA
σ−1
si

(28)

From equation (28), it should be clear that industry reallocation gains are rooted in the

weighted (Ωsi) sum of inverse scaled TFPR for all plants within the given industry (Dias

et al., 2016, 2018). Note that scaled TFPR (TFPRsi/TFPR
∗
s) signifies the deviation of ob-

15



served plant TFPRsi with respect to the industry efficient TFPR∗
s. In particular, scaled TFPR

will be higher for plants that face implicit ‘taxes’ in inputs, pushing them away from the effi-

cient industry TFPR. In contrast, plants with a low scaled TFPR can be thought of as those

who benefit from implicit ‘subsidies’ and face relatively less barriers to growth. To flesh out

the intuition behind equation (28), it is informative to rewrite the weights in the following

manner:

Ωsi =
λiA

σ−1
si∑Ns

i=1 λiA
σ−1
si

= λi

[
Asi

(
∑Ns

i=1 λiAsi)
1

σ−1

]σ−1

= λi

[
Asi

TFPQ∗
s

]σ−1

(29)

Where TFPQ∗
s denotes the efficient industry TFPQ in the absence of distortions, as shown in

Hsieh and Klenow (2009), with the application of sample weights (λi). Consequently, plants

with a higher TFPQsi (= Asi) i.e., plants that are more productive, will have a higher Ωsi. Now,

going back to equation (28), it is clear that higher industry reallocation gains are synonymous

to a lower weighted sum of inverse scaled TFPR. This weighted sum will in turn be lower if

plants with a higher scaled TFPR are also given a higher weight, while those with a lower

scaled TFPR are weighted less. In other words, industry reallocation gains will be higher

if on an average, more productive plants (higher Ωsi) face higher distortions (higher scaled

TFPR). Essentially, this is the spirit behind the idea of resource reallocation, which would

hypothetically shift resources to more productive plants who can in turn produce more from

the given set of resources, generating higher gross output gains at the industry level.21 To push

the intuition further, it is useful to note that in the efficient counterfactual, a higher Ωsi will

also correspond to a higher gross-output share for the constrained plants, within their given

industry. This can be seen from using equation (24) in the expression for Ωsi, as follows:

Ωsi =
λiA

σ−1
si∑Ns

i=1 λiA
σ−1
si

=

λi

(
Asi

TFPR∗
s

)σ−1

Ns∑
i=1

λi

(
Asi

TFPR∗
s

)σ−1
=

λi(PsiYsi)
∗

Ns∑
i=1

λi(PsiYsi)∗

(30)

Finally, applying the Cobb-Douglas aggregator of the representative final good firm from equa-

tion (5), the potential aggregate gross output reallocation gains can be expressed as:

Y ∗

Y
=

S∏
s=1

{
Y ∗
s

Ys

}µs
=

S∏
s=1




Ns∑
i=1

λi(Asi)
σ−1

Ns∑
i=1

λi

(
Asi

TFPR∗
s

TFPRsi

)σ−1



σ
σ−1


µs

(31)

21Importantly, this does not necessarily mean that resources will be hypothetically shifted from the smaller
plants to the bigger ones. Elimination of distortions is meant to generate an efficient distribution of resources.
If smaller plants face higher distortions, this exercise will reallocate resources to such plants as well.
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Note that equations (27) and (31) will generate a single value for each industry s = 1, .., S and

the economy for a given year, respectively. Since these will be model based estimates, they are

essentially ‘just-identified’ and one cannot check whether the standard errors corresponding to

these numbers are high. Moreover, these quantities evidently depend on the computations of

three terms: TFPQsi (= Asi), TFPRsi and TFPR∗
s. These three measures are in turn sensitive

to the way factors of production at the plant-level are computed from the data. This is because

all three of these measures are essentially derived from a Solow residual-like (Solow, 1956)

exercise, which is well known to be prone to measurement errors.22 Deferring this discussion to

the Section III.2, equations (27) and (31) form the foundation of the counterfactual exercise,

while the plant-level output changes are generated from equations (23) and (24).

II.5 Inferring Distortions

The counterfactual exercise outlined in the previous section is completely independent of the

way we define the distortions or estimate them. However, once the extent of misallocation

and the potential reallocation gains are documented, learning about the individual distortions

and their relation to plant characteristics is useful for the purpose of guiding policy. To this

end, it is possible to back out the distortion induced wedges from the data, without imposing

any further structure on them. This is done by manipulating the first-order conditions of the

plant’s profit maximization problem, outlined in Appendix B.7. Subsequently, the wedges can

be expressed as follows:23

(1 + τfsi) =

(
βf,s

βc,s

) (
wc,sH

1
ν
c,si

wf,sH
1
η

f,si

)
(32)

(1 + τKsi) =

(
αK,s

αL,sβc,s

)(
wc,sH

1
ν
c,si

rsK
1
η

si

)
(Xsi)

ν−1
ν

− η−1
η (33)

(1 + τQsi) =

(
αQ,s

αL,sβc,s

)(
wc,s

qs

)(
H

1
ν
c,si

Q
1
η

si

)
(Xsi)

ν−1
ν

− η−1
η (34)

(1− τYsi) =

(
σ

σ − 1

)
wc,sH

1
ν
c,si

(αL,sβc,s)PsiYsi

[
αL(βcL

θ
csi + βfL

θ
fsi)

ψ
θ + αKK

ψ
si

]
(Xsi)

ν−1
ν

− η−1
η

(35)

22The seminal work of Jorgenson and Griliches (1967) introduced constant quality indexes for labour and
capital input, which resulted in capital and labor input accounting for majority of the US economic growth in
1945-65, rather than TFP based on the Solow residual.

23Note that these wedges are defined relative to the absolute informal labor input wedge, as described
previously in footnote 14.
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As noted before, these wedges can possibly represent several frictions. What these expression

actually represent is thus difficult to grasp without putting further structure. However, when

we assume a unitary elasticity of substitution across all inputs (ν = η = 1), the way these

expressions capture distortions can be understood. In particular, we would infer a high for-

mal labor distortion (τf,si) from the data, when the ratio of informal labor to formal labor

compensation is higher than what we can expect from their respective factor shares. Since

formal employees usually earn more than their informal counterparts,24 this ratio will be high

when the informal hiring of the plant is high. This would in turn indicate that that the given

plant faces strong regulatory costs of formal labor, and thus shifts to more informal hiring.

Thus, capturing the mechanism of sidestepping labor regulations. A similar line of reasoning

holds for equations (33) and (34) i.e., we infer a capital and intermediate input distortion from

the data when the compensation of informal employees is higher than the cost of capital and

intermediate inputs, relative to what we can expect from the factor shares. This is not exactly

intuitive, rather, it is simply a result of using the absolute informal labor distortion as the base,

when computing the wedges. Since the focus of this dissertation is mainly on the implications

of the formal labor distortion, measuring wedges relative to informal labor is a necessary step,

albeit with the loss of intuitive reasoning for the other distortions.25

A fundamental issue with ‘identifying’ distortions in this manner is that the observed rev-

enue factor shares in the data could be distorted themselves. In other words, when the economy

faces factor price distortions, the data generating process of the observed revenue factor shares

might be a function of the distortions. If this is indeed the case, it will not be possible to

disentangle the wedges calculated in the data, using equations (32) to (35), from the respective

revenue factor shares. Section III.2 outlines a way in which we can deal with this issue.

II.6 Gauging the Relative Importance of Distortions

As noted before, the dispersion in TFPRsi can be used to gauge the extent of misallocation in

the observed economy. Even after taking a logarithmic transformation of equation (16), it is

evidently difficult to capture how the variation of the formal labor, capital and intermediate

input distortions contribute to aggregate misallocation. This exercise is much simpler when we

assume a unitary elasticity of substitution, which allows a tractable expression for the variance

of TFPRsi. However, in the interest of maintaining generality in the elasticity of substitution,

I follow an alternative path to decomposing the relevance of each distortion towards aggregate

misallocation. In particular, I investigate the hypothetical aggregate reallocation gains by

24Formal employees are subject to various in-kind benefits and also have job security, which informal em-
ployees usually do not. This naturally implies a higher compensation, even if wages might be comparable.

25Notably, the choice of the base input is often arbitrary in the misallocation literature, since we only care
about the distortion backed out from the data. This choice is much more explicit in my framework due to the
focus on labor regulations.
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eliminating one wedge at a time. The intuition behind this exercise is that if a given distortion

in an input is particularly problematic for aggregate misallocation, the output gains from

efficiently allocating the said input will subsequently be higher as well.

As shown by Dias et al. (2016), this can be done by ‘eliminating’ variation in a particular

wedge, while keeping the other wedges operational. For example, suppose that we are interested

in investigating at the reallocation gains implied by only removing idiosyncratic variation in

the formal labor input wedge within the given industries, while keeping the other inputs fixed.

This is equivalent to imposing an industry-specific formal input wedge (1+ τ̃fs), while ensuring

that the industry demand of formal labor is equal to the one observed in the data (equal to

Hf,s).
26 In essence, we are shutting down the variation in (1+ τf,si) such that the formal labor

input distortion no longer varies across plants in a given industry, and evaluating the new

counterfactual output. Since size-based labor regulations vary across plants of different sizes,

this exercise is equivalent to removing such regulations. Let the new allocation of formal labor

input be denoted by H̃f,si, then we can simply rewrite equation (32) as:

H̃f,si =

[(
βf

βc

)(
wc,sH

1−θ
c,si

wf,s(1 + τ̃f,s)

)] 1
1−θ

(36)

Next, in the new allocation, in order to make sure that the aggregate demand for formal labor

input remains the same at the industry-level, we impose the following:

Hf,s =

Ns∑
i=1

λiH̃f,si =

Ns∑
i=1

λi

[(
βf

βc

)(
wc,sH

1−θ
c,si

wf,s(1 + τ̃f,s)

)] 1
1−θ

(37)

With some manipulation, we arrive at the following expression for the industry-specfic wedge:

(1 + τ̃f,s) =

(
βf,s

βc,s

)(
wc,s

wf,s

)(∑Ns
i=1 λiH

1−θ
c,si

Hf,s

)1−θ

;∀i ∈ s = 1, 2, .., S (38)

Plugging this industry-specfic wedge back into equation (36) gives us the final expression for

the new allocation of formal labor input.

H̃f,si =
Hf,s∑Ns
i=1H

1−θ
c,si

Hc,si

(39)

Which further implies the new plant-level output, as follows:

26Matching the industry demand to what is observed in the data is a simple way to make sure that the
counterfactual exercise reallocates the chosen factor across plants within the given industry, such that the total
demand for the said factor remains the same at the industry-level.

19



Ỹsi
f
= Asi

[
αL,s(βc,sH

θ
c,si + βf,sH̃

θ
f,si)

ψ
θ + αK,sK

ψ
si + αQ,sQ

ψ
si

] 1
ψ

(40)

Finally, to arrive at the reallocation gains implied by this new allocation, we can simply replace

Y ∗
si with Ỹsi

f
in equation (27), and subsequently rewrite equation (31) as:

Ỹ f

Y
=

S∏
s=1

{
Ỹs

f

Ys

}µs
=

S∏
s=1




Ns∑
i=1

λi(Ỹsi
f
)
σ−1
σ

Ns∑
i=1

λi(Ysi)
σ−1
σ



σ
σ−1


µs

(41)

Similarly, we can arrive at reallocation gains implied by removing the capital and intermediate

input wedges, one at a time. The algebra for these two is a bit more involved, and is left for

Appendix B.8. Unfortunately, we cannot arrive at the reallocation gains implied by removing

the output wedge, due to the lack of closed form solutions in the procedure described above.

However, note that since the output wedge is built on the informal labor distortion, which is

arguably the least distorted input out of all, most of the reallocation gains should be captured

by efficient allocation of formal labor, capital and intermediate input, one at a time.

III Data and Variables

III.1 ASI, Worker Distinction and Labor Laws

Data for the formal (registered) manufacturing units is drawn from the Annual Survey of In-

dustries (ASI), compiled annually27 by the Central Statistical Organization (CSO) of India and

made available for analysis by the Ministry of Statistics and Program Implementation (MO-

SPI) of the Government of India. The basic unit of enumeration is at plant/factory/enterprise

level, identified with a Dispatch Serial Number. The coverage extends nationwide except for

the states of Mizoram and Sikkim, and the union territory of Lakshadweep. The dataset cov-

ers all manufacturing plants/factories registered under the Sections 2(m)(i) and 2(m)(ii) of

the Factories Act, 1948.28 Additionally, the survey also covers bidi and cigar manufacturing

plants registered under the Bidi and Cigar Workers Act, 1966. ASI is a census of all registered

manufacturing units with 100 or more and a random sample of those employing less than 100

workers. Sampling weights are applied to all relevant computations to infer statistics about

27The cross-section covers one accounting year. With the enactment of Income Tax Act, by and large, the
accounting year of all factories is from 1st April of the preceding year to 31st March of the current year.

28All manufacturing plants with 10 or more employees (using power) and with 20 or more employees (not
using power) are required to be registered under the said Act.
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the population of registered manufacturing plants. I utilise three cross-sections of the ASI,

including – 2010-11, 2014-15 and 2018-19. Accounting for missing data for relevant variables,

the dataset provides detailed information on production and inputs for around 41,000 plants

for each given year. The uniqueness of this dataset is that it allows us to distinguish between

formal and informal workers in terms of the number of employees and their wages. Since

this distinction is crucial, I emphasise on how the data allows me to separate these workers,

and some important regulations that influence the use of each. ASI provides data on workers

employed ‘directly’ by the plant (formal labor) and those employed through ‘contractors’ (in-

formal labor). This implies that those who are employed directly include both full-time and

temporary workers.29

Under Chapter VB of the Industrial Disputes Act of 1947 (IDA, henceforth), manufactur-

ing plants that employ more than 100 workmen must acquire permission from a government

authority before laying off even one workman, inducing high adjustment costs.30 This can be

understood as the opportunity cost in terms of time and effort exerted by employers to go

through the long process of adjusting formal labor employment. Moreover, since these regu-

lations are enforced by government officials through arbitrary inspections, there is substantial

room for extracting bribes. Amirapu and Gechter (2020) documents a positive association

between these regulatory costs and the exposure to corruption. Debroy and Bhandari (2008)

highlight that bribes paid by employers to such inspectors typically rises with number of em-

ployees. The definition of a ‘workman’ under this Act includes only those employed directly by

the plant. Therefore, those employed through contracting agencies (contract workers, hence-

forth) do not come under the purview of this Act. Thus, the main friction generated by the

IDA comes from the high implicit cost of firing formal workers with an additional cost of deal-

ing with government officials. These costs are not associated with contract workers, since they

are not considered direct employees of the plants in which they work. Such workers are thus

exempted from severance pay or retrenchment authorization, allowing employers to exploit this

flexibility and sidestep the various opportunity and direct costs associated with the IDA.

However, it is important to note that the use of contract workers is not completely un-

regulated. The Contract Labour (Regulation and Abolition) Act of 1970 (CLA, henceforth)

provides conditions for the services of contract workers in plants employing at least 20 such

workers. The total contract worker usage must be declared by the employers, in addition to

the nature of their work. Several in-kind benefits are also stipulated by this Act, including

– minimum wage, health/safety provisions and pensions. As a legal antidote to the contract

worker loophole in the IDA, the ease of substitution across formal and informal workers is

29Bertrand et al. (2021) denotes the formal and informal distinction as full-time and contract workers, which
is misleading.

30The government authorities are usually labour courts with the objective to judge industrial disputes between
employers and employees. If the court favors the employer, the worker is laid off after being paid a severance
pay for 15 days for each year of service. If there is no agreement, the case can be moved to the higher courts.
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limited by Section 10 of the CLA. In particular, contract workers cannot be in charge of tasks

performed by permanent workers of the establishment, or establishments in the same industry.

Essentially, the government can prohibit the use of contract labor at a firm that uses it for

its perennial operations, by giving an abolition notification. However, there was a legal ‘gray

area’ as to what would actually happen to contract workers at establishments not following

this rule. An important 2001 ruling by the Supreme Court of India lifted this uncertainty.

Known as the SAIL judgement, the Supreme Court ruled that there is no requirement of au-

tomatic absorption of contract workers in the permanent force of the establishment, following

an abolition notification under Section 10 of the CLA. Bertrand et al. (2021) exploit this as

an event study and report the subsequent rise in contract worker usage in larger plants. In

summary, flexibility comes from the little to no adjustment costs of contract/informal labor.

III.2 Variables and Calibrations

Since the model operates on some strong assumptions regarding constant input shares and input

prices for all plants within a given industry, a higher level of disaggregation in the industry

definition should be used to maintain relevancy of the model’s implications. To this end, this

study uses the 4-digit classification for the manufacturing industries, from 1010 to 3320 within

Section-C of the National Industry Classication (2008). This 4-digit classification allows me to

retain meaningful plant-level variation within each industry whilst also maintaining the idea

of disaggregation. As noted in before in Section II.4, the model’s implications can be sensitive

to the way we measure output and the various inputs. For the baseline computations and

for the purposes of inferring distortions, a gross output approach is used. Gross output for

a given plant is calculated as a sum of the nominal value of total sales, receipts from both

manufacturing and non-manufacturing services, and various rents received. For the purpose

of comparison and to generate more meaningful statistics for aggregate reallocation gains, a

value-added approach is also used. Value-added for a given plant is measured as gross output

short of intermediate input consumption for the given accounting year.

For the baseline computations, the labor inputs are measured by their respective wage bills

i.e., Hz,si = wz,siLz,si for z ∈ {f, c}, where wz,si represents plant-specific average wages per

worker and Lz,si denotes employment. Correspondingly, the sector specific wage rate is set to

one. Computing labor inputs as their wage bill is rudimentary way of controlling for differences

in human capital (Hsieh and Klenow, 2009; Dias et al., 2016) i.e., I assume that differences

in wages capture differences in hours worked and possible skill differences. As a robustness

check, labor input is also measured by the average number of persons employed for both formal

and informal labor. A similar approach is used to compute the intermediate inputs used in

production, i.e., Qsi is set equal to the corresponding value of intermediate inputs used in

production. These include energy, material and services consumed by the plant in the given
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accounting year, with the addition of imported consumption and other expenses incurred on

raw materials. The measurement of capital at the firm/plant level remains a persistent issue,

especially when the measurement of TFP is concerned.31 Hulten (1991) recognises that using

the book value of capital remains a flawed technique but is often the only recourse without

data on past investments. Since I work with cross-sectional data, the perpetual inventory

method cannot be used. Following the general resource misallocation literature (Gustavo and

Cristobal, 2012; Chen and Irarrazabal, 2013; Dias et al., 2016, 2018), and Hsieh and Klenow

(2009) in particular, capital is measured as the average of the net book value of fixed capital

at the beginning and end of the accounting year. The rental rate is assumed to be 10 percent

of the average net book value of capital.

The elasticity of substitution across the differentiated goods produced by plants is assumed

to be equal to 3 i.e., σ = 3, in the baseline computations. Since the value of σ readily affects

the model estimates of reallocation gains, I provide a robustness check by increasing this

elasticity. Following Padmakumar (2022), the elasticity of substitution across labor inputs

is set to ν = 2.7, and the elasticity of of substitution across combined labor, capital and

intermediate inputs is set to η = 4.32 Note that these elasticities are usually assumed to be one

in the misallocation literature, due to the assumption of a Cobb-Douglas technology. Deviating

from this assumption and using a general CES specification, I am able to re-estimate the model

using various values of ν and η as robustness checks.

As highlighted in Section II.5, if the economy faces distortions, it is difficult to identify them

separately from the industry shares of the corresponding factors. A rather crude way of dealing

with this issue is to set the industry factor shares equal to the ones observed in a relatively less

distorted economy (Hsieh and Klenow, 2009; Gustavo and Cristobal, 2012; Dias et al., 2016,

2018). Following the literature, the industry shares from the U.S. are used the computations.

Data for the respective industry factor shares comes from the NBER Productivity Database.

Since the 4-digit industry classification in the U.S. (SIC-1987) does not exactly match the

one in India (NIC-2008), an approximate concordence table is built to match the industries.

Importantly, to maintain plant-level variation, this study does not drop the handful of Indian

manufacturing industries for which no close match was found in the U.S. 4-digit classification.

Instead, the average industry shares from the matched Indian industries that are closely related

to the activities of the unmatched ones, are used as a proxy. I end up with a total of 125 4-digit

industries with revenue factor shares calibrated to the U.S., for each of the three years.

31Hicks (1981) (p.204) remarks that, “The measurement of capital is one of the nastiest jobs that economists
have set to statisticians.”

32Note that the model allows me to use the conditional factor demand equations (Appendix B.3.2) to estimate
these elasticities. However, this requires the use of plant-level fixed effects due to the idiosyncratic distortions,
and also industry fixed effects due to the assumed industry constants. Due to the lack of access to the panel
version of ASI, I use the recent work of Padmakumar (2022), who indeed works with the panel version and a
similar two-level specification.
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IV Empirical Results

IV.1 TFP Distributions

As highlighted in Section II.3, the model allows us to get just-identified estimates of two types

of TFP distributions, namely, total factor physical productivity (TFPQsi = Asi) and total

factor revenue productivity (TFPRsi = PsiAsi). Using the former, we can evaluate the density

of less and/or more productive plants, relative to the industry efficient TFPQ∗
s. This is done by

creating a measure of (log) scaled TFPQ, denoted by ln(AsiW
1

σ−1
s /TFPQ∗

s), where Ws denotes

the sum of sample weights for all plants within the given industry. The few lines of algebra

behind this measure is shown in Appendix B.9. If this measure if positive, then plants are more

productive than TFPQ∗
s, which prevails under efficient allocation.33 Correspondingly, if scaled

TFPQ is negative, plants are less productive than the industry efficient TFPQ∗
s. Overall, the

distribution of scaled TFPQ informs us about the heterogeneity in plant-level productivity.

As evident from Figure 2, the left tail of the scaled TFPQ distribution becomes thicker

in 2014-15, relative to 2010-11. Further, the left tail becomes substantially thinner in 2018-

19, compared to both 2014-15 and 2010-11. This suggests that the policy and competitive

environment started favoring the existence of inefficient plants in 2014-15, relative to 2010-11.

Subsequently, the environment appears to be favoring the existence of more productive plants

in 2018-19. The summary statistics for the scaled TFPQ distribution are reported in Table

1. Consistent with the increase in standard deviation for 2014-15, the difference between the

75th-25th and the 90th-10th percentiles increased as well. This implies that the ‘physical’

productivity gap between the plants at the top and bottom percentiles increased within their

respective industries. As visually apparent from Figure 2, most of the increase in this gap can

be attributed to the addition/increase of inefficient plants rather than an addition/increase of

more productive units.34

This is also evinced by the statistics in the lower panel of Table 1. In particular, owing to the

the large addition/increase in inefficient plants, the difference between the 25th-10th percentile

increased in 2014-15. While a small addition/increase in productive plants lead to the the 90th-

75th percentiles moving closer in 2014-15. In contrast, for 2018-19, the large decline/decrease

in inefficiency around the 25th percentile lead to the larger difference between the 25th-10th

percentiles. Correspondingly, an addition/increase in efficiency around the 75th percentile

lead to a smaller difference between the 90th-75th percentiles. Overall, we can conclude that

the registered segment of manufacturing is comprised of more physically productive plants in

2018-19, relative to 2014-15 and 2010-11.

33Note that if x < 1, then ln(x) < 0 and if x > 1 then ln(x) > 0. This is the basic idea behind this measure.
34Note that the cross-sectional ASI data does not allows me to identify plant entry and exit. This means

that the thicker left tail can be due to two reasons – reduction in physical productivity of surviving plants or
an addition of inefficient plants.
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Figure 2: Density of Scaled TFPQ, Gross Output Approach
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Note: The top and bottom 1% tails of the ln(AsiW
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σ−1
s /TFPQ∗

s) are removed to deal with outliers.

Table 1: Scaled TFPQ Distribution, Summary Statistics

2010-11 2014-15 2018-19

S.D. 1.05 1.09 1.03

75-25 1.48 1.58 1.43

90-10 2.76 2.84 2.70

25-10 0.70 0.72 0.77

90-75 0.58 0.53 0.50

Obsv. 40,016 40,645 42,238

Note: The reported statistics are for the distribution of ln(AsiW
1

σ−1
s /TFPQ∗

s)
after removing the top and bottom 1% tails. The first row reports the standard
deviation. The second and third rows report the difference between the 75th-
25th and 90th-10th percentile of the distribution. The lower panel reports the
difference between the 25th-10th and 90th-75th percentiles.
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Figure 3 illustrates the the distribution of (log) scaled TFPR i.e., ln(TFPRsi/TFPR
∗
s) for each

year. This measure allows us to look at the deviation of observed plant TFPRsi from the

industry efficient TFPR∗
s. If this deviation is positive, the given plant can be understood as

suffering from high distortions within their respective industries, and vice-versa. As described

before in Section II.3, the dispersion in TFPRsi can be used to gauge the extent of resource

misallocation in the economy. In particular, if the distortions are eliminated, there would be

no dispersion in TFPRsi within each industry, and marginal revenue product of factors would

be equalized across plants within a given industry. On the other hand, a higher dispersion

in TFPRsi would indicate more variation in the idiosyncratic distortions faced by the plants.

This would in turn imply higher potential reallocation gains from shifting resources to plants

with relatively higher marginal revenue product of factors, within each industry.

The intuition behind looking at this dispersion can be understood with an example. Suppose

that there are only two plants i ∈ s, and they differ slightly in their respective measures of

TFPRsi. Assume that this difference is enough for one to have a negative scaled TFPR (benefit

from implicit ‘subsidies’) and the other to have a positive scaled TFPR (face implicit ‘taxes’

in employing inputs). Since these plants will be very close to the industry efficient TFPR,

reallocating resources from the plant benefiting from implicit subsidies to the one facing barriers

will only lead to small output gains. In contrast, assume that TFPRsi of each are far apart

i.e., one plant benefits from large implicit subsidies while the other faces strong barriers. Then,

gains from reallocation will be higher or equivalently misallocation will be high.

Table 2 reports the summary statistics behind this distribution for each year. From Figure

3 and Table 2, it is apparent that the dispersion in log scaled TFPR has declined overtime i.e.,

on an aggregate, resource misallocation appears to have decreased in the 2010-11 to 2018-19

period. Importantly, we observe a substantial decrease in dispersion for 2014-15, relative to

2010-11. This was followed by only a minor decrease in 2018-19. The middle and extremes

of the distribution moved considerably closer in 2014-15, leading to the considerable decline

in standard deviation. However, for 2018-19, although the extremes of the distribution moved

closer, there appears to be an increase in the dispersion at the middle. This limits the overall

decline in dispersion for 2018-19. We can decipher these observations further by focusing on

the relative differences in the lower panel of Table 2.

As visually apparent from Figure 3, it should be noted that the decline in dispersion ob-

served for 2014-15 was mostly rooted in the decline of implicit ‘subsidies’ for the plants with

extremely low TFPRsi (ref. 25th-10th percentile difference), rather than the decrease in implicit

‘taxes’ for the plants with high TFPRsi (ref. 90th-75th percentile difference). Interestingly,

for 2018-19, relative to 2014-15, the difference between the 90th-75th percentile shows that

there is a slight increase in barriers faced by the plants already suffering from high distortions.

However, since the left tail cut off is the same for 2014-15 and 2018-19, the higher difference

between the 25th-10th percentiles in 2018-19 shows that there is a substantial decrease in
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Figure 3: Density of Scaled TFPR, Gross Output Approach
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Note: The top and bottom 1% tails of the ln(TFPRsi/TFPR
∗
s) are removed to deal with outliers.

Table 2: Scaled TFPR Distribution, Summary Statistics

2010-11 2014-15 2018-19

S.D. 0.40 0.30 0.28

75-25 0.41 0.27 0.58

90-10 0.92 0.66 0.23

25-10 0.38 0.26 0.53

90-75 0.12 0.11 0.12

Obsv. 40,645 40,016 42,238

Note: The reported statistics are for the distribution of ln(TFPRsi/TFPR
∗
s)

after removing the top and bottom 1% tails. The first row reports the standard
deviation. The second and third rows report the difference between the 75th-
25th and 90th-10th percentile of the distribution. The lower panel reports the
difference between the 25th-10th and 90th-75th percentiles.
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implicit subsidies for the plants at the 25th percentile of the distribution. Overall, it can be

concluded that the decrease in misallocation observed from 2010-11 to 2018-19 was majorly

driven by the decline in implicit benefits enjoyed by the relatively unconstrained plants. On

the other hand, there was a limited to no decline in implicit barriers faced by plants who

were already suffering from high factor price distortions in 2010-11. Thus, although aggregate

misallocation has decreased, policies do not appear to have weakened the implicit barriers faced

by plants in the factor markets.

IV.2 Hypothetical Reallocation Gains

IV.2.1 Aggregate Gains

Having documented the decline in misallocation over the 2010-11 to 2018-19 period, it is useful

to investigate to what extent an efficient allocation could have improved aggregate output.

This is done by computing equations (27) and (31) for each given year. The computations

gives us gross output gains for 125 industries and aggregate gross output gains for a given

year, respectively. Due to the issue of double counting, the concept of value-added is a better

reflection of final output when we aggregate across industries. To evaluate the value-added

gains, equation (31) is also computed using a value-added production function at the plant

level.35 Correspondingly, for the value-added exercise, industry revenue factor shares are re-

calibrated using the value added measure in the NBER Productivity Database, rather than the

value of shipments. Table 3 reports the estimates of aggregate reallocation gains using both

approaches, for each year.

Table 3: Aggregate Reallocation Gains, Gross Output and Value-Added

Measure 2010-11 2014-15 2018-19

Gross Output 85.29 73.44 63.78

Value Added 212.15 193.73 166.19

Note: The reported statistics are for (Y
∗

Y −1)∗100, where Y ∗

Y is computed from equation
(34) using both gross output and value added measures of plant-level output. Plants with
negative value-added are dropped in the computation.

The immediate observation that stands out in Table 3 is that for each year, reallocation gains

are substantially higher when plant-level output is computed using value-added, compared

to gross output. The observed difference can be understood by a small digression on the

relationship between TFP measurement using the two approaches. Following Cobbold (2003),

35This simply amounts to using a value-added measure (gross output minus intermediate consumption)
for each plant, and ignoring intermediate goods as inputs in the production function. All of the derivations
qualitatively remain the same.
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we know that the relationship between value-added and gross output measures of TFPR can

be formally written as:

TFPRVA,si =

(
GOsi

VAsi

)
TFPRGO,si (42)

This relation simply says that the value-added measure of productivity will exceed the gross

output measure by a factor equal to the ratio of gross output to value-added, for the given plant.

Notably, if the plant uses more intermediate inputs, the gross output to value-added ratio will

be higher as well. Thus, in the presence of intermediate inputs, the value-added measure of

productivity will always be inflated in comparison to gross output. Consequently, the value-

added method will lead to higher plant TFPRsi, with the inflation factor varying according to

the intermediate input use of each plant. If there is indeed substantial variation in intermediate

input usage across plants, the dispersion of scaled TFPR based on the value-added approach

will consequently be higher. Figure 11 in Appendix A compares the density of scaled TFPR

using both approaches. The relative difference in dispersion is evident. Hence, reallocation

gains based on value-added will be higher than the computation based on gross-output.36

Evidently, using both methods, we observe that reallocation gains decline over the 2010-11

to 2018-19 period. This is consistent with the declining dispersion in scaled TFPR i.e., the

decline in misallocation, reported previously in Figure 3 and Table 2. Another important com-

ponent of this decrease in misallocation should be noted. As described before in equations (27)

to (30), we know that reallocation gains will be higher if on an average, more productive plants

(higher TFPQsi) face stronger distortions (higher TFPRsi). Notably, even if the dispersion

in scaled TFPR is high, but most of the bite from distortions is not felt by the physically

productive plants (high TFPQsi), reallocation gains can still be low. To assess whether on an

average, the physically productive plants are facing stronger implicit barriers, we can look at

the correlation between scaled TFPR and scaled TFPQ as a broad indicator (Dias et al., 2016,

2018). The corresponding estimates for each year are reported in Table 4.

Table 4: Correlation between scaled TFPR and scaled TFPQ

2010-11 2014-15 2018-19

ρ(scTFPR, scTFPQ) 0.44 0.36 0.37

Obsv. 40,645 40,016 42,238

Note: The reported statistics are for the correlation between ln(TFPRsi/TFPR
∗
s) and

ln(AsiW
1

σ−1
s /TFPQ∗

s), after removing the top and bottom 1% tails of each distribution. All
correlation estimates are significant at the 1 percent level. The gross output approach is used in
the computations of the relevant measures.

36This result is consistent with the findings of Chatterjee (2011) and Kabiraj (2020), who use the same
dataset.
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The correlation estimate decreases in 2014-15 relative to 2010-11, corresponding to the rel-

atively lower gross output gains in 2014-15, as reported in Table 3. Interestingly, although

reallocation gains decline in 2018-19 compared to 2014-15, the correlation estimate between

scaled TFPR and scaled TFPQ saw a minor increase. Note that the right tail of the scaled

TFPQ distribution became thicker in 2018-19 (ref. Figure 2). This means that the increase in

the correlation estimate observed for 2018-19 could very well be due to the addition of more

productive plants, rather than an increase in the barriers faced by the existing productive

plants. This cannot be explored with the cross-sectional ASI dataset due to the lack of com-

mon unit identification. However, the decline in reallocation gains for 2018-19 suggest that

the smaller dispersion in scaled TFPR more than compensated for this phenomenon. In other

words, even though the highly productive plants started facing more barriers to growth, the

smaller dispersion in scaled TFPR (and hence the distortions) was enough to pull down the

implied gains from reallocation. Overall, we can conclude that although aggregate resource

misallocation has declined overtime, the gains from an efficient allocation remain high in an

absolute sense, and hence deserve policy attention. In particular, for 2018-19, under an efficient

allocation of resources within industries, aggregate formal manufacturing output could have

been higher by 166 percent in terms of value-added and 63 percent in terms of gross output.37

IV.2.2 Disaggregated Industry Gains

The previous section documented high potential reallocation gains for formal manufacturing.

In the interest of guiding policy, we can disaggregate these gains to the industry-level. This

is done by computing equation (27), returning reallocation gains for each of the 125 4-digit

industries, for each year. This exercise gains merit if there is substantial variation in reallocation

gains across different industries. Figure 12 in Appendix A illustrates this variation by ranking

the observed gains for the industries, for each year.

Notably, even though a given industry may exhibit high reallocation gains, this will only

translate to higher aggregate output if the given industry’s gross output share is also high. To

this end, Table 5 reports the top ten industries in terms of the highest gross output share and

their corresponding reallocation gains, for each year. The third column traces the correlation

between scaled TFPR and scaled TFPQ as an indicator of whether more physically productive

plants faced more distortions within each industry, for each year. The fourth column reports

the within industry dispersion in scaled TFPR, as a measure of the observed misallocation

in each industry, for each year. The observed (increase) decrease in reallocation gains are a

construct of either a (higher) lower correlation between scaled TFPR and scaled TFPQ and/or

37Instead of estimating the counterfactual reallocation gains at the aggregate level, we can do the same
exercise at the state level. If the idiosyncratic distortions faced by the plants are clustered at the state-level,
perhaps due to the variation in the policy environment for each, this exercise gains merit. The results from
this exercise are shown in Table 10 in Appendix A, followed by a brief discussion.
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Table 5: Industry Reallocation Gains, Ranked by Gross Output Shares

S.No 4-Digit Industry (NIC, 2008) Gross Output Reallocation Gains Gross Output Share corr(scTFPR,scTFPQ) sd(scTFPR)

2010-11

1. Manufacture of refined petroleum products 136.74 19.00 0.25 0.27

2. Manufacture of basic iron and steel 130.87 8.26 0.35 0.34

3. Manufacture of motor vehicles 40.54 4.90 0.32 0.26

4. Manufacture of parts and accessories for motor vehicles 27.41 3.85 0.30 0.24

5. Preparation and spinning of textile fibres 74.03 3.33 0.31 0.25

6. Manufacture of pharmaceuticals, medicinal chemical and botanical products 94.22 3.19 0.46 0.47

7. Manufacture of vegetable and animal oils and fats 46.67 2.93 0.44 0.26

8. Manufacture of cement, lime and plaster 23.89 2.46 0.42 0.36

9. Manufacture of grain mill products 91.84 2.28 0.55 0.37

10. Manufacture of plastics products 68.32 2.06 0.42 0.26

2014-15

1. Manufacture of refined petroleum products 124.15 18.66 0.24 0.23

2. Manufacture of basic iron and steel 99.45 8.01 0.25 0.25

3. Manufacture of motor vehicles 66.24 4.82 0.36 0.32

4. Manufacture of parts and accessories for motor vehicles 21.47 3.66 0.30 0.22

5. Manufacture of pharmaceuticals, medicinal chemical and botanical products 125.30 3.37 0.50 0.46

6. Preparation and spinning of textile fibres 32.22 2.91 0.13 0.15

7. Manufacture of plastics products 48.43 2.84 0.42 0.20

8. Manufacture of cement, lime and plaster 35.42 2.56 0.47 0.34

9. Manufacture of grain mill products 71.42 2.50 0.39 0.24

10. Manufacture of jewellery and related articles 68.05 2.40 0.48 0.21

2018-19

1. Manufacture of refined petroleum products 159.62 10.21 0.27 0.18

2. Manufacture of basic iron and steel 118.97 8.68 0.26 0.21

3. Manufacture of motor vehicles 7.87 5.54 0.14 0.17

4. Manufacture of pharmaceuticals, medicinal chemical and botanical products 110.93 4.37 0.43 0.44

5. Manufacture of parts and accessories for motor vehicles 26.27 4.16 0.32 0.21

6. Manufacture of plastics products 43.31 3.16 0.40 0.21

7. Manufacture of vegetable and animal oils and fats 24.30 2.87 0.23 0.15

8. Manufacture of cement, lime and plaster 34.40 2.78 0.37 0.36

9. Manufacture of grain mill products 66.09 2.53 0.34 0.21

10. Preparation and spinning of textile fibres 14.41 2.47 0.10 0.15

Note: The reported statistics for a given industry s are from (Y
∗
s

Ys
− 1) ∗ 100, where Y ∗

s

Ys
is computed using equation (27). Gross output share corresponds to µs =

PsYs
PY

in equation (6), where PsYs =
∑Ns

i=1 λiPsiYsi. All correlation
estimates are siginificant at the 1% level.
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a (higher) lower dispersion in scaled TFPR.

As we would expect, the observed changes in the aggregate reallocation gains (ref. first

row in Table 3) are built on heterogeneous changes in reallocation gains at the industry level.

In 2014-15, relative to 2010-11, the industries that saw a decline in reallocation gains include

– Preparation and spinning of textile fibres (drop by 41.81 ppts.), Manufacture of iron and

steel (31.42 ppts.), Manufacture of grain mill pdts. (20.42 ppts.), Manufacture of plastic pdts.

(19.89 ppts.), Manufacture of refined petroleum pdts. (12.59 ppts.) and Manufacture of parts

and accessories for motor vehicles (5.94 ppts.). For 2018-19, relative to 2014-15, there is a

noticeably large decline in reallocation gains for the Manufacture of motor vehicles (drop by

58.37 ppts.), this is followed by – Preparation and spinning of textile fibres (17.81 ppts.),

Manufacture of pharmaceuticals (14.37 ppts.), Manufacture of grain mill pdts. (5.33 ppts.),

Manufacture of plastic pdts. (5.12 ppts.) and Manufacture of cement, lime and plaster (1.02

ppts.). Thus, several important industries appear to have improved their allocative efficiency

overtime.

On an average over the three years, the refined petroleum industry reflects the highest

reallocation gains of around 140 percent, combined with the highest average gross output share

of 16 percent. This is followed by the iron and steel and the pharmaceutical industry with

average reallocation gains of 116 percent and 110 percent, commanding average gross output

shares of 8 percent and 4 percent, respectively. Given the importance of these industries

towards aggregate formal manufacturing output, this is particularly problematic. Importantly,

although the refined petroleum industry and the iron and steel industry observed a decline in

misallocation in 2014-15, both industries appear to be suffering from increased misallocation

in 2018-19.38 The pharmaceutical industry saw an increase in misallocation during 2014-15,

with only a small drop in 2018-19. On the more optimistic side, three industries observed a

consistent decline in misallocation, including – textiles, grain mill products and the plastic

products industry.

Table 11 in Appendix A reports the top ten industries with the highest reallocation gains

for each year. Majority of these industries hold a gross output share of around 0.10-1.46 per-

cent. Thus, even though these industries suffer from high misallocation, the high reallocation

gains will only lead to limited increase in aggregate output. There appears to be no systematic

pattern i.e., majority of the industries that suffered from high misallocation in 2010-11, do not

re-appear in the top ten in 2014-15, and similarly for 2018-19.39 Overall, although aggregate

misallocation has declined, the output of several important industries evidently remains con-

strained. Thus, from the lens of policy making, the decline in aggregate misallocation should

not taken at its face value.

38The refined petroleum industry saw a 8.45 ppts. decline in its output share in 2018-19, but still remains
as the largest contributor towards aggregate output.

39However, there are a couple of exceptions. The manufacturing of bottled drinks and the manufacturing of
plastic and synthetic rubber suffered from high misallocation over the entire 2010-11 to 2018-19 period.
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IV.3 Efficient Plant Size Distribution

Following the industry-level analysis in the previous section, it is important to document how

the output of the underlying plants behaves under an efficient allocation. In particular, in the

counterfactual exercise, we can characterise which plants would increase or reduce their size.

As previously outlined in Section II.4, the counterfactual gross output for a given plant will be

higher if its observed TFPRsi is high, relative to the efficient TFPR∗
s. In other words, under

a within-industry efficient allocation of resources, the most constrained plants will increase

their gross output, while those who benefit from implicit subsidies will shrink in size. In order

to characterise whether on an average, smaller or larger plants face more distortions within a

given industry, we can explore the association between scaled TFPR and gross output. Figure

4 illustrates this relationship for 2018-19.40

Figure 4: Relationship between Scaled TFPR and Plant Size, 2018-19
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Note: The plot shows point estimates and 95% confidence intervals from non-parametric regression of (log)
scaled TFPR on the log of observed gross output; positive scaled TFPR ⇐⇒ plants face implicit ‘taxes’ and
negative scaled TFPR ⇐⇒ plants benefit from implicit ‘subsidies’.

There are four main takeaways. First, on an average, the smallest plants seem to face the

highest distortions in input markets. Second, as we reach the small to medium sized plants, the

observed relationship somewhat weakens but still remains positive and significant.41 Third, the

40The observed relationship remains qualitatively the same for 2010-11 and 2014-15.
41It can be argued that the smallest plants face strong capital constraints due to lack of collateral or good
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mid size plants face strong distortions, with an increasing intensity as size increases. Finally,

the mid to large and the substantially larger plants either do not face distortions or start

benefiting from implicit subsidies as size keeps increasing.42 Given these four observations, on

an average, we can expect the intra-industry efficient allocation of resources to increase the

output of the small and mid-sized plants, while the mid to large and the largest plants should

relatively shrink.

Notably, given the idiosyncratic nature of the distortions (ref. equation (9)), these results

will only hold on an average. In other words, some small or mid-sized plants could very well

be benefiting from implicit subsidies due to a reduced scale of operation, while some larger

plants might be suffering from distortions. This further implies that a certain percentage of

small and mid-sized plants will indeed shrink under an efficient allocation of resources, while

a percentage of large-sized plants will grow even further. We can explore this heterogeneity

and analyse the relationship in Figure 4 more formally. This is done by evaluating the efficient

plant size distribution against the observed data, using the following steps. First, the plants

are put into five equally sized quintile groups based on their observed gross output. Second,

the efficient counterfactual gross output of each plant is computed, such that TFPR equalizes

within their respective industries. Third, I compute the ratio of efficient to observed gross

output for each plant and sort them into four bins. Finally, I arrive at the percentage of plants

belonging to each quintile group, within each specific bin based on the efficient to actual gross

output ratio. These bins are specified as follows – 0-50% (plants that should reduce their size

by half or more), 50-100% (plants that should reduce in size by less than half), 100-200%

(plants that should increase size by less than double), and 200% + (plants that should at least

double in size).

Table 6 reports the findings. Indeed, as previously hinted by Figure 4, the most popu-

lated bin for the plants belonging to the bottom, second and third quintile group is 200%+.

Subsequently, the majority of the plants in the fourth and top quintile fall in the 50-100%

bin. This implies that majority of small, small to mid-sized and the mid-sized plants will be

able at least double their gross output if resources were to be allocated efficiently, within their

respective industries. On the other hand, majority of the plants at the top of the distribution

would have to reduce their gross output by less than half of their observed production. As

expected, there is considerable heterogeneity in this result.43 Many plants at the bottom and

middle of the distribution will indeed shrink in size, while some at the top will also grow. In

particular, for 2018-19, around 30 percent, 35 percent and 46 percent of the plants belonging

credit history, this issue might subsequently reduce as we move to the larger plants.
42This relationship can be further broken down by looking at the relationship between plant size and the

individual distortions, one at a time. This discussion is delayed to the next section.
43Note that for 2010-11, in contrast of 2014-15 and 2018-19, we observe that even the plants at 4th quintile

group of the distribution would on an average exhibit growth under an efficient allocation (37 percent of the
plants in this group would observe an output increase of 200 percent or more). This is consistent with the
findings in Table 4 i.e., larger plants faced more constraints in 2010-11.
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Table 6: Observed Plant Size v/s Plant Size Absent Distortions, 2014-15 to 2018-19

Bins of Efficient to Actual Output Ratio

2010-11 0-50 50-100 100-200 200+

Top Quintile 17.06 39.97 29.74 13.19

4th Quintile 16.70 28.58 17.64 37.05

3rd Quintile 11.50 13.16 10.09 65.22

2nd Quintile 7.19 6.34 6.80 79.65

Bottom Quintile 9.10 4.07 5.12 81.69

2014-15 0-50 50-100 100-200 200+

Top Quintile 13.93 44.29 34.74 7.01

4th Quintile 12.18 41.63 28.32 17.83

3rd Quintile 11.85 33.22 19.98 34.93

2nd Quintile 11.62 31.30 15.89 41.18

Bottom Quintile 14.96 26.58 15.90 42.54

2018-19 0-50 50-100 100-200 200+

Top Quintile 9.61 45.88 37.93 6.56

4th Quintile 9.65 44.21 31.38 14.74

3rd Quintile 9.02 37.00 24.05 29.91

2nd Quintile 8.37 27.12 16.58 47.91

Bottom Quintile 9.84 20.59 19.56 50.00

Note: The reported statistics are for the percentage of plants belonging to each bin based on the efficient to
observed size ratio, for each quantile group based on the observed size. The efficient gross output is computed
using equation (24), after removing the top and bottom 1% tails of the scaled TFPR and scaled TFPQ.

to the bottom, second and third quantile groups, respectively, will shrink in size. Meanwhile,

around 44 percent and 46 percent of plants in the fourth and top quintile groups, respectively,

would increase their size. Overall, for each year, many plants appear to shrink under an ef-

ficient allocation of resources. However, in order for the counterfactual exercise to generate

gross output reallocation gains, the average gross output under the efficient distribution should

be higher than the one observed in the data. Reassuringly, Figure 5 shows that this is indeed

the case i.e., the mean efficient gross output is higher than the corresponding mean observed

gross output, for each year.

The efficient distribution is noticeably shifted to the right as compared to actual distri-

bution. This intuition behind this shift deserves a brief discussion. In particular, this shift

provides further evidence for the statistics reported in Table 5. We know that the small, small

to mid-sized and mid-sized plants exhibit a substantial increase in their output. This pushes
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Figure 5: Actual Gross Output v/s Gross Output Absent Distortions

Note: The plots show the kernel density of the logarithm of gross output. The vertical lines show the mean
values for each distribution. The ‘efficient’ gross output i.e., (PsiYsi)

∗ is computed using equation (24) with
the application of sample weights.

the left-tail of the distribution to the right, such that the density of these plants in the efficient

distribution is lower compared to the actual. This right push is further augmented by the fact

that there are indeed much more small and medium sized plants in the formal manufacturing

sector (ref. Table 9 in Appendix A). Further, as previously reported in Table 5, even though

the majority of large plants observe a decrease in their output, most of the reduction amounts

to less than half of their observed output. On the other hand, most of the relatively smaller
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plants would at least double their output. This large right push from the relatively smaller

plants combined with a relatively lesser left push from the plants at the top of the distribution

materializes into higher density near the right tail of the efficient distribution. Overall, this

pattern appears to be consistent across all years. Intuitively, the average gap between the

actual and efficient gross output should be reflective of reallocation gains documented in Table

3. In particular, this gap should increase in 2014-15, relative to 2010-11, followed by a decline

in 2018-19. Comparing the distance between the vertical lines in Figure 5, the average gap

between the distributions clearly follows this pattern overtime.

Figure 5 only illustrates the behaviour of the two distributions at the aggregate. Owing to

the difference in gains from reallocation at the industry level (ref. Table 5), there is reason to

expect heterogeneity in these distributions for the underlying industries. Figure 6 illustrates

these two distributions for the top six industries in terms of gross output share in 2018-19. The

right shift of the efficient distribution is apparent, with the mean gap reflecting the reallocation

statistics reported in the bottom panel of Table 5.44

Overall, we observe that under an efficient allocation of resources, majority of the small,

small to mid-sized and mid-sized plants would increase their size. On the other hand, majority

of the large-sized plants would shrink. In other words, we can conclude that majority of the

plants near the bottom of the distribution face high distortions that does not allow them to

achieve their optimal scale. Further, majority of the plants at the top of the distribution

appear to be benefiting from implicit ‘subsidies’ in factor markets that allows them to increase

their scale, above and beyond their optimal size under an efficient allocation.45 This is in

contrast to the results of Hsieh and Klenow (2009), who do a similar exercise for India’s formal

manufacturing in 1994-95. The authors’ report that majority of the mid-sized plants would

shrink in size, while the larger plants are likely to expand. This is attributed to the inefficiency

of mid-sized establishments belonging to the public sector. Since majority of the structural

reforms of 1991 in terms of industrial de-licensing were implemented in the late 1990’s, Hsieh

and Klenow (2009) evidently could not capture the effect of these reforms. In the more recent

context, given the increasing push towards privatisation, this argument clearly does not apply.

Instead, more recently, I argue that majority of the large sized plants who could potentially

be benefiting from implicit ‘subsidies’ in factor prices of intermediate inputs and capital, while

also benefiting from high informal labor usage that allows them to circumvent formal labor

44Note that the mean gap between the distributions should not be compared across industries. This is
because the concavity of the logarithmic transformation will reflect a smaller mean gap for industries which
have a higher average observed gross output. For example, for 2018-19, Table 5 reports that the Petroleum
industry (1920) could have potentially increased output by 159%, while the potential gains for the Iron and
Steel industry (2410) are around 118%, but in Figure 6, the mean gap for the former will appear to be relatively
smaller due to its higher average observed gross output.

45Note that this line of reasoning comes from equation (24), which highlights that plants facing implicit
‘taxes’ in factor prices will grow in the counterfactual. Conversely, those benefiting from implicit ‘subsidies’
will shrink in size.
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Figure 6: Actual Gross Output v/s Within Industry Equalized TFPR Gross Output, Top Six Industries by GO
Share, 2018-19

Note: The plots show the kernel density of the logarithm of gross output. The vertical lines show the mean values for each distribution. The ‘efficient’
gross output i.e., (PsiYsi)

∗ is computed using equation (24) with the application of sample weights. The panels report the following 4-digit NIC (2008)
codes – 2220 = Manufacture of plastic products, 1920 = Manufacture of refined petroleum products, 2100 = Manufacture of pharmaceuticals, medici-
nal chemical and botanical products, 2410 = Manufacture of basic iron and steel, 2910 = Manufacture of motor vehicles, 2930 = Manufacture of parts
and accessories for motor vehicles.
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distortions. On the other hand, although relatively smaller plants do not have to suffer from

distortions in formal labor, they could potentially be constrained by distortions in intermediate

inputs and capital. The next section is devoted to making this argument more concrete.

V Sources of Misallocation

V.1 Correlation Evidence

The indirect approach to understanding resource misallocation is essentially a black box when

it comes to understanding the sources of misallocation. The general formulation of the wedges

without imposing any particular structure leaves the sources of misallocation open to many

interpretations. However, given the context of size-based labor regulations and the differences

in various perceived obstacles as size changes (Sen, 2020), a natural way to understand these

distortions is to investigate their relationship against plant size. Moreover, given the appraisal

of observed plant size against the efficient counterfactual, in the previous section, exploring the

size-based relationship also allows us to understand which distortions prevent the small and

mid-sized plants from growing. To this end, the correlation between scaled TFPR and plant

size previously shown in Figure 4 can be disentangled by investigating the correlations between

the various (scaled) wedges and plant size (Dias et al., 2016, 2018).

Figure 7 shows the relationship between the scaled wedges46 and plant size measured as

gross output, for each year. Consistent with the context of size-based labor regulations, it is

observed that the smaller plants either do not face any formal labor distortion (an insignificant

relationship) or benefit from implicit subsidies in hiring formal workers. As plant size increases,

we observe that the medium and medium to large-sized plants start to face implicit taxes when

hiring formal workers. This relationship either becomes insignificant or turns into implicit

subsidies as we move to the largest plants. Importantly, for the medium and medium to large

sized plants, the obstacles in hiring formal workers seems to increased in 2014-15, followed by

an insignificant increase in 2018-19. Overall, based on pure correlation analyses, we observe

that medium and larger plants have started to face more constraints in formal hiring, while

the smaller plants either do not face constraints or benefit from implicit subsidies in hiring

formal workers.47 Note that the framework does not characterize the formal labor wedge as

size dependent adjustment costs implied by labor regulations, however, given with the way

the correlation appears to behave against plant size, the link with size-based labor regulations

seems inevitable.

46The wedges are estimated using equations (32)-(35) for each plant, and then divided by their respective
industry mean. This scaling is done to ensure coherence with the scaled TFPR measure. A positive scaled
wedge reflects that a plant faces more constraints compared to the industry average. On the other hand, a
negative scaled wedge means that the plant benefits from implicit subsidies, relative to the industry mean.

47Notably, the implicit subsidies for the smaller plants appears to somewhat increase in 2018-19 as well.
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Figure 7: Relationship between Scaled Factor Price Wedges and Plant Size (log of Actual GO)

Note: The plot illustrates the point estimates of a non-parametric fit using smoothed conditional means with a 95% confidence interval, between log-
arithm of gross output (sample weighted) and the scaled wedges for each year. Positive scaled wedge = implicit ‘taxes’ in that input, negative scaled
wedge = implicit ‘subsidies’ in that input.
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Based on suggestive evidence from the knitted garment industry, Banerjee and Duflo (2005)

emphasizes the role of differences in marginal products of capital in explaining India’s low man-

ufacturing TFP. Indeed, in the current setup, differences in interest rates for plants of different

sizes can lead to substantial variation in the marginal product of capital. In particular, if the

smaller plants face higher rates than their larger counterparts, we can expect the relationship

between the scaled capital wedge to be decreasing in plant size, with the capital distortion

stemming from imperfect financial markets. Figure 7 shows that the the smallest plants seem

to face implicit barriers in renting capital, while the larger plants tend to benefit from reduced

rates. This pattern is more evident for 2014-15 and 2018-19, and less so for 2010-11. Overall,

the barriers to renting capital for small plants appear to have slightly decreased in 2014-15, fol-

lowed by a rise in 2018-19. On the other hand, the relatively larger plants (including mid-sized

plants) seem to benefit from implicit subsidies in renting capital. However, it is important

to note that this conclusion is highly sensitive to the way capital is measured from the data

i.e., this conclusion will only hold if our measure of the average net book value of fixed assets

indeed captures plant-level capital well.

Recent work by Boehm and Oberfield (2020) uses plant-level data from ASI to investigate

the distortions in intermediate inputs. In their setup, hold up problems and weak enforcement

of contracts (characterised by poor courts) on intermediate inputs lead to a decline in state-

level productivity. Sen (2020) reports that small sized plants face issues in obtaining licences

while mid-sized plants report issues in access to energy, transport and telecommunications as

the strongest obstacles to growth. In this context, it is important to ask how the intermediate

input wedge behaves with plant size. Figure 7 illustrates that the implicit barriers in employing

intermediate inputs are faced by majority of the plants, except those at the very top of the

plant-size distribution. Notably, most of this bite is felt by the smallest plants. Moreover,

from 2010-11 to 2018-19, the level of the intermediate input wedge appears to have shifted

significantly upwards for the medium and medium to large sized plants, implying that these

plants are increasingly facing stronger distortions to intermediate input use.

The last panel in Figure 7 shows the relationship between the absolute informal labor wedge

(inverse of the output wedge) and plant size. There are two important observations. First,

majority of the plants benefit from implicit subsidies in hiring informal labor, as we would

expect. Second, the larger plants benefit from relatively higher implicit subsidies associated

with informal labor, compared to the smaller plants. Thus, the largest plants who are ‘con-

strained’ by size-based formal labor regulations seem to be benefiting more from the reduced

cost of hiring informal labor. This could potentially reflect the idea that larger plants might

have better access to contracting agencies and a stronger bargaining power when dealing with

them, something smaller plants might lack. Reassuringly, given the fact that there has been

no new size-based labor regulations for informal workers, the observed relationship appears to

have remained stable overtime.
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Overall, we can conclude that although the small and mid-sized plants benefit from implicit

subsidies in hiring formal workers, they face strong constraints in other inputs. In particular,

the small sized plants are constrained by strong distortions in capital and intermediate input.

On the other hand, the mid-sized plants seem to be increasingly facing strong constraints

in intermediate inputs. The mid to large and large-sized plants are constrained by the high

regulatory costs of formal workers, induced by size-based regulations. However, at the same

time, these plants seem to benefit from a lower costs of informal hiring. Given the legal ‘gray

area’ in the use of contract workers (ref. Section III.1), we can expect larger plants to easily

substitute formal workers with more informal hiring.48 Thus, labor informality might reduce

the relevance of formal labor distortions for larger plants, while they benefit from relatively

lower costs in other inputs.

V.2 Relative Importance of Distortions

V.2.1 Output Gains from Isolated Reallocation

Following the documentation of the potential sources of misallocation, it is important to inves-

tigate the contribution of each individual distortion towards aggregate misallocation. As noted

before in Section II.6, it is difficult to break down the variance of TFPRsi into its individual

components due to the assumed functional form. Rather than examining the dispersion of each

individual distortion, we can instead compute the reallocation gains generated by eliminating

one distortion at a time, while keeping the others operational. This amounts to imposing an

average wedge for all plants within a given industry, and finding the efficient allocation of the

given factor. Subsequently, we can compute the new output under the efficient allocation of

only the given factor and re-purpose equation (31) to compute the reallocation gains.49

Table 7 reports the resulting aggregate gross output gains, by eliminating one wedge at a

time. On an average, the formal labor input wedge and the intermediate input wedge seem

to be driving majority of the misallocation over the years. The reallocation gains implied by

removing variations in the intermediate input wedge appear to increase in 2014-15, before falling

back to the level observed in 2010-11. While the capital input wedge appears to have become

more problematic in 2018-19, after a decline in its contribution to aggregate misallocation in

2014-15, compared to 2010-11. From the previous section, we know that the formal labor

wedge traces the impact of size-based labor regulations. Interestingly, we observe that gains

from an efficient allocation of formal labor decrease in 2014-15 and 2018-19. Before discussing

this observation further, it is instructive to first explore how the static plant size distribution

behaves when size-based labor regulations are removed.

48As estimated by Padmakumar (2022), the estimated elasticity of substitution between both labor inputs
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Table 7: Aggregate Gross Output Gains, Isolated Factor Reallocation

Eliminated Wedge 2010-11 2014-15 2018-19

Formal Labor Input 41.02 15.28 15.20

Capital Input 10.44 6.06 15.12

Intermediate Inputs 30.72 51.06 31.42

Overall 85.29 73.44 63.78

Note: The reported statistics are for ( Ỹ
Z

Y ) − 1) ∗ 100, where Ỹ Z

Y (∀Z = f,K,Q) is computed
using equations (107) to (109) in Appendix B.8.

Figure 8: Actual Size v/s Size Absent Formal Labor Distortion, 2018-19
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Note: The left panel illustrates the plant size distribution (based on the number of employees) using a bin-
width of 10, limited to plants employing less than or equal to 1000 workers. The right panel illustrates the
OLS line based on the log-log plot of the same distribution, for all plants in the distribution.

This is illustrated in the first panel Figure 8.50 Notably, the density of both small and medium

sized plants would decrease in the counterfactual economy with no idiosyncratic variations in

the formal labor wedge. In particular, the log-log plot in the second panel of Figure 8 clearly

shows that the density of plants hiring 1000 workers or less will shrink, while those hiring more

will increase in density. Overall, the counterfactual plant size distribution will exhibit a more

dense right tail, favoring the existence of more large sized plants. This is in line with what

policymakers can expect by removing size-based labor regulations – there will be less small-

sized plants and more large-sized plants. However, Table 7 reports that the reallocation gains

stands at 2.7, reflecting high substitutability.
49The algebra behind removing the formal labor wedge was reported in Section II.6. The derivations for

removing the capital and intermediate input wedge is shown in Appendix B.8.
50A qualitatively similar figure is found for both 2010-11 and 2014-15.
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implied by eliminating variation in the formal labor wedge are substantially lower in 2014-

15 and 2018-19, compared to 2010-11. If the variation in this wedge is indeed attributable

to size-based labor regulations, this implies – eliminating variations in the labor regulations,

such that plants of different sizes face the same formal labor regulations, would have lead to

substantially smaller output gains in the 2014-15 and 2018-19, compared to 2010-11. Since

larger plants are more productive (ref. Section VI.3) and the counterfactual economy indeed

exhibits an increase in their density, why do the output gains from this policy decline?

V.2.2 Model-Based Reconciliation

This finding can be rationalized by the observed increase in informal worker usage in 2014-

15 and 2018-19, relative to 2010-11 (ref. Figure 1 and Table 9 in Appendix A). In essence,

with medium to large plants increasingly hiring informally, reallocating formal labor towards

these plants51 will lead to lower output gains compared to the case when informal labor usage

is low. The intuition is straightforward – since these plants are able to sidestep regulations

and meet their optimal labor input requirements by hiring informal workers, allocating these

units more formal workers while keeping the other inputs fixed, will lead to limited increase

in gross output of these plants.52 The mechanism behind sidestepping regulations by hiring

more informal workers can be seen by manipulating the first-order conditions of a given plant’s

profit maximization problem with respect to both labor inputs. The equilibrium informal to

formal labor input ratio writes:

Hc,si

Hf,si

=

[(
wf,s(1 + τf,si)

wc,s

)(
βc,s

βf,s

)]ν
;∀i ∈ s (43)

Evidently, if the regulation induced distortion to the cost of hiring formal labor increases, the

informal to formal labor ratio of the given plant also increases. Moreover, this effect is further

augmented by the elasticity of substitution across both labor inputs (ν) i.e., the incremental

increase in informal to formal labor input ratio is higher if formal labor can be easily substituted

by their informal counterparts. As noted before, size-based labor regulations can be eliminated

from the model by imposing an average formal labor input wedge that does not vary across

plants within a given industry, this would alter equation (43) as follows:

Hc,s

Hf,s

=

[(
wf,s(1 + τ̃f,s)

wc,s

)(
βc,s

βf,s

)]ν
;∀i ∈ s (44)

51As highlighted before in Figure 7, on an average, the medium to large sized plants have a positive scaled
formal labor wedge, meaning the reallocation exercise will increase their employment of formal workers.

52Note that the model assumes that all labor resources are fully utilised such that there is no unemployment.
This means that informal workers are not fired in response to reallocation of formal workers, thus, the realloca-
tion exercise will give medium to large sized plants greater amounts of formal labor, while keeping the amount
of informal labor constant.

44



This implies that eliminating size-based labor regulations essentially amounts to a constant

informal to formal labor input ratio for all plants within a given industry. In the data, this

ratio will be higher for medium to large sized plants who face higher values of τf,si, and thus

the counterfactual exercise will reallocate large amounts of formal labor to these plants in order

to maintain the constant ratio in equation (44), within each industry. Subsequently, although

there will be an increase in gross output, the increase will be limited. To see this formally, we

can rewrite the first-order condition with respect to formal labor reported in equation (94) in

Appendix B.7, as follows:

P̃siYsi = (TFPQsi)
ψ

(
σ

σ − 1

)(
MRPHf,si

αL,sβf,s

)(
H̃1−θ
f,si

X̃si

ψ−θ

)
(45)

Where P̃siYsi denotes the new gross output when size-based labor regulations are eliminated,

and X̃si denotes the aggregate labor input. There are several components that induce an

increase in counterfactual gross output for plants constrained by the regulations - First, since

larger plants are also more physically productive (high TFPQsi), they will produce more in

the counterfactual.53 Second, a higher markup also induces higher production. Third, since

regulations increase the marginal cost of employing formal labor, the constrained plants will

have high MRPHf,si (ref. equation (94)). This further implies that the additional revenue

generated from an incremental increase in formal labor will be high for such plants. Finally,

we observe that the increase in gross output will be limited by the fact that these plants are

already hiring large amounts of informal labor i.e., the aggregate labor input (Xsi) will already

be high even before reallocating more formal labor to these plants. This last effect appears to

be negating much of the positive effects on gross output, thus leading to a small increase in

output from plants that are constrained by size-based labor regulations.

In other words, since the constrained plants meet their labor requirements by hiring in-

formally, giving these plants more formal labor while keeping other factors constant, will not

lead to substantial output gains. This happens because ‘constrained’ plants will hit diminish-

ing returns to its total labor input faster. Thus, due to labor informality, output gains from

removing the formal wedge (equivalently size-based labor regulations) are not high. Hence, we

can conclude that formal labor misallocation will contribute less towards to aggregate misallo-

cation, when labor informality is taken into account. Ignoring this phenomenon will thus lead

to an incorrect vision of aggregate gains from such policy.

Overall, there are three main findings in this section that can be linked to the previously

reported decrease in aggregate misallocation or equivalently the decrease in aggregate gains

from reallocation for 2010-11 to 2018-19. First, majority of the aggregate misallocation in all

53The relationship between plant size and physical productivity is shown in Section VI.3.
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three years is attributable to the formal labor and intermediate input wedges, with the capital

input wedge playing a relatively smaller role. Second, although the formal labor input wedge

was behind the high aggregate misallocation observed for 2010-11, its contribution declined

substantially in 2014-15 and 2018-19 due to the increase in informal labor usage. Third, the

decline in the contribution of the formal labor input wedge was behind the large decline in

aggregate misallocation for 2014-15, while the decline in contribution of the intermediate input

wedge drove majority of the decline in aggregate misallocation for 2018-19.

It is important to note that although aggregate misallocation has declined overtime, the

intermediate input distortions have become as problematic as they were in 2010-11, while

distortions in the capital input seems to have somewhat increased relative to 2010-11. Thus,

the observed decline in aggregate misallocation does not seem to coming from policies that

favored a more efficient allocation of resources, rather it is mostly a construct of high informal

labor usage which subsequently reduced the importance of formal labor misallocation. Thus, if

the recent ‘ease of business’ narrative behind the easing of the size-based labor regulations in

India is seen from the perspective of potential increase in aggregate output, the gains appear

to be small. Instead more recently, for 2018-19, the estimates in Table 7 suggests that most

of potential output gains could have been realised by focusing on the distortions that generate

misallocation in intermediate inputs.

VI Robustness Checks

VI.1 Varying Factor Elasticity of Substitution

As previously highlighted in Section II.3, the dispersion of TFPRsi and hence the corresponding

reallocation gains could be sensitive to the choice of the elasticity of substitution across both

labor inputs (first-level e.o.s, henceforth) and across combined labor, capital and intermediate

inputs (second-level e.o.s, henceforth). Figure 9 illustrates the sensitivity of the computed gross

output reallocation gains as the elasticity parameters change. The left panel clearly evinces

that although the reallocation gains decline in response to an increasing first-level e.o.s, the

rate of decline is slow. On the other hand, the right panel reports that the reallocation gains

decline much more rapidly when the second-level e.o.s increases.

The intuition behind the observed difference in sensitivity can be understood by a simple

example. Suppose that a plant faces stronger distortions in intermediate inputs, but the second-

level e.o.s. is high. Clearly, this plant can circumvent constraints on employing intermediate

inputs by easily substituting towards more capital or labor, in effect reducing the impact of the

intermediate input distortion. Alternatively, assume that the first-level e.o.s. is high. In this

case, the plant facing strong distortions in intermediate inputs will not be able to easily shift

towards more labor or capital to meet its desired scale of operation, and thus the intermediate
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Figure 9: Aggregate Gross-Output Reallocation Gains, Varying E.O.S, 2018-19
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Note: Aggregate reallocation gains are computed using (Y
∗

Y − 1) ∗ 100, where Y ∗

Y comes from equation (31).
The baseline computations were based on ν = 2.7 and η = 4, which is equivalent to assuming θ = 0.63 and
ψ = 0.75, respectively.

input distortion maintains its relevance regardless of a high first-level e.o.s. In other words, a

higher second-level e.o.s is helpful in dodging distortions to each ‘second-level’ input, while a

higher first-level e.o.s is only useful when the formal labor input distortion is high (ref. equation

(43)).

Overall, we can conclude that a non-unitary elasticity of substitution across inputs is ex-

tremely relevant in explaining the observed misallocation in the economy. The misallocation

literature based on the Hsieh and Klenow (2009) framework mostly operates on the canonical

Cobb-Douglas specification for plant-level production, essentially assuming a unitary elasticity

of substitution across inputs. Although a Cobb-Dogulas specification is much more tractable

and easier to work with algebraically, I show that this assumption has strong implications

for the measure of misallocation and the computation of hypothetical gains from reallocation.

Working with a CES specification is a theoretically richer approach which can evidently capture

this sensitivity and thus produces more robust estimates of misallocation.

VI.2 Computation of Labor Input and Elasticity across Goods

The baseline computations were done by measuring both types of labor input using their re-

spective wage bills. This was based on the assumption that differences in worker skills and

hours worked are captured by wages, such that the estimates of TFPRsi and TFPQsi accounts

for these aspects, rather than simply measuring labor input as the number of employees. How-
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ever, if we refer to the literature on non-competitive labor markets, wages can potentially

reflect rent sharing between the plant and the workers. If this is indeed the case, more pro-

ductive plants might be paying higher wages and thus hire less than they otherwise would,

amplifying the gaps in TFPR and hence increasing misallocation. This implies that measuring

labor input as their respective wage bill might understate the gaps in TFPR and hence the

extent of misallocation. Interestingly, reallocation gains appear to slightly increase for 2010-11

and decrease for 2014-15 and 2018-19, compared to the baseline estimates. This implies that

wage differences from rent sharing indeed amplified TFPR differences in 2010-11, however, rent

sharing does not seem to be much of an issue for 2014-15 and 2018-19.

Table 8: Aggregate Reallocation Gains, Number of Employees as Labor Input

Output Measure 2010-11 2014-15 2018-19

Gross Output 86.01 73.24 64.03

Value Added 215.02 193.18 165.70

Note: The reported statistics are for (Y
∗

Y − 1) ∗ 100, where Y ∗

Y is computed from equation
(31) using both gross output and value added measures of plant-level output. Plants with
negative value-added are dropped in the computation.

The value of the elasticity of substitution across plant-level differentiated goods (σ) was

chosen to be 3 in the baseline computations. As shown in Hsieh and Klenow (2009), the

reallocation gains are highly sensitive to the calibration of this elasticity parameter. Intuitively,

for a given productivity distribution and given distortions, when σ rises or equivalently when

markups fall for all plants within a given industry, we know that each plant will produce

more. This implies that plants that are potentially benefiting from implicit subsidies will also

produce more i.e., utilise more resources than they otherwise would in an efficient allocation.

This clearly implies that the extent of misallocation will increase and thus the reallocation

gains will be higher.54 Following Hsieh and Klenow (2009), I raise the elasticity of substitution

to 5 to check the sensitivity of reallocation results. As expected, reallocation gains appear

to rise. In particular, on an average across all three years, economy-wide value added gains

are around 195 percent compared to the baseline (with σ = 3) average of 190 percent. Thus,

the reallocation gains reported in Table 3 should be seen as lower bound estimates, with a

conservative choice for the elasticity of substitution across plant-level output.

VI.3 Relationship between Plant-Size and Productivity

Conventional productivity theory suggests that larger plants should be more productive ow-

ing to the benefits of economies of scale. If the larger plants in turn face relatively higher

54Consistent with my argument, Hsieh and Klenow (2009) remark that a higher σ will mean that TFPR gaps
will be closed more slowly in response to a reallocation of factors, hence leading to higher reallocation gains.
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distortions, the economy loses more potential output or equivalently the potential gains from

reallocation towards these plants is higher. Indeed, this was the main intuition behind equa-

tion (27), and an explanatory component of equation (45). As a robustness check, I investigate

whether this relationship holds. Figure 10 illustrates this by looking at the association between

plant size (gross output) and scaled TFPQ.

Figure 10: Plant-Size and Productivity
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and bottom 1% tails. Sample weights are applied to the gross output of each plant.

Evidently, we observe that plants that are technically more efficient i.e., plants with TFPQsi,

relative to the industry efficient TFPQ∗
s, tend to be larger in size. While those below the

industry efficient TFPQ∗
s are comparatively smaller.

VII Conclusion

The problem of resource misallocation in developing economies is increasingly gaining more

attention from researchers. This dissertation aims to improve our understanding of resource

misallocation, by accounting for an important feature of developing economies, namely - the

issue of labor informality. To understand the consequences of labor informality on the observed

misallocation, I extend the widely used framework of Hsieh and Klenow (2009) by introducing

heterogeneity in the labor input encompassed in a more general production technology. The
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model is based on heterogeneous firms in a monopolistic competition within industries, facing

idiosyncratic distortions to factor prices. The firms are assumed to produce output based

on a CRS two-level CES specification, using two types of labor – formal and informal in the

first-level, combined with capital and intermediate inputs in the second. This modelling choice

allows me capture three important elements.

First, due to the CES specification, the equilibrium ratio of informal to formal labor only

depends on their relative factor prices. Since the distortion to formal labor prices comes from

labor regulations, this allows me to parsimoniously capture the effect of regulatory costs on

the equilibrium ratio of informal to formal labor. In line with intuition, as these regulatory

costs increase, firms would sidestep them and hire more informal labor. This effect is further

augmented by a higher elasticity of substitution across both types of labor input. The model

is thus able to inculcate the idea of labor informality and the mechanism of sidestepping labor

regulations.

Second, the separate introduction of both types of labor allows me to estimate a specific

formal labor wedge from the data. Since the majority of constraining labor regulations only

apply to formal workers, this wedge is able to capture the incidence of the regulatory costs

across firms of different sizes. Looking at the relationship between this wedge and firm size,

one can decipher whether labor regulations seem to bite the largest firms more than the smaller

units. Further, capturing this wedge allows me to run a counterfactual exercise where size-

based labor regulations are essentially removed from the economy.55 We can subsequently look

at the output gains from this exercise and compare it to the gains from removing distortions in

other inputs. This essentially allows me to compare the contribution of each distortion towards

aggregate misallocation.

Third, the generality of the two-level CES specification allows me to explicitly account for

the elasticity of substitution across all inputs. This is crucial since it allows me to evaluate how

the observed misallocation or gains from reallocation behave as the ease of substitution across

inputs increases. The misallocation literature stemming from the work of Hsieh and Klenow

(2009) often works on the assumption of unitary elasticity of substitution across inputs, by

working with a Cobb-Douglas technology. Although this specification is much more tractable,

it misses the idea that firms might shift to different inputs if the price distortions of a given

input are particularly high. As a theoretical contribution, I show that reallocation gains are

indeed declining when the ease of substitution across inputs increases.

The model is estimated using cross-sectional plant-level data (2010-11, 2014-15 and 2018-

19) from the registered segment of Indian manufacturing, well-known for its increasing re-

liance on informal labor (Bertrand et al., 2021). I find that aggregate misallocation in formal

55This is done by removing the variation in the formal labor wedge, such that all units face the same formal
labor wedge. In other words, if size-based regulations lead to different prices of formal labor across firms of
different sizes, this exercise essentially eliminates such regulations.
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manufacturing has declined over the 2010-11 to 2018-19 period. However, in absolute terms,

misallocation appears to severely hinder the output of manufacturing plants. In particular, for

2018-19, aggregate manufacturing gross output output could have been higher by 63 percent

under an efficient allocation of resources within each industry. On an average over 2010-11

to 2018-19, several industries with high output share seem to be suffering from an inefficient

allocation of resources. These include – manufacturing of refined petroleum products, basic

iron and steel, automobiles, textiles and pharmaceuticals. More recently, in 2018-19, the re-

fined petroleum and the basic iron and steel industry appear to be suffering high misallocation.

Thus, the relative decline in aggregate misallocation should not be taken at face value without

addressing the high misallocation in such important industries.

Dissecting the observed decline in aggregate misallocation at the plant-level, several impor-

tant findings emerge. First, the bite of factor misallocation appears to be strongly hindering

the output of small and mid-sized plants. In particular, the smallest plants suffer from high

distortions in capital prices, while the mid-sized plants face barriers in employing intermediate

inputs. Notably, the latter issue appears to be increasing overtime. Second, although the

largest plants suffer from distortions in formal labor, they benefit from implicit ‘subsidies’ in

hiring capital and intermediate inputs. Importantly, although majority of the plants benefit

from implicit subsidies in hiring informal labor, the larger plants benefit relatively more than

the small and mid-sized plants. Third, the plant size distribution under an intra-industry ef-

ficient allocation of resources shows that the small and mid-sized plants would increase their

output, while the largest plants would shrink. According to the model, the counterfactual out-

put of plants would be higher if they face strong distortions overall, while the plants benefiting

from implicit subsidies in factor prices would shrink in size. This leads me to suspect whether

the highly debated size-based regulations are no longer constraining the output of the largest

plants.

A counterfactual exercise which removes the size-based labor regulations indeed exhibits a

higher density of large-sized plants, while the density of smaller plants declines. This is in line

with the recent ‘ease of business’ narrative of Indian policymakers,56 such that there will be

more large-sized plants and less small-sized plants, benefiting the economy on an aggregate. In

this context, I ask – First, what are the gains in removing size-based regulations in the context

of labor informality. Second, could it be that distortions to capital and intermediate inputs

constrain output more than these regulations. To investigate the relative importance of each

distortion towards aggregate misallocation, I remove each factor distortion one at a time, and

evaluate the aggregate gross output gains. Importantly, I find that removing size-based labor

regulations would have benefited aggregate manufacturing output by a towering 41 percent

56“..the pace of reforms in enabling ease of doing business need to be enhanced so that India can be ranked
within the top 50 economies on this metric. – Chapter 1 (p.7), Economic Survey of India (2019-20)
“..As India leapfrogs towards a five trillion-dollar economy by 2024-25, simplifying and maintaining a business-
friendly regulatory environment is essential.” – Chapter 6 (p.1), Economic Survey of India (2019-20)
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in 2010-11, followed by a only a 15 percent increase in both 2014-15 and 2018-19. Rather,

removing distortions in intermediate inputs leads to a 51 percent and 31 percent increase in

manufacturing output for 2014-15 and 2018-19, respectively. Why does the relative gains from

eliminating size-based labor regulations decline?

Reconciliation from the model suggests that the equilibrium ratio of informal to formal

labor rises unambiguously in the presence of regulation induced costs of hiring formal labor.

This effect is further augmented by a high elasticity of substitution between the two, esti-

mated at around 2.7 by Padmakumar (2022). Given the rise in informal worker usage by

those ‘constrained’ via labor regulations,57 such plants seem to be readily meeting their la-

bor requirements by hiring informally. Hence, the exercise of giving these plants more formal

workers in the hope of generating higher output will run into diminishing returns to their total

labor input quicker, since the total labor input is already high due to informal hiring. Thus,

the policy instrument of easing size-based labor regulations must take into account labor infor-

mality, which has been evidently affording flexibility to the ‘constrained’ plants. Importantly,

for 2018-19, I find that eliminating misallocation in intermediate inputs would have increased

aggregate manufacturing output by 31 percent, much higher than the exercise of removing size-

based labor regulations which leads to a 15 percent rise. Overall, if the aim of policymakers

is to improve aggregate output, I argue that an isolated focus on promoting ‘ease of business’

through deregulating labor laws is a misguided trend in recent policy discussions.

Finally, and rather concerningly so, it appears that the contribution of capital and interme-

diate input distortions towards aggregate misallocation is as high in 2018-19, as for 2010-11.58

Thus, the decline in aggregate misallocation appears to be majorly coming from a decline in the

relevance of formal labor misallocation. This implies that a decade’s worth of policies aimed at

reducing resource misallocation have not benefited India’s formal manufacturing sector. The

decline in aggregate misallocation is instead a construct of the increasing incidence of labor

informality.59

57Refer to Figure 1, 9 and also Bertrand et al. (2021).
58Capital distortions are actually more constraining in 2018-19, relative to 2010-11.
59Note that although labor informality appears to benefit aggregate output, we cannot simply focus on the

aspect of efficiency. My framework is silent about the welfare outcomes of both types of workers, which should
be taken into account when we speak of policies affecting informality. Unfortunately, this cannot be studied in
the current framework.
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Appendices

A Empirical Annexes

Table 9: Average Contract Worker Usage by Plant Size Bins

2010-11

Plant Size No. of Plants Average Contract Worker Usage

1-10 7,963 1

11-20 5,186 2

21-50 5,335 8

51-100 3,795 28

101-500 8,865 78

Above 500 2,198 487

2014-15

Plant Size No. of Plants Average Contract Worker Usage

1-10 11,119 1

11-20 5,899 2

21-50 5,874 8

51-100 4,786 26

101-500 10,402 85

Above 500 2,568 486

2018-19

Plant Size No. of Plants Average Contract Worker Usage

1-10 8,673 1

11-20 5,145 2

21-50 6,083 7

51-100 5,896 26

101-500 12,640 89

Above 500 3,177 547

Note: Due to missing values for relevant calculations later in this study, a number of plants will be
dropped from the computation. To maintain consistency, the statistics reported in this table are also
based on the same data. The average values are rounded to their nearest integer.
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Figure 11: Dispersion in (log) Scaled TFPR, Gross Output v/s Value-Added

Note: The top and bottom 1% tails of the ln(TFPRsi/TFPR
∗
s) are removed to deal with outliers, for each

output measure. Plants with negative value-added are removed from the computation.
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Table 10: State-wise Reallocation Gains, Gross Output Approach

S.No. State 2010-11 2014-15 2018-19 State Average

1. Andaman & Nicobar 150.08 60.50 57.66 89.41

2. Andhra Pradesh 84.25 68.74 70.91 74.63

3. Arunachal Pradesh - 92.90 127.37 110.35

4. Assam 144.09 87.47 106.37 112.64

5. Bihar 120.31 102.02 109.39 110.57

6. Chandigarh 100.90 85.94 87.55 91.46

7. Chattisgarh 106.98 92.73 96.64 98.78

8. Dadra & Nagar Haveli 85.79 70.77 53.46 70.00

9. Daman & Diu 75.11 63.67 71.39 70.05

10. Delhi 74.88 62.02 57.41 64.77

11. Goa 74.28 66.82 79.35 73.48

12. Gujarat 103.51 87.77 64.31 85.19

13. Harayana 60.08 58.97 54.65 57.90

14. Himachal Pradesh 75.82 68.54 69.74 71.36

15. Jammu & Kashmir 98.66 87.08 60.20 81.98

16. Jharkhand 75.82 80.45 63.07 73.11

17. Karnataka 87.01 73.42 67.02 75.81

18. Kerala 97.23 80.11 49.23 75.52

19. Madhya Pradesh 65.83 57.21 67.15 63.39

20. Manipur 135.41 97.79 74.04 102.41

21. Meghalaya 62.17 61.77 52.14 58.69

22. Nagaland 123.96 79.64 64.61 89.40

23. Odisha 112.98 100.31 115.65 109.64

24. Puducherry 77.15 50.10 67.93 65.06

25. Punjab 87.62 65.70 58.08 70.46

26. Rajasthan 69.36 64.78 51.98 62.04

27. Sikkim 88.01 107.51 105.58 100.36

28. Tamil Nadu 68.75 59.83 49.03 59.20

29. Telangana - 70.89 70.12 47.00

30. Tripura 164.97 100.83 61.61 109.13

31. Uttar Pradesh 72.25 67.69 59.77 66.57

32. Uttarakhand 72.25 59.71 58.87 63.61

33. West Bengal 106.17 87.73 85.67 93.19

Across State Average 93.99 76.32 71.95

Note: The reported statistics are for (
Y ∗
Z

YZ
− 1) ∗ 100, where

Y ∗
Z

YZ
is computed from equation (46) using the gross output

approach. The two missing blanks in 2010-11 are because – First, Telangana was carved out of the Andhra Pradesh in
2014, and hence does not have any data points for the 2010-11 cross-section. Second, the 2010-11 ASI cross-section does not
provide data for the state of Arunachal Pradesh.
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This exercise is done by simply altering the industry gross output shares in equation (31),

such that instead of computing shares as a fraction of economy-wide output, the shares are

computed relative to each state’s aggregate output. Mathematically, using Z to index the

regions, this amounts to the following:

Y ∗
Z

YZ
=

S∈Z∏
s=1

{
Y ∗
s,Z

Ys,Z

}µs,Z
=

S∈Z∏
s=1




Ns∈S∈Z∑
i=1

λi(Asi)
σ−1

Ns∈S∈Z∑
i=1

λi

(
Asi

TFPR∗
s

TFPRsi

)σ−1



σ
σ−1


µs,Z

;∀Z ∈ {1, .., 33} (46)

Table 10 reports the findings. The issue of resource misallocation in formal manufacturing

seems to be be particularly high in the North-Eastern and Eastern parts of India. The for-

mer is well-known to be isolated from the rest of the country, with rough terrain and weaker

transportation lines. The high misallocation in these regions could thus be stemming from

high intermediate input distortions, which I indeed find to be the most important source of

misallocation in the aggregate. On an average over 2010-11 to 2018-19, several states appear

to be suffering from high misallocation, including – Assam, Bihar, Arunachal Pradesh, Odisha,

Tripura and Sikkim.

Several states seem to have consistently improved their allocative efficiency over the 2010-

11 to 2018-19 period. In particular, those with substantial decline in misallocation include –

Andaman & Nicobar Islands, Gujarat, Jammu & Kashmir, Kerala, Manipur, Nagaland and

Tripura. Notably, The latter three states belong to the North-Eastern part of the country

and have shown substantial improvements in their allocative efficiency in 2018-19. Explaining

this across state variation is beyond the scope and focus of my study. However, reassuringly,

comparing the across state average in each year shows the declining pattern in aggregate

misallocation, as we would expect from the results of Sections IV.1 and IV.2. Thus, this

exercise can be understood as another detailed robustness check of the results in Sections IV.1

and IV.2. Explaining the variation in misallocation across states although remains a relevant

exercise from policy perspective, and can be taken up in subsequent research projects.
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Figure 12: Industry Gross-Output Reallocation Gains, Ranked in Ascending Order

Note: Industry reallocation gains are computed using (
Y ∗
s

Ys
− 1) ∗ 100, where Y ∗

s

Ys
is computed from

equation (27).
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Table 11: Industry Reallocation Gains, Ranked by Gains

S.No 4-Digit Industry (NIC, 2008) Gross Output Reallocation Gains Gross Output Share

2010-11

1. Manufacture of bicycles and invalid carriages 425.62 0.26

2. Manufacture of clay building materials 424.38 0.15

3. Manufacture of soft drinks; production of mineral waters and other bottled waters 364.44 0.33

4. Manufacture of tanks, reservoirs and containers of metal 296.97 0.26

5. Saw milling and planing of wood 266.56 0.01

6. Manufacture of plastics and synthetic rubber in primary forms 256.69 0.75

7. Manufacture of other food products n.e.c. 253.33 1.28

8. Manufacture of other general-purpose machinery 228.31 0.69

9. Manufacture of basic precious and other non-ferrous metals 219.91 1.78

10. Manufacture of bakery products 217.22 0.24

2014-15

1. Manufacture of articles of fur 379.16 0.002

2. Manufacture of plastics and synthetic rubber in primary forms 346.79 0.56

3. Manufacture of basic precious and other non-ferrous metals 317.27 1.46

4. Manufacture of metal-forming machinery and machine tools 237.15 0.15

5. Manufacture of agricultural and forestry machinery 236.98 0.38

6. Manufacture of tobacco products 219.98 0.67

7. Distilling, rectifying and blending of spirits; ethyl alcohol production from fermented materials 207.98 0.85

8. Manufacture of soft drinks; production of mineral waters and other bottled waters 177.80 0.46

9. Manufacture of clay building materials 176.72 0.13

10. Manufacture of other fabricated metal products n.e.c. 164.76 0.90

2018-19

1. Manufacture of tobacco products 396.88 0.58

2. Manufacture of communication equipment 352.81 0.61

3. Manufacture of consumer electronics 225.08 0.10

4. Manufacture of other non-metallic mineral products n.e.c. 209.54 0.19

5. Manufacture of soft drinks; production of mineral waters and other bottled waters 205.85 0.38

6. Distilling, rectifying and blending of spirits; ethyl alcohol production from fermented materials 180.04 1.09

7. Manufacture of computers and peripheral equipment 174.61 0.16

8. Manufacture of watches and clocks 170.82 0.04

9. Manufacture of plastics and synthetic rubber in primary forms 161.95 0.94

10. Manufacture of refined petroleum products 159.62 10.21

Note: The reported statistics for a given industry s are from (Y
∗
s

Ys
− 1) ∗ 100, where Y ∗

s

Ys
is computed using equation (27). Gross output share corresponds to µs =

PsYs
PY

in equation (6), where

PsYs =
∑Ns

i=1 λiPsiYsi. All correlation estimates are siginificant at the 1% level.
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B Mathematical Derivations

B.1 Final Good Producer Optimization Problem

The profit maximization problem of the representative final good producing firm is given by:

max
Ys

ΠF = P

S∏
s=1

Y µs
s −

S∑
s=1

PsYs (47)

Using the final good’s price P as the numeraire, the first order condition gives:

∂ΠF

∂Ys
= 0 =⇒ PsYs = µsPY (48)

B.2 Industry Optimization Problem

A given industry combines the differentiated products of all plants within that industry, the

demand for the plant’s output is then derived from the industry profit maximization problem:

max
Ysi

Πs = Ps

( Ns∑
i

Y
σ−1
σ

si

) σ
σ−1

−
Ns∑
i=1

PsiYsi (49)

The first order condition gives:

∂Πs

∂Ysi
= 0 =⇒ Ps

( Ns∑
i

Y
σ−1
σ

si

) 1
σ−1

Y
− 1
σ

si = Psi (50)

Using the expression for the industry production function, we get:

PsY
1
σ
s Y

− 1
σ

si = Psi (51)

PsY
1
σ
s = PsiY

1
σ
si (52)

B.3 Plant Optimization Problem

B.3.1 Profit Minimization

Since the plants compete in a monopolistic environment within each industry, each plant

internalizes it’s market power in variety i by taking into account the demand curve it faces

from the industry (s) from equation (52). Using the dual problem and solving for the cost

function (denoted as TCsi for the time being), a given plants’s profit maximization problem
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writes:

max
Ysi

Πsi = (1− τYsi)PsiYsi − TCsi (53)

s.t. Psi = PsY
1
σ
s Y

− 1
σ

si =⇒ PsiYsi = PsY
1
σ
s Y

σ−1
σ

si (54)

Note that although a given plants recognizes its market power in variety i, it takes economy

wide aggregates as given - the essence of monopolistic competition. This implies that although

Ys clearly depends on Ysi, it is take as given, and can be thus thought of as a constant in

the above maximization problem. Plugging the constraint in equation (54) in the objective

function, we get:

max
Ysi

Πsi = (1− τYsi)PsY
1
σ
s Y

σ−1
σ

si − Csi(.) (55)

The first order condition gives:

∂Πsi

∂Ysi
= 0 =⇒ (1− τYsi)PsY

1
σ
s Y

− 1
σ

si

(
σ − 1

σ

)
=MCsi(.) (56)

We know that Psi = PsY
1
σ
s Y

− 1
σ

si , using this in the above equation, we get the standard condition

of price equalling a markup over the marginal cost:

Psi =

(
σ

σ − 1

)
MCsi(.)

(1− τYsi)
(57)

B.3.2 Two-Stage Cost Minimization

The first level cost minimization problem writes:60

min
Hc,si,Hf,si

wc,sHc,si + (1 + τfsi)wf,sHf,si (58)

s.t. (βc,sH
θ
c,si + βf,sH

θ
f,si)

1
θ ≥ Xsi =⇒ βc,sH

θ
c,si + βf,sH

θ
f,si ≥ Xθ

si (59)

The Lagrangian of the above problem writes:

Lsi = wc,sHc,si + (1 + τfsi)wf,sHf,si + λsi

{
Xθ
si −Hθ

c,si + βf,sH
θ
f,si

}
(60)

The first order conditions with respect to Hc,si and Hf,si, respectively, gives:

wc,s = λsiβc,sθ(Hc,si)
θ−1 (61)

(1 + τfsi)wf,s = λsiβf,sθ(Hf,si)
θ−1 (62)

60Here, Xsi can be thought of as a the output produced solely based on the two types of labor inputs.
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These first-order conditions can be re-expressed as:

Hθ
c,si = (wc,s)

θ
θ−1β

− θ
θ−1

c,s (λsiθ)
− θ
θ−1 (63)

Hθ
f,si = [(1 + τfsi)wf ]

θ
θ−1β

− θ
θ−1

f,s (λsiθ)
− θ
θ−1 (64)

Plugging equations (63) and (64) in constraint (59) with equality, we get:

(λsiθ)
− θ
θ−1 =

Xθ
si[

w
θ
θ−1
c β

− 1
θ−1

1 + [(1 + τLsi)wf ]
θ
θ−1β

− 1
θ−1

2

] (65)

Plugging equation (65) in equations (63) and (64), we get the following conditional factor

demands for each type of labor input:

Hc,si = w
1
θ−1
c,s β

− 1
θ−1

c,s

[
w

θ
θ−1
c,s β

− 1
θ−1

c,s + [(1 + τfsi)wf,s]
θ
θ−1β

− 1
θ−1

f,s

]− 1
θ

Xsi (66)

Hf,si = [(1 + τfsi)wf,s]
1
θ−1β

− 1
θ−1

f,s

[
w

θ
θ−1
c,s β

− 1
θ−1

c,s + [(1 + τfsi)wf,s]
θ
θ−1β

− 1
θ−1

f,s

]− 1
θ

Xsi (67)

Plugging in the conditional factor demands in the objective function, we get the first level cost

function, denoted by TC
(1)
si , as follows:

TC
(1)
si = wc,sHc,si + (1 + τfsi)wf,sHf,si (68)

TC
(1)
si = Xsi

[
w

θ
θ−1
c,s β

− 1
θ−1

c,s + [(1 + τfsi)wf,s]
θ
θ−1β

− 1
θ−1

f,s

] θ−1
θ

(69)

Using the expression for TC
(1)
si , the second level cost minimization problem writes:

min
Xsi,Ksi,Qsi

TC
(1)
si (wc,s, wf,s, βc,s, βf,s, τfsi , Xsi, ν) + rsKsi + qsQsi (70)

s.t. Asi

[
αL,s(βc,sH

θ
c,si + βf,sH

θ
f,si)

ψ
θ + αK,sK

ψ
si + αQ,sQ

ψ
si

] 1
ψ

≥ Ysi

Using the same steps as done for the first-level, we arrive at the following second-level cost

function:
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TC
(2)
si =

Ysi

Asi

(
σ

σ − 1

)
(1− τYsi)

{[(
w

θ
θ−1
c,s

β
1
θ−1
c,s

+
(1 + τfsi)

θ
θ−1w

θ
θ−1

f,s

β
1
θ−1

f,s

) θ−1
θ
] ψ
ψ−1 1

α
1

ψ−1

L,s

+

(1 + τKsi)
ψ
ψ−1 r

ψ
ψ−1
s

α
1

ψ−1

K,s

+
(1 + τQsi)

ψ
ψ−1 q

ψ
ψ−1
s

α
1

ψ−1

Q,s

}ψ−1
ψ

; θ, ψ < 1, σ > 1 (71)

Rewriting equation (71) using ν = 1/(1− θ) and η = 1/(1− ψ) gives:

TC
(2)
si =

Ysi

Asi

(
σ

σ − 1

)
(1− τYsi)

{
(αL,s)

ν

[
βνc,sw

1−ν
c,s + βνf,sw

1−ν
f,s (1 + τfsi)

1−ν
] 1−η

1−ν

+

(αK,s)
ηr1−ηs (1 + τKsi)

1−η + (αQ,s)
ηq1−ηs (1 + τQsi)

1−η

} 1
1−η

(72)

B.4 Expression for TFPRsi

Taking a partial derivative w.r.t to Ysi and plugging the marginal cost in the plant’s pricing

equation (57), gives:

Psi =

(
σ

σ − 1

)
Asi(1− τYsi)

{
(αL,s)

ν

[
βνc,sw

1−ν
c,s + βνf,sw

1−ν
f,s (1 + τfsi)

1−ν
] 1−η

1−ν

+

(αK,s)
ηr1−ηs (1 + τKsi)

1−η + (αQ,s)
ηq1−ηs (1 + τQsi)

1−η

} 1
1−η

(73)

Subsequently, since TFPRsi = PsiAsi, we can simply manipulate equation (73) to arrive at the

final expression for TFPRsi reported in the main text:

TFPRsi =

(
σ

σ − 1

)
(1− τYsi)

{
(αL,s)

ν

[
βνc,sw

1−ν
c,s + βνf,sw

1−ν
f,s (1 + τfsi)

1−ν
] 1−η

1−ν

+

(αK,s)
ηr1−ηs (1 + τKsi)

1−η + (αQ,s)
ηq1−ηs (1 + τQsi)

1−η

} 1
1−η

(74)
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B.5 Building the Efficient Counterfactual61

B.5.1 Efficient level of Real Output and Nominal Output

Computing the efficient level of output is the first step in arriving at the potential gains from

a counterfactual reallocation exercise. To do so, I first exploit the industry (s) demand for

plant-level output given in equation (52), setting Y
1
σ
s Ps = 1.62 This gives:

Psi = Y
1
σ
s PsY

− 1
σ

si =⇒ Psi = Y
− 1
σ

si (75)

Next, using the fact that TFPRsi = PsiAsi, we get:

Y
1
σ
si =

Asi

TFPRsi

=⇒ Ysi =

(
Asi

TFPRsi

)σ
(76)

Note that this gives an expression for the real units of output which is otherwise not available

when there is no separate data on plant-level prices. Thus, I start from the fact that prices

must be lower for consumers to demand more plant-leve output. Subsequently, I raise PsiYsi

to the power of σ/(σ − 1) to arrive at Ysi. That is equivalent to inferring the separation in

price and quantity from revenue and an assumed elasticity of demand, σ (Hsieh and Klenow,

2009).63Multiplying equation (76) by Psi and using the fact that Psi = Y
− 1
σ

si , we also get an

expression for nominal output:

PsiYsi =

(
Asi

TFPRsi

)σ−1

(77)

Let TFPR∗
s denote the efficient level of TFPR in a given industry s, under an efficient allocation

of resources, such that there is no variation in TFPRsi. Imposing TFPR∗
s and using equations

(76) and (77), the efficient level of real and nominal output at the plant-level write:

Y ∗
si =

(
Asi

TFPR∗
s

)σ
=

(
Asi

TFPRsi

)σ(TFPRsi

TFPR∗
s

)σ
= Ysi

(
TFPRsi

TFPR∗
s

)σ
(78)

(PsiYsi)
∗ =

(
Asi

TFPR∗
s

)σ−1

=

(
Asi

TFPRsi

)σ−1(TFPRsi

TFPR∗
s

)σ−1

= PsiYsi

(
TFPRsi

TFPR∗
s

)σ−1

(79)

61This section is inspired from the work of Dias et al. (2016, 2018).
62I argue why we can set Y

1
σ
s Ps = 1 without any consequence to my counterfactual exercise, in section B.6.

63Note that Ysi =
Asi

TFPRsi
=⇒ Ysi =

(
Asi

TFPRsi

)σ

= (PsiYsi)
σ

σ−1
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B.5.2 Expression for TFPR∗
s

By definition, the expression for the efficient level of industry TFPR writes:

TFPR∗
s =

(PsYs)
∗[

αL,s(βcHθ
c,s + βfHθ

f,s)
ψ
θ + αK,sK

ψ
s + αQ,sQ

ψ
s

] 1
ψ

(80)

Using a sample-weighted sum of efficient plant-level output, we can write PsYs =
∑Ns

i (PsiYsi)
∗.

Further we can use the expression of (PsiYsi)
∗ from equation (79). This gives:

TFPR∗
s =

∑Ns
i=1 λi(PsiYsi)

∗[
αL,s(βcHθ

c,s + βfHθ
f,s)

ψ
θ + αK,sK

ψ
s + αQ,sQ

ψ
s

] 1
ψ

(81)

TFPR∗
s =

Ns∑
i=1

Aσ−1
si

(TFPR∗
s)
σ−1[

αL,s(βcHθ
c,s + βfHθ

f,s)
ψ
θ + αK,sK

ψ
s + αQ,sQ

ψ
s

] 1
ψ

(82)

Rearranging the expression for TFPR∗
s in equation (82), we get the final expression mentioned

in the text:

TFPR∗
s =



Ns∑
i=1

Aσ−1
si[

αL,s(βcHθ
c,s + βfHθ

f,s)
ψ
θ + αK,sK

ψ
s + αQ,sQ

ψ
s

] 1
ψ


(83)

B.5.3 Reallocation Gains

Using the expression for efficient plant-level output from equation (78) and applying the CES

aggregator at the industry-level (with sample weights), we can take a ratio of efficient and

observed industry output.

Y ∗
s

Ys
=

[ Ns∑
i=1

λi(Ysi)
σ−1
σ

] σ
σ−1

[ Ns∑
i=1

λi(Y ∗
si)

σ−1
σ

] σ
σ−1

=

[
Ns∑
i=1

λi

{(
Asi

TFPR∗
s

)σ}σ−1
σ

] σ
σ−1

[
Ns∑
i=1

λi

{(
Asi

TFPRsi

)σ}σ−1
σ

] σ
σ−1

(84)
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Y ∗
s

Ys
=

[
Ns∑
i=1

λi

{
Asi

TFPR∗
s

}σ−1
] σ
σ−1

[
Ns∑
i=1

λi

{
Asi

TFPRsi

}σ−1
] σ
σ−1

=


Ns∑
i=1

λi(Asi)
σ−1

Ns∑
i=1

λi

(
Asi

TFPR∗
s

TFPRsi

)σ−1



σ
σ−1

(85)

Applying the Cobb-Douglas aggregator for the final goods producer from equation (5), the

aggregate output gains can be expressed as:

Y ∗

Y
=

S∏
s=1

{
Y ∗
s

Ys

}µs
(86)

Y ∗

Y
=

S∏
s=1




Ns∑
i

(Asi)
σ−1

[
Ns∑
i

(
Asi

TFPR∗
s

TFPRsi

)σ−1
] σ
σ−1



σ
σ−1


µs

(87)

B.6 Backing out TFPQsi and Ignoring Industry Constant

I deploy the following “trick” to back out an expression for Asi using the model’s equations.

First, starting with the solution to the industry (s) profit maximization problem in equation

(10):

PsiYsi = PsY
1
σ
s Y

σ−1
σ

si

(PsiYsi)
σ
σ−1

(
Y

− 1
σ

s

Ps

) σ
σ−1

= Ysi

(PsiYsi)
σ
σ−1

(Y
1
σ
s )

σ
1−σ

P
σ
σ−1
s

= Ysi

(PsiYsi)
σ
σ−1

(
PsY

1
σ
s

) σ
1−σ

= Ysi

Now, using the definition of Asi, we get:

Asi =
Ysi[

αL,sX
ψ
si + αK,sK

ψ
si + αQ,sQ

ψ
si

] 1
ψ

=

(PsiYsi)
σ
σ−1

(
PsY

1
σ
s

) σ
1−σ

[
αL,sX

ψ
si + αK,sK

ψ
si + αQ,sQ

ψ
si

] 1
ψ

(88)
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Then, denoting κs =

(
PsY

1
σ
s

) σ
1−σ

as an industry-level constant, we get:

Asi = κs
(PsiYsi)

σ
σ−1[

αL,sX
ψ
si + αK,sK

ψ
si + αQ,sQ

ψ
si

] 1
ψ

(89)

Since I care about an intra-industry reallocation exercise, the dispersion of TFPRsi matters. We

already know that variation in prices only come from the variation in idiosyncratic distortions

(ref. equation (73)). Further, if we can show that the dispersion in Asi does not depend on

the industry constant, the dispersion of TFPRsi will also not depend on this constant. The

empirical exercise is based on the dispersion of the logarithm of TFPRsi, thus we must show

that the variation in the logarithm of Asi does not depend on this industry constant.

ln(Asi) = ln(κs) + ln


(PsiYsi)

σ
σ−1[

αL,sX
ψ
si + αK,sK

ψ
si + αQ,sQ

ψ
si

] 1
ψ

 (90)

Var[ln(Asi)] = Var


ln


(PsiYsi)

σ
σ−1[

αL,sX
ψ
si + αK,sK

ψ
si + αQ,sQ

ψ
si

] 1
ψ




(91)

Thus, the industry level constant can be ignored, or equivalently set equal to one in my case

i.e., κs = 1.

B.7 Inferring Distortions from the Data

Using the first-order conditions from the profit maximization problem of a given plant, we can

infer the “wedges” from the data. Plugging the constraint in the problem outlined in equation

(9), the problem simplifies to:

Πsi = max
Lcsi,L

f
si,Ksi

(1− τY si)A
σ−1
σ

si

[
αL,s(βc,sH

θ
c,si + βf,sH

θ
f,si)

ψ
θ + αK,sK

ψ
si + αQ,sQ

ψ
si

]σ−1
σψ

− wc,sHc,si − wf,s(1 + τfsi)Hf,si − rs(1 + τKsi)Ksi − qs(1 + τQsi)Qsi (92)
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After some manipulation, the first-order conditions w.r.t Hc,si, Hf,si and Ksi write:

αL,sβc,s

(
σ − 1

σ

)
PsiYsi[

αL,sX
ψ
si + αK,sK

ψ
si + αQ,sQ

ψ
si

] Xψ−θ
si Hθ−1

c,si =
wc,s

(1− τYsi)
= MRPHc,si (93)

αL,sβf,s

(
σ − 1

σ

)
PsiYsi[

αL,sX
ψ
si + αK,sK

ψ
si + αQ,sQ

ψ
si

] Xψ−θ
si Hθ−1

f,si =
wf,s(1 + τfsi)

(1− τYsi)
= MRPHf,si (94)

αK,s

(
σ − 1

σ

)
PsiYsi[

αL,sX
ψ
si + αK,sK

ψ
si + αQ,sQ

ψ
si

] Kψ−1
si =

rs(1 + τKsi)

(1− τYsi)
= MRPKsi (95)

αQ,s

(
σ − 1

σ

)
PsiYsi[

αL,sX
ψ
si + αK,sQ

ψ
si + αQ,sQ

ψ
si

] Qψ−1
si =

qs(1 + τQsi)

(1− τYsi)
= MRPQsi (96)

I arrive at the formal labor, capital and intermediate input wedges by dividing equation (93)

by equations (94), (95) and (96), respectively. The resulting expressions are given by:

(1 + τfsi) =

(
βf,s

βc,s

)(
wc,s

wf,s

)(
Hc,si

Hf,si

)1−θ

(97)

(1 + τKsi) =

(
αK,s

αL,sβc,s

)(
wc,s

rs

)(
H1−θ
c,si

K1−ψ
si

)
Xθ−ψ
si (98)

(1 + τQsi) =

(
αQ,s

αL,sβc,s

)(
wc,s

qs

)(
H1−θ
c,si

Q1−ψ
si

)
Xθ−ψ
si (99)

The output distortion can be arrived at by simply rewriting equation (93), as follows:

(1− τYsi) =

(
σ

σ − 1

)
wc,sH

1−θ
c,si

(αL,sβc,s)PsiYsi

[
αL,sX

ψ
si + αK,sQ

ψ
si + αQ,sQ

ψ
si

]
Xψ−θ
si

(100)

B.8 Shutting down Individual Wedges

The relative importance of each distortion is found out by computing the reallocation gains by

turning off each input specific wedge, one at a time. As noted in the text, this is equivalent

to imposing an average industry wedge while maintaining the same industry demand for the

given input, as observed from the data. This section outlines how this is done for the capital.
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From equation (98), we can get an expression for the observed capital input, which writes:

Ksi =

[(
αK,s

αL,sβc,s

)(
wc,sH

1−θ
c,si

rs(1 + τKsi)

)
(βc,sH

θ
c,si + βf,sH

θ
f,si)

θ−ψ
ψ

] 1
1−ψ

(101)

Imposing an industry average wedge τ̃Ks for capital gives:

K̃si =

[(
αK,s

αL,sβc,s

)(
wc,sH

1−θ
c,si

rs(1 + τ̃Ks)

)
(βc,sH

θ
c,si + βf,sH

θ
f,si)

θ−ψ
ψ

] 1
1−ψ

(102)

Making sure the aggregate industry demand for capital remains the same, such that we carry

out a intra-industry reallocation, we can impose the following:

Ks =

Ns∑
i=1

λiK̃si =

Ns∑
i=1

λi

[(
αK,s

αL,sβc,s

)(
wc,sH

1−θ
c,si

rs(1 + τ̃Ks)

)
(βc,sH

θ
c,si + βf,sH

θ
f,si)

θ−ψ
ψ

] 1
1−ψ

(103)

Allowing the summation operator to pass through the constants, we have:

Ks =

[(
αK,s

αL,sβc,s

)(
wc,s

rs(1 + τ̃Ks)

)] 1
1−ψ

Ns∑
i=1

λi

[
H1−θ
c,si (βc,sH

θ
c,si + βf,sH

θ
f,si)

θ−ψ
ψ

] 1
1−ψ

(104)

Isolating (1 + τ̃Ks) gives:

(1 + τ̃Ks) =

[(
αK,s

αL,sβc,s

)(
wc,s

rs

)]


Ns∑
i=1

λi

[
H1−θ
c,si (βc,sH

θ
c,si + βf,sH

θ
f,si)

θ−ψ
ψ

] 1
1−ψ

Ks



1−ψ

(105)

Plugging back this expression for the industry capital wedge in equation (102), we get the final

expression for the new allocation of capital:

K̃si =

[
H1−θ
c,si (βc,sH

θ
c,si + βf,sH

θ
f,si)

θ−ψ
ψ

] 1
1−ψ

Ns∑
i=1

λi

[
H1−θ
c,si (βc,sH

θ
c,si + βf,sH

θ
f,si)

θ−ψ
ψ

] 1
1−ψ

Ks

(106)

We can subsequently recompute the output using this new allocation of capital. The derivation

is virtually the same for intermediate inputs and is hence omitted, while the main text already
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reports this derivation for formal labor. With the new allocations of formal labor, capital

and intermediate inputs and the implied output, the statistics in Table 7 use the following

expressions for individual reallocation gains:

Ỹ f

Y
=

S∏
s=1

{
Ỹs

f

Ys

}µs
=

S∏
s=1




Ns∑
i=1

λi(Ỹsi
f
)
σ−1
σ

Ns∑
i=1

λi(Ysi)
σ−1
σ



σ
σ−1


µs
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Ỹ K

Y
=

S∏
s=1

{
Ỹs

K

Ys

}µs
=

S∏
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


Ns∑
i=1

λi(Ỹsi
K
)
σ−1
σ

Ns∑
i=1

λi(Ysi)
σ−1
σ



σ
σ−1

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Ỹ Q

Y
=

S∏
s=1

{
Ỹs

Q

Ys

}µs
=

S∏
s=1




Ns∑
i=1

λi(Ỹsi
Q
)
σ−1
σ

Ns∑
i=1

λi(Ysi)
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σ



σ
σ−1


µs
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B.9 Expression for Log Scaled TFPQ

The idea behind this expression is to gauge the ratio of TFPQsi (=Asi) of each plant i ∈ s,

relative to the industry efficient TFPQ∗
s. Since we have probability sampling for certain plants,

this ratio needs to be augmented with plant-level sample weights, denoted by λi. Let Ws =∑Ns
i=1 λi denote the sum of weights for all plants i ∈ s. The unweighted expression for log

scaled TFPQ is simply the ratio of TFPQsi (=Asi) by TFPQ∗
s:

ln

[
Asi

(
∑Ns

i=1Asi)
1

σ−1

]
(110)

We need to apply sample weights to the sum in the denominator, this gives:

ln

[
Asi(

∑Ns
i=1 λi)

1
σ−1

(
∑Ns

i=1 λiAsi)
1

σ−1

]
= ln

[
Asi(Ws)

1
σ−1

(
∑Ns

i=1 λiAsi)
1

σ−1

]
(111)

This is the final expression used in the main text.
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