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Abstract

In this paper, we consider resale possibilities in symmetric auc-
tions where the object is allocated efficiently. The potential gains
from trade arise from a delay in resale which reduces the bidders’
values. Specifically, the winner depletes the object before reselling
which impacts the loser’s value during resale. We characterize an
equilibrium of the first- and second-price auction under different in-
formation states and capture the impact of resale and information
on bids and seller’s expected revenues.
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Keywords: resale, time delay, symmetry, efficiency, private
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1 Introduction

Private-value auctions with resale has its origin based on the doctrine
that the first-price auction is inefficient. Precisely, if an object is allocated
inefficiently, i.e., the lowest valuation bidder wins the auction, then there
can be potential gains from reselling the object to one of the losers.
However, when an object is resold after a delay, potential gains from
trade can be realized despite the object being allocated efficiently. The
potential gains from trade may arise as the winner of the auction obtains
value by consuming the object before reselling it which changes his and
his opponents’ value at the time of resale. In this paper, we incorporate
resale possibilities when an auction format is efficient, i.e., the highest
value bidder wins the auction.

Resale may be delayed because of the following reasons. First, many
governments regulate resale markets for certain objects. At times, certain
regulations are relaxed which opens up the possibility of resale. At other
times, bidders do find alternate methods to engage in resale – say, for
example, changing ownership, mergers, etc. All these frictions delay the

∗Department of Policy and Management Studies, TERI School of Advanced Stud-
ies, New Delhi. Email: sanyyam.ma@gmail.com

1

sanyyam.ma@gmail.com


process of resale, which changes the values of bidders. Second, a bidder
may simply choose to use the object before reselling it, as is very common
in the real world – say for example, a used car. This may be because
better products are available, purpose is solved, etc. A crucial feature in
a delayed resale is that certain objects tend to deplete over time – say
for example, spectrum licenses, emission rights, cars, etc. Therefore, at
the time of resale, the buyer’s value declines.

Two motivating examples are as follows:
1. Company A buys spectrum rights in an auction for five years. Upon

winning, A is unable to resell the rights on an immediate basis
as government regulates the telecommunications industry. In an
year’s time, A merges with another Company B to transfer the
rights. During the period of one year, A earns profits from using
the rights while B’s value declines as it will enjoy the benefits for
four years.

2. A developed country (say, A) buys a technology in an auction and
uses it to run its operations. After some years, A innovates and
invents a new technology that is more efficient than the existing
one. Thus, A transfers its technology to a developing country (say,
B). As the technology gets old, B loses value.

Consider a sealed-bid auction followed by a resale trade for one unit of
an indivisible object. Two risk neutral bidders with private information
about their valuations have interest in the object. Their valuations are
drawn from a symmetric probability distribution defined on a real line
with full support. The game is designed as follows. At date 1, a sealed-bid
auction is conducted by the seller. After date 1, the winner of the auction
consumes the object for a fixed amount of time. The game proceeds to
date 2 whereat a resale trade between the two bidders may happen. The
game ends after date 2 and there is no further resale of the object.

During the interim time, i.e., between dates 1 and 2, the object de-
pletes as the winner is consuming the object. This depletion reduces the
value of the loser. At date 2, bidders accept a resale trade based on
their revised values which we refer as resale values. A winner accepts a
resale trade if the price is at least as large as his resale value while a loser
accepts a resale trade if the price is at most his resale value.

Information concerning the revelation of bids after date 1 plays a very
vital role. If all the bids are revealed after date 1, then the bidders play a
game under complete information at date 2 as bidders learn the values of
their opponent. For instance, if the winner has all the bargaining power
while trading the object at date 2, then he extracts all the surplus of
the loser. On the other hand, if no bids are revealed after date 1, then
the bidders trade based on the information regarding the ordinal rank of
values. In other words, while trading, the bidders’ precision about their
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opponent’s value has improved but it is still a game under incomplete
information.

In this paper, we consider both complete and incomplete information
cases concerning the revelation of bids after date 1. The aim of the
present paper is to (a) characterize the equilibria of the first- and second-
price auction under complete and incomplete information, (b) study the
bidders’ bid behavior, and (c) compare the seller’s expected revenues
under different situations.

Section 3 deals with complete information case where all the bids are
revealed after date 1. Under complete information, we consider a contin-
uum of linear trade rules which are linear combinations of the winning
and losing values. These rules have two extremes. At one extreme, the
winner extracts all the loser’s surplus which is referred as the monopoly
rule. At the other extreme, the loser extracts all the winner’s surplus
which is referred as the monopsony rule. All the other rules lie between
the monopoly and monopsony rules.

Theorems 2 and 4 characterize all the equilibria of the first- and
second-price auction respectively. Interestingly, the first-price auction is
characterized by a formula for a general probability distribution which
ensures existence of a unique equilibrium. Proposition 2 shows that re-
sale under the monopoly rule induces bidders to raise their bids while
resale under the monopsony rule induces them to lower their bids. Con-
sequently, the seller prefers resale under monopoly rule to no resale and
no resale to resale under monopsony rule.

The second-price auction is characterized by a formula which turns
out to be linear and prior-free, i.e., the formula is independent of prob-
ability distributions. This establishes a unique equilibrium in the family
of strictly increasing and continuous bid functions. We derive sufficient
conditions that include the monopoly rule under which the bidders out-
bid their values. As a result, the seller’s expected revenues raise from
resale possibilities. Similarly, we derive sufficient conditions that include
the monopsony rule under which the bidders shade their values. As a
result, the seller’s expected revenues decline from resale possibilities.

Proposition 8 shows that bidders bid higher in the second-price auc-
tion than they do in the first-price auction. It is well-known that the
property of revenue equivalence between the first- and second-price auc-
tion holds whenever resale possibilities are absent. Moreover, with two
asymmetric risk neutral bidders, the first-price auction dominates the
second-price auction in terms of expected revenues. In contrast to these
results, Theorem 5 establishes a striking property of revenue equivalence
between the first- and second-price auction. We also show that the seller’s
optimum trade rule is the monopoly rule.

Section 4 deals with the incomplete information case where no bids
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are revealed after date 1. By considering that the winner of the object
proposes a take-it-or-leave-it offer to the loser, we characterize all the
equilibria of the first-price auction. By considering that the loser of the
object proposes a take-it-or-leave-it offer to the winner, we characterize
all the equilibria of the second-price auction.

Theorem 8 compares the bid functions of the first-price auction be-
tween complete and incomplete information. We show that bidders bid
higher under complete information than they do under incomplete infor-
mation. As a result, the seller prefers to reveal information.

1.1 The literature

Auctions with resale have been studied in Gupta and Lebrun [3]; Haile
[6, 7]; Hafalir and Krishna [4, 5]; Virág [13]; Garratt and Tröger [2];
Lebrun [9]; Cheng [1]; Zheng [15]; and Khurana [8] among others.

Haile [7] considers symmetric auctions where the value of the object
is not known to a bidder while submitting bids. Rather, bidders receive
noisy signals about their values at the time of auction. During resale,
they get additional information about their values which leads to ex-
pected potential gains from trade. Garratt and Tröger [2] also consider
symmetric auctions but in their model one of the bidders is a speculator
who has no value for the object. His sole purpose is to earn by reselling
the object.

Gupta and Lebrun [3] consider asymmetric bidders with complete
information in the resale date. They derive a formula for the bid functions
of the first-price auction.

Hafalir and Krishna [4, 5]; Virág [13, 14]; Lebrun [9]; Cheng [1]; and
Khurana [8] consider asymmetric auctions with incomplete information
during the resale date. With two risk neutral bidders, Hafalir and Kr-
ishna [4] show that bid symmetrization holds, i.e., the two bidders win
with equal probability, and the first-price auction is revenue-dominant
to the second-price auction. Virág [14] shows that bid symmetrization
fails with two bidders if there are reserve prices. Virág [13] extends the
analysis to more than two bidders and shows that bid symmetrization
fails. Khurana [8] considers one risk neutral and one risk averse bidder
and shows that bid symmetrization may or may not hold.

The paper is organized as follows. In Section 2, we setup the model.
In Section 3, we characterize the first- and second-price auction under
complete information and derive other properties. In Section 4, we char-
acterize under incomplete information. In Section 5, we conclude. The
proofs are relegated to the appendix.
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2 Economic model

Consider one unit of an indivisible object that has to be allocated via a
first- or second-price auction. The set of two risk neutral bidders is de-
noted by N = {1, 2}. The values are drawn from a symmetric probability
distribution F : T → <+, where T = [0, ā] ⊂ <+ is the value space for
both the bidders. We denote the random variables for bidders 1 and 2 by
T1 and T2 respectively. The probability distribution is twice continuously
differentiable and the density function, denoted by f , is bounded away
from zero. The seller is risk neutral and reserve prices are 0.

The structure of the game is as follows. Bidders play a two-date
game, whereat date 1 – the bid date, the seller allocates the object via
a first- or second-price auction. After date 1, there is a fixed time delay
in the game that is exogenous. The game then proceeds to date 2 – the
resale date, where the two bidders engage in a resale trade. After date
2, the game ends and utilities are realized.

In this paper, we consider two cases:
1. Complete information: In this case, the seller reveals all the bids

after date 1.
2. Incomplete information: In this case, the seller does not reveal any

bid after date 1.
The complete information case has been discussed in Section 3 while

the incomplete information case has been discussed in Section 4. In
the complete information case, the game turns into a game of complete
information after date 1.

During the interim time, i.e., between dates 1 and 2, the winner of
date 1 consumes the object and obtains value from it while the loser loses
value as the object depletes. The winner obtains and the loser loses value
linearly with their own values. The parameter for winner is denoted by
αR and the parameter for loser is denoted by αB, where αR, αB ∈ (0, 1).
For example, a bidder with value t obtains a value of αRt in the interim
time if he wins, and loses a value of αBt if he loses. We refer αR as the
rate of consumption and αB as the rate of depletion.

A higher consumption rate implies that either the bidder consumes
the object very quickly or resale happens very late. One can easily see
either of the two situations. A similar interpretation holds for a higher
rate of depletion.

The utilities under different circumstances in the first-price auction
are as follows.

1. If a bidder with value t wins by bidding b and resells at p during
the resale date, then his utility is p + αRt − b, where αRt is the
utility obtained by consuming the object in the interim.

2. If a bidder with value t wins by bidding b and does not resell during
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the resale date, then his utility is t− b.
3. If a bidder with value t loses and buys at p during the resale date,

then his utility is (1−αB)t− p, where αBt is the utility lost in the
interim.

4. If a bidder with value t loses and does not buy at the resale date,
then his utility is 0.

On similar lines, we can define the utilities under second-price auc-
tion. An assumption that we follow throughout the paper is as follows.

Assumption 1. αR > αB

The above assumption says that the rate of depletion does not exceed
the rate of consumption.

3 Complete information

In this section, we consider the complete information case where all the
bids are revealed after date 1. The resale trade rule is exogenous and it
is a linear combination of the winning and losing valuations. Formally,
let the resale trade rule be

p(w, l) = λ1w + λ2l (1)
where w is the value of the winner, l is the value of the loser and λ1 and
λ2 are positive parameters. If a bidder with value w wins while a bidder
with value l loses, then p(w, l) is the payment that goes from the loser
to the winner.

For notational convenience, let

k1 = 1− αR
λ2

, k2 = λ1
1− αB

, k3 = max
{1− αR − λ1

λ2
,

λ1
1− αB − λ2

}
For tractability, we assume the following.

Assumption 2. Either of the following must be true:
1. λ1 = 0 and 1− αR < λ2 ≤ 1− αB.
2. λ2 = 0 and 1− αR ≤ λ1 < 1− αB.
3. λ1, λ2 > 0, 1− αR > λ1, 1− αB > λ2 and k3 < 1.

At one extreme where λ1 = 0 and λ2 = 1 − αB, the winner extracts
all the surplus from the loser. Thus, we refer to this rule as a monopoly
rule. At the other extreme where λ2 = 0 and λ1 = 1 − αR, the loser
extracts all the surplus from the winner. Thus, we refer to this rule as a
monopsony rule.

In Subsection 3.1, we characterize all the equilibria of the first-price
auction. In Subsection 3.2, we characterize all the equilibria of the
second-price auction.
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3.1 First-price auction

Consider the first-price auction. Denote the symmetric bid function,
that belongs to the family of strictly increasing, continuous and onto
functions, by β1, i.e., β1 : T → [0, b̄1] where b̄ is the maximum bid. Let
the symmetric inverse bid function be π1, i.e., π1 : [0, b̄1]→ T . Note that
β1(0) = π1(0) = 0 and β1(ā) = b̄1 and π1(b̄1) = ā.

In the following result, we derive utility functions of bidders. Denote
the expected utility function of a bidder in the first-price auction by
U1 : T × [0, b̄1]→ <.

Theorem 1. Consider a first-price auction under complete information.
The expected utility functions of a bidder with value t and bid b under
different situations are as follows.

If λ1 = 0 and 1− αR < λ2 ≤ 1− αB, then

U1(t, b) = F (k1t)(t− b) +
∫ π1(b)

k1t
(αRt+ λ2ω − b)f(ω)dω

+ (1− αB − λ2)t[F (t/k1)− F ◦ π1(b)]
(2)

If λ2 = 0 and 1− αR ≤ λ1 < 1− αB, then

U1(t, b) = (1− αR − λ1)tF (k2t) + F ◦ π1(b)[(αR + λ1)t− b]

+
∫ t/k2

π1(b)
[(1− αB)t− λ1ω]f(ω)dω

(3)

If λ1, λ2 > 0, 1− αR > λ1, 1− αB > λ2 and k3 < 1, then

U1(t, b) = F (k3t)(t− b) +
∫ π1(b)

k3t
[(αR + λ1)t+ λ2ω − b]f(ω)dω

+
∫ t/k

π1(b)
[(1− αB − λ2)t− λ1ω]f(ω)dω

(4)

For notational convenience, let p1(π1(b), π1(b)) = p1(b), α = (αR, αB),
λ = (λ1, λ2) and E(α, λ) = 2λ1 +2λ2 +αR+αB−1. The following result
characterizes all the perfect Bayesian equilibria of the first-price auction
under complete information.

Theorem 2. Let Assumptions 1 and 2 be satisfied. A pair (π1, p1) is
a symmetric perfect Bayesian equilibrium in monotone strategies if and
only if it solves:

F ◦ π1(b)
DF ◦ π1(b) = (αR + αB − 1)π1(b) + 2p1(b)− b

p1(b) = (λ1 + λ2)π1(b)
(5)
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The following result provides a formula of the bid function for general
probability distributions and ensures the existence of a unique equilib-
rium.

Proposition 1. Let the primitives of Theorem 2 be true. Then, the bid
function is characterized as

β1(t) = E(α, λ)
F (t)

∫ t

0
ωf(ω)dω (6)

Remark 1. From Assumption 2, 1 +αB−αR ≤ E(α, λ) ≤ 1 +αR−αB.
If the trade rule is monopoly, then E(α, λ) = 1 + αR − αB. If the trade
rule is monopsony, then E(α, λ) = 1 + αB − αR. Clearly, bidders bid
higher under the monopoly rule than the monopsony rule.

Remark 2. Given the monopoly rule, if the rate of consumption is high
or the rate of depletion is low, bidders raise their bid. Given the monop-
sony rule, if the rate of consumption is low or the rate of depletion is
high, bidders raise their bid.

The following result compares β1 with the standard symmetric inde-
pendent private valuation model that is given in Riley and Samuelson
[12] (henceforth, R-S). In other words, it captures the impact of resale
with delays under complete information on the bid behavior. Let β∗ be
the bid function in the R-S model.

Proposition 2. Let Assumptions 1 and 2 hold.
1. If E(α, λ) > 1, then β1(t) > β∗(t) for every t ∈ (0, ā].
2. If E(α, λ) < 1, then β1(t) < β∗(t) for every t ∈ (0, ā].

The above result says that as long as E(α, λ) > 1, bidders bid more
aggressively in the presence of resale than they do when there are no
resale possibilities. On the other hand, as long as E(α, λ) < 1, bidders
bid less aggressively in the presence of resale than they do when there
are no resale possibilities.

Remark 3. Under the monopoly rule, bidders bid higher than the case
when resale is absent. Under the monopsony rule, bidders bid lower than
the case when resale is absent. If either the monopoly or the monopsony
rule is being implemented with αR ↓ αB, then bids converge to the R-S
model.

To understand the intuition of the above result, we divide the impact
of resale after a delay on bids into three effects: consumption effect,
depletion effect, and bargaining effect. The consumption effect captures
the impact on bids due to the possibility of consuming the object before
reselling it. The depletion effect captures the impact on bids due to
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depletion of the object. The bargaining effect captures the impact on
bids due to the bargaining power that a bidder has during resale.

The consumption and depletion effects raise the bid as a bidder has
an incentive to reduce his risk of losing. Thus, the consumption and
depletion effects are positive. Under the monopoly rule, the bargaining
effect induces a bidder to raise his bid as the winner extracts all the loser’s
surplus. Thus, the bargaining effect is positive. Under the monopsony
rule, the bargaining effect induces a bidder to lower his bid as the loser
extracts all the winner’s surplus. Thus, the bargaining effect is negative.

Under the monopoly rule, the total effect induces a bidder to bid
higher. Under the monopsony rule, the negative bargaining effect dom-
inates the positive consumption and depletion effects which reduces the
bid.

The following result compares the seller’s ex-ante expected revenues
between a delayed resale under complete information and absence of
resale.

Corollary 1. Let the primitives of Proposition 2 hold. If E(α, λ) > 1,
the seller generates more expected revenues when resale happens after a
delay under complete information than when there are no resale possi-
bilities. If E(α, λ) < 1, the seller generates less expected revenues when
resale happens after a delay under complete information than when there
are no resale possibilities.

In Propositions 3 and 4, we compare the bid function of the present
model with the standard asymmetric auctions with resale model that is
studied in Hafalir and Krishna [4] (henceforth, H-K) among others. In H-
K, the two risk neutral bidders have asymmetric probability distributions
and resale happens without a delay. The bidders are distinguished as
weak (w) and strong (s) where the strong bidder is more likely to draw
a high value than the weak bidder. Furthermore, during the resale date,
the losing bid is not revealed and the winner makes a take-it-or-leave-it
offer to the loser.

Proposition 3. Let (π1, p1) be a symmetric perfect Bayesian equilibrium
in monotone strategies when resale happens after a delay and symmet-
ric bidders have a probability distribution Fs. Let (γs, γw, r) be a perfect
Bayesian equilibrium when resale happens without a delay and the prob-
ability distribution pair is (Fs, Fw). Let Fs(0) > 0 and E(α, λ) > 1.
Then,

π1(b) < γs(b)

for every b ∈ (0, γ−1
s (ā)].

Before we interpret the above result, it is important to note that,
in H-K model, the weak bidder bids more aggressively than the strong
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bidder and the weak bidder acts as a reseller during the resale date while
the strong bidder acts as a buyer.

The above result says that as long as E(α, λ) > 1, the strong bidder
who plays against another strong bidder in an environment where resale
happens after a delay with complete information bids more aggressively
than while playing against a weak bidder in an alternate environment
where resale happens without a delay under incomplete information.

Given the monopoly rule, the intuition of the impact of a strong
opponent and a delay in resale on bids of a strong bidder is divided
into five effects: consumption effect, depletion effect, bargaining effect,
information effect and prior effect. The information effect captures the
impact of information during resale. The prior effect captures the impact
on bids due to a different opponent.

The consumption and depletion effects are positive as they incentivize
the strong bidder to raise his bid. The bargaining effect is zero as all the
bargaining power is with winner in both the cases. The information effect
induces the strong bidder to raise his bid as he can extract all the loser’s
surplus. Thus, the information effect is positive. As the strong bidder
plays with another strong bidder, he bids higher, i.e., the prior effect is
also positive. Therefore, the total effect raises the bid of a strong bidder.

Proposition 4. Let (π1, p1) be a symmetric perfect Bayesian equilibrium
in monotone strategies when resale happens after a delay and symmet-
ric bidders have a probability distribution Fw. Let (γs, γw, r) be a perfect
Bayesian equilibrium when resale happens without a delay and the prob-
ability distribution pair is (Fs, Fw). Let Fw(0) > 0 and E(α, λ) < 1.
Then,

π1(b) > γw(b)

for every b ∈ (0, β1(ā)].

The above result says that as long as E(α, λ) < 1, the weak bidder
who plays against another weak bidder in an environment where resale
happens after a delay with complete information bids less aggressively
than while playing against a strong bidder in an alternate environment
where resale happens without a delay under incomplete information.

Given the monopsony rule, the intuition is as follows. The consump-
tion and depletion effects are positive. The bargaining and information
effects induce the weak bidder to reduce his bid, as the loser has a higher
bargaining power. Therefore, the bargaining and information effects are
negative. Lastly, the prior effect is negative, as the weak bidder plays
with another weak bidder which induces him to reduce his bid. In this
case, the negative bargaining, information and prior effects dominate the
positive consumption and depletion effects which reduces the bid.
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In the next two propositions, we compare the bid function of the
present model with the standard asymmetric auctions without resale
model that has been studied in Maskin and Riley [10] (henceforth, M-
R) among others. In the M-R model, the two risk neutral bidders are
distinguished as weak and strong.

Proposition 5. Let (π1, p1) be a symmetric perfect Bayesian equilibrium
in monotone strategies when resale happens after a delay and symmetric
bidders have a probability distribution Fs. Let (ψs, ψw) be a Bayesian
equilibrium when there is no resale possibility and the probability distri-
bution pair is (Fs, Fw). Let Fs(0) > 0 and E(α, λ) > 1. Then,

π1(b) < ψs(b)

for every b ∈ (0, ψ−1
s (ā)].

The above result says that as long as E(α, λ) > 1, the strong bidder
who plays against another strong bidder in an environment where resale
happens after a delay with complete information bids more aggressively
than while playing against a weak bidder in an alternate environment
where there are no resale possibilities.

Proposition 6. Let (π1, p1) be a symmetric perfect Bayesian equilibrium
in monotone strategies when resale happens after a delay and symmetric
bidders have a probability distribution Fw. Let (ψs, ψw) be a Bayesian
equilibrium when there is no resale possibility and the probability distri-
bution pair is (Fs, Fw). Let Fw(0) > 0 and E(α, λ) < 1. Then,

π1(b) > ψw(b)

for every b ∈ (0, β1(ā)].

The above result says that as long as E(α, λ) < 1, the weak bidder
who plays against another weak bidder in an environment where resale
happens after a delay with complete information bids less aggressively
than while playing against a strong bidder in an alternate environment
where there are no resale possibilities.

3.2 Second-price auction

In this subsection, we characterize all the equilibria of the second-price
auction. Let β2 be the symmetric bid function in the family of strictly
increasing, continuous, and onto functions, i.e., β2 : T → [0, b̄2] where b̄2
is the maximum bid. Let π2 be the symmetric inverse bid function, i.e.,
π2 : [0, b̄2]→ T .

In the following result, we derive utility functions of bidders. Denote
the utility function of a bidder in the second-price auction by U2 : T ×
[0, b̄2]→ <.
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Theorem 3. Consider a second-price auction under complete informa-
tion. The expected utility functions of a bidder with value t and bid b
under different situations are as follows.

If λ1 = 0 and 1− αR < λ2 ≤ 1− αB, then

U2(t, b) =
∫ k1t

0
[t− β2(ω)]f(ω)dω +

∫ π2(b)

k1t
[αRt+ λ2ω

− β2(ω)]f(ω)dω + (1− αB − λ2)t[F (t/k1)− F ◦ π2(b)]
(7)

If λ2 = 0 and 1− αR ≤ λ1 < 1− αB, then

U2(t, b) =
∫ k2t

0
[t− β2(ω)]f(ω)dω +

∫ π2(b)

k2t
[(αR + λ1)t

− β2(ω)]f(ω)dω +
∫ t/k2

π2(b)
[(1− αB)t− λ1ω]f(ω)dω

(8)

If λ1, λ2 > 0, 1− αR > λ1, 1− αB > λ2 and k3 < 1, then

U2(t, b) =
∫ k3t

0
[t− β2(ω)]f(ω)dω +

∫ π2(b)

k3t
[(αR + λ1)t+ λ2ω

− β2(ω)]f(ω)dω +
∫ t/k3

π2(b)
[(1− αB − λ2)t− λ1ω]f(ω)dω

(9)

The proof of above theorem is based on similar line of that of Theorem
1.

For notational convenience, let p2(b) ≡ p2(π2(b), π2(b)). In the fol-
lowing result, we characterize the equilibria.

Theorem 4. A pair (π2, p2) is a perfect Bayesian equilibrium in the
second-price auction if and only if it solves the following:

π2(b) = b

E(α, λ) , p2(b) = (λ1 + λ2)π2(b) (10)

The above result gives us a formula for computing bids which is prior-
free, i.e., the formula is independent of the probability distribution. Fur-
thermore, the above result ensure the existence of a unique equilibrium.

Remark 4. If the trade rule is monopoly, the equilibrium is characterized
as

β2(t) = (1 + αR − αB)t

As αR > αB, bidders bid more than their values, i.e., overbidding occur.
If the trade rule is monopsony, the equilibrium is characterized as

β2(t) = (1 + αB − αR)t

As αR > αB, bidders bid less than their values, i.e., bid shading happens.
If αR ↓ αB, the equilibrium converges to bid-your-own-value.
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In the following result, we compare the bid functions of the second-
price auction under complete information with the standard models.

Proposition 7. Let Assumptions 1 and 2 hold.
1. If E(α, λ) > 1, the bidders bid more aggressively during a delayed

resale than under no resale.
2. If E(α, λ) < 1, the bidders bid less aggressively during a delayed

resale than under no resale.

As it is well-known that bidders bid their value when resale is absent,
the above result conveys that as long as E(α, λ) > 1, bidders outbid their
values and as long as E(α, λ) < 1, bidders shade their values.

Corollary 2. Let the primitives of Proposition 7 hold. If E(α, λ) > 1,
the seller generates more expected revenue under a delayed resale with
complete information than under no resale. If E(α, λ) < 1, the seller
generates less expected revenue under a delayed resale than under no
resale.

In the next result, we compare bid functions between the first- and
second-price auction.

Proposition 8. Let Assumptions 1 and 2 hold. Let (π1, p1) be a perfect
Bayesian equilibrium of the first-price auction. Let (π2, p2) be a perfect
Bayesian equilibrium of the second-price auction. Then,

π1(b) > π2(b)

for every b ∈ (0, b̄1].

The above result says that bidders bid more aggressively in the second-
price auction than they do in the first-price auction.

It is well-known from Riley and Samuelson [12] and Myerson [11]
that the seller’s ex-ante expected revenues are equivalent in the first-
and second-price auction as long as resale is absent and bidders are sym-
metric. In the case of asymmetric bidders and absence of resale, Maskin
and Riley [10] show that a general revenue ranking principle does not
exist for the two auction formats. Whenever the two bidders are asym-
metric and resale occurs without a delay, Hafalir and Krishna [4] show
that the first-price auction dominates the second-price auction in terms
of expected revenues.

In contrast to the aforementioned results in the literature, the follow-
ing result establishes a striking property that the expected revenues are
equivalent in the two auction formats whenever bidders are symmetric
and resale occurs after a fixed time delay.
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Theorem 5. Let Assumptions 1 and 2 be true. The seller’s ex-ante
expected revenues are equivalent in the first- and second-price auction
and are given by:

R = 2E(α, λ)
∫ ā

0
tf(t)[1− F (t)]dt (11)

The above result is called the revenue equivalence theorem. An im-
mediate corollary is as follows.

Corollary 3. The seller’s optimum trade rule is one where the winner
extracts all the loser’s surplus.

4 Incomplete information

In this section, we consider the incomplete information case where no
bids are revealed. Section 4.1 deals with the first-price auction while
Section 4.2 deals with the second-price auction.

We require an additional assumption.

Assumption 3. The following must hold for parameters of the model:
1. f/(1− F ) is non-decreasing everywhere on the value space.
2. αR + αB > 1.

4.1 First-price auction

Consider the first-price auction. At date 2, the winner makes a take-it-
or-leave-it offer to the loser.

We restrict to the family of symmetric perfect Bayesian equilibria
where the bid functions are measurable, strictly increasing, continuous,
and onto. Let the bid functions be denoted by µ1. It may be shown that
µ1(0) = 0 and µ1(ā) = b̂ for some b̂1 > 0. Let the inverse bid functions
be denoted by σ1. Therefore, µ1 : T → [0, b̂] and σ1 : [0, b̂1]→ T .

The following claim establishes the direction of resale.

Lemma 1. Whosoever wins offer the object at the resale date.

We solve the game by backward induction. Consider the resale date
and bidder 1 with value t. Since he chooses an optimum resale price, it
must be true that he wins at date 1. Suppose he wins with a bid b. Then,
it must be the case that b > µ1(T2), which is equivalent to T2 < σ1(b).

Since bidder 1 wins, he offers the object to bidder 2 at price, say q1.
Bidder 2 accepts if his resale utility at date 2 exceeds the resale price, i.e.,
(1− αB)T2 > q1 which is equivalent to T2 > zq1, where z = 1/(1− αB).
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If T2 < zq1, bidder 2 rejects the offer. Therefore, the expected utility
function of bidder 1 is

U1(t, b, q1) = Pr[T2 > zq1|T2 < σ1(b)](q1 + αRt− b)
+ Pr[T2 < zq1|T2 < σ1(b)](t− b)

Since zq1 < σ1(b), the expected utility function can be rewritten as

U1(t, b, q1) = F ◦ σ1(b)− F (zq1)
F ◦ σ1(b) (q1 + αRt− b) + F (zq1)

F ◦ σ1(b)(t− b)

The optimization problem is maxq1 U1(t, b, q1). The first-order condition
is

(1− αR)t = q1 − F ◦ σ1(b)− F (zq1)
zf(zq1) (12)

Let q1(t, σ1(b)) be the resale price that solves (12). From Lemmas B.1
and B.2, it follows that

1. (12) is also sufficient.
2. There exists a unique q1 that solves (12).
3. The resale price q1(t, σ1(b)) is strictly increasing in value t and bid
b.

Consider the bid date and bidder 1 with value t and bid b. The
expected utility function of bidder 1 is

U1(t, b) = [F ◦ σ1(b)− F (zq1(t, σ1(b)))](q1 + αRt− b)
+ F (zq1(t, σ1(b)))[t− q1(t, σ2(b))]

+
∫ ā

σ1(b)
max{(1− αB)t− q1(t, ω), 0}f(ω)dω

Using Envelope theorem and Leibniz integral rule, the first-order differ-
ential equation is

F ◦ σ1(b)
DF ◦ σ1(b) = 2q1(b) + (αR + αB − 1)σ1(b)− b (13)

where q1(σ1(b), σ1(b)) ≡ q1(b). In the following theorem, we characterize
all the perfect Bayesian equilibria.

Theorem 6. Let Assumptions 1 and 3 be satisfied. A profile (σ1, q1) is a
perfect Bayesian equilibrium of the first-price auction under incomplete
information if and only if it solves the following Dirichlet problem:

Dσ1(b) = F ◦ σ1(b)
f ◦ σ1(b)

1
2q1(b) + (αR + αB − 1)σ1(b)− b

(1− αR)σ1(b) = q1(b)− F ◦ σ1(b)− F (zq1(b))
zf(zq1(b))

σ1(0) = 0, σ1(b̂) = ā for some b̂1 > 0

(14)
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4.2 Second-price auction

Consider the second-price auction. If, at date 2, the winner makes a
take-it-or-leave-it offer to the loser, then this simply becomes a game of
complete information whose equilibria has been characterized in Remark
4. Therefore, we consider that, at date 2, the loser makes a take-it-or-
leave-it offer to the winner. This trade rule is called monopsony rule.

Let σ2 be a symmetric inverse bid function, which belongs to the
family of strictly increasing, continuous, and onto functions.

In the following lemma, we establish the direction of resale.

Lemma 2. Whosoever loses offers the object for resale under monopsony
rule.

Let us solve for an equilibrium by using the process of backward
induction. Without loss of generality, consider bidder 1 with a value of
t. Suppose he bids b and makes a resell offer at a price of q2.

Since bidder 1 tries to resell, it must be true that he has lost the
auction at date 1. This is possible only if b < µ2(T2) which is equivalent
to T2 > σ2(b). His offer gets accepted only if the resale price is more
than the resale value of bidder 2, i.e., q2 > (1 − αR)T2, or equivalently
T2 < yq2, where y = 1/(1 − αR). On the other hand, his offer gets
rejected if T2 > yq2. Therefore, the expected utility function of bidder 1
is

U2(t, b, q2) = Pr(T2 < yq2|T2 > σ2(b))[(1− αB)t− q2]

= F (yq2)− F ◦ σ2(b)
1− F ◦ σ2(b) [(1− αB)t− q2]

The first-order condition gives

(1− αB)t = q2 − F ◦ σ2(b)− F (yq2)
yf(yq2) (15)

Let q2(t, σ2(b)) be the resale price that solves (12). From Lemmas
B.1 and B.2, it follows that

1. (15) is also sufficient.
2. There exists a unique q2 that solves (15).
3. The resale price q2(t, σ2(b)) is strictly increasing in value t and bid
b.

Consider date 1 where a second-price auction happens. Consider
bidder 1 with value t. Suppose he bids b while bidder 2 implements σ2.
He wins only if T2 < σ2(b). Whenever he wins, he receives a resale offer
of q2(t, T2) from bidder 2. He accepts only if q2(t, T2)+αR > t, otherwise
he rejects. Therefore, with probability that T2 < σ2(b), he incurs a utility
of max{q2(t, T2) + αRt, t} − µ2(T2) where µ2(T2) are his payments.
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Bidder 1 loses only if T2 > σ2(b). Whenever he loses, he proposes a
resale offer to bidder 2. Bidder 2 accepts only if q2(t, σ2(b)) > (1−αR)T2,
otherwise he rejects. Therefore, with probability that σ2(b) < T2 <
yq2(t, σ2(b)), bidder 1 gets a utility of (1−αB)t− q2(t, σ2(b)). Thus, the
expected utility function of bidder 1 is

U2(t, b) = Pr(T2 < σ2(b))[max{q2(t, T2) + αRt, t} − µ2(T2)]
+ Pr(σ2(b) < T2 < yq2(t, σ2(b)))[(1− αB)t− q2(t, σ2(b))]

=
∫ σ2(b)

0
[max{q2(t, ω) + αRt, t} − µ2(ω)]f(ω)dω

+ [F (yq2(t, σ2(b)))− F ◦ σ2(b)][(1− αB)t− q2(t, σ2(b))]

Using Envelope theorem and Leibniz integral rule, the first-order deriva-
tive is

DbU
2(t, b) = DF ◦ σ2(b)[max{q2(t, σ2(b)) + αRt, t} − b

− (1− αB)t+ q2(t, σ2(b))]
(16)

For notational convenience, let q2(σ2(b), σ2(b)) ≡ q2(b). In equilibrium,
t = σ2(b), q2(b) > (1− αR)σ2(b) and DbU

1(σ2(b), b) = 0. This gives

σ2(b) = b− 2q2(b)
αR + αB − 1 (17)

In the following theorem, we characterize the equilibria of the second-
price auction.

Theorem 7. Let Assumptions 1 and 3 be satisfied. A profile (σ2, q2) is
a perfect Bayesian equilibrium in monotone strategies if and only if the
following holds:

σ2(b) = b− 2q2(b)
αR + αB − 1

(1− αB)σ2(b) = q2(b)− F ◦ σ2(b)− F (yq2(b))
yf(yq2(b))

(18)

In the following result, we compare the bid functions of the first-price
auctions between complete and incomplete information.

Theorem 8. Let (σ1, p1) be a symmetric perfect Bayesian equilibrium
in monotone strategies when resale happens after a delay with complete
information. Let (σ1, q1) be a symmetric perfect Bayesian equilibrium
when resale happens after a delay with incomplete information. Let As-
sumptions 1, 2 and 3 be satisfied. Let F (0) > 0, λ1 = 0 and λ2 = 1−αB.
Then,

π1(b) < σ1(b)
for every b ∈ (0, b̂1].
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The above result says that, in the first-price auction, the bidders
bid more aggressively under complete information than they do under
incomplete information as long as the monopoly rule is implemented.
An immediate corollary is as follows.

Corollary 4. Let the primitives of Theorem 8 be satisfied. Then, the
seller prefers to reveal information in the first-price auction.

The above result says that, in the first-price auction, the seller’s ex-
ante expected revenues are higher under complete information than un-
der incomplete information.

Example 1. Let T = [0, 1] and let F (t) = t. Then, the bid functions
under the first- and second price auction are

σ1(b) = 2b, σ2(b) = b
(19)

5 Conclusion

In this paper, we have considered resale possibilities in symmetric private-
value auctions that allocate the object efficiently. The model’s salient
feature is to include fixed time delays in resale. During the interim time,
i.e., between the bid and resale dates, the winner of the auction consumes
the object and generates value from it while the loser’s value diminishes as
the object depletes. This delay in resale leads to expected potential gains
from trade. We have characterized the equilibria of the first- and second-
price auction under complete information and incomplete information.
Under complete information, the seller reveals all the bids while under
incomplete information, the seller reveals no bid.

Our main result is that under complete information, the property
of revenue equivalence holds for the two auction formats. Other results
concerning complete information compare the bid functions under differ-
ent situations. We also show that, in the first-price auction, the seller’s
expected revenues dominate under complete information as compared to
incomplete information.

A Appendix: Proofs

Proof of Theorem 1. We show 1. As the trade rule is exogenous, con-
sider date 1 and bidder 1 with value t. He wins with bid b only if T2 <
π1(b). Trade succeeds only if (1 − αR)t ≤ λ2T2 and (1 − αB)T2 ≥ λ2T2.
The first condition says that the resale value of the winner is less than the
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resale price and the second condition says that the resale value of the loser
must be more than the resale price. The two conditions together imply
T2 ≥ k1t. Otherwise, trade does not succeed. Therefore, with probability
that T2 ≤ k1t, trade does not happen and bidder 1 keeps the object which
gives him a utility of t − b, and with probability that k1t < T2 < π1(b),
trade happens which gives him a utility of αRt+ λ2T2 − b.

On the other hand, bidder 1 loses only if T2 > π1(b). In this case,
trade succeeds only if (1 − αB)t ≥ λ2t and (1 − αR)T2 ≤ λ2t. These
imply T2 ≤ t/k1. Therefore, with probability that π1(b) < T2 < t/k1,
trade happens thereby giving bidder 1 a utility of (1− αB − λ2)t.

Thus, the expected utility function of bidder 1 is

U1(t, b) = Pr(T2 < k1t)(t− b) + Pr(k1t < T2 < π1(b))[αRt+ λ2T2 − b]
+ Pr(π1(b) < T2 < t/k2)(1− αB − λ2)t

which can be rewritten as (2).
We show 2. As the trade rule is exogenous, consider date 1 and bidder

1 with value t. He wins with bid b only if T2 < π1(b). Trade succeeds only
if (1−αR)t ≤ λ1t and (1−αB)T2 ≥ λ1t. These imply T2 ≥ k2t. Otherwise,
trade does not succeed. Therefore, with probability that T2 ≤ k2t, trade
does not happen and bidder 1 keeps the object which gives him a utility
of t−b, and with probability that k2t < T2 < π1(b), trade happens which
gives him a utility of (αR + λ1)t− b.

On the other hand, bidder 1 loses only if T2 > π1(b). In this case,
trade succeeds only if (1 − αB)t ≥ λ1T2 and (1 − αR)T2 ≤ λ1T2. These
imply T2 ≤ t/k2. Therefore, with probability that π1(b) < T2 < t/k2,
trade happens thereby giving bidder 1 a utility of (1− αB)t− λ1T2.

Thus, the expected utility function of bidder 1 is

U1(t, b) = Pr(T2 < k2t)(t− b) + Pr(k2t < T2 < π1(b))[(αR + λ1)t− b]
+ Pr(π1(b) < T2 < t/k2)[(1− αB)t− λ1T2]

which can be rewritten as (3).
We show 3. As the trade rule is exogenous, consider date 1 and bidder

1 with value t. He wins with bid b only if T2 < π1(b). Trade succeeds
only if (1 − αR)t ≤ p1(t, T2) = λ1t + λ2T2 and (1 − αB)T2 ≥ p1(t, T2).
These imply T2 ≥ k3t. Otherwise, trade does not succeed. Therefore,
with probability that T2 < k3t, trade does not happen and bidder 1 keeps
the object which incurs him a utility of t− b, and with probability that
k3t < T2 < π1(b), trade happens and bidder 1 gets a utility of αRt+p1−b.

On the other hand, bidder 1 loses only if T2 > π1(b). In this case,
trade succeeds only if (1 − αB)t ≥ p1(T2, t) = λ1T2 + λ2t and (1 −
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αR)T2 ≤ p1(T2, t). These imply T2 > t/k3. Therefore, with probability
that π1(b) < T2 < t/k3, trade happens thereby giving bidder 1 a utility
of (1− αB)t− p1.

Thus, the expected utility function of bidder 1 is

U1(t, b) = Pr(T2 < k3t)(t− b) + Pr(k3t < T2 < π1(b))[(αR + λ1)t
+ λ2T2 − b] + Pr(π1(b) < T2 < t/k3)[(1− αB − λ2)t− λ1T2]

which can be rewritten as (4). �

Proof of Theorem 2. We first show for the case when part 3 of As-
sumption 2 holds. In this case, p1(w, l) = λ1w + λ2l. Suppose (π1, p1) is
a symmetric perfect Bayesian equilibrium. We can write (4) as

U1(t, b) = F (k3t)(t− b) +
∫ π1(b)

k3t
[αRt+ p1(t, ω)− b]f(ω)dω

+
∫ t/k

π1(b)
[(1− αB)t− p1(ω, t)]f(ω)dω

(20)

Applying Leibniz integral rule, the first-order derivative of (20) is

DbU
1(t, b) = −F (k3t) + [αRt+ p1(t, π1(b))− b]DF ◦ π1(b)− F ◦ π1(b)

+ F (k3t)− [(1− αB)t− p1(π1(b), b)]DF ◦ π1(b)
= [(αR + αB − 1)t+ p1(t, π1(b))− b+ p1(π1(b), t)]

DF ◦ π1(b)− F ◦ π1(b)

In equilibrium, t = π1(b) and DbU
1(π1(b), b) = 0. This gives

F ◦ π1(b)
DF ◦ π1(b) = (αR + αB − 1)π1(b) + 2p1(b)− b (21)

Conversely, suppose (π1, p1) solves (5). We show that (π1, p1) is an
equilibrium. Suppose bidder 1 with value t and bid b overbids to c where
π1(c) > t. Then, the derivative of U1(t, b) implies

DcU
1(t, c) = [(αR + αB − 1)t+ p1(t, π1(c))− c+ p1(π1(c), t)]

DF ◦ π1(c)− F ◦ π1(c)
= [(λ1 + λ2 + αR + αB − 1)t+ (λ1 + λ2)π1(c)− c]

DF ◦ π1(c)− F ◦ π1(c)
< [E(α, λ)π1(c)− c]DF ◦ π1(c)
− F ◦ π1(c)

= 0
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Therefore, overbids are not profitable. On similar lines, it can be shown
that underbids are also not profitable.

We show for the case when part 1 of Assumption 2 holds. Suppose
(π1, p1) is a symmetric perfect Bayesian equilibrium. Applying Leibniz
integral rule, the first-order derivative of (2) is

DU1(t, b) = DF ◦ π1(b)[αRt+ λ2π
1(b)− b]− F ◦ π1(b)

−DF ◦ π1(b)(1− αB − λ2)t

Using t = π1(b) and DbU
1(π1(b), b) = 0, we arrive at (21) with λ1 = 0.

On similar lines of part 3, we can show the converse.
We show for the case when part 2 of Assumption 2 holds. Suppose

(π1, p1) is a symmetric perfect Bayesian equilibrium. Applying Leibniz
integral rule, the first-order derivative of (3) is

DU1(t, b) = DF ◦ π1(b)[(αR + λ1)t− b]− F ◦ π1(b)
−DF ◦ π1(b)[(1− αB)t− λ1π

1(b)]

Using t = π1(b) and DbU
1(π1(b), b) = 0, we arrive at (21). On similar

lines of part 3, we can show the converse. �

Proof of Proposition 1. As p1(b) = (λ1 + λ2)π1(b), from (5), we have

Dπ1(b) = F ◦ π1(b)
f ◦ π1(b)

1
E(α, λ)π1(b)− b

As b = β1 ◦ π1(b) implies 1 = Dβ1 ◦ π1(b)Dπ1(b), we have

1
Dβ1 ◦ π1(b) = F ◦ π1(b)

f ◦ π1(b)
1

E(α, λ)π1(b)− b

Using t = π1(b), we have

1
Dβ1(t) = F (t)

f(t)
1

E(α, λ)t− β1(t)

This implies
E(α, λ)tf(t) = D[F (t)β1(t)]

Using the fundamental theorem of calculus, we have

β1(t) = E(α, λ)
F (t)

∫ t

0
ωf(ω)dω

�
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Proof of Proposition 2. From Riley and Samuelson [12], the symmet-
ric bid function is

β∗(t) = 1
F (t)

∫ t

0
ωf(ω)dω

Comparing this with (6), we have

β1(t) > β∗(t)

for every t ∈ (0, ā]. �

Proof of Proposition 3. To contradict, let π1 ≥ γs around a neigh-
borhood of 0. Then, from H-K, we have

Fs ◦ γs(b)
DFs ◦ γs(b)

= r(b)− b < γs(b)− b ≤ π1(b)− b

< E(α, λ)π1(b)− b

= Fs ◦ π1(b)
DFs ◦ π1(b)

This implies

D
[
Fs ◦ γs(b)
Fs ◦ π1(b)

]
> 0

As Fs(0) > 0 and π1(0) = γs(0) = 0, we have γs > π1 around a neigh-
borhood of 0 which is a contradiction.

Now, suppose that there exists b∗ > 0 so that γs(b∗) = π1(b∗) and
γs(b) > π1(b) for every b ∈ (0, b∗]. Then, we have

Dγs(b∗) = Fs ◦ γs(b∗)
fs ◦ γs(b∗)

1
r(b∗)− b∗

>
Fs ◦ γs(b∗)
fs ◦ γs(b∗)

1
γs(b∗)− b∗

= Fs ◦ π1(b∗)
fs ◦ π1(b∗)

1
π1(b∗)− b∗

>
Fs ◦ π1(b∗)
fs ◦ π1(b∗)

1
E(α, λ)π1(b∗)− b∗

= Dπ1(b∗)

Thus, there exist δ > 0 so that γs(b∗ − δ) < π1(b∗ − δ), which is a
contradiction. �
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Proof of Proposition 4. To contradict, let π1 ≤ γw around a neigh-
borhood of 0. Then, from H-K, we have

Fw ◦ γw(b)
DFw ◦ γw(b) = r(b)− b > γw(b)− b ≥ π1(b)− b

> E(α, λ)π1(b)− b

= Fw ◦ π1(b)
DFw ◦ π1(b)

This implies

D
[
Fw ◦ π1(b)
Fw ◦ γw(b)

]
> 0

As Fw(0) > 0 and π1(0) = γw(0) = 0, we have γw < π1 around a
neighborhood of 0 which is a contradiction.

Now, suppose that there exists b∗ > 0 so that γw(b∗) = π1(b∗) and
γw(b) < π1(b) for every b ∈ (0, b∗]. Then, we have

Dγw(b∗) = Fw ◦ γw(b∗)
fw ◦ γw(b∗)

1
r(b∗)− b∗

<
Fw ◦ γw(b∗)
fw ◦ γw(b∗)

1
γw(b∗)− b∗

= Fw ◦ π1(b∗)
fw ◦ π1(b∗)

1
π1(b∗)− b∗

<
Fw ◦ π1(b∗)
fw ◦ π1(b∗)

1
E(α, λ)π1(b∗)− b∗

= Dπ1(b∗)

Thus, there exist δ > 0 so that γw(b∗ − δ) > π1(b∗ − δ), which is a
contradiction. �

Proof of Proposition 5. To contradict, let π1 ≥ ψs around a neigh-
borhood of 0. Then, from M-R, we have

Fs ◦ ψs(b)
DFs ◦ ψs(b)

= ψw(b)− b < ψs(b)− b ≤ π1(b)− b

< E(α, λ)π1(b)− b

= Fs ◦ π1(b)
DFs ◦ π1(b)

This implies

D
[
Fs ◦ ψs(b)
Fs ◦ π1(b)

]
> 0

As Fs(0) > 0 and π1(0) = ψs(0) = 0, we have ψs > π1 around a neigh-
borhood of 0 which is a contradiction.
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Now, suppose that there exists b∗ > 0 so that ψs(b∗) = π1(b∗) and
ψs(b) > π1(b) for every b ∈ (0, b∗]. Then, we have

Dψs(b∗) = Fs ◦ ψs(b∗)
fs ◦ ψs(b∗)

1
ψw(b∗)− b∗

>
Fs ◦ ψs(b∗)
fs ◦ ψs(b∗)

1
ψs(b∗)− b∗

= Fs ◦ π1(b∗)
fs ◦ π1(b∗)

1
π1(b∗)− b∗

>
Fs ◦ π1(b∗)
fs ◦ π1(b∗)

1
E(α, λ)π1(b∗)− b∗

= Dπ1(b∗)

Thus, there exist δ > 0 so that ψs(b∗ − δ) < π1(b∗ − δ), which is a
contradiction. �

Proof of Proposition 6. To contradict, let π1 ≤ ψw around a neigh-
borhood of 0. Then, from M-R, we have

Fw ◦ ψw(b)
DFw ◦ ψw(b) = ψs(b)− b > ψw(b)− b ≥ π1(b)− b

> E(α, λ)π1(b)− b

= Fw ◦ π1(b)
DFw ◦ π1(b)

This implies

D
[
Fw ◦ π1(b)
Fw ◦ ψw(b)

]
> 0

As Fw(0) > 0 and π1(0) = ψw(0) = 0, we have ψw < π1 around a
neighborhood of 0 which is a contradiction.

Now, suppose that there exists b∗ > 0 so that ψw(b∗) = π1(b∗) and
ψw(b) < π1(b) for every b ∈ (0, b∗]. Then, we have

Dψw(b∗) = Fw ◦ ψw(b∗)
fw ◦ ψw(b∗)

1
ψs(b∗)− b∗

<
Fw ◦ ψw(b∗)
fw ◦ ψw(b∗)

1
ψw(b∗)− b∗

= Fw ◦ π1(b∗)
fw ◦ π1(b∗)

1
π1(b∗)− b∗

<
Fw ◦ π1(b∗)
fw ◦ π1(b∗)

1
E(α, λ)π1(b∗)− b∗

= Dπ1(b∗)
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Thus, there exist δ > 0 so that ψw(b∗ − δ) > π1(b∗ − δ), which is a
contradiction. �

Proof of Theorem 4. We first show for the case when part 3 of As-
sumption 1 holds. In this case, p2(w, l) = λ1w + λ2l. Suppose (π2, p2) is
an equilibrium. We can rewrite (9) as

U2(t, b) =
∫ k3t

0
[t− β2(ω)]f(ω)dω +

∫ π2(b)

k3t
[αRt+ p2(t, ω)

− β2(ω)]f(ω)dω +
∫ t/k3

π2(b)
[(1− αB)t− p2(ω, t)]f(ω)dω

(22)

Applying Leibniz integral rule while differentiating (22), we have

DbU
1(t, b) = DF ◦ π2(b)[(αR + αB − 1)t+ p2(t, π2(b))− b+ p2(π2(b), t)]

(23)

In equilibrium, π2(b) = t and Db(π2(b), b) = 0. As Dπ2(b), f ◦ π2(b) > 0,
we have

π2(b) = b− 2p2(b)
αR + αB − 1

As p2(b) = (λ1 + λ2)π2(b), we have

π2(b) = b

E(α, λ) (24)

We show the converse. Suppose (π2, q) solve (10). Consider bidder 1
with value t and bid b. Suppose he underbids to c such that t > π2(c).
Then, p2(t, π2(c)) > p2(c) and p2(π2(c), t) > p2(c) and from (23), we
have

DcU
1(t, c) = DF ◦ π2(c)[(αR + αB − 1)t+ p2(t, π2(c))− c+ p2(π2(c), t)]

> DF ◦ π2(c)[(αR + αB − 1)π2(c) + 2p2(c)− c]
= 0

Therefore, underbids are not profitable. Similarly, it can be shown that
overbids are also not profitable.

We show for the case when part 1 of Assumption 2 holds. Suppose
(π1, p1) is a symmetric perfect Bayesian equilibrium. Applying Leibniz
integral rule, the first-order derivative of (7) is

DbU
1(t, b) = DF ◦ π2(b)[(αR + αB + λ2 − 1)t+ λ2π

2(b)− b]
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Using t = π1(b) and DbU
1(π1(b), b) = 0, we arrive at (21) with λ1 = 0.

On similar lines of part 3, we can show the converse.
We show for the case when part 2 of Assumption 2 holds. Suppose

(π1, p1) is a symmetric perfect Bayesian equilibrium. Applying Leibniz
integral rule, the first-order derivative of (24) is

DbU
1(t, b) = DF ◦ π2(b)[(αR + αB + λ1 − 1)t+ λ1π

2(b)− b]

Using t = π1(b) and DbU
1(π1(b), b) = 0, we arrive at (24). On similar

lines of part 3, we can show the converse. �

Proof of Proposition 8. Pick an arbitrary t > 0. As
∫ t
0 ωf(ω)dω <∫ t

0 tf(ω)dω = tF (t), we have

1
F (t)

∫ t

0
ωf(ω)dω < t

which is equivalent to

E(α, λ)
F (t)

∫ t

0
ωf(ω)dω < E(α, λ)t

Thus, β1(t) < β2(t). �

Proof of Theorem 5. Consider the first-price auction and bidder 1
with value t. The interim payments generated from him are

P 1(t) = β1(t)F (t)

= E(α, λ)
∫ t

0
ωf(ω)dω

The ex-ante expected revenues generated from bidder 1 are

E[P 1] =
∫ ā

0
P 1

1 (t)f(t)dt

= E(α, λ)
∫ ā

0

∫ t

0
ωf(ω)f(t)dωdt

where E is the expectation operator. Using Fubini’s theorem, we have

E[P 1] = E(α, λ)
∫ ā

0

∫ ā

t
tf(t)f(ω)dωdt

= E(α, λ)
∫ ā

0
tf(t)[1− F (t)]dt

Therefore, the ex-ante expected revenues are
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R1 = 2E(α, λ)
∫ ā

0
tf(t)[1− F (t)]dt

Now, consider the second-price auction and bidder 1 with value t.
The interim payments generated from him are

P 2(t) =
∫ t

0
β2(ω)f(ω)dω

= E(α, λ)
∫ t

0
ωf(ω)dω

= P 1(t)

Therefore, the ex-ante expected revenues are

R2 = 2E(α, λ)
∫ ā

0
tf(t)[1− F (t)]dt

�

Proof of Lemma 1. Since bidders are symmetric, without loss of gen-
erality, consider bidder 1 with value t1. Suppose he wins with a bid of b.
Since bid functions are symmetric, it must be the case that t1 > t2, which
is equivalent to (1− αR)t1 > (1− αR)t2. From part 2 of Assumption 3,
we have (1−αB)t2 > (1−αR)t2. Therefore, with positive probability, we
have (1−αR)t1 < (1−αB)t2. Note that (1−αR)t1 is the resale value of
bidder 1 (reseller) at the resale date while (1− αB)t2 is the resale value
of bidder 2 (buyer) at the resale date. Thus, there are expected potential
profits if bidder 1 offers the object to bidder 2 at the resale date. �

Proof of Theorem 6. We show sufficiency. Suppose a pair (σ1, q1)
solves (14). We argue that (σ1, q1) is an equilibrium. Consider bid-
der 1 with value t. Suppose he overbids to c, where σ1(c) > t. Note
that max{(1 − αB)t − q1(t, σ1(c)), 0} ≥ (1 − αB)t − q1(t, σ1(c)) and
q1(σ1(c), σ1(c)) > q1(t, σ1(c)). Then,

DcU
1(t, c) = DF ◦ σ1(c)[q1(t, σ1(c)) + αRt− c

−max{(1− αB)t− q1(t, σ1(c)), 0}]− F ◦ σ1(c)
≤ DF ◦ σ1(c)[2q1(t, σ1(c)) + (αR + αB − 1)t− c]− F ◦ σ1(c)
< DF ◦ σ1(c)[2q1(σ1(c), σ1(c)) + (αR + αB − 1)σ1(c)− c]
− F ◦ σ1(c)

= 0

Thus, overbids are not profitable for bidder 1.
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Suppose he underbids to c, where σ1(c) < t. As q1(σ1(c), σ1(c)) <
q1(t, σ1(c)), we have

DcU
1(t, c) = DF ◦ σ1(c)[q1(t, σ1(c)) + αRt− c

−max{(1− αB)t− q1(t, σ1(c)), 0}]− F ◦ σ1(c)
> DF ◦ σ1(c)[q1(c) + αRt− c
−max{(1− αB)t− q1(c), 0}]− F ◦ σ1(c)

As q1(c) < (1 − αB)σ1(c) and (1 − αB)σ1(c) < (1 − αB)t, we have
q1(c) < (1− αB)t. This implies

DcU
1(t, c) > DF ◦ σ1(c)[q1(c) + αRt− c

−max{(1− αB)t− q1(c), 0}]− F ◦ σ1(c)
= DF ◦ σ1(c)[2q1(σ1(c), σ1(c)) + (αR + αB − 1)σ1(c)− c]
− F ◦ σ1(c)

= 0

Thus, underbids are not profitable for bidder 1. �

Proof of Lemma 2. Without loss of generality, consider bidder 1 with
value t1. Suppose he loses with a bid of b. Then, t1 < t2 which is
equivalent to (1 − αB)t1 < (1 − αB)t2. From part 2 of Assumption 3,
(1 − αB)t2 > (1 − αR)t2. This implies, with a positive probability, we
have (1 − αB)t1 > (1 − αR)t2, where (1 − αB)t1 is the resale value of
bidder 1 at date 2 while (1−αR)t2 is the resale value of bidder 2 at date
2. Therefore, there are expected potential gains from trade. �

Proof of Theorem 7. Consider a pair (σ2, q2) that solves (18). We
show (σ2, q2) is an equilibrium. Consider bidder 1 with value t. Suppose
he overbids to c, where σ2(c) > t. Then, q2(σ2(c), σ2(c)) > q2(t, σ2(c)).
As q2(σ2(c), σ2(c)) > (1−αR)σ2(c) > (1−αR)t, we have q2(σ2(c), σ2(c))+
αRt > t. Thus,

DcU
2(t, c) = DF ◦ σ2(c)[max{q2(t, σ2(c)) + αRt, t} − c− (1− αB)t

+ q2(t, σ2(c))]
< DF ◦ σ2(c)[max{q2(c) + αRt, t} − c− (1− αB)t+ q2(c)]
= DF ◦ σ2(c)[q2(c) + αRt− c− (1− αB)t+ q2(c)]
< DF ◦ σ2(c)[2q2(σ2(c), σ2(c)) + (αR + αB − 1)σ2(c)− c]
= 0

Therefore, overbids are not profitable for bidder 1.
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Now, suppose bidder 1 underbids to c, where σ2(c) < t. Then
q2(σ2(c), σ2(c)) < q2(t, σ2(c)). As

max{q2(t, σ2(c)) + αRt, t} ≥ q2(t, σ2(c)) + αRt,

we have
DcU

2(t, c) = DF ◦ σ2(c)[max{q2(t, σ2(c)) + αRt, t} − c− (1− αB)t
+ q2(t, σ2(c))]

≥ DF ◦ σ2(c)[2q2(t, σ2(c)) + (αR + αB − 1)t− c]
> DF ◦ σ2(c)[2q2(c) + (αR + αB − 1)σ2(c)− c]
= 0

Thus, underbids are not profitable for bidder 1. Hence, (σ2, q2) is an
equilibrium. �

Proof of Theorem 8. To contradict, let π1 ≥ σ1 around a neighbor-
hood of 0. Then, we have

F ◦ σ1(b)
DF ◦ σ1(b) = 2q1(b) + (αR + αB − 1)σ1(b)− b

< 2(1− αB)σ1(b) + (αR + αB − 1)σ1(b)− b
= (1 + αR − αB)σ1(b)− b
≤ (1 + αR − αB)π1(b)− b

= F ◦ π1(b)
DF ◦ π1(b)

This implies

D
[
F ◦ σ1(b)
F ◦ π1(b)

]
> 0

As F (0) > 0 and π1(0) = σ1(0) = 0, we have σ1 > π1 around a neigh-
borhood of 0 which is a contradiction.

Now, suppose that there exists b∗ > 0 so that σ1(b∗) = π1(b∗) and
σ1(b) > π1(b) for every b ∈ (0, b∗]. Then, we have

Dσ1(b∗) = F ◦ σ1(b∗)
f ◦ σ1(b∗)

1
2q1(b∗) + (αR + αB − 1)σ1(b∗)− b∗

>
F ◦ σ1(b∗)
f ◦ σ1(b∗)

1
2(1− αB)σ1(b∗) + (αR + αB − 1)σ1(b∗)− b∗

= F ◦ σ1(b∗)
f ◦ σ1(b∗)

1
(1 + αR − αB)σ1(b∗)− b∗

= F ◦ π1(b∗)
f ◦ π1(b∗)

1
(1 + αR − αB)π1(b∗)− b∗

= Dπ1(b∗)
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Thus, there exist δ > 0 so that σ1(b∗ − δ) < π1(b∗ − δ), which is a
contradiction. �

B Appendix: Technical lemmas

Lemma B.1. Let Assumption 3 be true. The expression

f(xq)
F (a)− F (xq)

is non-decreasing in q for every x ∈ <+ and a ∈ (0, ā).

Proof. Pick q1, q2 ∈ <+ so that q1 > q2. We show

f(xq1)[F (a)− F (xq2)]− f(xq2)[F (a)− F (xq1)] ≥ 0 (25)

From part 1 of Assumption 3, we have f(xq1)[1− F (xq2)] ≥ f(xq2)[1−
F (xq1)] as x > 0.

If f(xq1) > f(xq2), the the result follows as F (xq1) > F (xq2). If
f(xq1) ≤ f(xq2), the derivative of left hand side of (25) with respect to
F (a) is f(xq1)− f(xq2) ≤ 0. Thus, the result holds. �

Lemma B.2. Let Assumption 3 be true. Then, (12) and (15) are suffi-
cient.

Proof. We show that (15) is sufficient. On similar lines, one can show
that (12) is sufficient. The first-order derivative of (15) gives

Dq2U1(t, b, q2) = 1
1− F ◦ σ2(b)

{
yf(yq2)[(1− αB)t− q2]+

[F ◦ σ2(b)− F (yq2)]
}

= yf(yq2)
1− F ◦ σ2(b)

{
[(1− αB)t− q2] + F ◦ σ2(b)− F (yq2)

yf(yq2)

}
The second-order derivative is

D2
q2U1(t, b, q2) = yf(yq2)

1− F ◦ σ2(b)

{
− 1 + Dq2

F ◦ σ2(b)− F (yq2)
yf(yq2)

}
+ y2Df(yq2)

1− F ◦ σ2(b)

{
[(1− αB)t− q2] + F ◦ σ2(b)− F (yq2)

yf(yq2)

}
= yf(yq2)

1− F ◦ σ2(b)

{
− 1 + Dq2

F ◦ σ2(b)− F (yq2)
yf(yq2)

}
< 0

where the last inequality follows from Lemma B.1. �
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