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Abstract

We introduce an interactive decision model capturing the functioning of echo

chambers in society. Our starting point is an environment of uncertainty where

individuals have preferences over Savage acts. All individuals have core beliefs,

but these do not fully determine their behavior. We distinguish a decision maker’s

core beliefs from her behavioral beliefs, with the latter incorporating the former

but, at the same time, being influenced by the behavioral beliefs of others within

the echo chamber. Therefore, echo chambers feature interactive behavioral beliefs

and, accordingly, interactive decision-making. We provide conditions on the model

set-up that characterize the exact identification of the model parameters from ob-

served behavior. Specifically, under these conditions, we can uniquely identify the

composition of the echo chambers in society, the core beliefs of individuals, and the

degree to which they are immune to influence. Further, we behaviorally character-

ize the version of the model that permits exact identification. We relate our model

to leading empirical themes on echo chambers like elite influence, the stickiness of

beliefs within echo chambers, and the polarization of beliefs across such segments

of society.
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1 Introduction

Research across several disciplines has shown that echo chambers that form in society

impact a range of important social and economic outcomes like polarization, populism,

inequality, and asset prices in financial markets (Barberá 2020; Cookson et al. 2023;

McCarty et al. 2006). A key reason echo chambers drive these outcomes is the beliefs

that form within them and how they get transmitted. This paper looks at beliefs formed

within echo chambers from a decision-theoretic perspective. As our starting point, we

consider decision makers’ (DMs’) preferences over uncertain acts in the spirit of Savage

(1954). The decision model we develop incorporates the idea that a DM’s preferences

over these acts may draw on the structure of the echo chamber she resides in through its

influence on her beliefs.

The key idea underlying the model is the following. We consider a society that is parti-

tioned into a set of echo chambers. Each individual in society has some core beliefs over

the states of the world. However, her behavior is not determined exclusively by her core

beliefs. Instead, her behavioral beliefs also draw on the behavioral beliefs of others within

her echo chamber. Specifically, an individual’s behavioral beliefs is a weighted average

of her core beliefs and the average behavioral beliefs in her echo chamber. The weight

put on the former measures the degree to which she is immune from her echo chamber’s

influence and is an important behavioral parameter. Therefore, echo chambers feature

interactive beliefs and, accordingly, interactive decision-making. In particular, every DM

is assumed to be a subjective expected utility maximizer with respect to her interactive

behavioral beliefs. We refer to this representation of the preferences of the individuals in

society as an echo chamber representation.

We present two key results in the paper. The first pertains to the behavioral identification

of the model. Suppose the behavior of individuals in society is consistent with an echo

chamber representation. Such a representation is based on several parameters. First,

there is the way in which society is partitioned into echo chambers. Second, there are

the core beliefs of all individuals in society. Third, is the degree to which individuals

are immune to influence. Is it possible to identify all these parameters uniquely from

behavior? Our first key result lays down conditions under which a positive answer can be

provided to this question. What is noteworthy about these conditions is that they relate

to an often-reported characteristic of how echo chambers operate in society. It has been

reported that echo chambers form between people with similar beliefs over some events

they are certain about. Moreover, individuals outside the echo chamber do not share this

certainty. Formalizing this observation is our key identification strategy for identifying

the echo chambers that form in society. At the same time, even within an echo chamber,
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arguably, there are differences in views regarding certainty. These differences are what

produce influence amongst individuals, and is what allows us to identify details about an

individual DM like the degree of her immunity from influence and her core beliefs.

Our second key result provides a behavioral foundation for a class of echo chamber rep-

resentations, which we refer to as sharp echo chamber representations. These represen-

tations impose the additional restrictions discussed above that guarantee unique identifi-

cation of the model parameters. Besides the subjective expected utility hypothesis, two

axioms characterize this model. The first is an axiom we call validation, which essentially

introduces the restriction that for a DM to assign probability 1 to an event according to

her behavioral beliefs, she must have the validation of someone else who does likewise.

In turn, any individual who provides such a validation is revealed to be her friend. The

second axiom is based on a notion of incredulous events that we develop. Essentially,

incredulous events are those that a DM is revealed to consider as unlikely by her core

beliefs. We can determine such events from her behavior once we have factored out the

role of her friends’ influence on her beliefs. The axiom introduces the idea that there can

be some disagreements amongst friends, so that an event may be incredulous for a DM

and not so for a friend.

Finally, we relate our model to empirical observations regarding echo chambers that

have been reported in the literature. Our model distinguishes between individuals more

susceptible to influence and those less susceptible. We show that individuals who are

influenced less, in turn, are the ones who have the most influence on beliefs within an

echo chamber, and vice versa. Therefore, a key insight that the model develops is the

disproportionate effect a few can have on the many within an echo chamber—a form of

elite influence highlighted in the context of societal polarization (Wojcieszak et al. 2021).

Moreover, whether a group can act on new information crucially depends on who receives

this information. For instance, if individuals more susceptible to influence receive new

information, then not only does the new information not get incorporated into their be-

havior to any great extent, but even to the extent that it does, it fails to impact the

group’s beliefs and behavior significantly. A consequence is that groups may have sticky

beliefs that do not respond to information. Across echo chambers, we find that prior

beliefs and the structure of new information can result in divergent belief updating and

polarization. Arceneaux and Johnson (2015) argue that both partisan and mainstream

media can polarize the beliefs of ideologically opposed individuals, the former by con-

veying differing information and the latter due to the way people with different beliefs

respond to new information. Our model captures this insight by allowing for polarization

between echo chambers upon receiving information through both channels.

The literature on echo chambers is primarily divided between examining the process of
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segregation into homogeneous groups and the transmission of beliefs and biases through

these groups thereafter. Segregation into various groups is attributed to a variety of rea-

sons, including economic, social, and cultural (Levy and Razin 2019). Baccara and Yariv

(2016) examine the conditions under which segregation results either in homogeneous

groups or polarization. Our model assumes the segregation of society into echo chambers

to be exogenous, and we shift our focus to the transmission of beliefs within existing

clusters, and provide behavioral identification and characterization of this process.

Golub and Jackson (2010) and Acemoglu et al. (2014) characterize convergence to the

truth in a network where individuals communicate noisy signals with each other. In

addition, Acemoglu et al. (2014) incorporate endogenous network formation into their

model. Levy and Razin (2015a, 2015b) examine the effects of correlation neglect between

signals on polarization and political outcomes. In particular, they argue that it is possible

to achieve better outcomes compared to a rational electorate. Martinez and Tenev (2022)

similarly argue that echo chambers could improve the process of learning if the quality

of various sources of information is uncertain. A common characteristic of this literature

is that information is transmitted within echo chambers by assuming the possibility of

directly sharing signals amongst peers, whereas we restrict the channel of influence to

observed behavior. On these lines, Eyster and Rabin (2010) model herding behavior

based on sequential observation of actions. They find that in settings where agents assume

that the observed actions are based solely on private information, they may converge to

incorrect actions with confidence.

There is a substantial body of recent literature that studies the process of social influence

from a choice theoretic perspective (Fershtman and Segal 2018; Kashaev and Lazzati

2019; Lazzati 2020; Borah and Kops 2018; Chambers et al. 2019; Chambers et al. 2021;

Cuhadaroglu 2017). In particular, the structure of our model draws inspiration from

Fershtman and Segal (2018). Whereas we model influence through belief transmission,

they look at influence in tastes. They consider two sets of preferences for each individual,

represented by her core and behavioral utilities, and an influence function such that

her behavioral utilities can be represented as a function of her core utility and others’

behavioral utilities. Analogous to their model, core beliefs are private and behavioral

beliefs are observable in our model.

The rest of the paper is organized as follows. The next section introduces our setup and

formally defines an echo chamber representation. Section 3 introduces the conditions

that characterize the exact identification of the model parameters. Section 4 discusses

the behavioral foundation of the model. Finally, in Section 5, we elaborate on some

properties and empirical content of the model. Proofs of all results are available in the

Appendix.
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2 Setup

Our stylized society consists of a set I = {1, . . . , n} of individuals. These individuals are

assumed to be partitioned into the sets ⟨E1, . . . , Ek⟩, with each element of the partition

denoting an echo chamber (or chamber, for short) in society. To keep the setup mean-

ingful, we assume that none of the echo chambers is a singleton. For any i ∈ I, we let

E(i) denote the echo chamber to which individual i belongs.

Let S be a finite set of states. Any subset of S is referred to as an event. Z denotes a

set of prizes. An act is a mapping, f : S → Z, from the set of states to the set of prizes.

We denote the set of acts by H. Each individual i has preferences over the set of acts,

denoted by ≽i ⊆ H ×H. We denote the symmetric and asymmetric component of ≽i by

∼i and ≻i, respectively.

Given the underlying uncertainty in the environment, we imagine that any individual

decision maker (DM) forms some beliefs over the set of states. The way these beliefs

are influenced by the echo chamber this DM is a part of is the focus of our model. We

assume that any such DM, i ∈ I, is endowed with some core belief µi on S. However,

her behavior may not be driven exclusively by her core beliefs. We will call the beliefs

that drive this DM’s behavior her behavioral belief, denoted by πi. Behavioral beliefs,

of course, depend on core beliefs. But, additionally, the working of influence within her

echo chamber implies that her behavioral beliefs may be influenced by the behavioral

beliefs of others in her echo chamber. We use the average behavioral belief prevailing

within her echo chamber, 1
|E(i)|

∑
j∈E(i) πj, as a summary statistic capturing this aspect

of influence. We assume that the dependence on the two takes a linear weighted average

form, with the weights determined by a parameter αi ∈ (0, 1) that captures the degree

to which this DM is immune from influence, i.e., higher is αi, the less susceptible is this

DM to influence. Specifically, for any state s ∈ S, we assume that her behavioral belief

is given by,

πi(s) = αiµi(s) + (1− αi)
1

|E(i)|
∑

j∈E(i)

πj(s)

This, therefore, makes beliefs and, accordingly, behavior interactive within an echo cham-

ber.

Our representation of the collection of preferences (≽i)i∈I captures these interactions. It

highlights two key ideas. First, it captures the steady state of this process of interactions

by requiring mutually consistent behavioral beliefs within an echo chamber. Second, it

clarifies that individuals’ knowledge of the behavioral beliefs of others in their cluster is

drawn from their behavior, just like the analyst’s.
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Definition 1 The collection of preferences (≽i)i∈I has an echo chamber representation

if there exists a partition ⟨E1, E2, ..., Ek⟩ of I, and for each i ∈ I:

• a (non-constant) utility function ui : Z → R,

• a core probability measure µi on S, and

• an immunity from influence parameter αi ∈ (0, 1)

such that defining the collection of behavioral probability measures (πi)i∈I on S, by

πi(s) = αiµi(s) + (1− αi)
1

|E(i)|
∑

j∈E(i)

πj(s), i ∈ I,

we have that for each i ∈ I, the function Ui : H → R given by

Ui(f) =
∑
s∈S

πi(s)ui(f(s))

represents ≽i.

In other words, DMs are subjective expected utility maximizers, with their beliefs formed

through the process of interaction within echo chambers outlined above. Like in an equi-

librium notion, we close the interactions by assuming that individuals hold correct beliefs

about the preferences of others in their echo chamber and, through it, their behavioral

beliefs. This allows them to correctly forecast the average belief about any event in their

echo chamber.

Remark 1 It is straightforward to establish that the steady state notion captured by

the echo chamber representation doesn’t suffer from concerns about non-existence. That

is, given a collection (µi)i∈I of core beliefs, it is immediate to establish that there exists a

collection of behavioral beliefs (πi)i∈I that simultaneously satisfy the system of equations:

πi(s) = αiµi(s) + (1− αi)
1

|E(i)|
∑

j∈E(i)

πj(s), i ∈ I

To see this, note that the equation determining the behavioral beliefs of individual i,

depends only on the beliefs of the individuals belonging to E(i). Thus, it is sufficient to

prove existence for a single echo chamber. Given a chamber Ek, subtract both sides by

the average behavioral belief, and sum over all i ∈ Ek to yield:

1

|Ek|
∑
j∈Ek

πj(s) =
∑
i∈Ek

αiµi(s)∑
j∈Ek

αj
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Substituting this expression in the earlier system of equations, we get:

πi(s) = αiµi(s) + (1− αi)
∑
j∈Ek

αjµj∑
l∈Ek

αl

This process can be used for each echo chamber, and the resulting collection (πi)i∈I
satisfies the system of equations. Since this is also true of all (πi)i∈I that solve the

equations, given a collection of (µi)i∈I , (αi)i∈I and partition ⟨E1, ..., Ek⟩, the resultant

(πi)i∈I must be unique.

3 Identification

We now address the question about the behavioral identification of the model parameters.

That is, suppose (≽i)i∈I has an echo chamber representation. Is this representation

unique, or are multiple such representations possible? In this section, we introduce two

conditions on the underlying structure of the model that characterize uniqueness of the

representation. To do so, we introduce some terminology. We say that i is fundamentally

certain about an event A if µi(A) = 1. We say that a chamber E is fundamentally certain

about an event A if µi(A) = 1, for all i ∈ E. The first condition provides a statement

about differing views on certainty across echo chambers.

Condition 1 For all chambers E and E ′, there exists an event that one of the chambers

is fundamentally certain about, but the other chamber is not.

We consider this a defining property of echo chambers—the fact that, at a fundamental

level, echo chambers are formed by people who share a certain view of “reality” that is

not necessarily shared by those outside the echo chamber. The condition above expresses

this idea in a fairly weak form. At the same time, we don’t take the position that there is

complete agreement on matters of certainty within an echo chamber. Our next condition

captures this viewpoint, leaving open the possibility that there is room for disagreement

and influence within an echo chamber.

Condition 2 For all i ∈ I, there exists an event she is fundamentally certain about, but

someone in her chamber is not

Theorem 1 Suppose (≽i)i∈I has an echo chamber representation. The following state-

ments are equivalent.
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1. Conditions 1 and 2 hold

2. If (E = ⟨E1, . . . , Ek⟩, (ui, µi, αi)i∈I) and (Ẽ = ⟨Ẽ1, . . . , Ẽl⟩, (ũi, µ̃i, α̃i)i∈I) are both

echo chamber representations of (≽i)i∈I , then E = Ẽ, and for each i ∈ I, ui =

aiũi + bi with ai > 0, µi = µ̃i, and αi = α̃i.

Proof : Please refer to Appendix Section A.1

One of our main concerns in this paper is identification. In general, identifying echo

chambers from behavior, along with beliefs that underlie these chambers, is a challenging

task. Our two conditions identify fairly intuitive and empirically relevant conditions

under which such identification is possible. We, therefore, are particularly interested in

considering the echo chamber model with these two additional conditions. Henceforth,

we refer to an echo chamber representation that satisfies conditions 1 and 2 as a sharp

echo chamber representation.

4 Behavioral characterization

Given the discussion above, we now provide a behavioral foundation for the sharp echo

chamber model. The first axiom is obvious. An echo chamber representation implies that

any DM assesses acts according to a subjective expected utility (SEU) criterion w.r.t. a

utility function on the set of prizes and a probability measure on the state space. Since

behavioral foundation of an SEU representation is a well-studied problem, we do not get

into those details here. Rather, we directly assume that individual preferences have an

SEU representation

Axiom A1 (SEU) ≽i is non-degenerate and has an SEU representation, for each i ∈ I.

≽i non-degenerate means that ≻i ̸= ∅. Given that ≽i is non-degenerate and has an SEU

representation, we know that each i has a unique behavioral probability measure πi on the

state space. Our next axioms makes use of these elicited beliefs to make two important

observation.

The first observation pertains to the calculus of certainty within any echo chamber and the

mutual influence that the process involves. It says that any individual considers an event

to be certain by her behavioral probabilities only if there exists another individual who

does likewise, with this influence being mutual. In other words, even if an individuals

fundamentally thinks of an event as certain, it is not guaranteed to translate into her
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behavior unless it receives validation from someone else, with this process of validation

being mutual.

Axiom A2 (Validation) ∀i ∈ I, ∃j ∈ I such that, for any event A, πi(A) = 1 if and

only if πj(A) = 1.

To introduce our final axiom, we first introduce some definitions. First, we define the

revealed friends of any i ∈ I by

R(i) = {j ∈ I : πi(A) = 1 ⇐⇒ πj = 1, for any event A}

The idea behind this revealed elicitation is quite straightforward. An individual’s friends,

presumably, are those she seeks validation from. Observe that, by definition, i ∈ R(i),

and the validation axiom guarantees that there exists at least one other j ∈ R(i).

Now, given R(i), we can define the average belief about an event amongst i’s friends.

Specifically, for any event A, let

πi(A) =
1

|R(i)|
∑

j∈R(i)

πj(A)

With this in place, we now want to develop a notion of events that a DM may consider

unlikely by her core beliefs. To elicit this from her behavioral beliefs, we essentially have

to wash away the role of her friends’ influence on the latter. To do so we introduce the

following key notion. We say that i ∈ I finds an event A incredulous if,

πi(A)

πi(A)
≤ πi(B)

πi(B)
, for all events B with πi(B) > 0

The idea behind this notion is straightforward. πi(A) measures how much i is willing

to pay for a bet that pays one util on this event. On the other hand πi(B) captures

how much her friendship network, on average, will pay for such a bet. Therefore, the

lower this ratio is the lower must be i’s assessment according to her core beliefs about its

likelihood.

Our final axiom reiterates the point that even amongst friends there are some disagree-

ments when it comes to core beliefs.

Axiom A3 (Some disagreement amongst friends) For any i ∈ I, there exists an

event that i is incredulous about but at least one of her friends is not

We can now present our behavioral characterization result.
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Theorem 2 (≽)i∈I has a sharp echo chamber representation if and only if axioms SEU,

validation and some disagreement amongst friends hold.

Proof : Please refer to Appendix Section A.2

5 Properties of the model

In this section, we highlight some important properties of the model. These pertain to

the scope of elite influence, belief updating with the possibility of sticky beliefs, and the

polarization of beliefs.

5.1 Elite Influence

A theme that has featured prominently in recent times is that of elite influence. For

instance, it has been pointed out in the context of partisan politics that each side of

the partisan divide has elites who have a disproportionate influence on their respective

sides. In other words, when there is influence at play, it is typically marked by a great

degree of heterogeneity in terms of the ability to influence. Such an effect shows up in

our model. The key feature in this regard that our model demonstrates is that within

each echo chamber, the individuals who are the least influenced (high α-s) happen to be

the ones who end up having the greatest influence in terms of shaping beliefs within their

echo chamber.

The nature of linear influence in the model gives the average belief in the echo chamber

a unique structure. Recall the following equality we derived in Remark 1.

πi(s) =
∑

j∈E(i)

αj∑
k∈E(i) αk

µj(s)

That is, the average belief in an echo chamber can be represented as the weighted average

of core beliefs, with the weights capturing relative influence. In particular, the weight

attached to i’s core belief is given by αi∑
k∈E(i) αk

. It is relative because it depends on the

ratio of the DM’s own αi to the sum of all αj. It also measures the degree of influence

as the more a DM is immune to influence, the greater the weight placed on her core

belief in the determination of the average behavioral belief. However, the more others

are immune from influence, the more they influence the average belief, thus reducing the

relative influence exhibited by the DM. A way of capturing the influence exhibited by a
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DM is the difference between her core beliefs and the average behavioral beliefs, which is

expressed as follows.

|πi(s)− µi(s)| =

∣∣∣∣∣∣ 1∑
k∈E(i) αk

 ∑
j∈E(i)\{i}

αj(µj(s)− µi(s))

∣∣∣∣∣∣
This is a measure of her influence because it captures how close average behavioral beliefs

in her echo chamber are pulled towards her core beliefs. Note that αi appears only in the

denominator, which means the difference is decreasing in αi, and for any collection (µi)i∈I ,

the average behavioral belief is influenced more by i’s core belief if she is more immune

to influence. Note also, that this difference depends on the relative influence exhibited

by others. As αj increases for j ̸= i, the average belief moves closer to j’s core belief,

and |πi(s)− µj(s)| decreases. Since individual behavioral beliefs are a weighted average

of core beliefs and average behavioral beliefs, each individual’s behavioral belief moves

closer to j’s core belief. Thus, |πi(s)− µj(s)| decreases too. In this manner, individuals

who are more immune to influence and exhibit greater influence on the echo chamber act

as a group of elites, whose core beliefs play a large role in determining average behavioral

beliefs. This feature of elite influence also manifests itself in the way private information

is incorporated into behavior and transmitted to others in the echo chamber.

5.2 Belief Updating

5.2.1 Mechanism

We now examine the ways in which beliefs are updated in our model upon the arrival of

new information. The key assumption we maintain in the model is that this information

is conveyed to any individual through private signals that cannot be shared with anyone

else in the echo chamber. This means that the core probabilities of only the information

recipient get updated, and the response within the echo chamber is purely driven by the

behavioral changes she exhibits. Define a signal function σi : S → R for each individual

i such that for any signal c ∈ R that is received, the realized state s must be in σ−1
i (c).

Denoting by ci a signal received by i, we have ∩i∈Iσ
−1
i (ci) ̸= ∅. We assume that for any

ci ∈ R, µi(σ
−1
i (ci)) > 0. Since σi-s are different for every individual, the content and

precision of information they receive can differ.

Now given any signal structure (σi)i∈I , an individual i ∈ I will update her core beliefs

upon the realization of any signal according to Bayes’ rule. Suppose c is the signal
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received by i. Then, her posterior core belief is given by:1

µi(s|c) =
1
[
s ∈ σ−1

i (c)
]
µi(s)∑

s′∈σ−1
i (c) µi(s′)

As remarked earlier, while signals cannot be transmitted to others in the echo chamber,

the way behavioral beliefs are updated throughout the network is through changes in

observed behavior. Suppose each individual i ∈ I receives a signal ci. Denote their

updated core belief µi(.|ci) by µ′
i and their behavioral belief πi(.|ci) by π′

i. Then, the

change observed in each individual’s behavioral belief is given by:

π′
i(s)− πi(s) = αi(µ

′
i(s)− µi(s)) + (1− αi)

∑
j∈E(i)

αj(µ
′
j(s)− µj(s))∑
k∈E(i) αk

5.2.2 Incorporation of private information

First, consider the case that individual i is the only one who receives private information

in the echo chamber, which will happen as long as σj is a constant function for all

j ̸= i ∈ E(i). In this case, the ratio of the change in her behavioral beliefs to the change

in core beliefs can be written as:

π′
i(s)− πi(s)

µ′
i(s)− µi(s)

= αi

(
1 +

1− αi∑
k∈E(i) αk

)

Note that this ratio is increasing in αi and is equal to 0 for αi = 0 and 1 for αi = 1. Note

also, that it is bounded below by αi. Taking the second derivative will reveal that it is

concave in αi. To interpret this, we can decompose the effect of αi on this ratio into the

direct effect D(αi) = αi, and the indirect effect defined as:

I(αi) =
αi(1− αi)∑

j∈E(i) αj

The indirect effect captures the impact of the change in her beliefs on others’ behavioral

beliefs, which she then incorporates into her own behavioral beliefs. While D′(αi) = 1 for

all αi ∈ (0, 1), I ′′(αi) < 0 and I ′(αi) < 0 for some αi ∈ (0, 1). While D(αi) captures the

effect of µi on πi through the DM’s immunity from influence, I(αi) captures the effect of

the DM’s core beliefs that influence her through the behavioral beliefs of others in her

echo chamber. Since I(0) = I(1) = 0, there exists some a ∈ (0, 1) such that I ′(a) = 0.

1Note that each P (c = ck | s = si) evaluates to either 1 or 0, which is equivalent to the indicator function
1
[
si ∈ σ−1

i (ck)
]
. Using the law of total probability, each P(c = ck) can be written as

∑
si∈S P(c =

ck | s = si)µ(si), which is then simplified to the sum of the core probabilities over all possible states (i.e.
si ∈ σ−1

i (ck)).
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Denote by a =
∑

j∈E(i)\{i} αj. Then we can uniquely define a:2

a =
√

a(a+ 1)− a

We know that I ′(αi) > 0 for αi < a and I ′(αi) < 0 for αi > a. What this means is

that for αi < a, the rise in the DM’s influence on her echo chamber’s behavioral beliefs

outweighs the fall in the influence of the echo chamber’s behavioral beliefs on her own.

For high αi, the direct effect is high, but the indirect effect starts decreasing as 1 − αi

goes to 0. We can also note that for αi ∈ (0, 1), D(αi) + I(αi) is never 1.

5.2.3 Belief updation and transmission

We now focus attention on the transmission of updated beliefs. Since DMs in our model

require those in their chamber to agree on sure and null events, they also require agree-

ment on new information they receive for it to translate into behavior fully. Without such

agreement, beliefs may be sticky and fail to incorporate the full extent of the available

information.

Proposition 1 (Sticky Beliefs) For any i ∈ I, πi(σ
−1
i (ci) | ci) = 1 if and only if

µj(σ
−1
i (ci) | cj) = 1, for all j ∈ E(i).

Proof : Please refer to Appendix Section A.3

For Bayesian DMs whose beliefs are solely based on private information, the way they

update their beliefs upon receiving new information would imply that if P(c | s) = 0,

then P(s | c) = 0, while for s such that P(s) = 0, P(s | c) = 0. However, in our model,

πi(A) = 0 if and only if πi(A) = 0, which holds if and only if µj(A) = 0 for all j ∈ E(i).

Since DMs seek the validation of all members of their echo chamber, they are unable to

assign beliefs according to their private information, which would demand that they rule

out all states s /∈ σ−1
i (ci). Instead, they assign 0 probability to only those states that are

ruled out by everyone else and null states according to their prior. In other words:

πi

(
S \ ∪j∈E(i)σ

−1
j (cj)

)
= 0

A special case of this is when the signal received by the DM suggests that she should rule

out a state, but not only does she assign it a positive probability, her posterior belief on

the state can actually be greater than that under her prior. Since DMs in our model seek

2To do so, we must find the roots of the I ′(αi), the solution to which is given by
∑

j∈E(i)\{i} αj = − α2
i

2αi−1 .

This function is invertible in the domain (0, 0.5).



13

their echo chamber’s validation when assigning 0 probability to any event, they are unable

to rule states out solely on private information. However, if high-influence individuals

believe that such a state is more likely given the signals they receive, the DM may end

up considering the state to be more likely even though her private information implies

otherwise. Denote by π′
i and µ′

i the posterior behavioral and core beliefs of individual i.

Then, π′
i(s) > πi(s) for some s /∈ σ−1

i (ci) if the following inequality is satisfied.

αi(1 +
∑

k∈E(i)\{i} αk)

1− αi

µi(s) <
∑

k∈E(i)\{i}

αk(µ
′
k(s)− µk(s))

This inequality suggests that this effect is most likely to be prevalent for individuals with

low αi and for states where their prior core belief was low. While low immunity from

influence makes it more difficult for DMs to incorporate their private information, the

seeking of validation from all members in the cluster, i.e. πi(A) = 0 ⇐⇒ πj(A) = 0 for

j ∈ E(i), comes in the way of the DM assigning πi(A) equal to 0 if µj(A|cj) − µj(A) is

strongly positive for some j ∈ E(i) with a high αj. In that case, the DM ends up acting

against her private information.

We can now extend the statement of Proposition 1 to how the behavioral beliefs of an

entire echo chamber are updated when new information is received. Let Ek be some echo

chamber and denote by Si
0 the set of states such that µi(s0) = 0 for all s0 ∈ Si

0.

Corollary 1 πi(σ
−1
i (ci) | ci) = 1 for all i ∈ Ek if and only if for any i, j ∈ Ek

σ−1
i (ci) \ Si

0 ⊆ σ−1
j (cj)

Proof : Please refer to Appendix Section A.4

Corollary 1 asserts that agents can assign non-zero probability to only those states that

are not ruled out by the signals received by everyone else in the echo chamber. The

result follows directly from Proposition 1 in that it guarantees that µi(σ
−1
j (cj) | ci) = 1

for all j ∈ E(i) for every choice of i ∈ Ek. This is also equivalent then to all non-

null states in the posterior being in the intersection of all σ−1
j (cj) for j ∈ E(i). That

means that every agent in the echo chamber receives the same information about non-

null states. Contrarily, in the presence of heterogenous information, DMs are unable to

fully incorporate their private information. Instead, they require that everyone’s observed

beliefs agree with their private information, which is only possible if everyone receives the

same private information. The only potential disagreements in signals are then restricted

to the domain of null states, which do not affect posterior beliefs.
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5.3 Polarization across echo chambers

Whereas the issue of stickiness is induced by the nature of communication of beliefs within

an echo chamber, a notable phenomenon that is seen across different echo chambers is

polarization. The prevalence and applications of polarization are well documented. We

define a measure of polarization in the context of our model and examine the conditions

under which it is observed. There is no precise quantification of polarization that is

available in the context of our setup, but to capture the notion of the divergence of

beliefs, we consider the absolute difference in average behavioral probabilities between

two chambers:3

ρ(k, l) =
∑
s∈S

|πEk
(s)− πEl

(s)|
2

We can also define the extent to which polarization is observed over beliefs regarding

some subset of S, and this may be greater or lower than the polarization over all of S.

ρ(A)(k, l) =
∑
s∈A

|πEk
(s)− πEl

(s)|∑
s′∈A(πEk

(s′) + πEl
(s′))

This idea of polarization, then, can be revised upon the realization of some signal. After

the realization of any particular set of signals, the extent of polarization between two

clusters is then given by defining A = ∪i∈Ek∪El
σ−1
i (ci), and considering the updated

ρ(A)(k, l). The goal, then, is to see the cases in which there may be greater extent of

polarization than others. Consider the following motivating examples.

Example: Consider the state space S = {1, 2, ..., 100} and set of individuals I =

{1, ..., n} with two echo chambers E1 and E2 that partition I. Assume that individuals

have a uniform distribution over the state space as their core beliefs, and thus identical

priors. In this scenario, the extent of their polarization ρ(1, 2) = 0. As such, we are starting

with the least polarized society possible. Now consider that everyone in E1 receives a

signal that the realized state is a prime number, while everyone in E2 receives a signal

that the state is an even number. The only point of intersection between the signals

is the state 2. Upon updating their beliefs, πE1(2) = 1
25

and πE2(2) = 1
50
. However,

πE1(Odd primes) = 24
25
, while πE2(Even) = 1. Defining A to be the union of the prime

numbers and even numbers, we get the new polarization to be ρ(A)(1, 2) = 0.99.

To formalize this intuition, we introduce vector notation for signals, such that σk : S →
R|Ek| is the vector of all signal functions and ck is a vector of signals received by individuals

in echo chamber Ek. Then σ−1
k (ck) gives a vector of sets of states deemed possible by

each individual, with its ith element denoted by σ−1
k (ck)(i). Then define the set of states

3We interchangeably use notation denoting average echo chamber beliefs as per convenience, πi = πE(i)
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deemed possible by at least one person in the chamber as follows.

Ŝk(ck) =
⋃
i∈Ek

σ−1
k (ck)(i)

Particularly, if πEk
(s) > 0 then s ∈ Ŝk(ck). Let ρ

′
(k, l) denote the polarization between Ek

and El upon receiving the signals (ck, cl). Then ρ′(k, l) = ρ′(A)(k, l) where A = Ŝk(ck)∪Ŝl(cl).

The example above also suggests that a potential cause for polarization is the difference in

information received by one echo chamber as opposed to another. Thus, it is meaningful

to model settings where individuals in different echo chambers receive different signals,

particularly ones such that Ŝk(ck)∆Ŝl(cl) ̸= ∅.4 We find that polarization increases in

such settings as there is greater disagreement between signals.

We next introduce a notion of misinformation and highlight its connection to polarization,

which has often been referenced in both academic work and popular media. Then any

state s /∈
⋂

i∈I σ
−1
i (ci), can be ruled out from being the true realized state. Assuming that

the initial preferences of all the individuals had a sharp echo chamber representation, we

can identify states that had a non-null prior and a null posterior, thus identifying the

states each individual was able to rule out through their signal. The union of all such

states can be ruled out from being the true realized state by an observer. Putting this

together, we can deem any subset of σ−1
i (ci) contained in this union to be untrue, and

capturing misinformation in the signal.

Since any state s that does occur must be in ∩i∈Iσ
−1
i (ci), disagreement can only occur

over misinformation. We can then limit our observations to any two clusters at once. Say

a state s can be deduced untrue by Ek and El if s ∈ Ŝk(ck)∆Ŝl(cl). Then we have the

following result. To state it, define a function σ̂i for some i ∈ El such that:5

σ̂i(s) =

σi(s) s ̸= s∗

c∗ /∈ R(σi) s = s∗

given some state s∗ ∈ S. We then define the vector σ̂l such that σ̂l[j] = σj for j ∈
El, j ̸= i and σ̂l[i] = σ̂i. Denote by ρ(k, l)(s) the polarization between Ek and El when

the signals faced by individuals in the echo chambers are a function of the realized state

being s.

Proposition 2 Define ρ1(k, l)(s) and ρ2(k, l)(s) to be the levels of polarization between Ek

and El when individuals in El face the signals σl(s) and σ̂l(s) respectively. Then ρ2(k, l)(s) ≤
4A∆B denotes the symmetric difference of the two sets, which is defined as (A \B) ∪ (B \A). That is,
elements that can be found in either set but not both.

5R(f) = {y ∈ Y : ∃x ∈ X s.t. f(x) = y} ⊆ Y denotes the range set of a function f : X → Y
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ρ1(k, l)(s) if s
∗ can be deduced untrue by Ek and El.

Proof : Please refer to Appendix Section A.5

What Proposition 2 tells us, from another perspective, is that making signals less precise,

or signalling to even one individual that another state not contained in either Ŝk(ck) or

Ŝl(cl) could occur can only increase polarization. Simply put, differential misinformation

across echo chambers leads to greater polarization due to a lack of communication of

beliefs between them. Furthermore, as Section 5.1 makes evident, if the individual who

is more or less misinformed is relatively immune from influence, then the effect on polar-

ization is greater than through others. Therefore, if one were to convey information that

could otherwise be deduced untrue between any two echo chambers to a high-influence

individual in either cluster, they could increase polarization by much more.

A Appendix

A.1 Proof of Theorem 1

We first prove sufficiency of the two conditions for exact identification. We begin

by showing the uniqueness of behavioral probabilities and utility functions and then

establish the uniqueness of the echo chambers. Thereafter, we show that the fun-

damentally certain events are invariant across representations. Finally, we show that

the influence parameters and core probabilities are also unique. To that end, sup-

pose
(
E = ⟨E1, ..., Ek⟩, (ui)i∈I , (µi)i∈I , (αi)i∈I

)
and (Ẽ = ⟨Ẽ1, ..., Ẽl⟩, (ũi)i∈I , (µ̃i)i∈I ,

(α̃i)i∈I) are two echo chamber representations of (≽i)i∈I satisfying Conditions 1 and 2.

(πi)i∈I are unique and so are (ui)i∈I upto positive affine transformations

First, note that (πi, ui) and (π̃i, ũi) are two SEU representations of ≽i. Therefore, from

the uniqueness properties of an SEU representation, we know that π̃i = πi and ũi =

aiui + bi with ai > 0.

The echo chambers are unique, E = Ẽ

First, note from the observation made in Remark 1, it follows that for any i, πi(A) = 1 if

and only if µj(A) = 1 for all j ∈ E(i). That is, πi(A) = 1 if and only if πj(A) = 1, for all

j ∈ E(i). Now, consider some chamber E(i) under the first representation, and suppose

there exists j such that j ∈ E(i) but j /∈ Ẽ(i). Since Ẽ(i) ̸= Ẽ(j), by Condition 1, there

exists an event A that is fundamentally certain for one of the chambers but not the other.
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Suppose A is fundamentally certain for Ẽ(i) but not Ẽ(j). Then, π̃i(A) = 1 and π̃j(A) ̸=
1. Given the uniqueness of behavioral probabilities, this means that πi(A) = 1 and

πj(A) ̸= 1. But, πi(A) = 1 ̸= πj(A) is impossible as j ∈ E(i)! By a similar argument, A

being fundamentally certain for Ẽ(j) but not Ẽ(i) is also not possible, violating Condition

1. Hence, if j ∈ E(i), then j ∈ Ẽ(i), and E(i) ⊆ Ẽ(i). By a symmetric argument, there

cannot exist any j ∈ Ẽ(i) such that j /∈ E(i). Thus Ẽ(i) ⊆ E(i), which together imply

that E(i) = Ẽ(i). Since this is true for all i ∈ I, it follows that E = Ẽ.

Individuals’ fundamentally certain events are unique, µi(A) = 1 iff µ̃i(A) = 1

Suppose µi(A) = 1, i.e., i is fundamentally certain about A under the first representation.

There are two cases to consider. First, suppose µj(A) = 1, for all j ∈ E(i). Then,

πj(A) = 1, for all j ∈ E(i), from which it follows that π̃j(A) = 1, for all j ∈ E(i) = Ẽ(i).

Accordingly, µ̃j(A) = 1, for all j ∈ Ẽ(i), i.e., µ̃i(A) = 1. Second, consider any A for which

µi(A) = 1, but µj(A) < 1, for some j ∈ E(i). Call such an event Class 2 µi-FC. For such

an event πi(A) < 1 and πi(A) < 1. To see that class 2 FC events—which exist given

Condition 2—are invariant across representations, note that rearranging the equation

determining i’s behavioral probabilities, we get that for any event B with πi(B) > 0,

πi(B)

πi(B)
= αi

µi(B)

πi(B)
+ (1− αi) (A.1.1)

From this equation, we can see that πi(B)
πi(B)

= 1−αi, for any event B that is the complement

of a Class 2 µi-FC event. On the other hand for any other event B with πi(B) > 0,
πi(B)
πi(B)

> 1− αi. Accordingly, the set of Class 2 µi-FC events are given by

{
A : AC ∈ argmin

B:πi(B)>0

πi(B)

πi(B)

}

Likewise, under the second representation, the set of class 2 µ̃i-FC events are given by{
A : AC ∈ argmin

B:π̃i(B)>0

π̃i(B)

π̃i(B)

}

Since, πj = π̃j, for any j ∈ I, it follows that the set of Class 2 FC events are the same

under both representations. Hence, µi(A) = 1 iff µ̃i(A) = 1, for all i.

αi is determined uniquely by fundamentally certain events

By condition 2, for each i, there exists a Class 2 fundamentally certain event, i.e., there

exists A with µi(A) = 1 and πi(A) < 1, or equivalently, µi(A
c) = 0 and πi(A

c) > 0.
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Then:

πi(A
c)

πi(Ac)
= αi

µi(A
c)

πi(Ac)
+ (1− αi)

= 1− αi

=⇒ αi = 1− πi(A
c)

πi(Ac)
= 1− π̃i(A

c)

π̃i(Ac)
= α̃i,

where the last equality follows from our conclusion above that the set of Class 2 FC

events are the same across the two representations.

µi is unique

Behavioral probabilities are given by:

πi(A) = αiµi(A) + (1− αi)πi(A)

We can rearrange this to write:

µi(A) =
1

αi

(πi(A)− (1− αi)πi(A))

From the uniqueness of αi, πi, and πi established above, it follows that µi must be unique.

This completes the proof of sufficiency.

We next show the necessity of Conditions 1 and 2 for unique identification. To that

end, suppose
(
E = ⟨E1, ..., Ek⟩, (ui)i∈I , (µi)i∈I , (αi)i∈I

)
is the unique echo chamber rep-

resentation of (≽i)i∈I .
6 We first prove that Condition 2 holds, followed by Condition 1.

Condition 2

Suppose condition 2 is violated. That is, there exists some individual i such that µi(A) = 0

if and only if µj(A) = 0, for all j ∈ E(i). This, in turn, implies that µi(A) = 0 if and only

if πi(A) = 0. We will show that this leads to a contradiction of unique identification. In

particular, we will show that we can find α̃i and µ̃i such that
(
E = ⟨E1, ..., Ek⟩, (ui)i∈I ,

(µ̃i, µ−i), (α̃i, α−i)
)
also represents (≽i)i∈I .

First, we identify the desired α̃i. For this, pick α̃i in the interval
(
1−min πi(A)

πi(A)
, 1
)
, α̃i ̸= αi.

This is well-defined as min πi(A)
πi(A)

> 0, since πi(A) = 0 if and only if πi(A) = 0 (Further,

the number of events is finite and hence the minimum exists). First, for events such that

πi(A) = µi(A) = 0 or πi(A) = µi(A) = 1, define µ̃i(A) = µi(A). Clearly, for these events,

πi(A) = α̃iµ̃i(A) + (1− α̃i)πi(A)

6Of course, utilities are unique up to positive affine transformation.
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Next, for any event A for which πi(A) > 0, define µ̃i as:

µ̃i(A) =
πi(A)− (1− α̃i)πi(A)

α̃i

Note that α̃i > 1−min πi(A)
πi(A)

, or, 1− α̃i < min πi(A)
πi(A)

. Accordingly, 1− α̃i <
πi(A)
πi(A)

, for all A

such that πi(A) > 0. Hence, for all such A, we get (1− α̃i)πi(A) < πi(A). Along with the

fact that α̃i ∈ (0, 1), this implies that µ̃i(A) ≥ 0. Now considering this formulation for sin-

gleton events, we get
∑

s∈S µ̃i(s) =
1
α̃i

(∑
s∈S πi(s)− (1− α̃i)

∑
s∈S πi(s)

)
= 1−(1−α̃i)

α̃i
= 1.

Thus, noting that µ̃i(A) =
∑

s∈A µ̃i(s), allows us to conclude that µ̃i is a valid probability

distribution. Finally, rearranging the above equation gives us that

πi(A) = α̃iµ̃i(A) + (1− α̃i)πi(A)

This, therefore, establishes that
(
E = ⟨E1, ..., Ek⟩, (ui)i∈I , (µ̃i, µ−i), (α̃i, α−i)

)
also rep-

resents (≽i)i∈I , contradicting the statement of unique identification.

Condition 1

Assume condition 1 is violated. Then there exist two echo chambers, say E1 and E2

w.l.o.g., such that for every event for which µi(A) = 1 for all i ∈ E1, µj(A) = 1 for all

j ∈ E2. This implies that πi(A) = 1 if and only if πj(A) = 1 for all i ∈ E1 and j ∈ E2.

Now consider Ẽ1 = E1∪E2. Let all other echo chambers remain unchanged, so Ẽk = Ek.

Then this new echo chamber satisfies πi(A) = 1 if and only if πj(A) = 1 for all i, j ∈ Ẽ1.

Given this new chamber, we have a newly defined π̃i for all i ∈ Ẽ1. Then like done

previously, we can define α̃i ∈ (αi, 1) where αi = 1 − min πi(A)

π̃i(A)
, and accordingly a new

µ̃i for each i ∈ Ẽ1, such that these new parameters represent (≽i)i∈I . This contradicts

exact identification, thus completing the proof.

A.2 Proof of Theorem 2

We first show that the axioms are sufficient for a sharp echo chamber representation.

Step 1. Defining behavioral beliefs: To begin with, A1 implies that, for each i ∈ I,

≽i has a subjective expected utility representation. That is, there exists a function

ui : Z → R and a probability measure πi on S, such that the function Ui : H → R given

by

Ui(f) =
∑
s∈S

πi(s)ui(f(s))

represents ≽i for each i. Let πi denote the behavioral beliefs of an individual i.
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Step 2. Defining chambers: Next, we define chambers. Partition the set of individuals

into two sets: I1 = {i ∈ I : there exists A ⊊ S such that πi(A) = 1}, and I2 = I \ I1.

Denote by E(i) a chamber containing i. For all i ∈ I define E(i) := {j ∈ I : πi(A) =

1 ⇐⇒ πj(A) = 1, for any event A}. Notice that by this definition, all j ∈ I2 form a

chamber within themselves. That is E(i) = I2 for all i ∈ I2.

A2 implies that ∀i,∃j such that πi(A) = 1 ⇐⇒ πj(A) = 1. Given how the chambers

are defined, by A2, we get that for any i and E(i), ∃j ∈ E(i). Note that this is also true

for I2. To see this suppose i′ ∈ I2. Since πi(S) = 1 ∀i ∈ I, by A2, for i′ there must exist

j ∈ I, such that πj(A) < 1, ∀A ⊊ S. Thus implying j ∈ I2. Therefore, all chambers are

non-singleton.

Step 3. Defining core beliefs and immunity from influence parameter: Now, for

every individual i ∈ I, we define their core probability measure, µi, and their immunity

from influence parameter, αi. For all i ∈ I and for all A ⊆ S such that πi(A) = 1, define

µi(A) = 1. And, for all i ∈ I and for all A ⊆ S such that πi(A) = 0, define µi(A) = 0.

Using A3, for every i, ∃A0 ⊊ S that i finds incredulous but ∃j ∈ R(i) for whom A0 is

not incredulous. That is πi(A
0)

πi(A0)
= minB⊊S

πi(B)
πi(B)

. For each such i, define αi = 1 − πi(A
0)

πi(A0)

and µi(A
0) = 0.

Now for events with πi(A) ∈ (0, 1) that i does not find incredulous, we have that

πi(A)

πi(A)
>

πi(A
0)

πi(A0)
⇐⇒ αi > 1− πi(A)

πi(A)

That is, πi(A)− (1− αi)πi(A) > 0. Now, for all such events A, define

µi(A) =
πi(A)− (1− αi)πi(A)

αi

Note that, for such events, µi(A) > 0 since πi(A) − (1 − αi)πi(A) > 0 and αi > 0.

Further, since
∑

s πi(s) = 1 and
∑

s πi(s) = 1, we have that
∑

s µi(s) = 1. Since

µi(A) =
∑

s∈A µi(s), we have µi(A) ∈ (0, 1).

Step 4. Establishing the echo chamber representation: We now establish the echo

chamber representation using the objects defined in the previous steps.

For all non-incredulous events with πi(A) ∈ (0, 1), we have

µi(A) =
πi(A)− (1− αi)πi(A)

αi

⇐⇒ πi(A) = αiµi(A) + (1− αi)πi(A)
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For all incredulous events A0, we have µi(A
0) = 0 and αi = 1− πi(A

0)
π1(A0)

. This implies that

πi(A
0) = αiµi(A

0) + (1− αi)πi(A
0)

For events with πi(A) = 1, we have that µi(A) = 1 and πj(A) = 1 for all j ∈ E(i) ⇐⇒
πi(A) = 1. Therefore, for such events,

πi(A) = αiµi(A) + (1− αi)πi(A) = 1

Finally, for events with πi(A) = 0, we have that µi(A) = 0 and πi(A
c) = 1 ⇐⇒ πj(A

c) =

1 for all j ∈ E(i) ⇐⇒ πi(A
c) = 1 ⇐⇒ πi(A) = 0. Hence, we have

πi(A) = αiµi(A) + (1− αi)πi(A) = 0

This completes the proof of the sufficiency of axioms for an echo chamber representation.

Step 5. Establishing this is a sharp echo chamber representation: We now show

that the echo chamber representation established is such that conditions 1 and 2 hold.

First, consider condition 1. Note that all agents find S to be fundamentally certain

because πi(S) = 1 =⇒ µi(S) = 1 for all i ∈ I. Suppose towards a contradiction of

condition 1, there exist chambers E and E ′ such that they have the same events they are

fundamentally certain about. This implies that for every i ∈ E, πi(A) = 1 ⇐⇒ πj(A) =

1 for all j ∈ E ′. This would lead to a contradiction that all i ∈ E and all j ∈ E ′ are in

fact in the same chamber! Therefore, condition 1 holds.

Next, consider condition 2. Since the echo chamber representation established above

satisfies A3, we have that for all E and for all i ∈ E, there exists an event A that i

finds to be incredulous, but some j ∈ E does not. In our representation, for such events,

µi(A) = 0 but µj(A) ̸= 0. Which is equivalent to saying that ∃Ac such that µi(A
c) = 1

but µj(A
c) ̸= 1 for some j ∈ E. Therefore, condition 2 holds.

This completes the proof of the sufficiency of axioms for a sharp echo chamber represen-

tation.

We now show that the axioms A1-A3 are necessary for the representation.

Axiom A1: We start by recognizing that the preferences of each DM, i, are represented

by a subjective expected utility function with respect to the probability distribution πi.

As such, ≽i must satisfy A1.
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Axiom A2: Given the representation, for any i we have that πi(A) = 1 ⇐⇒ πj(A) = 1

for all j ∈ E(i). Since the chambers are non-singleton, we get that for all i ∈ I, ∃j ∈ I

such that πi(A) = 1 ⇐⇒ πj(A) = 1.

Axiom A3: By condition 2, for every E and i ∈ E there exists an event A such that

µi(A) = 1 and µj(A) < 1 for some j ∈ E. That is, µi(A
c) = 0 and µj(A

c) > 0.

This implies, πi(A
c)

π̄i(Ac)
≤ πi(B)

π̄i(B)
for all events B. Hence, i finds Ac incredulous. Again, by

condition 2, there exists an event A′ that j finds fundamentally certain (i.e. µj(A
′c) = 0)

but someone in E does not. This implies that
πj(A

′c)
π̄j(A′c)

<
πj(A

c)

π̄j(Ac)
. That is, j does not find

Ac incredulous. Thus, axiom A3 is satisfied.

A.3 Proof of Proposition 1

Proposition 1 can be proved as follows.

πi(σ
−1
i (ci) | ci) = 1 ⇐⇒ πi(σ

−1
i (ci) | (c1, ..., ck)) = 1

⇐⇒ µj(σ
−1
i (ci) | cj) = 1 ∀ j ∈ E(i)

A.4 Proof of Corollary 1

Take some state s such that µi(s) > 0 and s ∈ σ−1
i (ci). Then µi(s | ci) > 0. This means,

however, that πj(s | cj) > 0 for all j ∈ E(i). Then, if πj(σ
−1
j (cj) | cj) = 1 for all j ∈ E(i),

it must be that s ∈ σ−1
j (cj). This implies that σ−1

i (ci) \Si
0 ⊆ σ−1

j (cj) for all j ∈ E(i). By

a symmetric argument, we can extend this to any i, j ∈ Ek some echo chamber.

Let us now assume that σ−1
i \Si

0 ⊆ σ−1
j (cj) for all i, j ∈ Ek. Note that µi(σ

−1
i (ci)\Si

0 | ci) =
1 for all i, as µi(s0 | ci) = 0 if µi(s0) = 0. By the antecedent, µi(σ

−1
j (cj) | ci) = 1 for all

i, j as this is a superset of σ−1
i (ci) \ Si

0. Then it must mean that πi(σ
−1
i (ci)) = 1 for all

i ∈ Ek. This completes the proof.



23

A.5 Proof of Proposition 2

Note first that we can write the polarization between Ek and El as follows:

2ρ(k, l) =
∑
s∈S

|πEk
(s)− πEl

(s)|

=
∑
s∈S

max {πEk
(s)− πEl

(s), πEl
(s)− πEk

(s)}

=
∑
s∈S

(max {πEk
(s)− πEl

(s), 0}+max {0, πEl
(s)− πEk

(s)})

Since
∑

s∈S πEk
(s) =

∑
s∈S πEl

(s) = 1, we can rewrite ρ as:

ρ(k, l) =
∑
s∈S

max {πEk
(s)− πEl

(s), 0}

=
∑
s∈S

max{−πEl
(s), −πEk

(s)}+ πEk
(s)

= 1−
∑
s∈S

min {πEk
(s), πEl

(s)}

If πEl
(s∗) = 0 then the given σ̂i cannot be defined, so assume it is strictly greater than 0.

Since s∗ /∈ Ŝk(ck), it must be that π′
Ek
(s∗) = 0. Then ρ1(k, l)(s

∗) = 1, whereas ρ2(k, l)(s
∗) = 0.

Let π′
El

and π′′
El

denote the posterior cluster probability distribution upon facing the

signals σk and σ̂k. Note that ρ1(k, l) can be written as follows:

ρ1(k, l) = 1−
∑
s∈S

min
{
π′
Ek
(s), π′

El
(s)
}

Note that for ρ2(k, l), on the other hand:

ρ2(k, l) = 1−
∑
s∈S

min
{
π′
Ek
(s), π′′

El
(s)
}

Since π′
Ek
(s∗) = 0, we can remove s∗ from the sum. Since π′′

El
(s) ≥ π′

El
(s) for all s ̸= s∗,

it must be that min
{
π′
Ek
(s), π′′

El
(s)
}
≥ min

{
π′
Ek
(s), π′

El
(s)
}
. Then, ρ1(k, l) ≥ ρ2(k, l).
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