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Abstract

This paper investigates the role of convexity of players’ payoff functions with respect to

their own links on pairwise equilibrium networks (Pwen). We establish that convexity guar-

antees the existence of Pwen. Next, we extend the work of Goyal and Joshi (2006), who have

established that Pwen are always group dominant networks. We show that it is possibly diffi-

cult to select Pwen from among the group dominant networks. More precisely, the set of Pwen

may contain ‘holes’. When payoff functions have strategic complementarity, these holes are

eliminated, whereas if these functions have strategic substitutability, these holes may appear.

We provide conditions that eliminate the possibility of these holes appearing, thus simplifying

the characterization of the Pwen set. The required conditions induce that the function de-

scribing the incentive for players in the dominant group to deviate is quasi-concave, and that

the function describing the incentive for isolated players to deviate is quasi-convex. Finally,

these conditions allow us to establish simple Pwen uniqueness conditions.
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1 Introduction

In many economic situations, agents establish collaborations before taking part in specific

interactions. For example, firms can group together to improve their competitiveness before

engaging in a particular market. These collaborations can take the form of multilateral or

bilateral agreements, with this paper focusing on the latter. In practice, bilateral agreements

are of considerable importance in certain sectors. In the automotive industry, for example,

companies often conclude bilateral agreements to strengthen their competitiveness while con-

tinuing to compete in the same market. The 2005 partnership between Toyota and the PSA

Group for the joint production of small city cars is a case in point.1

Goyal and Joshi (GJ, 2003) propose a theoretical model that accounts for this type of

situation. Firms strategically form bilateral collaborative links before engaging in quantity

or price competition. They establish that each firm’s profit function depends on the number

of its own links and the total number of links in which it is not involved. Additionally, they

provide two crucial properties of each firm’s marginal profit:

1. The marginal profit of each firm increases with the number of its own links, implying

that the profit function is convex with respect to its own links.

2. The marginal profit of each firm decreases with the number of links in which it is not

involved, indicating that the profit function exhibits strategic substitute.

Westbrock (2010) extends this model to differentiated oligopolies competing on quantity

and price. Notably, the convexity of the profit function remains preserved in these contexts.

Moreover, GJ (2006) generalizes this model to games where the players are not necessarily

firms interacting in a market, but still satisfy the convexity property in their payoff function.

They also assume that the payoff function satisfies either the condition of strategic substitute

or strategic complement, i.e., each player’s marginal payoff increases with the number of links

in which he is not involved. They establish two types of results. First, they demonstrate that if

the payoff function is convex and satisfies either strategic complementarity or substitutability,

a pairwise equilibrium network (Pwen) always exists. A Pwen refers to a Nash equilibrium

where there are no pairs of unlinked players who have an incentive to form a link together.

Second, when the payoff function is convex, they provide a necessary condition regarding

the architecture of a pairwise equilibrium network. Specifically, a pairwise Nash equilibrium

network is a k-group dominant network, where k firms are all linked together, while the

remaining firms remain unlinked. Specifically, a pairwise Nash equilibrium network is a k-

group dominant network, where k firms are all linked together, while the remaining firms

1The agreement involved sharing a common platform and technology for three models, enabling them to be

produced at the same manufacturing facility.
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remain unlinked.2 Both empty and complete networks are group dominant networks and are

candidates for being Pwen. We refer to interior Pwen those that are distinct from empty or

complete networks.

In this paper, we have two objectives. First, we establish the existence of Pwen when the

payoff functions are convex but do not satisfy the strategic substitute or strategic complement

condition (Proposition 2). Second, we provide a precise characterization of the Pwen set, im-

proving on previous work by GJ (2003, 2006) by selecting from the n different group dominant

networks that are candidates to be Pwen. We establish two conditions that are both necessary

and sufficient for a Pwen (Proposition 1) enabling us to characterize the set of Pwen. The first

condition implies that players in the dominant group have no incentive to remove all their links,

while the second condition indicates that players who have formed no links have no incentive

to form one link. More precisely, we fully characterize the set of Pwen when the payoff function

satisfies the strategic complement in addition to the convexity. In that case, we find that the

set of interior Pwen is a discrete convex set (Propositions 3 and 4). This means that if the

k1-group dominant networks and the k2-group dominant networks, with k2 > k1, are Pwen,

then any k-group dominant networks, with k > k1 and k < k2, are also Pwen. In that case,

we are able to provide a condition under which there is a unique interior Pwen. Additionally,

we explore the case where the payoff function satisfies strategic substitutability and convexity.

Through an example (Example 4), we illustrate that the set of Pwen may not be a discrete

convex set. This is why we have added specific conditions to ensure that the set of interior

Pwen is a discrete convex set when the payoff function satisfies strategic substitutability. We

introduce the function ∆, which measures in each k-group dominant network the difference

between the payoff obtained by a player in the dominant group and his payoff if he removes all

his links. We establish that when ∆ is quasi-concave and the payoff function satisfies strategic

substitutability, the set of Pwen is a discrete convex set (see Proposition 6). In this context,

we are again able to provide a condition that guarantees the uniqueness of an interior Pwen.

Finally, to provide general conditions guaranteeing the interior set of Pwen to be a discrete

convex set, we define the function Λ. It measures the difference between the payoff obtained

by a player with no links and his payoff if he adds one link for each k-group dominant network.

We establish that if both Λ is quasi-convex and ∆ is quasi-concave, then the set of Pwen is a

discrete convex set (see Proposition 7).

The major value of this article is its contribution to the existing studies on network for-

2Pwen are aymetric that is in line with the empirical literature. For example, Hagedoorn and Schakenraad (1992)

identify such notable companies as AT&T, IBM, Siemens, Philips, Fujitsu, NEC and Olivetti as key contributors to

collaborative partnerships in the information and communications technology sectors during the 1980s. Similarly,

Powell, Koput, White and Owen-Smith (2005) note that in the global biotechnology and pharmaceutical industries of

the 1990s, a select group of 24 leading entities entered into more than 20 strategic alliances each, while the majority

of companies established fewer than two such alliances.
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mation game where the payoff function is convex (e.g., models of collaboration networks in

oligopolistic markets). We emphasize a significant property to this type of game: character-

izing the set of equilibria can be challenging, even if we know that it contains only group

dominant networks. Indeed, if the Pwen set is not a discrete convex set, i.e., contains ‘holes’,

as seen in games with payoff functions satisfying strategic substitutability, precisely character-

izing the set of Pwen becomes notably difficult. Possibly, characterizing the Pwen set requires

testing each of the n group dominant networks. Note that many models of collaborative

networks in oligopolistic markets feature reduced profit functions for each firm, exhibiting

strategic substitutability. Moreover, the precise characterization of the set of Pwen allows us

to establish sufficient conditions that guarantee its uniqueness. Consequently, this paper ad-

dresses an essential theoretical question concerning equilibria – in particular the third aspect,

which is the uniqueness of Pwen, complementing the existing exploration of its existence and

characterization.

This paper completes the literature on network formation games with convex payoff func-

tions. Some studies, such as Goyal and Joshi (2003, 2006), explore the properties of equilibrium

networks, while others, such as Westbrock (2010) and Billand et al. (2016, 2019), focus on effi-

cient networks. Our paper is directly in line with the first part of the literature, examining the

properties of equilibrium networks. Finally, the study by Billand and et al. (2023) focuses on

the interaction of two networks. In this context, each player’s payoff function is characterized

by being convex with respect to the number of links within each network, while exhibiting

supermodularity or submodularity between these numbers of links. The paper further requires

that the payoff function exhibits strategic complementarity in terms of the number of links

from other players within each network. The emphasis placed on the interaction between the

two networks in their analysis is an interesting difference from previous studies. While Billand

et al. (2023) provide notable results regarding existence and characterizations, their work does

not provide a complete description of the pairwise equilibrium set – which is one of our main

goal in this paper. In addition, the proof techniques employed diverge considerably, due to the

different frameworks used in their paper and ours.

The paper is organized as follows. In Section 1, we introduce the model setup. In Section

2, we present existence and characterization results based only on the convexity assumption

for players’ payoff functions. In Section 3, we provide a complete characterization of the Pwen

set when the payoff function exhibits strategic complementarity in addition to its convexity.

In Section 4, we examine cases where the payoff function satisfies strategic substitutability. In

Section 5, we establish conditions that guarantee that the Pwen set is a discrete convex set.

In Section 6, we conclude. The appendix contains detailed proofs for all the results.
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2 Model Setup

We denote the set {a, a+ 1, . . . , b− 1, b} with a, b ∈ N by Ja, bK.

Link formation game. Let N = J1, nK, with n ≥ 3, denote a finite set of ex-ante identical

players. Every player makes an announcement of intended links. An intended link si,j ∈ {0, 1},
where si,j = 1 means that player i intends to form a link with player j, while si,j = 0 means

that player i does not intend to form such a link. A link between two players i and j is formed

if and only if si,j = sj,i = 1. A strategy of player i is given by si = (si,j)j∈N\{i}, and a strategy

profile is denoted by s = {s1, s2, . . . , sn}. We denote by Si the set of strategies of player i.

We denote the link between i and j by ij, when this link exists, we have Gi,j = 1. In the

absence of the link ij, we have Gi,j = 0. Clearly, a strategy profile s induces a network G[s].

For simplicity, we often omit the network’s dependence on the underlying strategy profile. A

network G = (Gi,j)i,j∈N is a formal description of the pairwise links that exist between the

players. We let gi =
∑

j∈N Gi,j denote the number of players with whom player i has a link in

the network, or the degree of player i in network G. We define G−i as the network obtained

from G by removing player i and all his links, and g−i = 1
2

(∑
`∈N\{i} g` − gi

)
is the total

number of links in this network; g−i is interpreted as the number of links that player i faces in

G. We denote by G+ ij the network identical to G except that ij does not belong to G and

belongs to G+ ij, and (g + ij)i =
∑

j∈N (G+ ij)i,j .

Networks. In a k-group dominant network, k players are linked together, and n−k players

are not involved in any links. We denote by Gk a typical k-dominant network. Let us denote

by D(Gk) the set of players who have formed links in Gk and E(Gk) the set of players who

have formed no links in Gk. In the empty network, G1, no pair of players are linked. In the

complete network, Gn, all pairs of players are linked. We define the function η(x) = (x−2)(x−1)
2 ,

for x ≥ 2. This function allows us to calculate the number of links in Gk−i, that is gk−i, for every

i ∈ N and k ≥ 2. More precisely, each player i ∈ D(Gk) faces η(k) links and player i ∈ E(Gk)

faces η(k+ 1) links. It is worth noting that η is not defined at x = 1 since D(G1) = ∅. Finally,

each player in D(Gk) is involved in k − 1 links, and each player in E(Gk) is involved in zero

links.

Payoffs. In our analysis, we use a payoff function that closely resembles the GJ payoff

functions but with slightly more generality.3 We assume that

πi(s) = θ(gi[s], g−i[s]).

3In GJ (2006), the payoff function is defined as an additive separable function, in which the cost of forming links

is assumed to be linear.
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3 4
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π1 = θ(2, 1)

π5 = θ(0, 3)

η(3) = 1 and η(4) = 3

(a) 3-group dominant network

1 2

3 4
5

η(4) = 3 and η(5) = 6

π1 = θ(3, 3)

π5 = θ(0, 6)

(b) 4-group domnant network

Figure 1: Payoffs in some group dominant networks with 5 players

when there is no possible confusion, we write θ(gi[s], g−i[s]) = θ(gi, g−i). We illustrate the

payoffs in group dominant networks in Figure 1.

Second order properties of the payoff function. Let θ1(x, y) = θ(x, y) − θ(x −
1, y). We can further define θ11(x, y) = θ1(x, y)− θ1(x− 1, y), θ12(x, y) = θ1(x, y)− θ1(x, y −
1). θ is convex when θ11(x + 1, y) ≥ 0 for all admissible x. It has strategic complement

when θ12(x, y) ≥ 0 for all admissible x, and strategic substitute when θ12(x, y) ≤ 0 for all

admissible x. These properties imply that the marginal profit, θ1, is monotonic. Specifically,

convexity implies that the marginal payoff of each player increases with his own number of

links. Strategic complementarities imply that the marginal payoff of each player increases with

the total number of links in which he is not involved. Conversely, strategic substitutes imply

that the marginal payoff of each player decreases with the total number of links in which he is

not involved. From convexity, we obtain the following useful result.

Remark 1 Suppose θ is convex in its first argument.

R1. If θ(x, y)− θ(x0, y) ≥ 0, then θ(x′, y)− θ(x0, y) ≥ 0, for x′ > x.

R2. If θ(x, y)− θ(x0, y) ≥ 0, then θ(x, y)− θ(x′0, y) ≥ 0, for x′0 > x0.

Pairwise equilibrium network. A strategy profile s is said to be a Nash equilibrium if

πi(si, s−i) ≥ πi(s′i, s−i),∀s′i ∈ Si,∀i ∈ N. We supplement the idea of Nash equilibrium with the

requirement of pairwise stability (which is taken from Jackson and Wolinsky, 1996). A Nash

equilibrium network G is said to be pairwise stable if any pair of players have no incentive to

form a link that does not exist in G.

Definition 1 A network g is a pairwise equilibrium network (Pwen) if the following conditions

hold:

1. There is a Nash equilibrium strategy profile which supports G.

6



2. For gi,j = 0, θ((g + ij)i, g−i)− θ(gi, g−i) ≥ 0 ⇒ θ((g + ij)j , g−j)− θ(gj , g−j) < 0.

The second condition means that if player i has a weak incentive to form the link ij, then

player j has no incentive to form this link.

In the following we say that Gk is the unique Pwen if there is no other non-isomorphic

network that is a Pwen, i.e., there is only one unlabeled network that is a Pwen.

Discrete convex set. In this paragraph, we refer to the definitions provided by Murota

(2008, p.227). The indicator function of a set M ⊆ M is a function δM : M → {0,+∞}
defined by

δM (x) =

 0 if x ∈M,

+∞ otherwise.

A function g :M→ R ∪ {−∞,+∞} is L-convex when for p, q ∈ N ,

g(p) + g(q) ≥ g
(⌈

p+ q

2

⌉)
+ g

(⌊
p+ q

2

⌋)
.

M is a discrete convex set if and only if δM is an L-convex function.4 Specifically, M = J3, 6K

with a, b ∈ N and a < b, is a discrete convex set, and S′ = J3, 6K∪J8, 12K since δM ′(6)+δM ′(8) =

0 < +∞ = δM ′
(⌈

6+8
2

⌉)
+δM ′

(⌈
6+8

2

⌉)
= δM ′(7)+δM ′(7). More generally, we have the following

result.

Remark 2 Let M ⊆ N , M 6= ∅. M is a convex discrete set if and only if there are a, b ∈ N ,

with a ≤ b, such that M = Ja, bK.

Applications. We now present several economic applications where the payoff function of

player i exhibits convexity with respect to his number of links. In the first application, we

consider a two-step game where players form links in the initial stage and then engage in a

linear oligopoly game in the subsequent stage. This application was initially introduced by

Goyal and Joshi (2003, 2006), who presented a model where the links formed by firm i enable it

to reduce its marginal cost. They specifically examined a linear Cournot/Bertrand model with

homogeneous goods. Westbrock (2010) extended these examples by incorporating additional

considerations. First, he accounted for cases where the marginal cost of firm i depends not only

on its own links but also on the number of links formed by other firms. Second, he addressed

scenarios involving differentiated goods.

Application 1. Collaborations in Oligopolies (Westbrock, 2010, GJ, 2003, 2006). We assume

that in the second stage of the game is an oligopoly game where each firm i ∈ N sells a,

4Murota calls this set an L-convex set.
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possibly differentiated, product to a continuum of homogeneous consumers. Let qi denote the

quantity and pi the price of good i. A representative consumer maximizes

U(I, q1, . . . , qn) = I + ζ1

∑
i∈N

qi −
1

2

∑
i∈N

q2
i −

ζ2

2

∑
i∈N

∑
j∈N\{i}

qiqj ,

with ζ1 > 0, ζ2 ∈ (0, 1] subject to the budget constraint
∑

i piqi + I ≤ m, where m denotes

income, and the price of the composite good is normalized to one. From standard utility

maximization, we arrive at a system of inverse demand functions pi = ζ1− qi− ζ2
∑

j∈N\{i} qj .

The profit, gross of linking costs, is given by πi = (pi − ci)qi. The firms can compete either

in quantities or in prices. In any case, ζ2 = 1 depicts a market of perfect substitutable goods.

To avoid the homogeneous price competition situation, if firms compete in prices, we assume

ζ2 ∈ (0, 1). In either case, the Nash equilibrium quantities can be expressed in the form

ωqi = α1ζ1 − α2ci + α3
∑

j∈N\{i}MCj , where MCj is the marginal cost of firm j. Using

superscript C and B to denote Cournot and Bertrand, respectively, the parameters are given

by ωC = 1, αC1 = 1
2+(n−1)ζ2

> 0, αC2 = 2+(n−2)ζ2
(2+(n−1)ζ2)(2−ζ2) > 0, αC3 = ζ2

(2+(n−1)ζ2)(2−ζ2) > 0.

Similarly, ωB = (1−ζ2)(1+(n−1)ζ2)
1+(n−2)ζ2

> 0, αB1 = (1−ζ2)
2+(2n−3)ζ2

> 0, αB2 =
2+(3n−6)ζ2+(n2−5n+5)ζ22
(2+(n−3)ζ2)(2+(2n−3)ζ2) > 0,

αB3 = (1+(n−2)ζ2)ζ2
(2+(n−3)ζ2)(2+(2n−3)ζ2) > 0. Prices and profits are in equilibrium, pi = ωqi + ci, and

πi = ωq2
i , respectively.

We assume that the marginal cost of firm i is MCi(gi, g−i) = γ0 − γ1gi − γ2g−i. Thus, each

collaboration link has an impact on the whole industry, as in d’Aspremont and Jacquemin

(1988). It follows that the equilibrium quantity in the Cournot competition can be written as:

qi =
α1ζ1 − α2(γ0 − γ1gi − γ2g−i) + α3

∑
j∈N\{i}(γ0 − γ1gj − γ2g−j)

ω
.

We have
∑

j∈N\{i} gj+gi = 2(g−i+gi), i.e.,
∑

j∈N\{i} gj = 2g−i+gi. Moreover,
∑

j∈N\{i} g−j+∑
j∈N\{i} gj = 2

∑
j∈N\{i}(g−i+gi) = 2(n−1)(g−i+gi), i.e.,

∑
j∈N\{i} g−j = 2(n−1)(g−i+gi)−

(2g−i+ gi) = 2(n−2)g−i+ (2n−3)gi. Let a = α1ζ1−α2γ0+(n−1)α3γ0
ω , b = (α2γ1−α3γ1−(2n−3)α3γ2)

ω ,

and c = α2γ2−2α3γ1−2(n−2)α3γ2
ω . We have qi = a+ bgi + cg−i. Suppose that the cost of forming

each link is F . Then, the profit function of firm i is given by θ(gi, g−i) = (a+bgi+cg−i)
2−Fgi.

Hence, θ is convex, and it exhibits strategic complementarity if b × c ≥ 0, and strategic

substitutability if b× c ≤ 0. In the price competition scenario, the functional form is similar,

but the parameters a, b, and c have different values.

Let us explore the case of the homogeneous Cournot oligopoly (see GJ, p. 64, 2003), i.e.,

ζ2 = 1. We have qi = a + bgi + cg−i, where ωC = 1, αC1 = 1
n+1 , αC2 = n

n+1 , αC3 = 1
n+1 ,

and a = ζ1−γ0
n+1 , b = (n−1)γ1−(2n−3)γ2

n+1 , c = nγ2−2γ1−2(n−2)γ2
n+1 . If in addition, γ2 = 0, then

qi = ζ1−γ0+(n−1)γ1gi−2γ1g−i
n+1 . �

In the previous application, the payoff function of each player has the following functional

form

θ(gi, g−i) = (a+ bgi + cg−i)
2 − Fgi. (1)
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Therefore, we will refer to this functional form in most of our examples throughout the

paper.

In the second application, we consider a two-step game where players form links in the

initial stage and then participate in a public good game in the subsequent stage. Unlike in the

previous application, the payoff function of players is convex in the links formed by them, but

it does not exhibit strategic complementarity or strategic substitutability.

Application 2. Provision of a Public Good. We consider a specific two-stage game where

players first form their links and then choose their levels of effort, denoted as ei ≥ 0, for

producing a public good. The production of the public good is standard and depends on the

efforts of the players, given by Y (ei, e−i) = ei+
∑

j 6=i ej . Assuming complementarities between

player i’s effort and the number of links formed by others, we simplify the analysis by letting

the cost of effort, denoted by C(ei) = 1
2(g−i)2

e2
i , decrease with the number of links in which

player i is not involved. The payoff function of player i is:

θ(gi, g−i) = giBi(ei, e−i)− Fgi,

where Bi(ei, e−i) = Y (ei, e−i)−C(ei). Clearly, in the second step of the game, the best response

of player i is ei = g−i. Consequently,

θ(gi, g−i) = gi

g−i +
∑
j 6=i

g−j

− Fgi.
Since

∑
j 6=i g−j = (n− 3)g−i + (n− 2)gi, we have

θ(gi, g−i) = gi

(
(g−i)

2

2
+ (n− 3)g−i + (n− 2)gi − F

)
. (2)

We observe that θ22(gi, g−i) = 2(n − 2) > 0, and θ is convex. Moreover, θ21(gi, g−i) =

g−i +
n−7

2 . Hence, θ21(gi, g−i) > 0 for g−i <
n−7

2 , and θ21(gi, g−i) ≥ 0 for g−i ≥ n−7
2 , for n ≥ 9.

Therefore, θ is neither complement strategic nor substitute strategic. �

3 Pairwise Equilibrium Under Convexity

In this section, we only assume that θ is convex in its first argument. As noted by Goyal and

Joshi (2006, Theorem 3.1), if G is a Pwen and gi > 0, then θ1(gi, g−i) ≤ θ1(gi + 1, g−i). This

implies that if player i has formed at least one link, then this player has an incentive to form an

additional link. As a result, all players who have formed links are linked together in a Pwen.

Consequently, when θ is convex in its first argument, a Pwen is a k-group dominant network.

A k-group dominant network, k ∈ J2, n− 1K, which is a Pwen, is called an interior Pwen.

We first provide necessary and sufficient conditions for Gk, k ∈ J2, n− 1K, to be an interior

Pwen. The first condition ensures that players in D(Gk) have no incentive to remove links,

while the second condition ensures that players in E(Gk) have no incentive to form a link.
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Proposition 1 Suppose that θ is convex.

1. Let Gk be a k-group dominant network, k ∈ J2, n−1K. Network Gk is a Pwen equilibrium

if and only if

C1. θ(k − 1, η(k)) ≥ θ(0, η(k)), and

C2. θ1(1, η(k + 1)) < 0.

2. The empty network, G1, is a Pwen if and only if θ1(1, 0) < 0.

3. The complete network, Gn, is a Pwen if and only if θ(n− 1, η(n)) ≥ θ(0, η(n))

Condition C2 is obvious since players in E(Gk) have no incentive to form a link in a Pwen.

Condition C1 comes from the fact that if players in D(Gk) have no incentive to remove all

their links, then they have no incentive to remove some of their links by R2.

In the following example, we examine conditions C1 and C2 in the specific case where

θ(x, y) is given by Equation (1).

Example 1 Consider θ : J0, n− 1K× J0, (n− 1)(n− 2)/2K, θ(x, y) = (a+ bx+ cy)2−Fx, with

a, b, F > 0, and c ∈ R. Then, θ(x, y)− θ(0, y) ≥ 0 if and only if x(2ab+ b2x+ 2bcy − F ) ≥ 0,

i.e., 2a+ bx+ 2cy−Fb ≥ 0, where Fb = F/b. A k-group dominant network satisfies C1 if and

only if 2a+ b (k − 1) + c (k − 2) (k − 1)− Fb ≥ 0

λ1(k) = ck2 + (b− 3c)k − Fb + 2a− b+ 2c ≥ 0. (3)

Moreover, θ(1, y) − θ(0, y) < 0 if and only if 2a + b + 2cy − Fb < 0. A k-group dominant

network satisfies C2 if and only if 2a+ b+ ck(k − 1)− Fb < 0, that is

λ2(k) = ck2 − ck − Fb + 2a+ b < 0. (4)

Note that C2 never holds when c > 0 and Fb < 2a+ b, in particular when c > 0 and F = 0.

C1 and C2 allow us to establish the existence of a Pwen. More precisely, we establish

that the existence of a Pwen can be obtained without requiring the strategic substitutes or

strategic complementarity property of θ. These assumptions were used by Goyal and Joshi

(Proposition 3.1, 2006) in addition to the convexity of θ. The proposition 2 generalizes their

existence result, and our proof is more concise, relying on arguments similar to those used to

prove Tarski’s theorem (1955).5

Proposition 2 Suppose that θ is convex. Then, there always exists a Pwen.

The proof strategy is to use the set of k-group dominant networks, where players belonging

to D(Gk) prefer to have one link rather than zero, i.e., k ∈ J2, nK for which θ1(1, η(k)) ≥ 0.

We call this set Ξ. There are two possibilities:

5We adopt Vives’ (1999) theorem presentation.
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1. Ξ is non-empty. Then, Ξ admits a maximum as a finite set, denoted k̂. Because of R1,

players in D(Gk̂) have no incentive to remove links in Gk̂. Since k̂ is the maximum of Ξ,

players in E(Gk̂) have no incentive to form a link in Gk̂ since they face the same number

of links as players in D(Gk̂+1). Consequently, Gk̂ is a Pwen.

2. Ξ is empty. Then, it is clear that the empty network is a Pwen by observing that

θ1(1, η(2)) = θ1(1, 0), and no player has an incentive to form a link in the empty network.

Let us now illustrate the significance of Proposition 2. Thanks to this proposition, we state

that Application 2 admits a Pwen for all values of n and F . The payoff function of players

in this application is convex, but it does not exhibit strategic complementarity or strategic

substitutability. Consequently, we cannot apply Theorem 3.1 of Goyal and Joshi (2006) in this

case, making Proposition 2 an essential tool for establishing the existence of Pwen.

Finally, due to the necessary and sufficient conditions that determine whether the complete

network or the empty network is an equilibrium, we immediately obtain that if θ(n−1, η(n)) <

θ(0, η(n)) and θ1(1, 0) ≥ 0, then there is an interior Pwen.

Although we have a result on the existence of Pwen and a necessary condition for identifying

candidate pairwise equilibrium networks (provided by GJ, 2006), it is not straightforward to

select Pwen from these candidates. We illustrate this in the following example, where obtaining

the Pwen set requires testing each of the n dominant group networks.

Example 2 Suppose that n = 7, and θ(gi, g−i) = (gi)
2 + (−1)g−in2gi. We know that the

only candidates for being Pwen are k-group dominant networks, with k ∈ J1, 6K. We have

θ(1, y) − θ(0, y) = 37 > 0, for y even, and θ(1, y) − θ(0, y) = θ(1, y) − θ(0, y) = −35 < 0

for y odd. Similarly, θ(2, 1) − θ(0, 1) = −68, θ(3, 3) − θ(0, 3) = −99, θ(4, 6) − θ(0, 6) = 160,

θ(5, 10)−θ(0, 10) = 205, θ(6, 15)−θ(0, 15) = −180. Consequently, the set of Pwen is {G2, G6}.
Figure 2 illustrates the set of Pwen within the set of k-group dominant networks.

1 3 4 5 72 6

Blue: value of k for which Gk is a Pwen
Red: value of k for which Gk is not a Pwen

Figure 2: The Set of Pwen in Example 2

In the following, we explore the conditions that facilitate the characterization of the Pwen

set. We begin our analysis with the cases most common in the economic literature, namely

when the payoff function satisfies either strategic complementarity or strategic substitutability.

11



4 Pairwise Equilibrium Under Strategic Complement

In order to achieve a more precise characterization of the set of Pwen, we introduce an addi-

tional property to θ, in addition to its convexity: the strategic complementarity. We now use

C1 and C2 to define the two following sets ψ1 = {k ∈ J2, nK : θ(k − 1, η(k)) ≥ θ(0, η(k))} and

ψ2 = {k ∈ J1, n−1K : θ1(1, η(k+1)) < 0}. Clearly, ψ1 and ψ2 determine the set of networks Gk

that satisfy C1 and C2 respectively. When ψ1 and ψ2 are non-empty, they have maximal and

minimal elements because they are finite sets. For ` ∈ {1, 2}, we denote the maximal element

of ψ` by kmax
` and its minimal element by kmin

` . With this in mind, we can present a useful

result.

Lemma 1 Suppose that θ is convex in its first argument and satisfies strategic complemen-

tarity.

1. If k ∈ ψ1 and κ > k, then κ ∈ ψ1.

2. If k′ ∈ ψ2 and κ < k′, then κ ∈ ψ2.

Let us explain this result. The first part means that for κ > k, we have θ(k − 1, η(k)) ≥
θ(0, η(k)), then θ(κ− 1, η(κ)) ≥ θ(0, η(κ)). This result is derived from the convexity R1 since

θ(κ−1, η(k))−θ(0, η(k)) ≥ θ(k−1, η(k))−θ(0, η(k)), and from the strategic complementarity

of θ since θ1 is increasing in its second argument and θ(κ − 1, η(κ)) − θ(0, η(κ)) ≥ θ(κ −
1, η(k))− θ(0, η(k)). The second part of the result follows the same reasoning.

We can now present the main result of this section, it focuses on interior Pwen. More

precisely, we establish a necessary and sufficient condition for the existence of interior Pwen,

and we characterize the set of interior Pwen. This set consists of all k-group dominant networks

such that k ∈ Jkmin
1 , kmax

2 K when kmin
1 and kmax

2 exist. In other words, the set of interior Pwen

is a discrete convex set. Recall that by construction of ψ1 and ψ2, we have kmin
1 ≥ 2, and

kmax
2 ≤ n− 1.

Proposition 3 Suppose that θ is convex in its first argument and satisfies strategic comple-

mentarity.

1. There exists an interior Pwen if and only ψ1 6= ∅, ψ2 6= ∅ and kmax
2 ≥ kmin

1 .

2. Suppose that ψ1 6= ∅, ψ2 6= ∅. Network Gk, k ∈ J2, n − 1K, is a Pwen if and only if

k ∈ Jkmin
1 , kmax

2 K.

The first part of the proposition is straightforward since when Gk is a Pwen, it satisfies

C1 and C2. Specifically, Gk satisfies C1 if k ∈ ψ1, and it satisfies C2 if k ∈ ψ2. Therefore,

k ≥ kmin
1 and k ≤ kmax

2 . The second part of the proposition can be derived from Lemma 1.

Indeed, we know that if Gk satisfies C1 and C2, then Gκ̄, with κ̄ > k, satisfies C1, and Gκ,

with κ < k, satisfies C2.

12



Proposition 3 provides a critical understanding of the possibility of uniqueness for interior

Pwen. We present this in the subsequent corollary.

Corollary 1 Suppose that θ is convex in its first argument and is strategic complement.

Network Gk is the unique interior Pwen if and only if k = kmin
1 = kmax

2 .

Finally, we establish a result that provides additional properties of the Pwen set when θ is

convex with respect to its first argument and satisfies strategic complementarity. Specifically,

we show that it is not possible to have a unique Pwen when there exists an interior Pwen.

1

2 . . .. . . . . .. . .
n− 1

nkmin
1

kmax
2

Set of interior Pwen

Blue: Values of k ∈ J1, nK for which Gk is a Pwen

Figure 3: Pwen set for strategic complement θ

Proposition 4 Suppose that θ is convex in its first argument and is strategic complement.

1. If Gk, k ∈ J3, n− 1K, is a Pwen, then G1 and Gn are Pwen.

2. Network G2 cannot be a Pwen.

The first part of the proposition can again be directly deduced from Lemma 1. If Gk is

a Pwen, then it satisfies C1 and C2. According to Lemma 1, every network Gκ̄, with κ̄ > k,

satisfies C1, and in particular when κ̄ = n. Similarly, every network Gκ, with κ < k, satisfies

C2 and in particular when κ = 1. The second part follows from the fact that the players have

the same payoff function. To establish a contradiction suppose that G2 is a Pwen. In this

case, two players have formed links, implying θ(1, 0) − θ(0, 0) ≥ 0. On the other hand, other

players are involved in zero links, hence θ(1, 1) − θ(0, 1) ≥ 0. Clearly, these two inequalities

cannot hold simultaneously.

We now illustrate the above results using specific parameter values for the payoff functions

of players, represented as θ(x, y) = (a+ bx+ cy)2 − Fx, with a, b, c, F > 0 following Example

1.

Example 3 Let θ(x, y) = (a + bx + cy)2 − Fx, with 2a + Fb = −1145, b = 7, c = 0.1.

In Figure 4, we use λ1(k) = −1145 + 7 × (k − 1) + 0.1 × (k − 1) × (k − 2)/2 and λ2(k) =

−1145 + 7 + 0.1× (k − 1)× k/2, and Inequalities (3) and (4) to represent the sets ψ1 and ψ2

associated with these values. The set of interior Pwen is the set of Gk such that k ∈ J98, 151K.

13



ψ1

ψ2

kmin
1 = 98

kmax
2 = 151

Figure 4: The set of interior Pwen of Example 3

5 Pairwise Equilibrium Under Strategic Substitute

We now assume that θ satisfies strategic substitute. Under this assumption, obtaining results

becomes more challenging without introducing additional assumptions. The difficulty comes

from the loss of the monotonicity result stated in Lemma 1. First, when network Gk is a Pwen,

i.e., satisfies C1 and C2, then Gκ̄, with κ̄ > k satisfies C2. Indeed, by strategic substitute, we

have θ1(1, η(x)) ≥ θ1(1, η(x+ 1)). We state this result in the following Lemma.

Lemma 2 Suppose that θ is convex in its first argument and satisfies strategic substitute. If

k ∈ ψ2 and κ > k, then k ∈ ψ2.

However, we cannot state that Gκ, with κ < k, satisfies C1 when Gk satisfies C1. In other

words, we do not have θ(k, η(k))− θ(0, η(k)) ≥ 0⇒ θ(κ, η(κ))− θ(0, η(κ)) ≥ 0. Indeed, on the

one hand, because of the convexity of θ, we have θ(k, η(k))−θ(0, η(k)) ≥ θ(κ, η(k))−θ(0, η(k)).

In the other hand since θ satisfies strategic substitute, we have θ(κ, η(k)) − θ(0, η(k)) ≤
θ(κ, η(κ)) − θ(0, η(κ)). To summarize, strategic substitutability and convexity act in oppo-

site directions. In the next result, we use the monotonicity result concerning C2 to provide

necessary and sufficient conditions for obtaining the existence of an interior Pwen.

Proposition 5 Suppose that θ is convex in its first argument and satisfies strategic substitute.

1. There exists an interior Pwen if and only ψ1 6= ∅, ψ2 6= ∅ and Jkmin
2 , n− 1K ∩ ψ1 6= ∅.

2. Suppose that ψ1 6= ∅, ψ2 6= ∅. Network Gk, k ∈ J2, n − 1K, is a Pwen if and only if

k ≥ kmin
2 and k ∈ ψ1.
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Proposition 5 appears to allow for the possibility of a set of interior Pwen that contains

‘holes’, i.e., the existence of a non-convex set of interior Pwen. We demonstrate this possibility

with an example.

(a) Payoffs of Example 4 (b) Marginal payoffs of Example 4

1 3 52 4

Blue: value for which Gk is a Pwen

Red: value for which Gk is not a Pwen

(c) The set of Pwen of Example 4

Figure 5: Payoffs and the set of Pwen of Example 4

Example 4 Let N = J1, 5K, and the payoffs associated with θ are given in Table (a) in Figure

5. For example, the value of θ(1, 0) = 1. Table (b) summarizes the marginal payoffs associated

to Table (a), θ1. By observing Table (b) in Figure 5, function θ satisfies convexity and strategic

substitutability since the values exhibit a non-decreasing sequence in each row and a non-

increasing sequence in each column. There are five networks candidates for being Pwen: G1,

G2, G3, G4, G5. The empty network, G1 is not an equilibrium since θ(1, 0) = 1 > 0 = θ(0, 0).

The 2-group dominant network, G2, is an equilibrium since θ(1, 0) = 1 > 0 = θ(0, 0) and

θ(1, 1) = −1.1 < −1 = θ(0, 1) The 3-group dominant network, G3, is not an equilibrium since

θ(2, 1) = −1.1 < −1 = θ(0, 1). The 4-group dominant network, G4, is an equilibrium since

θ(3, 3) = 0 > −1 = θ(0, 3) and θ(0, 6) = −5 > −15 = θ(1, 6). The complete network, G5,

is not an equilibrium since θ(4, 6) = −45 < −5 = θ(0, 6). It follows that the set of Pwen is

{G2, G4}.
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ψ1

kmin
1

kmax
1

(a) The set ψ1

ψ1kmin
1 kmax

1k = 1

∆′(k) > 0

∆′(k) < 0

(b) Curve of θ(k − 1, η(k))− θ(0, η(k))

Figure 6: Example 5. Functions λ1(k), and θ(k − 1, η(k))− θ(0, η(k))

In the previous example, it is important to note that ψ1 = J2, 5K, and ψ2 = {2, 4}. This

means that the ‘holes’ in the interior Pwen set are a result of the ‘holes’ in ψ1, i.e., ψ1 is not a

discrete convex set. Now, we present an example to demonstrate that the set of interior Pwen

can actually have no holes when θ satisfies strategic substitutability. This is possible when ψ1

itself is a discrete convex set. We illustrate this possibility by using the payoff function given

in Equation (1) for specific parameters.

Example 5 Let N = J1, 25K, 2a − Fb = −265/3, b = 32/3, and c = −1/3. C1 holds when

λ1(k) = −(1/3)k2 + (11 + 2/3)k − 100 ≥ 0, and C2 holds when λ2(k) = −(1/3)k2 + 1/3k +

32/3 − 265/3 < 0. First, λ1(k) ≥ 0 for k ∈ J15, 20K. We draw λ1(k) in Figure 6. Second,

λ2(k) < 0 for k ∈ J1, 25K. Clearly, the set of Pwen is {G1, G15, G16, G17, G18, G19, G20}.

6 Convexity of the Set of Interior Pwen

Proposition 5 offers less information compared to Proposition 3 and its corollary. This limi-

tation arises from the fact that ψ1 is not a discrete convex set. Hence, it is crucial to identify

conditions that enable the convexification of the set ψ1, in particular when θ satisfies strategic

substitutability.

To address this, we introduce an additional condition inspired by observations made on

the function λ1(k) in Example 1. There are three possibilities to consider. First, λ1(k) has no

real roots, resulting in an empty set ψ1. Second, λ1(k) has one real root, denoted as rλ1 , with

a multiplicity of 2. In this case, ψ1 is empty when rλ1 < 2, and ψ1 =
{
Gr

λ
1
}

, when rλ1 ≥ 2 –

see Figure 7 (a). Third, λ1(k) has two real roots, rλ1 and rλ2 , with rλ1 < rλ2 . There are three

possibilities to consider in this case. If rλ1 ≥ 2, it corresponds to the case examined in Example
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5. If rλ1 < 2 and rλ2 ≥ 2, networks Gk with k ∈ J2, rλ2 K are Pwen – see Figure 7 (b). If rλ2 < 2,

ψ1 is empty.

In Figure 7, we illustrate the function ∆(k) = ∆θ(k) = θ(k−1, η(k))−θ(0, η(k)) in the two

cases where ψ1 6= ∅, which are distinct from the case presented in Example 5. In both cases,

ψ1 is a discrete convex set. In the first case, ∆(k) increases up to a certain point where it

decreases. In the second case, ∆ is a monotonic function after kmin
1 , as shown in Figure 7(b).

Furthermore, in Figure 6 (b), it is observed that ∆ is strictly increasing when n ∈ J15, 16K.

Based on all these observations, we have the intuition that ψ1 is a discrete convex set when

∆ is strictly quasi-concave over the interval Jkmin
1 , n − 1K. However, we need to adapt the

standard definition of quasi-concavity for functions defined over a discrete set. Function ∆ is

said to be a discrete quasi-concave function if for all Jκ1, κ2K ⊆ Jkmin
1 , n − 1K, the following

holds:

∀k ∈ Jκ1 + 1, κ2 − 1K,∆(k) ≥ min{∆(κ2),∆(κ1)}.

k = 1 (k = 5,∆(5) = 0)

ψ1 = {G5}

∆′(k) < 0

(a) ∆(k) when rλ1 = rλ2 ≥ 2

k = 1 ψ1 k = rλ2k = 2

∆′(k) > 0

∆′(k) < 0

(b) ∆(k) when rλ2 < 2 and rλ2 ≥ 2

Figure 7: Example of functions ∆(k) where ψ1 6= ∅

Let us establish that the discrete quasi-concavity of ∆ guarantees that ψ1 is a discrete

convex set.

Lemma 3 Suppose that ∆θ is a discrete quasi-concave function. Then, ψ1 is a discrete convex

set, i.e., if kmin
1 < kmax

1 + 1, then for k ∈ Jkmin
1 + 1, kmax

1 − 1K, k ∈ ψ1.

The payoff function in Application 2, as described by (2), generates a strictly increasing

∆ function over Jk?, nK, where k? = arg mink∈J1,nK{∆ (k)} ≥ 0. This establishes that ∆ is

a discrete quasi-concave function, making ψ1 associated with Application 2 a discrete convex

set.

We can now characterize the set of Pwen when ∆θ is quasi-concave in addition to the

convexity and the strategic substitutability of θ. Indeed, we know from Lemma 2 that ψ2 =
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Jkmin
2 , n− 1K, and from Lemma 3, we know that ψ1 = Jkmin

1 , kmax
1 K. We use these observations

to characterize the set of Pwen.

Proposition 6 Suppose θ is convex in its first argument, exhibits strategic substitute, and ∆θ

is a discrete quasi-concave function. Moreover, ψ1 6= ∅, ψ2 6= ∅.

1. There exists an interior Pwen if and only if kmin
2 ≥ kmax

1 and kmin
1 < n. The set of

interior Pwen is a discrete convex set.

2. Gk is an interior Pwen if and only if k ∈ {k, k̄}, with k = max{kmin
1 , kmin

2 } and k̄ =

min{kmax
1 , n− 1}.

1 2 . . .. . . . . .. . .
n− 1

n

k

= max{kmin
1 , kmin

2 }
k̄ = kmax

1
kmax

1 6= n− 1

Set of Pwen

Blue: Values of k ∈ J1, nK for which Gk is a Pwen

Figure 8: Pwen set for θ with strategic substitutability and ∆θ quasi-Concave

Let us explain Proposition 6. Suppose that ψ1 ∩ ψ2 6= ∅. Then, ψ2 6= ∅ and when θ

exhibits strategic substitute, by Lemma 2, kmax
2 = n − 1. It is worth noting that since ψ1 ∩

ψ2 = Jkmin
1 , kmax

1 K ∩ Jkmin
2 , n − 1K, and kmax

1 ∈ J2, nK, we have ψ1 ∩ ψ2 =
q
k, k̄

y
, with k =

max{kmin
1 , kmin

2 } and k̄ = n − 1 if kmax
1 = n, and k̄ = kmax

1 otherwise. We illustrate these

observations in Figure 8.

Proposition 6 allows us to derive a straightforward condition for the uniqueness of Pwen.

It is important to note that, by construction, kmax
1 6= 1 and kmin

2 6= n

Corollary 2 Suppose θ is convex in its first argument, exhibits strategic substitute, and ∆θ is

a discrete quasi-concave function. If kmin
2 = kmax

1 = k, then Gk is the unique Pwen.

Finally, we observe that when θ satisfies either strategic complementarity or strategic

substitutability, the set ψ2 is a discrete convex set. We now proceed to establish that if

Λ(k) = Λθ(k) = θ(1, η(k+ 1))− θ(0, η(k+ 1)) is quasi-convex, then ψ2 is a discrete convex set.

To achieve this, we adapt the concept of quasi-convexity for functions defined over a discrete

set. We define Λ as a discrete quasi-convex function if, for all Jκ1, κ2K ⊆ Jkmin
2 , n − 1K, the

following condition holds:

∀k ∈ Jκ1 + 1, κ2 − 1K,Λ(k) ≤ max{Λ(κ2),Λ(κ1)}.
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Note that Λθ is a discrete quasi-convex function when θ exhibits strategic complementarity.

Indeed, Λθ(k) = θ(1, η(k+1))−θ(0, η(k+1)). Given that θ exhibits strategic complementarity,

Λθ is non-decreasing, and as a result, it is a discrete quasi-convex function. Similarly, when θ

exhibits strategic substitutability, Λθ does not increase, and is therefore a discrete quasi-convex

function. In the next result, we establish that if θ is such that ∆θ is a quasi-concave function

and ∆θ is a quasi-convex function, then the set of interior Pwen is a discrete convex set. Thus,

it is easy to characterize the set of Pwen in this case.

Proposition 7 Suppose that Λθ is discrete quasi-convex, then ψ2 is a discrete convex set.

Moreover, if in addition ∆θ is discrete quasi-concave, then the set of interior Pwen is a discrete

convex set. Suppose that kmin
1 < kmax

1 and kmin
2 < kmax

2

1. Suppose kmin
2 = 1 and kmax

1 = n. Networks Gk are interior Pwen if and only if k ∈
Jkmin

1 , kmax
2 K. Moreover, networks G1 and Gn are Pwen.

2. Suppose kmin
2 > 1 and kmax

1 = n. Networks Gk are interior Pwen if and only if k ∈
Jk, kmax

2 K, with k = max{kmin
1 , kmin

2 }. Moreover, network Gn is a Pwen.

3. Suppose kmin
2 = 1 and kmax

1 < n. Networks Gk are interior Pwen if and only if k ∈ Jk, k̂K,

with k = max{kmin
1 , kmin

2 } and k̂ = min{kmax
1 , kmax

2 }. Moreover, networks G1 is a Pwen.

4. Suppose kmin
2 > 1 and kmax

1 < n. Networks Gk are interior Pwen if and only if k ∈
Jkmin

1 , kmax
2 K, and k = max{kmin

1 , kmin
2 }. Moreover, networks G1 and Gn are not Pwen.

Function Λ associated with the payoff function (2) in Application 2 is a discrete quasi-

convex function. Specifically, Λ(k) = (η(k+1))2

2 + (n − 3)η(k + 1) + (n − 2) − F . Moreover,

we observe that Λ(k + 1) − Λ(k) = (η(k + 1) − η(k))
(
η(k+1)+η(k)

2 + n− 3
)
> 0, since η is

strictly increasing with k. It follows that the set of interior Pwen of Application 2 is a discrete

convex set. This is because ∆θ is a quasi-concave function, and Λθ is a quasi-convex function.

Proposition 7 implies the following corollary.

Corollary 3 Suppose that θ induces that ∆θ is a discrete quasi-concave function and Λθ is a

discrete quasi-convex function. Let the set of interior Pwen be nonempty. There is a unique

interior Pwen if and only if max{kmin
1 , kmin

2 } = min{kmax
1 , kmax

2 }.

7 Conclusion

In this paper, we have shown that the convexity of the payoff function of players in the number

of their own links is a property that guarantees the existence of Pwen. As emphasized by GJ

(2006), this property implies that a Pwen is a group dominant network. We have shown

that this result, which seems powerful for characterizing the Pwen, is limited in certain cases,

in particular when the set of interior Pwen contains holes. We have established that such
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holes are absent when the payoff function exhibits strategic complementarity. Then, we have

presented an example illustrating the possibility of holes occurring when the payoff function

exhibits strategic substitutability. This possibility led us to formulate conditions simplifying

the characterization of Pwen sets by eliminating the possibility of holes. As a result, the Pwen

set becomes a discrete convex set. These conditions are as follows. First, the payoff function θ

induces the function ∆θ to be a discrete quasi-concave function. Second, θ induces the function

Λθ to be a discrete quasi-convex function. The fact that the set of interior Pwen is a discrete

convex set is an important result, since it makes it easy to obtain uniqueness conditions for

Pwen.

We have focused on the convexity of players’ payoff functions with respect to their own

links. The characterization of the set of Pwen when the payoff function is concave, as an

extension, is an interesting investigation. Moreover, the study of the potential uniqueness of

the Pwen under concavity adds further interest to our study.
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Appendix

A. Remarks given in model setup

Proof of Remark 1. We prove successively the two parts of this remark.

1. We have θ(x, y) − θ(x0, y) =
∑x−x0−1

`=0 θ1(x − `, y). Since θ is convex, θ1(x − `, y)

is decreasing in `. It follows that θ1(x, y) = max `∈J0,x−x0−1K {θ1(x − `, y)}. Since∑x−x0−1
`=0 θ1(x − `, y) ≥ 0, θ1(x, y) = max`∈J0,x−x0−1K{θ1(x − `, y)} ≥ 0. Moreover,

θ(x′, y)− θ(x0, y) =
∑x0−1

`=0 θ1(x′ − `, y) =
∑x′−x−1

`=0 θ1 (x′ − `, y) +
∑x−x0−1

`=0 θ1(x− `, y).

By convexity, for every ` ∈ J0, x′ − x− 1K, θ1(x′ − `, y) ≥ θ1(x, y) ≥ 0. It follows that if∑x−x0−1
`=0 θ1(x− `, y) ≥ 0, then

∑x′−x−1
`=0 θ1(x′ − `, y) ≥ 0 and the result follows.

2. We have θ(x, y)−θ(x0, y) =
∑x−x0−1

`=0 θ1(x−`, y) =
∑x−x′0−1

`=0 θ1(x−`, y)+
∑x−x0−1

`=x−x′0
θ1(x−

`, y), and θ(x, y)−θ(x′0, y) =
∑x−x′0−1

`=0 θ1(x−`, y). Since θ1(x−`, y) is decreasing in `, we

have min`∈J0,x−x′0−1K θ1(x− `, y) = θ1(x′0 + 1, y) ≥ θ1(x′0, y) = max`∈Jx−x′0,x−x0−1K θ1(x−
`, y). It follows that if θ(x, y)− θ(x0, y) ≥ 0, then

∑x−x′0−1
`=0 θ1(x− `, y) ≥ 0 and θ(x, y)−

θ(x′0, y) ≥ θ(x, y)− θ(x0, y). The result follows.

2

Proof of Remark 2. Suppose that M = Ja, bK, with a, b ∈ N , and a ≤ b. We establish that

δM is L-convex. For every p, q ∈ Ja, bK, we have
⌊p+q

2

⌋
,
⌈p+q

2

⌉
∈ Ja, bK. It follows that

δM (p) + δM (q) = 0 ≥ 0 = δM

(⌈
p+ q

2

⌉)
+ δM

(⌊
p+ q

2

⌋)
,

and δM is L-convex.

Let M ⊆ N , M 6= ∅. We establish that if δM is L-convex, i.e.,

[p, q ∈M,M ⊆ N ]⇒
⌊
p+ q

2

⌋
,

⌈
p+ q

2

⌉
∈M,
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then there are a, b ∈ N , with a ≤ b such that M = Ja, bK.

Note that M is finite and bounded as a subset of a bounded and finite set. Hence, it admits

a minimal element σmin and a maximal element σmax since it is nonempty.

To introduce a contradiction, suppose that there is σ ∈ Jσmin, σmaxK such that σ /∈M . Let

M−(σ) = {j ∈ M : j < σ} and M+(σ) = {j ∈ M : j > σ}, and σ− = arg minj∈M−(σ){σ − j}
and σ+ = arg minj∈M+(σ){j − σ}.

We establish that σ− = σ−1 and σ+ = σ+1. Suppose it is not the case, then σ+−σ− ≥ 3.

Let σ1 =
⌊
σ++σ−

2

⌋
and σ2 =

⌈
σ++σ−

2

⌉
, we know that σ1, σ2 ∈ M . We show that σ1 ∈

Jσ− + 1, σ+ − 2K.

We have ⌊
σ+ + σ−

2

⌋
≥
⌊

3 + σ− + σ−

2

⌋
=

⌊
3

2
+ σ−

⌋
= σ− + 1.

Similarly, ⌊
σ+ + σ−

2

⌋
≤
⌊
σ+ + σ+ − 3

2

⌋
=

⌊
σ+ − 3

2

⌋
= σ+ − 2.

There are two possibilities, either σ < σ1 and σ+ 6= arg minj∈M+ (σ){j − σ}, or σ > σ1 and

σ− 6= arg minj∈M− (σ){j − σ}, a contradiction. We conclude that σ− = σ − 1 and σ+ = σ + 1.

We have σ ∈M , since
⌊
σ++σ−

2

⌋
∈M , and

⌊
σ++σ−

2

⌋
=
⌊
σ+1+σ−1

2

⌋
= bσc = σ.

2

B. Convexity of θ

Proof of Proposition 1. We prove successively the three parts of the proposition

1. Consider Gk a k-group dominant network, k ∈ J2, n− 1K.

(a) Suppose that C1 and C2 are satisfied. When C1 holds, by R2, we have θ(k−1, η(k)) ≥
θ(k − 1− κ, η(k)), κ ∈ J1, k − 1K. It follows that players in D(Gk) have no incentive

to remove some of their links in Gk. When C2 holds, players in E(Gk) have no

incentive to form a link in Gk. Therefore, when C1 and C2 hold, Gk is a Pwen.

(b) Suppose that Gk is a Pwen. Since Gk is a Pwen, players in D(Gk) have no incentive

to remove k− 1 links in g and C1 holds. Moreover, due to the convexity of θ, for all

players in D(Gk), we have for k ≤ n − 2, θ(k, η(k)) − θ(0, η(k)) ≥ θ(k − 1, η(k)) −
θ(0, η(k)) ≥ 0 by R1, i.e., θ(k, η(k)) − θ(k − 1, η(k)) ≥ 0. It follows that players in

D(Gk) have an incentive to form an additional link in Gk. Thus, since Gk is a Pwen,

players in E(Gk) have no incentive to form a link in Gk. We conclude that C2 holds.

2. Consider the empty network, G1. Suppose that θ1(1, 0) < 0. Then, no player has an

incentive to form a link in G1, and G1 is a Pwen. Conversely, suppose that G1 is a Pwen.

Then, no player has an incentive to form a link in G1. Consequently, θ1(1, 0) < 0.
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3. Consider the complete network Gn. Suppose that θ(n− 1, η(n)) ≥ θ(0, η(n)). By R2, we

have θ(n− 1, η(n)) ≥ θ(n− 1− κ, η(n)), i.e., no player has an incentive to remove links

in Gn, and Gn is a Pwen. Conversely, suppose that Gn is a Pwen. Then, no player has

an incentive to remove all his link in Gn. Hence we have θ(n− 1, η(n)) ≥ θ(0, η(n)).

2

Proof of Proposition 2. Let Ξ = {k ∈ J2, nK : θ1(1, η(k)) ≥ 0}. Suppose that Ξ is empty.

Then, θ1(1, η(2)) = θ1(1, 0) < 0. By Proposition 1, the empty network is a Pwen. Suppose Ξ

is non-empty, i.e., there exists k such that θ1(1, η(k)) ≥ 0. Then, Ξ admits a maximal element,

say k̂, since Ξ is finite. We show that Gk̂ is a Pwen. We have θ(k̂ − 1, η(k̂)) − θ(0, η(k̂)) ≥ 0

since θ1(1, η(k̂)) ≥ 0 by R1, and Gk̂ satisfies C1. The proof is over if k̂ = n since the complete

network is a Pwen by Proposition 1. Suppose that k̂ 6= n. Since k̂ is the maximal element of Ξ,

we have θ1(1, η(k̂ + 1)) < 0, and Gk̂ satisfies C2. It follows that Gk̂ is a Pwen by Proposition

1. 2

C. Convexity of θ and Strategic Complement

Proof of Lemma 1. We prove the two parts of the result successively.

1. We show that if κ > k and k ∈ ψ1, then κ ∈ ψ1. Because of strategic complementarity

of θ, we have θ(κ − 1, η(κ)) − θ(0, η(κ)) =
∑κ−2

`=0 θ1(κ − 1 − `, η(κ)) ≥ ∑κ−2
`=0 θ1(κ −

1 − `, η(k)) = θ(κ − 1, η(k)) − θ(0, η(k)). By R1, we have θ(κ − 1, η(k)) − θ(0, η(k)) ≥
θ(k − 1, η(k)) − θ(0, η(k)) since θ(k − 1, η(k)) − θ(0, η(k)) ≥ 0. Moreover, since k ∈ ψ1,

we have θ(k− 1, η(k))− θ(0, η(k)) ≥ 0. It follows that θ(κ− 1, η(k))− θ(0, η(k)) ≥ 0, and

κ ∈ ψ1.

2. We show that if κ < k′ and k′ ∈ ψ2, then κ ∈ ψ2. Because of strategic complementarity

of θ, we have θ1(1, η(κ)) ≤ θ1(1, η(k′)). Since k′ ∈ ψ2, we have θ1(1, η(k′)) < 0. It follows

that θ1(1, η(κ)) < 0, and κ ∈ ψ2.

2

Proof of Proposition 3. We show successively the two parts of the proposition.

1. We establish that there is an interior Pwen if and only ψ1 6= ∅, ψ2 6= ∅ and kmax
2 ≥ kmin

1 .

Recall that ψ1, ψ2 ⊆ J2, n− 1K.

(a) Suppose that ψ1 6= ∅, ψ2 6= ∅ and kmax
2 ≥ kmin

1 . Since ψ1 6= ∅ and is finite existence

of kmin
1 is guaranteed. By Lemma 1.1, for every k ≥ kmin

1 , k ∈ ψ1, and Gk satisfies

C1. Since ψ2 6= ∅ and is finite existence of kmax
2 is guaranteed. By Lemma 1.2,

for every k ≤ kmax
2 , k ∈ ψ2, and Gk satisfies C2. If kmax

2 ≥ kmin
1 , then there exists

k ∈ Jkmin
1 , kmax

2 K. Clearly, for k ∈ Jkmin
1 , kmax

2 K, we have k ∈ ψ1 ∩ψ2, and Gk satisfies

C1 and C2. It follows that Gk is a Pwen by Proposition 1.
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(b) Suppose that there exists an interior Pwen, Gk. By Proposition 1, Gk satisfies

C1 and C2, that is k ∈ ψ1 ∩ ψ2. It follows that ψ1 6= ∅, ψ2 6= ∅. Moreover, by

construction, k ≥ kmin
1 and k ≤ kmax

2 . It follows that kmax
2 ≥ kmin

1 .

2. Suppose that ψ1 6= ∅, ψ2 6= ∅. We show that Gk, k ∈ J2, n − 1K, is a Pwen if and only

if k ≥ kmin
1 and k ≤ kmax

2 . Suppose that k ≥ kmin
1 and k ≤ kmax

2 . Then, by Lemma

1, k ∈ ψ1 ∩ ψ2, and Gk satisfies C1 and C2. Network Gk is a Pwen by Proposition 1.

Conversely, suppose that Gk is a Pwen. Then, Gk satisfies C1 and C2. Thus, k ∈ ψ1∩ψ2.

By construction, k ≥ kmin
1 and k ≤ kmax

2 .

2

D. Convexity of θ and Strategic Substitute

Proof of Lemma 2. Suppose that k ∈ ψ2, we have θ1(1, η(k)) < 0. By strategic substitute,

we have θ1(1, η(k)) ≥ θ1(1, η(κ)) for κ > k. Hence, κ ∈ ψ2. 2

Proof of Proposition 5. We prove the two parts of the result successively.

1. Suppose that ψ1 6= ∅, ψ2 6= ∅ and Jkmin
2 , n − 1K ∩ ψ1 6= ∅. Since ψ2 is non-empty and

finite, kmin
2 exists. For every k′ ∈ Jkmin

2 , n − 1K, we have k′ ∈ ψ2 by Lemma 2, and Gk
′

satisfies C2. Since Jkmin
2 , n − 1K ∩ ψ1 6= ∅, there is k ∈ Jkmin

2 , n − 1K ∩ ψ1. It follows

that there is k ∈ ψ1 ∩ ψ2 and Gk satisfies C1 and C2. Consequently, Gk is a Pwen by

Proposition 1. Conversely, If ψ1 = ∅ or ψ2 = ∅, then there is no interior Pwen since no

Gk, k ∈ J2, n − 1K, satisfies C1 and C2 simultaneously. Similarly, if ψ1 6= ∅, ψ2 6= ∅ and

Jkmin
2 , n− 1K ∩ ψ1 = ∅, then no Gk, k ∈ J2, n− 1K, satisfies C1 and C2.

2. Suppose that ψ1 6= ∅, ψ2 6= ∅ and Jkmin
2 , n− 1K∩ψ1 6= ∅. If k ≥ kmin

2 , then k satisfies C2.

Moreover k ∈ ψ1, consequently Gk is a Pwen by Proposition 1. Conversely, if Gk is a

Pwen, then it satisfies C1 and C2. Consequently, k ∈ ψ1∩ψ2, that is k ∈ Jkmin
2 , n−1K∩ψ1.

2

E. Discrete Convexity of the Set of Interior Pwen

Proof of Lemma 3. Suppose that ψ1 is non-empty. Then, ψ1 is a convex discrete set if and

only if for every κ ∈ Jkmin
1 + 1, kmax

1 − 1K, κ ∈ ψ1, i.e., ∆(κ) ≥ 0, for κ ∈ Jkmin
1 + 1, kmax

1 − 1K.

Suppose that ∆ is discrete quasi-concave over Jkmin
1 + 1, nK, ∆(kmin

1 ) ≥ 0, and ∆(kmax
1 ) ≥ 0.

Since κ ∈ Jkmin
1 + 1, kmax

1 − 1K, ∆(κ) ≥ min{∆(kmin
1 ),∆(kmax

1 )} ≥ 0, and κ ∈ ψ1. 2

Proof of Proposition 6. We prove successively the two parts of the proposition.
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1. Since ψ1, ψ2 6= ∅, we know that ψ1 = Jkmin
1 , kmax

1 K, and ψ2 = Jkmin
2 , n − 1K. Clearly, the

set of interior Pwen consists in Gk with k ∈ ψ1 ∩ ψ2. Consequently, the set of interior

Pwen is nonempty if and only if ψ1 ∩ ψ2 6= ∅, i.e., kmin
2 ≥ kmax

1 and kmin
1 < n.

Suppose kmin
2 ≤ kmax

1 and kmin
1 < n. Thus, ψ1 ∩ ψ2 6= ∅. By construction, Gk, k ∈

J2, n − 1K, satisfies C1 and C2 simultaneously if and only if k ∈ ψ1 ∩ ψ2. We establish

that ψ1 ∩ ψ2 is a discrete convex set. Let κ1, κ2 ∈ ψ1 ∩ ψ2, with κ1 < κ2 + 1. We

have to show that for k ∈ Jκ1 + 1, κ2 − 1K, k ∈ ψ1 ∩ ψ2. Since κ1, κ2 ∈ ψ1, we have for

k ∈ Jκ1 + 1, κ2 − 1K, k ∈ ψ1 since ψ1 is a discrete convex set by Lemma 3. Moreover,

since k > κ1, by Lemma 2, k ∈ ψ2. It follows that k ∈ ψ1 ∩ ψ2, and ψ1 ∩ ψ2 is a discrete

convex set.

2. Gk is an interior Pwen if and only if it satisfies both C1 and C2, i.e., k ∈ ψ1 ∩ ψ2.

Note that by Lemma 2, kmax
2 = n − 1, otherwise C2 never holds. It follows that with

ψ1 ∩ ψ2 = Jkmin
1 , kmax

1 K ∩ Jkmin
2 , n − 1K. We know that kmax

1 ≥ 2. Hence, we have

ψ1 ∩ ψ2 =
q
k, k̄

y
, with k = max{kmin

1 , kmin
2 } and k̄ = min{kmax

1 , n− 1} otherwise.

2

Proof of Proposition 7. Suppose that ψ2 is non-empty and admits kmin
2 and kmax

2 such

that kmin
2 6= kmax

2 . It is sufficient to show that if Λ is a discrete convex function, then k ∈
Jkmin

2 + 1, kmax
2 − 1K is in ψ2. We have Λ(k) ≤ max{Λ(κ2),Λ(κ1)} and max{Λ(κ2),Λ(κ1)} < 0

since kmin
2 , kmax

2 ∈ ψ2. It follows that Λ(k) = θ1(1, η(k+ 1)) < 0 and k ∈ ψ2. The fact that the

set of Pwen is a discrete convex set is straightforward from Lemma 3. Let us now deal with

the four parts. First, we know by Proposition 1 that Gn is a Pwen if and only if kmax
1 = n

and G1 is a Pwen if and only if kmin
2 = 1. Moreover, Gk is an interior Pwen if and only if

k ∈ ψ1 ∩ ψ2 = Ja, bK. We know that ψ1 ⊆ J2, nK and ψ2 ⊆ J1, n − 1K are discrete convex sets.

Consequently, when kmin
2 = 1, we have ψ2 = Jkmin

2 , kmax
2 K = J1, kmax

2 K and a = kmin
1 . Similarly,

when kmax
1 = n, we have ψ2 = Jkmin

2 , kmax
2 K = Jkmin

1 , nK and b = kmax
2 . Finally, when kmin

2 6= 1

and kmax
1 6= n, a = max{kmin

1 , kmin
2 } and b = min{kmax

1 , kmax
2 }. The result follows. 2

Proof of Corollary 3. Suppose that ∆θ is quasi-concave and Λθ is quasi-convex. Since the set

of Pwen is nonempty, by Proposition 7, we know that ψ1 = Jkmin
1 , kmax

1 K and ψ2 = Jkmin
2 , kmax

2 K.

It follows that ψ1 ∩ ψ2 = Jmax{kmin
1 , kmin

2 }, min{kmax
1 , kmax

2 }K since ψ1 ∩ ψ2 6= ∅. Clearly,

|ψ1 ∩ ψ2| = 1 if and only if max{kmin
1 , kmin

2 } = min{kmax
1 , kmax

2 }.
2
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