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Abstract

Technology markets are inherently winner-take-all, and competition for dominance

can be modeled as a contest. Uncertainty is a common feature of technology contests. A

competitor is often uncertain about the set of rivals that it faces, and the entering firms

can attempt to influence their winning chances by undertaking a pre-contest action.

This may be an investment in a technology or technological improvement, the outcome

of which is uncertain. We model this competition as an all-pay auction in which the

entry decision is endogenous, and where – upon entry – players may invest in acquiring

a better technology; a player’s investment cost is private knowledge, and the outcome of

the investment is stochastic. We characterize equilibrium in terms of two thresholds of

the cost parameter that determine entry and then investment, and investigate how the

equilibrium is affected by uncertainty related to the investment (both the likelihood

of success and its return). Our model finds applications in many technology-based

markets such as virtual currency mining, mass entertainment, internet technology and

wealth management.

1 Introduction

Competition to become a technological standard or a leading technology exhibits winner-

take-all properties. Marc Andreessen, a Silicone Valley veteran and co-founder of Netscape

puts it like this: “The big companies, though, in technology tend to have 90 percent market

share. So we think that generally these are winner-take-all markets. Generally, number one

is going to get like 90 percent of the profits. Number two is going to get like 10 percent of

the profits, and numbers three through 10 are going to get nothing”.1 This is not a new
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1Interview with Alexia Tsotsis inTechCrunch, 2013: Marc Andreessen On The Future Of Enterprise

(retrieved 02.11.2023).
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phenomenon. Barwise and Watkins (2018) note a 60-year pattern, starting with IBM and

mainframe computing in the 1960’s, in which technology markets are hotly contested before

becoming dominated, often by a U.S. company. The sources of such enduring dominance

(economies of scale and scope, direct and indirect network effects, switching costs and lock-

in, and extensive use of big data) has been discussed by among others Shapiro and Varian

(1999b). Economists model winner-take-all situations as a contest in which competitors

make irreversible expenditures to win the main prize. In this paper, we set up a contest

model that exhibits several features of the competition for technological dominance.

Several features of technological competition are notable. First, the set of participants

is often not known at the beginning of the competition. A novel technology often opens

new market opportunities, taking time before the set of participants is established. In

the fledgling market for home video entertainment at the beginning of the 1970’s several

companies entered, each with their own technology. Sony launched its Betamax videotape

recording system, the Victor Company of Japan (JVC) pioneered the Video Home System

(VHS) format, while RCA and Philips developed needle-based record-style discs.2 Although

it is now well known that the main war was between Betamax and VHS, with the latter

claiming the market standard, the companies sunk large resources into making hardware

improvements and convincing film studios and distributors to choose their format. The

outcome of these investments was uncertain; Betamax was widely regarded as a superior

system in terms of picture and sound quality, but the availability of longer recording times

on a VHS cassette seems to have tipped the balance, deciding the outcome of the war in favor

of that format.3 Uncertainty over the set of competitors and the outcome of an investment

in deciding the contest is found in other applications that we expound upon below.

We develop a tractable three-period model, involving entry, pre-contest investment and

then the actual contest. At the beginning, a fixed set of players are privately informed

of their marginal cost of making the pre-contest investment, and must decide whether or

not to enter the competition. Next, upon entry, they decide whether to invest in acquiring

an advantage which can enable them to realize a larger prize value which would create a

favorable imbalance in the future contest. The return to investment in advantage acquisition

is uncertain − an agent acquires the advantage with some probability. Finally, the set of

entrants, some of which have potentially acquired an advantage over their rivals, compete

in an all-pay auction to win the prize. The nature of the advantage that may be acquired

will differ between applications, and we discuss this further in Section 2. Our model is quite

2See Videotape format war (retrieved 01.11.23).
3A standard Betamax tape lasted 60 minutes, whereas a 3-hour VHS cassette was capable of recording a

whole movie: see The Betamax vs VHS Format War.
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generic but captures key features of the technology contest: endogenous entry, uncertainty

over the set of rivals, and potential investment with an uncertain return upon entry.

By analyzing a model that combines entry and pre-contest investment decisions, we

unite disparate strands of the contest literature. The interaction of these decisions appears

to have been little studied previously. Investment may enhance the size of a prize that can

be appropriated as in Konrad (2002)4, or reduce the cost of competing for the prize (Fu and

Lu, 2009 and Münster, 2007). Entry can occur exogenously as the result of a pre-determined

stochastic process (see among others Myerson and Wärneryd, 2006, Münster, 2006, Lim and

Matros, 2009 and Fu et al., 2011), or can be set endogenously as part of the equilibrium

strategy (for example Fu and Lu, 2010, Fu et al., 2015, Liu and Lu, 2019, Jiao et al., 2022

and Kaplan and Sela, 2010). Some work has been done on the disclosure or concealment

of the set of entrants (Jiao et al., 2022), or whether the investment decision is observable

(taken simultaneously or sequentially as in Münster, 2007). We combine the approaches

by considering endogenous, observable entry and simultaneous investment decisions, the

outcome of which is stochastic and observable. Furthermore we explore how entry is affected

by its cost. Kaplan and Sela (2010) and Liu and Lu (2019) study an all-pay auction with

an entry cost. Ability is common knowledge and higher ability gives a reduced entry cost

and effort cost in the former, while it is private information in the latter but does not affect

the cost of entry. In common with our approach, these papers derive a threshold strategy

for entry into the contest. Kaplan and Sela (2010) demonstrate that the contest may not

be effective in the sense that the probability of entry is not increasing in ability. To rectify

this, they show that the winner of the contest can be charged a fee, although this reduces

the attractiveness of entry for all competitors. Liu and Lu (2019) focus attention on the

division of the prize mass into different sizes, showing that a single winner-take-all prize is

optimal if the cost of effort is linear or concave. The first stage of the model is similar to the

contest entry game in Hammond et al. (2019), who have an all-pay auction between players

who have different costs of effort that are private information. Assuming that the entry fee

augments the prize, they derive an elegant solution for the entry threshold and total effort.

In addition to deriving a threshold for entry, our analysis introduces further uncertainty by

considering which of the entrants that will make an ability-enhancing investment before the

actual contest is played. We show how a contest designer can set an entry fee to influence

the level of entry, and how this in turn affects the amount of contest effort, the total entry

fees collected and the expected number of contestants that make the investment in ability.5

4Konrad (2002) only considers pre-contest investment by the incumbent.
5In a similar vein, Fu et al. (2015) show that an effort-maximizing contest designer may wish to limit

participation in a Tullock contest with homogeneous participants with endogenous (and concealed), costly
entry.
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Our findings demonstrate the complex interplay between entry and investment. In mak-

ing the entry decision, an agent is enticed by the potential value of the contest prize, and

upon entry weighs up the private cost of investment with its return. Even if an investment is

successful, actions at the contest stage may dissipate its return. The exception is if an agent

is the only one to succeed in its investment. Intuitively, contests are hard fought between a

sufficiently homogeneous group of competitors, but a single strong player can dissuade rivals

from making effort. This forms the incentive to enter and to invest, and we show how this is

critically determined by the relationship between the number of agents and the probability

of successful investment. Entry and investment are least attractive when the probability of

investment success is very high or low, since this imparts a low expectation of being the sin-

gle strong player (with a successful investment) at the contest stage. Agents are more likely

to enter and invest if the success probability takes an intermediate value. In the context of

a technology market, if an innovation or improvement is easy to achieve then many firms

will have this “advantage” in the final contest for the market; if the innovation is difficult

to achieve, then firms may not invest since this will most likely just represent a cost. An

intermediate chance of success will entice many firms to enter the market, and to invest in

order to become the dominant agent in the competition for the market.

We show also that the entry cost acts as a mechanism to exclude less efficient agents from

entering the contest. Some technology contests are designed in order to only admit better

competitors, and a designer can effectively use the entry fee to exclude high-cost agents,

even though cost information is not freely available. Furthermore, we show how the entry

cost may be set in order to achieve any vested interest that the designer may have such us

maximizing entry revenue or the expected number of investing agents.6

The rest of the paper is organized as follows. Section 2 gives some background for

our choice of model by discussing applications. The basic model framework is presented in

Section 3, and Section 4 sets up the contest. Pre-contest investment decisions are analyzed in

Section 5, while Section 6 considers entry strategy. The significance of the model parameters

for the analysis is expounded in Section 7. Section 8 considers the achievement of different

goals by a contest designer, and Section 9 concludes.

6There are many historical examples of technology-based contests that are arranged by a sponsor, such
as the Longitude prize (Burton and Nicholas, 2017), and the Netflix prize (Bell et al., 2010). Many such
competitions are ongoing, such as those run by the United States Agency for International Development (see
USAID).
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2 Applications

The applications outlined in this section share certain common features that we model. Firms

that engage in an inter-technology competition can undertake pre-contest actions (invest-

ments) in order to gain a competitive advantage. At the same time, they are uncertain about

the nature of the future contest and how the investments will pay off. Sinking resources into

projects that do not give them the desired competitiveness in the future, will yield a low

return on investment, implying a lower chance of becoming the dominant technology holder.

Additionally, there will be a heterogeneous set of contestants, some of whom may be more

competent than others. The uncertainty about the profile of contestants can impact both

investment and entry strategies. In inter-technology competition, Besen and Farrell (1994)

note common use of the following strategies: investment to build on an early lead, attract-

ing/acquiring suppliers of complements, and making product pre-announcements. Below we

show how rivals in technology competitions have used these instruments as investments to

position themselves in the ultimate competition.

Technology markets are often built on a direct and/or indirect network externality. A di-

rect network effect arises since users get more utility from using a service that connects many

others;7 an indirect network effect occurs when customers are matched with complementary

needs.8 Besen and Farrell (1994) characterize network markets as “tippy”, noting that small

differences in products, platforms or technologies - whether real or merely perceived - “can

be magnified in a process in which some firms make extremely large gains and in which

dominant market positions are difficult to change” (p. 119). This is historically well docu-

mented in the cases of Google, Apple, Facebook, Amazon (GAFA).9 Adding to this Netflix

and Disney, The Economist notes that the business of mass entertainment is dominated by

an oligarchy of giants where technology is making the rich richer.10 The same article notes

that technology has atomized entertainment, making supply almost unlimited, while at the

same time making it easier than ever to aggregate audiences through self-reinforcing rec-

ommendation algorithms. One strategy that these technological giants have adopted is to

acquire other companies and make them subsidiaries; this is one type of strategy that “in-

vestment” in our stylized model may capture. At the time of the acquisition, its future return

is uncertain but can be used in the upcoming contest for dominance in one dimension of the

7This seems to have been first suggested by Rohlfs (1974) in an analysis of the pricing of a video com-
munication service.

8Barwise and Watkins (2018) mention for example that Uber connects drivers with passengers, Apple’s
App Store connects software developers with users, and Google/Facebook match advertisers with customers.

9Microsoft is often added, making GAFAM.
10The Economist: Mass entertainment in the digital age is still about blockbusters, not endless choice,

retrieved 02.11.2023.
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entertainment industry. Besen and Farrell (1994) note that attracting suppliers of comple-

ments is a usual strategy to employ in inter-technology competition; the tech giants can also

attract by acquisition. Google (Alphabet) has for example acquired You Tube, Fitbit and

Motorola, Facebook has acquired Instagram and WhatsApp, Amazon has strengthened its

grip on consumer robotics by purchasing iRobot and its movie offerings have been bolstered

by acquiring the film studio MGM in 2021. In 2018 Microsoft branched out into the world

of open-source software in acquiring GitHub, and its has further strengthened its position

in communication through its purchase of Skype and LinkedIn.11 The fight for dominance

in the entertainment industry is ongoing. As The Economist noted in 2017: “The best time

to gain (or lose) audience—and to challenge the dominance of an established platform—is

when technology makes a leap. That is why media, gaming and tech companies are investing

billions in virtual reality and augmented reality”.12 The next winner-take-all contest in the

entertainment industry is predicted to have a value of nearly 1 trillion USD by 2030, to the

firm that conquers the metaverse, the next big platform incorporating “extended reality”

and Artificial Intelligence (AI).13

Indeed, the big tech firms are pursuing different strategies in their approach to AI. Mi-

crosoft has currently a 49% stake in OpenAI, the developer of ChatGPT, allowing the ca-

pabilities of this this large language learning model to be integrated into several Microsoft

products such as the GitHub Copilot that assists software developers in writing code, and

Microsoft 365 Copilot to enhance office productivity. Meta, the owner of Facebook, has

developed its own AI model, Llama, as has Google (Bard). Apple appeared to come out of

the starting block quite late, choosing to invest in developing its Apple Vision Pro headset.14

Apple is now reportedly investing millions of dollars a day on several AI models across sev-

eral teams, some members of which have previously been employed at Google.15 Building

on an early lead is one strategy that Besen and Farrell (1994) mention that firms use in

inter-technology competition. Another is product pre-announcements. On March 16th 2023

Microsoft announced the integration of AI into virtually all of its productivity software, a few

days after Alphabet (Google’s parent company) revealed an AI-based upgrade for its Gmail

and Sheets. Google revealed Bard several days after Microsoft’s announcement. According to

The Economist, all of the tech giants have revealed AI-related product pre-announcements.16

As mentioned, a leap in technology can give rise to a new contest; several of these

11More details can be found here: The Big Five Tech Companies & Thier Big Five Acquisitions
12The Economist: Mass entertainment in the digital age is still about blockbusters, not endless choice
13Bloomberg: Metaverse Market to Surpass US$ 993.86 Billion by 2030
14Big Tech Giants Invest Heavily in AI: An Analysis of Microsoft, Meta, and Apple
15Apple is reportedly spending millions of dollars a day training AI
16Big tech and the pursuit of AI dominance
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involve fighting for the adoption of a standard in a two-sided market with network effects

(Shapiro and Varian, 1999a). The VHS platform for home entertainment was eventually

challenged and replaced by digital video/versatile discs (DVD) at the end of the 1990’s,

and although there were different types of disc, most were compatible with standard DVD-

players. A new format or standardization war erupted over the next generation of this

technology, namely high-definition optical discs, with Blu-ray and HD DVD optical disc as

the competing formats. Sony and its allies in the Blu-ray Disc Association and the DVD

Forum (chaired by rival Toshiba) tried to negotiate a unified standard in 2005 in order to

avoid a costly war that would erode future profits, but the talks stalled.17 As part of the

war, each side tried to attract complementors in the form of movie studios, with Universal,

Paramount and Warner Bros. initially favoring HD DVD, whilst Sony Pictures, Disney

and 20th Century Fox supported Blu-ray. In 2007, Blockbuster announced that it would

only supply the Blu-ray format to the movie rental market, and the following year Warner

Bros. withdrew its support for HD DVD. Sony incorporated a Blu-ray disc player into the

PlayStation 3, and this eventually became a feature of Microsoft’s Xbox One, even though

the competing format had originally used Microsoft’s technology. In early 2008, Toshiba

announced the end of production for HD DVD players and recorders. It is estimated that

Sony used at least 3bn USD in fighting the contest against Toshiba.18

Uncertainty over the number and quality of rivals is present in new markets such as cryp-

tocurrency mining. Since the introduction of the first cryptocurrency Bitcoin by Nakamoto

(2008), the total market capitalization of cryptocurrencies has steadily increased over time

and numerous cryptocurrencies, including Litecoin, Dogecoin and the original version of

Ethereum, have emerged (see Pessa et al., 2023). Cryptocurrency mining involves introduc-

ing new blocks of a currency to its existing circulation using a consensus mechanism; mining

is often related to Proof of Work in which complex mathematical puzzles must be solved to

validate transactions. This process is underpinned by a protocol that allows cryptocurrencies

to function as a peer-to-peer (P2P) decentralized network (see Narayanan et al., 2016, for

a detailed description of the mechanism). Miners verify transactions between participants

over the blockchain network and add them to the distributed public ledger. In exchange,

miners receive a block reward in the form of new currency plus a transaction fee. Bitcoin

miners, for instance, currently receive 6.25 bitcoin as a block reward.19

Mining can be a profitable venture, but its profitability is subject to various factors. Min-

17Den Hartigh et al. (2009) document developments in this case study.
18The Times: How the Blu ray war was won Sony outspent, outsold Toshiba
19Not all cryptocurrencies use Proof of Work for validation. Cardano and the upgraded Ethereum 2.0 use

Proof of Stake in which block validators are chosen based on the number of coins they are willing to stake
as collateral. See Sriman et al. (2021) for more on these consensus mechanisms.
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ers compete against each other to solve a cryptographic puzzle, with the winner receiving

the block reward. Solving a puzzle requires expensive resources, such as specialized hard-

ware equipment and a considerable amount of electricity. The cost and efficiency of mining

equipment can vary significantly. For example, a general-purpose central processing unit

(CPU) may not be expensive, but it is inefficient in solving the puzzle. Given the current

level of difficulty, utilizing a high-end CPU to find a new block would require hundreds

of years (Narayanan et al. 2016). A network of CPUs has potential to reduce the search

time, but the associated electricity costs make it an impractical pursuit. Professional miners

therefore invest in more efficient but expensive networks of application-specific integrated

circuits (ASICs), which can only mine one type of cryptocurrency. Despite the potential for

profit, miners are confronted with uncertainty regarding the return on their investment in

hardware equipment and the selection of mining center locations (Halaburda et al., 2022).

At the time of investment, they are uncertain about the future market value of the specific

cryptocurrency that the ASIC can mine, as well as the future price of electricity at the mining

location. Those factors determine the expected prize value and the cost of effort at the time

the contest takes place. The uncertainty can discourage investment and entry in the mining

industry; it is not surprising that a small number of large entities control cryptocurrency

mining, despite the currency being conceptualized as a decentralized mean for facilitating

transactions.

Application of investment for competitive advantage with uncertain returns can also

be found in the context of developing technology-driven products such as alternative fuel

vehicles. For instance, various potential technologies like hydrogen fuel cells, Sodium-ion

batteries, Lithium-sulphur batteries, can not only replace the traditional fuel cars but also

bring significant improvements to the currently dominant lithium-ion battery technology

used in the electric cars (Das et al., 2023). Investing early in one of these technologies

could provide an investor with a substantial competitive advantage and the potential for

a monopoly rent. However, it’s uncertain which technology will become dominant in the

market.

The growing market for managing wealth is characterized as a winner-take-all contest for

a prize of 100trn USD.20 While wealth management is currently described as fragmented,

several large actors are positioning themselves by acquiring subsidiaries that will ensure

technological supremacy, economies of scale and global reach. Morgan Stanley for exam-

ple purchased a brokerage platform in 2020 in order to increase service to a large mass of

customers, and a stock plan administration firm with a huge customer base in 2019. Mean-

20This example draws heavily on The $100trn battle for the world’s wealthiest people, The Economist 5th
September 2023.
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while UBS, another large actor, has acquired Credit Suisse, gaining access to large customer

markets in Brazil and South-East Asia. The winner-take-all nature of this market is being

accelerated by AI-based tools that will allow advisers to build wealth for their customers,

possibly through an automatic transaction technology. Alluding to the uncertain nature of

returns from pre-contest investment ahead of the ultimate battle, The Economist (05.09.23)

says this of the main competitors Morgan Stanley and UBS: “Either firm could falter. Al-

though the two are chasing different strategies, it is surely only a matter of time before they

clash”.

3 Model

Consider N ≥ 2 agents who can enter an all-pay auction by incurring an entry cost c > 0.

Denote the set of entrants by E, which has n ≤ N members. After entering, agents can invest

in acquiring an advantage that affects their valuation of the contest prize. In this model,

there are two equivalent ways of modeling how a successful investment affects payoffs; one

can either assume that successful agents have a lower marginal cost of exerting effort in

the contest, or that such an agent has a larger prize value.21 We shall follow the latter

interpretation, so that a successful agent has a value of winning the contest of αv where

α > 1 is common knowledge; the valuation of an unsuccessful or non-investing agent is v.

Agent i ∈ E has an investment cost of θi, where θi, i ∈ E are independent random variables

uniformly distributed over [0, 1]. The return to investment is stochastic. The likelihood of

success is q ∈ (0, 1), which is the same for every investor and is common knowledge. Those

who do not invest do not acquire the advantage. We denote by m ≤ n the number of agents

that realize a successful return.

The agents that enter the contest exert efforts in order to win the contest prize, given

by x = (x1, x2, ....., xn). In an all-pay auction, the winner is the contestant with the highest

effort; if several agents have the same maximal effort, they each have an equal probability

of winning. Let W (x) = {j ∈ E | xj ≥ xz for every z ∈ E} represent the set of agents that

have maximal effort. The probability of agent i ∈ E winning the contest is given by

pi(x) =

 1
|W (x)| if i ∈ W (x)

0 otherwise.

21See Vojnović (2015). In an early paper, Konrad (2002) considered an investment made by a single agent
- the incumbent - that increased the size of the prize that this agent and the single rival could fight over.
Our model permits investment by all agents, and its return accrues as a private benefit.
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The expected payoff of agent i ∈ E with prize V ∈ {v, αv} is

πi = pi(x)V − xi. (1)

The game proceeds follows:

• Stage 0: Nature chooses the type θi of agent i = 1, 2, . . . , N . The type of an agent is

private information.

• Stage 1 (Entry): Agent i ∈ {1, 2, . . . , N} decides whether to enter, after paying the

entry fee. The subset of entering agents is E with |E| = n as the number of entrants;

n is public information. If n = 0, the game ends.

• Stage 2 (Investment): Agent i ∈ E decides whether to invest by incurring an investment

cost of θi. Then, nature decides whether an agent realizes a successful investment. The

number of agents that realize a successful return, m ≤ n, is public information.

• Stage 3 (Contest): If n = 1, the sole entrant wins the prize. If n > 1, agents participate

in an all-pay auction to win the prize.

We study the perfect Bayesian equilibrium of the game.

This model captures many of the salient features of the battle for dominance in technol-

ogy. There is initially a set of possible firms that can compete to win the market; we can

imagine that these firms have a technology that they may improve upon, and that the cost

of doing this is known only to the firm itself. If a competitor succeeds in improving its tech-

nology, it gains an advantage in the coming contest. In the fight for supremacy in the early

market for home entertainment, Sony, JVC and Philips entered with the prototypes of their

technologies (Betamax, VHS and Video Disc), and subsequently invested in making them

more attractive for customers. In practice, the form of the investment involved making the

technology more suitable for home use, and attracting complement products such as films in

the appropriate format. Sony and JVC succeeded in doing this, and Philips was at a distinct

disadvantage when trying to attract a new mass of customers. Although stylized, our model

captures the uncertainties that firms face in such a winner-take-all market, namely about

the number and type of competitors that will be faced in the final competition.

4 Contest stage

We begin our analysis at stage 3, where the number of entrants n and the number of successful

agents m are common knowledge. Denote the expected contest-stage payoff of a successful
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agent by πs(n,m), and an unsuccessful one by πu(n,m).22 Let T (n,m) be the total expected

effort exerted in the contest.

If n = 1, there is no contest and the sole entrant wins the prize. The entrant’s payoff is

αv if its investment has paid off, and v if it did not invest, or if the investment failed. We

can therefore set πs(1, 1) = αv, πu(1, 0) = v, and T (1, 1) = T (1, 0) = 0.

Consider n ≥ 2 and m ∈ {0, 1, . . . , n}. Each agent chooses effort to maximize (1). This

is then a standard all-pay auction under complete information, which has been extensively

studied by Baye et al. (1996). We can use their results directly. There are three cases to

consider:23

Lemma 1. (Baye et al., 1996) Suppose that n ≥ 2.

(i) m = 0. Then πu(n, 0) = 0, T (n, 0) = v.

(ii) n ≥ m ≥ 2. Then πs(n,m) = πu(n,m) = 0, T (n,m) = αv.

(iii) m = 1. Then πs(n, 1) = (α− 1) v, πu(n, 1) = 0, and T (n, 1) ∈ [Tmin(n, 1), Tmax(n, 1)]

where

Tmin(n, 1) =
v

n

[
(n− 1)2 α2 − (2n− 1) (n− 1)α + n2 − (n− 1)2 (α− 1)

2n−1
n−1 α

−1
n−1

]
, (2)

Tmax(n, 1) =
α + 1

2α
v. (3)

In case (i), no agent has realized a successful investment, and all expect a payoff of zero

since they exert an expected amount of effort in aggregate that equals the value of the prize.

In case (ii), there are at least two successful agents and these exert efforts that are expected

to equal their prize value αv. Agents that have not acquired the investment advantage do

not exert effort, and all participants expect a payoff of zero. In both of these cases, there

are a continuum of equilibria, but Baye et al. (1996) show that they all lead to the same

expected total effort. A single successful agent - as in case (iii) - will have a positive expected

payoff equal to the difference in the prize between it and a rival with that has not acquired

the investment advantage. All unsuccessful agents expect a payoff of zero. Again, there

are a continuum of equilibria also in this case, but they do not lead to the same amount of

aggregate expected effort. T (n, 1) is minimized when the unsuccessful agents all compete

in the contest, using a symmetric strategy; this leads to expected effort Tmin(n, 1). On

the other hand, Baye et al. (1996) show that T (n, 1) is maximized when all but one of the

unsuccessful agents have an effort of zero, yielding an expected effort of Tmax(n, 1). When

22At this stage, an agent may be “unsuccessful” because it did not invest or because it did not invest.
Whatever the source of this lack of success, any investment cost is sunk and this does not affect payoffs at
the contest stage.

23Cases (i) and (ii) use Theorem 1 in Baye et al. (1996), and case (iii) uses Theorem 2.
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n = 2, these equilibria coincide since both imply that one successful agent competes with

one unsuccessful rival, and T (2, 1) = Tmin(2, 1) = Tmax(n, 1).

Because α > 1 > α+1
2α

, the principal always gets the lowest effort when there is exactly

one successful agent, and highest when there is more than one.

5 Investment

Consider stage 2, where the number of entrants n is common knowledge. The investment

strategy affects the number of successful players. An agent’s investment decision is contingent

on his type θ. If there are m− 1 ∈ {0, 1, . . . , n− 1} successful agents among the other n− 1

rivals, the return to investment for an agent of type θ is q△ (n,m)− θ, where

△ (n,m) =πs (n,m)− πu (n,m− 1) .

An agent’s expected return to investment is qEm−1 (△ (n,m))− θ, where the expectation is

taken over the probability distribution of (m− 1), the number of successful players among

(n− 1) competitors.

As investment success is a binary event in our model, the number of successful players

follows a Binomial distribution. Specifically, (m− 1) ∼ Binomial (n− 1, κ) where κ is the

probability of finding a successful agent conditional upon entry. This probability κ depends

on the investment and entry strategies of the players.

Proposition 1 below shows that every agent’s optimal investment strategy is a threshold

strategy whenever all agents follow a threshold entry strategy. The intuition is straight-

forward − conditional upon entry, every agent’s expected payoff is decreasing in its own

investment cost, and therefore investment pays off only if the cost is sufficiently low. In

this case, κ = qθI/θE, where θI ∈ [0, θE] and θE ∈ [0, 1] denote the investment and entry

thresholds respectively.

Given θE, we can derive the investment threshold from the investment-indifference con-

dition:

q

[
n−1∑

m−1=0

(
n− 1

m− 1

)(
qθI
θE

)m−1(
1− qθI

θE

)n−m

△ (n,m)

]
− θI = 0. (4)

Among the (n− 1) rivals that the indifferent agent competes against, (m− 1) successful

agents can be drawn in
(
n−1
m−1

)
ways with the probability of each draw being (qθI/θE)

m−1 (1− qθI/θE)
n−m

and the indifferent agent becomes them-th successful agent with probability q after incurring

the investment cost θI .
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Using Lemma 1, we find that

△ (n,m) =

(α− 1) v if m = 1

0 if m ≥ 2
,

which reduces (4) to

(α− 1) vq

(
1− qθI

θE

)n−1

− θI = 0. (5)

The first term of (5) is the probability of a single agent being successful in a pool of n

entrants multiplied by the increment to the agent’s payoff in this case; it is easily verified to

be strictly decreasing and strictly convex in θI . The second term is the threshold investment

cost. There will be two possibilities. The left-hand-side of (5) is positive for all θ ≤ θE;

in this case, every agent with θ ≤ θE invests, and so we can set the investment threshold

θI = θE. Otherwise, the indifference condition (5) will have a unique solution θI ≤ θE,

which determines the investment threshold. Thus, the following possibilities can arise in

equilibrium.

• Full investment: For given θE and n, all entrants invest: θI = θE.

• Limited investment: For given θE and n, a subset of entrants invest: θI < θE.

The condition for full investment will be determined by the marginal entrant’s expected

return to investment. Denote the gross expected return to investment (without subtracting

the investment cost) of an agent under full investment in an n−player contest by ξ (n) where

ξ (n) := (α− 1) vq (1− q)n−1 . (6)

It is straightforward to verify that ξ(n) is strictly decreasing in n. The following proposition

documents the equilibrium investment strategy for given θE and n.

Proposition 1. Fix θE, n, and suppose that all agents with type θ ≤ θE ≤ 1 enter. There

exists 0 < θI ≤ θE such that all agents with type θ ≤ θI invest in equilibrium.

1. If θE ≤ ξ (n), then θI = θE so that there is full investment.

2. If θE > ξ (n), then there is limited investment and the investment threshold θI uniquely

solves (5). The investment threshold θI weakly increases in θE, v and α. Further, (θI/θE)

strictly decreases in θE.

Proof. In Appendix.

Whether all entrants invest or not depends critically on the value of ξ(n). For n ≥ 2

entrants, it follows from (6) that ξ(n) is the gross expected return to investment under full
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investment. The regime of full investment is most likely when ξ(n) is high, i.e. when α (the

return to investment) or v (the contest prize) are high, and the number of entrants (n) is

low. The effect of the probability of successful investment (q) is ambiguous, since ξ(n) is

concave in this parameter, increasing for q ∈ (0, 1/n), and decreasing thereafter. Relatively

low or high values of the success probability depends also on the number of entrants since

ξ(n) is maximized at q = 1/n. When q is relatively low, it is unlikely that an investing agent

will succeed, but at the same time if it does succeed, it is likely to be alone; in this case

this agent expects πs(n, 1) = (α− 1) v at the contest stage by Proposition 1. A relatively

high value of q makes it more likely than an investing agent will succeed, but decreases the

chances of being the sole successful agent at the contest stage. This decreases the gross

expected return of the investment. This nicely demonstrates the interplay between the entry

decision and the success probability in determining whether all entrants invest or not.

Limited investment is most likely to occur if the expected return to investment at the

contest stage are low, i.e. low α and/or v, a high number of entrants and a probability of

investment success that deviates greatly from q = 1/n. The gross expected return to invest-

ment under limited investment is θI , and this is weakly increasing in the prize parameters

associated with the contest stage (α, v).

For given θE and n, let π (θ, n) denote the expected payoff of an agent of type θ at the

investment stage, given by:

(a) In case of limited investment, i.e., when θE > ξ (n):

π (θ, n) =


θI − θ − c if θ ≤ θI < θE

−c if θI < θ ≤ θE

0 if θ > θE

. (7)

(b) In case of full investment, i.e., when θE ≤ ξ (n):

π (θ, n) =

ξ (n)− θ − c if θ ≤ θI = θE

0 if θ > θE
. (8)

For n = 1, the sole entrant invests if θ ≤ qv (α− 1) = ξ (1), and its expected payoff is

v + ξ (1)− θ − c if it invests, and is v − c if it doesn’t invest. Therefore,

π (θ, 1) =


v + ξ (1)− θ − c if θ ≤ min {θE, ξ (1)}

v − c if min {θE, ξ (1)} < θ ≤ θE

0 if θ > θE

. (9)
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For n = 0, π (θ, 0) is set to zero.

6 Entry

Consider stage 1. An agent’s entry strategy is contingent on its type, which is private

information. From (7), (8), and (9), it follows that when there is at least one entrant

(n ≥ 1), the expected payoff of the marginal entrant of type θE is

π (θE, n) =



ξ (n)− θE − c if θE ≤ ξ (n)

−c if θE > ξ (n)
if n ≥ 2

v + ξ (1)− θE − c if θE ≤ ξ (1)

v − c if θE > ξ (1)
if n = 1

. (10)

For the marginal entrant who is indifferent between entry and no entry, the following must

hold:

En−1 [π (θE, n)] =
∑N−1

n−1=0

(
N−1
n−1

)
(θE)

n−1 (1− θE)
N−n π (θE, n) = 0, (11)

where n − 1 ∽ Binomial (N − 1, θE). The expression in the entry-indifference condition

(11) is derived as follows. Among the (N − 1) rivals that the entry-indifferent agent with

type θE competes against, n − 1 ∈ {0, 1, . . . , N − 1} other entrants can be drawn in
(
N−1
n−1

)
ways and the probability of each draw is (θE)

n−1 (1− θE)
N−n. In each of these draws, the

entry-indifferent agent receives an expected payoff of π (θE, n) after entering.

The following proposition formally proves that En−1 [π (θE, n)] is decreasing in θE. This

observation implies that two possibilities may arise. First, En−1 [π (θE, n)] is always positive

for all θ ≤ 1; in this case, all types enter, and we can set the entry threshold θE = 1. Second,

the entry-indifference condition (11) has a unique solution at θE < 1, which determines the

entry threshold. Thus, we observe the following two possible regimes in equilibrium:

• Full entry: All types of agents enter: θE = 1.

• Limited entry: A subset of agents enters: θE < 1.

The expected payoff of the agent of type θ = 1 determines the condition for full entry.
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Observe that

En−1 [π (1, n)] = π (1, N) =

ξ (N)− 1− c if 1 ≤ ξ (N)

−c if 1 > ξ (N)

= c (N)− c, (12)

where c (N) := max {ξ (N)− 1, 0}. The following proposition formally characterizes the

equilibrium entry strategy.

Proposition 2. Fix N . There exists 0 < θE ≤ 1 such that all agents with type θ ≤ θE

enter.

1. If c ≤ c (N), then θE = 1 so that there is full entry.

2. If c > c (N), then there is limited entry and the entry threshold θE uniquely solves

(11). Further, θE increases in v and α.

Proof. In Appendix.

From the entry and investment thresholds, we can fully characterize the distribution of the

number of entrants and the number of agents who succeed with an investment. Specifically,

n follows Binomial (N, θE) and m follows Binomial (n, qθI/θE).

Full entry is most likely to occur when ξ (N) is large and/or the entry cost (c) is small; the

former occurs when the rewards from the contest stage (α, v) are large and the probability

of investment success is at an intermediate value (i.e. close to q = 1/N). A straightforward

implication of Proposition 2 is that for a contest with an entry fee, full investment occurs

whenever there is full entry. This follows from the following observations. First, if 0 < c ≤
c (N), then c (N) > 0 and hence n = N . Further, c (N) > 0 implies that θE ≤ 1 < ξ(N) and

by Proposition 1, we get θI = θE = 1, summed up in Corollary 1:

Corollary 1. If 0 < c ≤ c (N), then θI = θE = 1.

The intuition is as follows. If the full entry condition is satisfied, the marginal entrant

faces no uncertainty about the number of entrants. She will always compete against the

remaining N−1 players in an all-pay auction. Since a player that does not realize a successful

investment receives zero payoff in the all-pay auction, the marginal entrant can never recover

its entry cost by not investing. Therefore, in the full-entry regime, the marginal entrant, and

consequently every entrant, is committed to invest.

Limited entry implies n ≤ N , occurring when c > c (N), and the investment threshold

depends on the realized value of n. The marginal entrant faces uncertainty regarding the

number of entrants at the entry stage. If it faces no competition upon entry, which happens
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when it is the sole entrant, it expects to receive a positive payoff even if it has not realized

a successful investment. After entering, the entry cost becomes a sunk cost, and the agent

will only invest if the potential gain from investing is sufficient to recover the investment

cost. Limited investment can be observed alongside limited entry if ξ (n) falls below the

entry threshold θE for any given n. Because ξ (n) is decreasing in n, an agent’s incentive to

invest is reduced with the number of entrants.

The interplay between the uncertainty that arises from entry and that from investment is

complex but present in the real world applications that we want to capture with our model.

For a contest with an entry fee, full entry implies full investment, and that is a clean result.

Limited entry can give rise to both full investment and limited investment in equilibrium.

We explore this further in the next section.

7 Comparative statics

In this section, we discuss the comparative statics effects of some key parameters of our

model on entry and investment incentives.24

7.1 Likelihood of successful investment

In Section 2, we outlined possible strategies that tech companies have adopted in trying to

get an edge in the upcoming contest situation, such as purchasing competitors or suppliers of

complements. Cryptocurrency miners try to get an edge by acquiring up to date hardware,

and wealth management firms position themselves by acquiring subsidiaries that are sup-

posed to provide a technological edge and worldwide reach. The returns to these pre-contest

investments are uncertain. To capture this, we have assumed in our model that the return

on investment is stochastic. The likelihood of success q has contrasting effects on incentives

for investment and entry. When q is high, an agent is more likely to succeed in investment,

which favorably affects the payoff from entry. However, this agent also anticipates competing

against more agents that have made a successful investment, which has a dampening effect.

Typically, both entry and investment incentives are high at an intermediate range of q, and

this range is concentrated around q = 1/N.

To see why, let us examine the full-entry condition: c ≤ c (N). Observe that ξ (N) is

concave for q ∈ [0, 1], is equal to zero at q = {0, 1}, and it increases with q for q < 1/N ,

24It is customary in contest models to focus attention on expected total effort. From Lemma (1) effort is
αv, in all cases except m = 0 (giving effort v) and m = 1 in which case it is

{
Tmin, Tmax

}
. Computing the

probabilities of the latter events requires closed-form solutions for the entry and investment thresholds, and
these we cannot calculate. Hence we focus on entry and investment incentives.
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but decreases thereafter. Therefore, the full-entry condition can only be satisfied at an

intermediate level of q. We can hence find an interval
[
q, q

]
, 0 < q ≤ q < 1 such that[

q, q
]
= {q ∈ [0, 1] : c ≤ c (N)}. Further, this interval can be vacuous if maxq∈[0,1] ξ (N) <

1 + c, which holds if (N − 1)N−1 /NN < (1 + c)/v (α− 1). We state this formally:

Proposition 3. Fix N ≥ 2.

1. If (N − 1)N−1 /NN < (1 + c)/v (α− 1), there is limited entry in equilibrium for every

q ∈ [0, 1].

2. If (N − 1)N−1 /NN ≥ (1 + c)/v (α− 1), there exist 0 < q ≤ 1/N ≤ q < 1 such that

for q ∈
[
q, q

]
, there is full entry in equilibrium.

Part 2 indicates that when the contest is sufficiently favorable (high potential prize value,

a low entry cost and few potential competitors), all agents will enter if the success probability

balances the positive effect of achieving the advantage with the negative one of meeting

potentially strong rivals. When there is full entry, there is also full investment. When the

full-entry condition does not hold, the full-investment condition is given by θE ≤ ξ (n), where

n is the realized number of entrants. For given θE and n, it easily follows from the shape of

ξ (n) that the full-investment condition, if satisfied, only occurs at an intermediate level of

q.
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Figure 1: θE and θI against q
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Figure 2: θE and θI against q
Notes. We consider the following parameter specifications: v = 3, α = 4, and c = 0.05. Figure 1 plots θE

(the continuous graph) and θI (the dashed graph) against q for N = 3. The investment threshold θI depends

on the realized number of entrants. For q ∈ [0.169, 0.531], ξ (3) > 1+c, and we have full entry in equilibrium.

In Figure 2, we consider N = 5; in this case, ξ (N) < 1 + c for every q, and so limited entry in equilibrium.

Part 1 shows that when the contest is expected to be less favorable, then no value of the

investment success parameter will entice all agents to enter. This is intuitively straightfor-

ward. However, it is less obvious how the thresholds θE and θI change in relation to q in

regimes with limited entry and limited investment. The following figures illustrate how the
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two thresholds move against q. In Figure 1, which plots θE and θI against q for N = 3,

there is full entry in equilibrium when q ∈ [0.169, 0.531]. Figure 2 plots the threshold for

N = 5 and there is limited entry for every q. These figures also plot θI , contingent on

n ∈ {1, 2, . . . , N}.

7.2 Number of agents

The entry incentive weakly diminishes as the total number of agents N increases; this follows

from two observations. Firstly, the full-entry condition is satisfied for sufficiently small values

of N . Additionally, in cases of limited entry, the entry threshold decreases as N increases.

The following proposition documents formally how the entry threshold changes with respect

to N .

Proposition 4. Define N̄ := max {0, 1 + ⌊(ln (1 + c)− ln ((α− 1) vq)) / ln (1− q)⌋} where

⌊x⌋ is the largest integer less than or equal to x.

1. For N ≤ N̄ , θE (N) = 1.

2. For N > N̄ , θE (N) weakly decreases in N .

Part 1 is the familiar full-entry condition. Since N ≥ 2, full entry cannot occur if N̄ < 2,

which happens if then entry cost is very large: 1 + c > ξ (2); in this case, two agents will

not both find it profitable to enter, and full entry will certainly not occur for additional

agents. Entry is less attractive the more agents there are. To get the intuition behind the

result, consider from the perspective of the marginal entrant when there are N players. The

marginal entrant expects a positive payoff in two scenarios. First, it might be the only

entrant, and the expected post-entry payoff in this event is v+max {0, ξ (1)− θE}. Second,
there could be (n− 1) other entrants for various values of n, and the marginal entrant’s

expected post-entry payoffs in these events are max {0, ξ (n)− θE}. When the number of

players increases by 1, the likelihood of the first scenario decreases, and the payoffs associated

with the second scenario decrease for every n. Consequently, the marginal entrant’s expected

post-entry payoff declines as N increases.

Describing the impact of N on the investment threshold is more complex because the

threshold depends on the realized number of entrants, and the distribution of the number

of entrants changes as N moves. If we fix the number of entrants at a given n and examine

how changing N affects the investment threshold, we can infer from Proposition 1 that θI

will also decrease. This is because the two thresholds are positively related.

Figure 3 numerically illustrates the relationship between the entry threshold and N . We

also plot the investment threshold when all agents have entered (n = N); in this case the

investment threshold solves:
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(α− 1) vq

(
1− qθI

θE (N)

)N−1

− θI = 0. (13)

As N increases, it affects θI in two ways: first, by directly influencing the threshold that

solves (13), and second, by decreasing the entry threshold. Proposition 1 implies that the

second effect leads to a decline of the investment threshold. Furthermore, it can be shown

that the direct effect of N decreases θI .
25
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Figure 3: θE and θI |n=N against N

Notes. We consider the following parametric specifications: v = 3, α = 4, c = 0.05, and q = 0.5, and plots

θE (blue) against N . The grey-colored curve plots the investment threshold in the event of full entry (when

n = N) against N .

7.3 Entry fee

An entry fee adversely affects the entry incentive. As with our analysis of the effects of N ,

we can illustrate the dampening effect of c with two observations.

Firstly, the full-entry condition is satisfied only for sufficiently small values of c, specifi-

cally, for c ≤ c (N). In addition, when there is limited entry, we can examine how θE moves

with respect to c by analyzing (11). Proposition 5 documents the effect of c on θE.

Proposition 5. For c ≤ c (N), θE = 1. For c > c (N), θE is strictly decreasing in c.

The mechanism behind this result is straightforward: entry fees directly reduce the

marginal entrant’s payoff in all possible scenarios, thereby dampening the incentive to enter.

Figure 4 plots the relationship between θE (c) and c for two parameter combinations, one

illustrating the case c (N) > 0,in which there is full entry for sufficiently low entry cost, and

the other illustrating limited entry (case c (N) = 0).

25The proof of this follows the technique used to show part 2 of Proposition 4, and is omitted here.
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Figure 4: θE against c

Notes. We consider the following parametric specifications: v = 3, α = 4, and q = 0.5, and plots θE against

c. The continuous (blue-colored) curve plots the threshold when N = 2, in which case, c (N) = ξ (2)− 1 =

1.25 > 0. The dashed (grey-coloured) curve plots the threshold when N = 8, in which case c (N) = 0.

The monotone relationship between the entry fee and the entry threshold has important

implications for design problems. A contest designer can achieve her desired entry threshold

by adjusting the entry fee. For a given θE, let ĉ (θE) be the maximum level of entry cost

that results in an entry threshold equal to θE. Then we can prove the following proposition.
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Figure 5: ĉ (θE) against θE

Notes. We consider the following parametric specifications: v = 3, α = 4, and q = 0.5, and plots ĉ (θE)

against θE . The continuous (blue-colored) curve plots ĉ (θE) when N = 2, in which case, c (N) = ξ (2)− 1 =

1.25 > 0. The dashed (grey-colored) curve plots ĉ (θE) when N = 8, in which case c (N) = 0.

Proposition 6. Any entry threshold θE ∈ [0, 1] can be implemented by choosing an entry

fee c = ĉ (θE). Furthermore, ĉ (θE) is continuous and differentiable.
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Figure 5 plots the relationship between ĉ (θE) and θE for two parameter combinations, one

illustrating the case c (N) > 0 and the other illustrating the case c (N) = 0.

8 Endogenous preference over entry

Contest models often purport the existence of a designer that sets various instruments in the

competition in order to achieve some objective. In the context of technological competition,

a designer can be a national government that may be interested in attracting or discouraging

large multinationals from competing in the national market. Given Proposition 6, an entry

fee may be one such instrument. While national governments do not specifically charge an

entry fee to allow rivals to compete in a national market, several policies may be regarded as

fulfilling this role. In 2023, the Office of the United States Trade Representative (USTR) has

documented world trade barriers facing US firms, and some of these may have the function of

an entry fee.26 One example is forcing online information service providers (such as Google

or Meta) to pay national news publishers for the right to host their content.27 Another is

a network usage fee that has been implemented in South Korea and is being considered in

the European Union.28 Furthermore, strictly regulated markets may require the payment

of compliance-related services. To comply with the General Data Protection Regulation

(GDPR) in the European Union involves costs for legal advice, data security and certification

costs; tech companies operating in China must comply with Chinese Cybersecurity Law, and

this can involve significant costs. Social media companies often incur costs in order to adhere

to national privacy laws such as the Online Safety Act 2023 in the United Kingdom that

regulates online content.29

At a microeconomic level, technology and innovation contests date at least as far back

as the British government’s Longitude Prize of 1714 (MacCormack et al. 2013). Entry

fees are sometimes charged in order to recoup the expenses from running the contest, or

to limit participation, especially by low-quality agents. Taylor (1995) notes that the US

Federal Communications Commission opened a contest to design the technology standard

for HD-TV, charging an entry fee of 200,000 USD. Competitions in music, writing, sports

and architecture often charge an entry fee. In 2021 the participation fees for the Eurovision

song contest totaled 6.2 million Euros.30

262023 National Trade Estimate Report on Foreign Trade Barriers, USTR
27Under the News Media Bargaining Code of 2019 in Australia, or the Online News Act of 2023 in Canada.
28Network cost contribution debate, European Parliamentary Research Service, April 2023
29A set of rules are currently under formation for the European Union, see The Digital Services Act

package, European Commission, September 2023.
30See: https://web.archive.org/web/20200623153206/https://eurovision.tv/about/faq/.
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We examine two distinct objectives pursued by the designer. In the first, the designer

maximizes the expected total entry fees received. In the second, the designer maximizes the

expected number of investors. The analyses below primarily focus on finding conditions in

which the designer prefers limited entry.

8.1 Total fees collected

The contest designer can extract surplus from the participants by charging an entry fee, c, to

maximize the expected value of the total fees received. As the number of entrants n follows

Binomial (N, θE), the expected value of fees received is cE (n) = cNθE (c) for a given c. The

optimal choice of c, therefore, maximizes NcθE (c).

By replacing c by ĉ (θE), we can rewrite the optimization problem as a choice problem

over the possible entry threshold values. The designer’s preferred choice of θE maximizes

the expected value of fees collected, denoted by Vf :

Vf (θE) := Nĉ (θE) θE. (14)

Because of continuity and differentiability of ĉ (θE), Vf is continuous and differentiable

in θE. Therefore, if the optimization problem has an interior solution, this must satisfy the

first-order necessary condition:

ĉ (θE) + θE
dĉ (θE)

dθE
= 0.

In general, the objective function (14) can exhibit both concave and convex properties.

Proposition 7 outlines the sufficient condition under which limited entry is preferred.

Proposition 7. Consider a contest designer who maximizes the total fees received. If c (N) =

0, then the designer prefers limited entry. If c (N) > 0, then a sufficient condition for the

designer to prefer limited entry is given by

ξ (N − 1) (1−Nq)− 2− v · 1{N=2} < 0, (15)

where 1{N=2} is an indicator function that takes the value 1 if N = 2, and 0 otherwise.

Limited entry is preferred for large N values. This is because c (N) = 0 for sufficiently

high N values. Further, when c (N) > 0, the sufficient condition (15) is more likely to hold

for high values of N : ξ (N − 1) (1−Nq) ≤ 0 for N ≥ 1/q and is positive but decreasing in

N for N < 1/q. Similarly, for sufficiently large q values, limited entry is preferred. Although
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c (N) moves non-monotonically with respect to q, it is decreasing in q for q ≥ 1/N , and

the sufficient condition is always negative for q ≥ 1/N . It is important to note that if

dVf/dθE > 0 as θE approaches 1, we cannot definitely conclude that full entry is preferred,

as there could be a local interior maximum even if Vf is increasing at θE = 1. This is

illustrated in Figure 6.
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Figure 6: Vf against θE for different q values

Notes. We consider the following parametric specifications: N = 3, v = 8, and α = 7, and plot Vf against

θE for q values of 0.08, 0.15, and 0.5.

Figure 6 depicts how Vf changes with respect to θE under various scenarios. We set

N = 3, v = 8, α = 7, and vary q within the set {0.08, 0.15, 0.5}. In all these scenarios,

c (N) > 0. The sufficiency condition in (15) is met when q = 0.5, but it is not satisfied for

q = 0.08 and q = 0.15. For q = 0.5, Vf (represented by the continuous curve) reaches its

maximum value of 22.59 at θE = 0.54. For q = 0.15, Vf (represented by the green dot-dashed

curve) achieves its maximum at the boundary θE = 1. For q = 0.08,Vf (shown as the blue

dashed curve) attains its interior maximum at θE = 0.52.

8.2 The expected number of investors

Consider that the contest designer’s objective is to maximize the expected number of in-

vestors. The likelihood of investment by a player, conditional upon entry, is θI/θE. As the

number of entrants follows Binomial (N, θE), the expected number of investors, denoted by

Vinv, is given by

Vinv (θE) =
N∑

n=0

(
N

n

)
(θE)

n (1− θE)
N−n nθI (n)

θE
, (16)

24



where θI (n) and θE satisfy the conditions described in Proposition 1 and Proposition 2.

After rearranging terms, (16) can be simplified as

Vinv (θE) = NEn−1 [θI (n)] , (17)

where (n− 1) follows Binomial (N − 1, θE).

Consider first the case c (N) > 0, which occurs when ξ (N) > 1. Note that if θE ≤ ξ (N),

then θE ≤ ξ (n) for every n ≤ N , and consequently, θI (n) = θE. From (17), Vinv (θE) = NθE,

which is maximized at θE = 1. Therefore, the designer prefers full entry.

Next, consider the case when c (N) = 0, which occurs when ξ (N) ≤ 1. As we have argued

in the previous case, replacing c by ĉ (θE) in (17), we can express the designer’s problem as

a choice problem over the possible values of θE. Thus, we can study the derivatives of Vinv

with respect to θE at the boundary values to derive a sufficient condition for the existence of

a preferred entry threshold strictly below 1. Proposition 8 documents the sufficient condition

under which limited entry is preferred.

Proposition 8. Consider a contest designer who maximizes the expected number of in-

vestors. If c (N) > 0, then the designer prefers full entry. If c (N) = 0, then a sufficient

condition for the designer to prefer limited entry is given by

(N − 1) qθ̂2

(N − 2) qθ̂ + 1
+ (N − 1)

(
θ̂ − ˆ̂

θ
)
< 0, (18)

where θ̂ := limθE→1 θI (N) and
ˆ̂
θ := limθE→1 θI (N − 1).

Why might a designer choose to limit entry? In scenarios where full investment oc-

curs (i.e., when θI = θE), the designer generally benefits from raising the entry threshold.

However, she might consider limiting entry specifically when the investment threshold is sig-

nificantly lower than the entry threshold for certain values of n. In such cases, the designer’s

motivation for increasing θE is influenced not just by the investment thresholds across dif-

ferent events with varying n values, but also by the rate at which the probabilities of these

events shift. Notably, as θE approaches 1, the rate of change in probabilities of all events,

except when n = N and n = N − 1, asymptotically approaches zero. In contrast, the prob-

abilities of the events of n = N − 1 and n = N decrease and increase, respectively, as θE

nears 1. Additionally, given that θI (N − 1) is strictly larger than θI (N) (when both are

below θE), the reduction in probability of n = N − 1 can sometimes weaken the designer’s

motivation to raise the entry threshold. The sufficient condition outlined in (18) precisely

characterizes such scenarios.
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Figure 7: Vinv against θE for different q values

Notes. We consider the following parametric specifications: N = 3, v = 3, and α = 4, and plot Vinv against

θE for q values of 0.08 and 0.5.

Figure 7 illustrates how Vinv changes with θE. We set N = 3, v = 3, α = 4, and consider

cases where q is 0.08 and 0.5. For q = 0.5, c (N) = 0.12, and Vinv (depicted by the green

dot-dashed curve) achieves its maximum at the boundary θE = 1. For q = 0.08, c (N) = 0

and the sufficiency condition in (18) is satisfied; Vinv (represented by the blue dashed curve)

reaches its maximum at θE = 0.72, with the maximum value being 1.95. Notably, for

q = 0.08, Vinv at θE = 1 is marginally lower, measured at 1.94.

9 Conclusion

This paper has investigated a generic contest model with uncertain entry and investment. As

such it is widely applicable, but we have concentrated on applications related to technology.

In these markets, firms are often unsure about which and how many rivals they will face, as

well as the efficacy of actions taken to gain a competitive edge in the upcoming contest for

the market. Our analysis shows a complex interplay between the two types of uncertainty,

captured by the relationship between the probability of success and the total potential num-

ber of participants. While the potential size of the prize and the cost of entering the contest

have predictable effects on entry and investment, the probability of a successful investment

has a non-monotonic effect. Furthermore, the region of non-monotonicity is inextricably

linked to the total number of competitors. The threshold values of marginal cost that de-

termine entry and investment in equilibrium resolve the complex decision making process.

Agents know that if they meet homogeneous rivals in the final contest (whether they are all

successful or unsuccessful in their investment), they will compete away a large proportion
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of the contested prize, lowering the incentive to enter and make a pre-contest investment.

Meeting one or more stronger rivals in the contest also leads to a low expected payoff and

weak incentives. The driving force behind entry/investment is the promise of being the lone

strong agent in the contest, who is guaranteed a large prize for low effort. If the probability

of achieving a successful investment is very low, then an agent is likely to meet equally weak

rivals in the upcoming contest. If the success probability is high, an agent will expect to

meet several equally strong rivals. An intermediate probability of success balances these two

scenarios, making entry and investment more attractive.

We have shown that any entry threshold can be implemented by appropriate setting of

the cost of entering the contest. A sufficiently low (but positive) fee can entice full entry

into the contest, and this in turns guarantees that all entrants invest. A higher entry cost

discourages entry by those who have the highest marginal cost of investment. It may well

still be the case that all entrants invest also in this scenario. All other things equal, a large

initial number of competitors weakens the incentive for both entry and investment.

Our model captures several salient features of technology contests, but also has some

drawbacks. A common focus of contest models is how total expected effort is affected by the

model parameters. We have not been able to calculate total effort, since we cannot derive

explicit solutions for the entry and investment thresholds. We have also assumed that the

result of entry and investment decisions is immediately disclosed to the participants, and

this may not suit all applications. We plan to return to this in later work.
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Appendix

The Appendix contains the proofs that are omitted in the main text. We will begin with

documentation of two additional results, Lemma A.1 and Lemma A.2, that will be useful in

proving our main findings.

Lemma A.1. Consider a function f(p,X) : [0, 1] × N → R that is decreasing in both

arguments, p and X. Let m ≥ 2 be an integer and let X follow Binomial(m, p). Then,

dEX [f (p,X)] /dp ≤ 0.

Furthermore, if f is strictly decreasing in X for some X ∈ {0, 1, ...,m}, or if f is strictly

decreasing in p at some X ∈ {0, 1, ...,m}, then dEX [f (p,X)] /dp < 0.

Proof of Lemma A.1. Assume X ∽ Binomial (m, p). Then,

EX [f (p,X)] =
m∑
j=0

f (p, j)

(
m

j

)
(p)j (1− p)m−j . (A.1)

Claim 1: dEX [f (p,X)] /dp = mEY [f (p, Y + 1)− f (p, Y ) + (pfp (p, Y + 1)) /Y + 1] +

(1− p)m fp (p, 0), where Y ∽ Binomial (m− 1, p) and fp (p,X) = ∂f (p,X) /∂p, which is the

partial derivative of f with respect p.

Proof of Claim 1: Differentiating (A.1) with respect to p, we get

d

dp
EX [f (p,X)] =

m∑
j=0

f (p, j)

(
m

j

)[
jpj−1 (1− p)m−j − (m− j) pj (1− p)m−j−1

]
+

m∑
j=0

fp (p, j)

(
m

j

)
pj (1− p)m−j

=
m∑
j=1

f (p, j) j

(
m

j

)
pj−1 (1− p)m−j

−
m−1∑
j=0

f (p, j) (m− j)

(
m

j

)
pj (1− p)m−j−1

+
m∑
j=1

fp (p, j)

(
m

j

)
pj (1− p)m−j + (1− p)m fp (p, 0)
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Replacing j
(
m
j

)
, (m− j)

(
m
j

)
, and

(
m
j

)
by m

(
m−1
j−1

)
, m

(
m−1
j

)
, and m

j

(
m−1
j−1

)
, respectively, we get

d

dp
EX [f (p,X)] =

m∑
j=1

f (p, j)m

(
m− 1

j − 1

)
pj−1 (1− p)(m−1)−(j−1)

−
m−1∑
j=0

f (p, j)m

(
m− 1

j

)
pj (1− p)m−j−1

+
m∑
j=1

pfp (p, j)
m

j

(
m− 1

j − 1

)
pj−1 (1− p)(m−1)−(j−1) + (1− p)m fp (p, 0)

Replacing j − 1 by j in the first and the third terms,

d

dp
EX [f (p,X)] =

m−1∑
j=0

f (p, j + 1)m

(
m− 1

j

)
pj (1− p)(m−1)−j

−
m−1∑
j=0

f (p, j)m

(
m− 1

j

)
pj (1− p)m−j−1

+
m−1∑
j=0

pfp (p, j + 1)
m

j + 1

(
m− 1

j

)
pj (1− p)(m−1)−j + (1− p)m fp (p, 0)

=mEY

[
f (p, Y + 1)− f (p, Y ) +

pfp (p, Y + 1)

Y + 1

]
+ (1− p)m fp (p, 0) ,

(A.2)

where Y ∽ Binomial (m− 1, p) . This proves claim 1.

Observe that f is decreasing in both arguments, we have f (p, Y + 1) ≤ f (p, Y ) and

fp (p, Y ) ≤ 0 for any Y . Therefore, dEX [f (p,X)] /dp ≤ 0.

Further, it follows from (A.2) that if f is strictly decreasing in Y for some Y ∈ {0, 1, . . . ,m− 1}
or if fp < 0 at some Y ∈ {0, 1, . . . ,m− 1}, then dEX [f (p,X)] /dp is strictly negative, which

proves the final part of the Lemma.

Lemma A.2. Consider a function f(X) : N → R that is decreaing in X. Fix p ∈ [0, 1]

and define a function F : N → R by F (m) = EX [f (X)] where X ∽ Binomial (m, p). Then,

F (m+ 1) ≤ F (m). Furthermore, the inequality holds strictly if f is strictly decreasing for

some X ∈ {0, 1, ...,m}.

Proof of Lemma A.2. Since X ∽ Binomial (m, p), it can be expressed as the sum of

m Bernoulli variables: X = X1 + . . . + Xm where Xi ∽ Bernoulli (p). Then, F (m) =
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EX [f (X)] = EX1 · · ·EXm [f (X1 + . . .+Xm)] for any m. Further, given that Xm+1 follows

Bernoulli, we can write

F (m+ 1) =EX1 · · ·EXm+1 [f (X1 + . . .+Xm+1)]

=EX1 · · ·EXm [pf (X1 + . . .+Xm + 1) + (1− p) f (X1 + . . .+Xm)]

=EX1 · · ·EXm [p (f (X1 + . . .+Xm + 1)− f (X1 + . . .+Xm))]

+ EX1 · · ·EXm [f (X1 + . . .+Xm)]

=pEX [(f (X + 1)− f (X))] + F (m) , (A.3)

where X ∽ Binomial (m, p). Because f (X) is decreasing in X, it follows that F (m+ 1) ≤
F (m).

Finally, if f (X + 1) < f (X) for some X ∈ {0, 1, . . . ,m}, then it follows from (A.3) that

F (m+ 1) < F (m).

Proof of Lemma 1. Parts (i) and (ii) follow directly from Baye et al. (1996, Theorem 1).

Part (iii) uses their Theorem 2. Denoting the expected effort of the skilled agent by es, we

can use Baye et al. (1996, Theorem 2C) to write the expected sum of efforts as

T (n, 1 ) =
n∑

i=1

Exi =
v

α
+

(
1− 1

α

)
Exs, (A.4)

where Exs is the expected effort of the single skilled agent, and this varies across the contin-

uum of equilibria. Denoting the mixed strategy of the skilled agent by Gs(xs), xs ∈
[
xs, xs

]
,

we have

Exs =

∫ xs

xs

(1−Gs(xs)dxs. (A.5)

In the equilibrium leading to the least effort, we use Baye et al. (1996, eq. 4) to find the

mixed strategy of the skilled agent as

Gs(xs) =
xs

v

(
1− 1

α
+

xs

αv

) 2−n
n−1

, xs ∈ [0, v] . (A.6)

Inserting (A.6) into (A.5) and then into (A.4) gives Tmin(n, 1) after some rearrangement.

Further, when only one unskilled agent is active, Baye et al. (1996, eq. 4) implies

Gs(xs) =
xs

v
, xs ∈ [0, v] . (A.7)
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Inserting (A.7) into (A.5) and into (A.4) gives Tmax(n, 1). It is straightforward to verify by

substitution that Tmin(2, 1) = Tmax(n, 1).

Proof of Proposition 1. Consider that agents are following a threshold entry strategy:

all types less than θE enter. An agent’s return to investment q△ (n,m) − θ is decreasing

in its investment cost θ, implying that its investment strategy follows a cutoff rule as well.

Further, because all agents have the same entry cost c, the investment cutoff will also be the

same across all agents who enter. Denoting the investment threshold by θI , the probability

that a randomly picked agent would have a successful investment conditional on entry is

q Pr [θ ≤ θI ] /Pr [θ ≤ θE] = qθI/θE. Since agents’ success are independent events, the prob-

ability that an agent faces exactly m − 1 successful agents out of n − 1 entrants is given

by
(
n−1
m−1

)
(qθI/θE)

m−1 (1− (qθI/θE))
n−m ,m − 1 ∈ {0, . . . , n− 1}. Therefore, the expected

return to investment is

q

[
n−1∑

m−1=0

(
n− 1

m− 1

)(
qθI
θE

)m−1(
1− qθI

θE

)n−m

△ (n,m)

]
− θ,

which further reduces to (α− 1) vq (1− (qθI/θE))
n−1 − θ because △ (n,m) = 0 for all

m ≥ 2. If the expected return for the marginal entrant is positive, which happens if

(α− 1) vq (1− q)n−1 − θE ≥ 0, or equivalently, ξ (n) ≥ θE, then all agents who enter must

invest. In this case, θI = θE. If the expected return is negative for the agent with type

θE, which happens if ξ (n) < θE, then only a subset of agents must invest, and θI uniquely

satisfies (5). The uniqueness follows from the fact that the marginal investor’s expected

return is also decreasing in θI .

Let Ω := q (1− (qθI/θE))
n−1 v (α− 1). From (5) we can find

dθI
dθE

=
∂Ω
∂θE

1− ∂Ω
∂θI

=
qθI(n− 1)Ω

θE (θE − qθI + q(n− 1)Ω)
> 0.

The positive marginal effects of v and α can also be derived similarly. Furthermore,

∂

∂θE

(
θI
θE

)
=

θE
dθI
dθE

− θI

θ2E

=
−θI(θE − qθI)

θ2E (θE − qθI + q(n− 1)Ω)
< 0.
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Proof of Proposition 2. Consider the entry decisions of two agents with types θ1 and

θ2, where θ1 < θ2. The θ1-type agent can achieve a payoff as high as that of the θ2-type

agent simply by replicating the strategy followed by the θ2-type agent, and even higher if

the strategy involves investment in subsequent subgames. Therefore, the expected payoff of

the θ1-type agent from its optimal entry strategy is greater than that of the θ2-type agent,

for any given strategy profile followed by other players. This observation implies that an

agent would adopt a cutoff strategy: enter if and only if θ is below a certain threshold.

Furthermore, since all agents face the same entry cost, the threshold is the same for all of

them. We denote this threshold as θE.

At the entry stage, the expected payoff of the marginal agent of type θE is En−1 [π (θE, n)]

where the number of other players, n− 1, is a random variable following a Binomial distri-

bution with parameters N and θE. It directly follows from Lemma A.1 that En−1 [π (θE, n)]

is decreasing in θE. The full-entry condition can therefore be derived from the expected

payoff of the agent of type θ = 1, which is given by En−1 [π (1, n)] = π (1, N) = c (N) − c.

Therefore, if c ≤ c (N), every agent has an incentive to enter, and θE = 1. On the other

hand, if c > c (N), π (1, N) is negative and (11) has a unique solution determining the entry

threshold.

Further, considering En−1 [π (θE, n)] as a function G (θE, z) of θE and a generic parameter

z, we can work with the total derivative of (11) to get

dθE
dz

= − ∂G/∂z

∂G/∂θE
.

As ∂G/∂θE ≤ 0, dθE/dz has the same sign as ∂G/∂z, whenever both terms are well-defined.

Applying this observation and the fact that π (θE, n) is increasing in v and α, we conclude

that θE increases in v and α.

Proof of Proposition 3. It follows from Proposition 2 that there is limited entry if c >

c (N), or equivalently, if ξ (N) < 1 + c, which holds if

f1 (q) := q (1− q)(N−1) <
1 + c

v (α− 1)
.

Examining the first derivative, we get that f1 is increasing in q ≤ 1/N , and decreasing

thereafter, implying

max
q∈[0,1]

f1 (q) =
(N − 1)N−1

NN
.

If maxq∈[0,1] f1 (q) < (1 + c) /v (α− 1), there is limited entry for every q ∈ [0, 1], which proves
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part (i) of the proposition. Further, if maxq∈[0,1] f1 (q) ≥ (1 + c) /v (α− 1), then there will

be full entry for some q. Given that f1 is increasing up to 1/N and decreasing thereafter,

f1 (q) must be higher than (1 + c) /v (α− 1) at an interval
[
q, q

]
, containing 1/N .

Proof of Proposition 4. Observe that the full-entry condition c ≤ c (N) can be rewritten

as

(1 + c) ≤ ξ (N) ⇔ (1− q)N−1 ≥ (1 + c)

vq (α− 1)
.

By taking the logarithm on both sides and noting that ln (1− q) is negative, we can express

the above inequality as

N ≤ 1 +
ln ((1 + c) / (vq (α− 1)))

ln (1− q)
.

Defining N̄ as max {0, 1 + ⌊(ln (1 + c)− ln ((α− 1) vq)) / ln (1− q)⌋}, where ⌊x⌋ is the largest
integer less than or equal to x, part (1) of the proposition directly follows.

Next, suppose N > N̄ , in which case, there is limited entry and θE satisfies (11). We

express En−1 [π (θE, n)], where (n− 1) follows the distribution Binomial (N − 1, θE), as a

function of θE and N and denoted by G1 (θE, N):

G1 (θE, N) =
N−1∑

n−1=0

(
N − 1

n− 1

)
(θE)

n−1 (1− θE)
N−n π (θE, n) .

The entry threshold θE (N) implicitly solves G1 (θE, N) = 0. Therefore,

G1 (θE (N + 1) , N + 1)−G1 (θE (N) , N) = 0

⇔ [G1 (θE (N + 1) , N + 1)−G1 (θE (N + 1) , N)]

+ [G1 (θE (N + 1) , N)−G1 (θE (N) , N)] = 0.

Since π (θE, n) is decreasing in n, it follows from Lemma A.2 that G1 (θE, N) is decreas-

ing in N , which implies that G1 (θE (N + 1) , N + 1) ≤ G1 (θE (N + 1) , N). Consequently,

G1 (θE (N + 1) , N) ≥ G1 (θE (N) , N). However, as π (θE, n) is also decreasing in θE, by

applying Lemma A.1, we find that G1 (θE, N) decreases in θE. Therefore, it must be that

θE (N + 1) ≤ θE (N), which completes the proof.

Proof of Proposition 5. The first part of the proposition directly follows from Proposi-

tion 2. In order to show that θE is decreasing in c, we consider En−1 [π (θE, n)], where (n− 1)

follows the distribution Binomial (N − 1, θE), as a function of θE and N and denote it by
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G2 (θE, c). Note that θE (c) implicitly solves G2 (θE, c) = 0. Taking the total derivative of

G2 along the path of θE (c), we get dθE/dc = − (dG2/dc) / (dG2/dθE).

Note that π (θE, c) is strictly decreasing in c, and therefore it follows from Lemma A.1

that ∂G2/∂c < 0. Further, as θE solves En−1 [π (θE, n)] = 0, it must be that θE ≤ ξ (n) at

least for some n (as otherwise En−1 [π (θE, n)] will be independent of θE), which implies that

π (θE, n) is strictly decreasing in θE for some n. Therefore, by applying Lemma A.1, we get

∂G2/∂θE < 0. Hence, dθE/dc < 0, which completes the proof.

Proof of Proposition 6. To construct ĉ (θE), we consider the two cases separately, c (N) >

0 and c (N) = 0.

Consider first c (N) > 0. It follows from Proposition 2 that for all c ≤ c (N), θE = 1, and

therefore, ĉ (1) = c (N). For c > c (N) and θE < 1, θE and c have a one-to-one relationship

satisfying (11). Therefore, for all θE < 1, ĉ (θE) is uniquely determined by the solution

of (11). Further, by Proposition 5, ĉ (θE) is strictly decreasing for 0 ≤ θE ≤ 1. Because

G2 (θE, c) is continuous and differentiable in c, θE (c) is also continuous and differentiable in

c, ensuring the continuity and differentiability of ĉ (θE) in θE ∈ [0, 1]. Further, because of

strict monotonicity of ĉ (θE), any entry threshold θE in [0, 1] can be implemented by choosing

an entry fee c = ĉ (θE).

Next, consider c (N) = 0, which occurs when ξ (N) ≤ 1. We claim that if c = 0, then

θE = 1 is a unique solution of (11). The proof follows from two observations. Firstly, at

θE = 1, En−1 [π (1, n)] = π (1, N) = 0. Secondly, with c = 0, we have for all θE < 1,

π (θE, 1) > 0 and π (θE, n) ≥ 0 for n ≥ 2. Therefore, En−1 [π (θE, n)] > 0 for all θE < 1,

implying that any θE < 1 cannot be a solution of (11) if c = 0.

For c > 0 and θE < 1, θE and c have a one-to-one relationship satisfying (11), and

therefore, ĉ (θE) is uniquely determined by the solution of (11). Further, as we have argued

in the previous case, ĉ (θE) is differentiable and strictly decreasing in θE for all θE ∈ [0, 1].

Therefore, any entry threshold θE in [0, 1] can be implemented by setting c = ĉ (θE).

[Proof of Proposition 7]It follows from the discussion in Section 7.3 that ĉ (θE) is

strictly positive for all θE < 1. Therefore, the maximum value of Vf (θE) must be positive,

and it must reach its maximum at some θE > 0.

Let us first consider the case c (N) = 0. Then, ĉ (1) = c (N) = 0, and therefore, Vf (1) =

0, which implies that Vf is maximized at some interior θE ∈ (0, 1), and so the designer prefers

limited entry.

Next, consider c (N) > 0. Therefore, ĉ (1) = c (N) = ξ (N) − 1. We derive a sufficient

condition for an interior maximum by examining the derivative of Vf as θE approaches 1: if
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the derivative is negative, then Vf must be maximized at some 0 < θE < 1. Note that

lim
θE→1

dVf

dθE
= N

(
ĉ (1) + lim

θE→1

dĉ (θE)

dθE

)
.

Recall from the proof of Proposition 5 that for θE ∈ (0, 1) and c > 0, ĉ (θE) solves

G2 (θE, c) =
N∑

n=1

(
N − 1

n− 1

)
(θE)

n−1 (1− θE)
N−n π (θE, n) = 0.

From the total differential of dG2 = 0 along the path of ĉ (θE), we can derive dĉ (θE) /dθE =

− (∂G2/∂θE) / (∂G2/∂c). Further,

dG2/dc =
N∑

n=1

(
N − 1

n− 1

)
(θE)

n−1 (1− θE)
N−n dπ (θE, n)

dc
= −1,

which gives us dĉ (θE) /dθE = (dG2/dθE), and

lim
θE→1

dVf

dθE
= N

(
ξ (N)− 1 + lim

θE→1

dG2 (θE, c)

dθE

)
. (A.8)

Differentiating G2 (θE, c) with respect to θE, term by term, and taking the limit as θE → 1,

we get

lim
θE→1

dG2 (θE, c)

dθE
=

[
(N − 1) lim

θE→1
π (θE, N) + lim

θE→1

dπ (θE, N)

dθE

]
−
[
(N − 1) lim

θE→1
π (θE, N − 1)

]
,

(A.9)

where the first square-bracketed term arises from the derivative of the last term in the

summation series, and the second square-bracketed term comes from the derivative of the

second-to-last term of the series; Because dπ (θE, n) /dθE is finite for any n, it can be easily

shown that the derivatives of all other terms approach zero in the limit as θE approaches 1.

Note that as ξ (N) > 1, from (10), we get limθE→1 dπ (θE, N) /dθE = −1. Further, as

θE → 1 , ĉ (θE) → ĉ (1) = c (N) = ξ (N)− 1. Therefore,

lim
θE→1

π (θE, N) = ξ (N)− 1− ĉ (1) = 0, and

lim
θE→1

π (θE, N − 1) = v · 1{N=2} + ξ (N − 1)− 1− ĉ (1) = v · 1{N=2} + ξ (N − 1)− ξ (N)

where 1{N=2} is an indicator function that takes the value 1 if N = 2, and 0 otherwise.
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Replacing the limiting values in the right-hand-side of (A.9), we get

lim
θE→1

dG2 (θE, c)

dθE
= (N − 1)

(
ξ (N)− ξ (N − 1)− v · 1{N=2}

)
− 1.

Further, replacing the limiting value of dG2 (θE, c) /dθE in (A.8) and using the fact that

(N − 1) v · 1{N=2} = v · 1{N=2}, we can express

lim
θE→1

dVf

dθE
= N

[
Nξ (N)− (N − 1) ξ (N − 1)− 2− v · 1{N=2}

]
= N

[
ξ (N − 1) (1−Nq)− 2− v · 1{N=2}

]
.

Therefore, (15) implies that limθE→1 dVf/dθE < 0 and it provides a sufficient condition for

having an interior maximum.

Proof of Proposition 8. It follows from (17) that Vinv = 0 at θE = 0, and Vinv > 0 at

θE = 1, implying that Vinv reaches its maximum at some θE > 0.

Let us first consider the case c (N) > 0, which occurs if ξ (N) > 1. In this case, θE ≤ ξ (n)

for all θE ∈ [0, 1] and n ≤ N , and therefore, by Proposition 1, θI = θE and Vinv = NθE,

which is increasing in θE. Hence, the designer prefers full entry.

Next, consider c (N) = 0. Then, as θE → 1, we have ĉ (θE) → ĉ (1) = c (N) = 0. We

will derive a sufficient condition for an interior maximum by examining the derivative of

Vinv as θE approaches 1: if the derivative is negative, then Vinv must be maximized at some

0 < θE < 1. Note that

lim
θE→1

dVinv (θE)

dθE
= N lim

θE→1

d

dθE

[
N∑

n=1

(
N − 1

n− 1

)
(θE)

n−1 (1− θE)
N−n θI (n)

]
.

Differentiating Vinv (θE) with respect to θE, term by term, and taking the limit as θE → 1,

we get

lim
θE→1

dVinv (θE)

dθE
= N

[
(N − 1) lim

θE→1
θI (N) + lim

θE→1

dθI (N)

dθE

]
−N

[
(N − 1) lim

θE→1
θI (N − 1)

]
,

(A.10)

where the first square-bracketed term arises from the derivative of the last term in the

summation series, and the second square-bracketed term comes from the derivative of the

second-to-last term of the series; Because dθI (n) /dθE is finite for any n, it can be easily

shown that the derivatives of all other terms approach zero in the limit as θE approaches 1.
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To find limθE→1 dθI (N) /dθE, observe that θI (N) solves

f (θI , θE) := v (α− 1) q (1− (qθI/θE))
N−1 − θI = 0.

Therefore, from the total differential of df = 0 along the path of θI (N), we can derive

dθI (N) /dθE = − (∂f/∂θE) / (∂f/∂θI). Further,

∂f

∂θE
= (N − 1) v (α− 1) q (1− (qθI/θE))

N−2

(
qθI
θ2E

)
, and

∂f

∂θI
= − (N − 1) v (α− 1) q (1− (qθI/θE))

N−2

(
q

θE

)
− 1,

which give us

lim
θE→1

dθI (N)

dθE
=

(N − 1) v (α− 1) q2
(
1− qθ̂

)N−2

θ̂

(N − 1) v (α− 1) q2
(
1− qθ̂

)N−2

+ 1
, (A.11)

where θ̂ := limθE→1 θI (N). Because f (θI , θE) is continuous in θI and θE > 0, θ̂ satisfies

θ̂ = v (α− 1) q
(
1− qθ̂

)N−1

. Therefore, (A.11) can be simplified as

lim
θE→1

dθI (N)

dθE
=

(N − 1) qθ̂2

(N − 1) qθ̂ +
(
1− qθ̂

) =
(N − 1) qθ̂2

(N − 2) qθ̂ + 1
∈ (0, 1) . (A.12)

We define
ˆ̂
θ := limθE→1 θI (N − 1), which solves v (α− 1) q (1− qθ)N−2 − θ = 0. It can be

easily verified that
ˆ̂
θ > θ̂.

Using (A.12), we can simplify (A.11) as

lim
θE→1

dVinv (θE)

dθE
= N

[
(N − 1)

(
θ̂ − ˆ̂

θ
)
+

(N − 1) qθ̂2

(N − 2) qθ̂ + 1

]
.

Therefore, (18) implies that limθE→1 dVinv/dθE < 0 and it provides a sufficient condition for

having an interior maximum.
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